<Copyright statement>= (U->) __copyright = """ PYCIFRW License Agreement (Python License, Version 2) ----------------------------------------------------- 1. This LICENSE AGREEMENT is between the Australian Nuclear Science and Technology Organisation ("ANSTO"), and the Individual or Organization ("Licensee") accessing and otherwise using this software ("PyCIFRW") in source or binary form and its associated documentation. 2. Subject to the terms and conditions of this License Agreement, ANSTO hereby grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative works, distribute, and otherwise use PyCIFRW alone or in any derivative version, provided, however, that this License Agreement and ANSTO's notice of copyright, i.e., "Copyright (c) 2001-2014 ANSTO; All Rights Reserved" are retained in PyCIFRW alone or in any derivative version prepared by Licensee. 3. In the event Licensee prepares a derivative work that is based on or incorporates PyCIFRW or any part thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to include in any such work a brief summary of the changes made to PyCIFRW. 4. ANSTO is making PyCIFRW available to Licensee on an "AS IS" basis. ANSTO MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, ANSTO MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYCIFRW WILL NOT INFRINGE ANY THIRD PARTY RIGHTS. 5. ANSTO SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYCIFRW FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYCIFRW, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. 6. This License Agreement will automatically terminate upon a material breach of its terms and conditions. 7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint venture between ANSTO and Licensee. This License Agreement does not grant permission to use ANSTO trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party. 8. By copying, installing or otherwise using PyCIFRW, Licensee agrees to be bound by the terms and conditions of this License Agreement. """
This file implements a general STAR reading/writing utility. The basic
objects (StarFile/StarBlock
) read and write syntactically correct STAR files
including save frames.
The StarFile
class is initialised with either no arguments (a new STAR file)
or with the name of an already existing STAR file. Data items are
accessed/changed/added using the python mapping type ie to get
dataitem
you would type value = cf[blockname][dataitem]
.
Note also that a StarFile object can be accessed as a mapping type, ie using square brackets. Most mapping operations have been implemented (see below).
We define a generic BlockCollection class that both CifFiles and StarFiles are subclasses of. It is also used when the user requests a collection of blocks from a StarFile.
The LoopBlock class used to be the root class of StarBlocks and all loop blocks for recursive handling of nested loops, but with removal of nested loop support it is simpler to model a StarBlock as a collection of dataitems with additional information specifying which datanames are grouped together. LoopBlocks are still used to provide packet-based access to loops.
<*>= # To maximize python3/python2 compatibility from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import <Copyright statement> import sys # Python 2,3 compatibility try: from urllib import urlopen # for arbitrary opening from urlparse import urlparse, urlunparse except: from urllib.request import urlopen from urllib.parse import urlparse,urlunparse import re,os import textwrap try: from StringIO import StringIO #not cStringIO as we cannot subclass except ImportError: from io import StringIO if isinstance(u"abc",str): #Python 3 unicode = str long = int try: import numpy have_numpy = True except ImportError: have_numpy = False # Windows paths require special handling. pathlib is available from # Python 3.4. For earlier Python versions dictionary import will not work # on Windows try: from pathlib import Path have_pathlib = True except: have_pathlib = False <Define a collection datatype> <LoopBlock class> <StarBlock class> <Star packet class> <BlockCollection class> <StarFile class> <Subclass StringIO> <Define an error class> <Read in a STAR file> <Get data dimension> <Utility functions> <API documentation flags>
Starfiles and Ciffiles are both collections of blocks. We abstract
this into the BlockCollection
class, and then inherit from it to
make a StarFile
object. The philosophy is that the treatment of
the constituent blocks is managed by the enclosing block collection
based on how the block collection was initialised.
<BlockCollection class>= (<-U) class BlockCollection(object): """A container for StarBlock objects. The constructor takes one non-keyword argument `datasource` to set the initial data. If `datasource` is a Python dictionary, the values must be `StarBlock` objects and the keys will be blocknames in the new object. Keyword arguments: standard: `CIF` or `Dic`. `CIF` enforces 75-character blocknames, and will print block contents before that block's save frame. blocktype: The type of blocks held in this container. Normally `StarBlock` or `CifBlock`. characterset: `ascii` or `unicode`. Blocknames and datanames appearing within blocks are restricted to the appropriate characterset. Note that only characters in the basic multilingual plane are accepted. This restriction will be lifted when PyCIFRW is ported to Python3. scoping: `instance` or `dictionary`: `instance` implies that save frames are hidden from save frames lower in the hierarchy or in sibling hierarchies. `dictionary` makes all save frames visible everywhere within a data block. This setting is only relevant for STAR2 dictionaries and STAR2 data files, as save frames are currently not used in plain CIF data files. """ <Initialise BC data structures> <Block collection locking> <BC emulation of mapping type> <Add a new data section> <Re-identify a data block> <Make a BC from a name list> <Merge with another block collection> <Conformance checks> <Collect all values of a single key in all blocks> <Switch save frame scoping rules> <Parent child utilities> <Set output template> <Write out to string representation>
With the advent of CIF2, the allowed character set has expanded to encompass most of Unicode. Our object needs to know about this different characterset in order to check incoming values and datanames for conformance. This is done via the 'characterset' keyword.
DDLm dictionaries assume that all definitions in nested save frames
are equally accessible from other nested save frames, whereas in
instance files save frames are logically insulated from other save
frames at the same or lower levels. Block names may be duplicated if
they are in different enclosing frames, although all save frame names
have to be unique within a DDLm dictionary (as importation is allowed
to refer to the save frame names with no qualifications). We deal
with potential duplication by appending a '+' to the access key of
legitimate save frames with duplicate names. Our child_table
dictionary links the internal block key to its parent and mixed-case
name used when outputting the block.
If scoping is 'instance', nested datablocks are invisible and only accessible through the 'saves' attribute, which produces a view onto the same block collection.
To take account of dictionaries with 10s of thousands of entries
(e.g. the PDB) we optimise block merging for speed. Most of the
information in separate structures below could be derived from
child_table
, but we take the space hit for speed. The canonical
reference to a block is the lowercase version of the name. We use
these addresses to index into a table that contains the actual block
name and the parent blockname.
<Initialise BC data structures>= (<-U) def __init__(self,datasource=None,standard='CIF',blocktype = StarBlock, characterset='ascii',scoping='instance',**kwargs): import collections self.dictionary = {} self.standard = standard self.lower_keys = set() # short_cuts self.renamed = {} self.PC = collections.namedtuple('PC',['block_id','parent']) self.child_table = {} self.visible_keys = [] # for efficiency self.block_input_order = [] # to output in same order self.scoping = scoping #will trigger setting of child table self.blocktype = blocktype self.master_template = {} #for outputting self.set_grammar('2.0') self.set_characterset(characterset) if isinstance(datasource,BlockCollection): self.merge_fast(datasource) self.scoping = scoping #reset visibility elif isinstance(datasource,dict): for key,value in datasource.items(): self[key]= value self.header_comment = '' def set_grammar(self,new_grammar): """Set the syntax and grammar for output to `new_grammar`""" if new_grammar not in ['1.1','1.0','2.0','STAR2']: raise StarError('Unrecognised output grammar %s' % new_grammar) self.grammar = new_grammar def set_characterset(self,characterset): """Set the allowed characters for datanames and datablocks: may be `ascii` or `unicode`. If datanames have already been added to any datablocks, they are not checked.""" self.characterset = characterset for one_block in self.lower_keys: self[one_block].set_characterset(characterset)
Unlocking. When editing dictionaries with many datablocks, we would rather just unlock all datablocks at once.
<Block collection locking>= (<-U) def unlock(self): """Allow overwriting of all blocks in this collection""" for a in self.lower_keys: self[a].overwrite=True def lock(self): """Disallow overwriting for all blocks in this collection""" for a in self.lower_keys: self[a].overwrite = False
Checking block name lengths. This is not needed for a STAR block, but is useful for CIF.
<Check block name lengths>= def checklengths(self,maxlength): toolong = [a.block_id for a in self.child_table.values() if len(a.block_id)>maxlength] if toolong: errorstring = "" for bn in toolong: errorstring += "\n" + bn raise StarError( 'Following block name(s) too long: \n' + errorstring)
Switch scoping. We interpose some code in the normal __setattr__
method so detect a scoping switch. In some cases we want to hide save frames from our accesses,
in other cases we wish to make all frames visible. Setting the scoping attribute
allows this to be swapped around.
We do not assume that no change means we do not have to do anything.
<Switch save frame scoping rules>= (<-U) def __setattr__(self,attr_name,newval): if attr_name == 'scoping': if newval not in ('dictionary','instance'): raise StarError("Star file may only have 'dictionary' or 'instance' scoping, not %s" % newval) if newval == 'dictionary': self.visible_keys = [a for a in self.lower_keys] else: #only top-level datablocks visible self.visible_keys = [a[0] for a in self.child_table.items() if a[1].parent==None] object.__setattr__(self,attr_name,newval)
Emulation of a mapping type. We also put odd little useful utilities in this section.
<BC emulation of mapping type>= (<-U) def __str__(self): return self.WriteOut() def __setitem__(self,key,value): self.NewBlock(key,value,parent=None) def __getitem__(self,key): if isinstance(key,(unicode,str)): lowerkey = key.lower() if lowerkey in self.lower_keys: return self.dictionary[lowerkey] #print 'Visible keys:' + `self.visible_keys` #print 'All keys' + `self.lower_keys` #print 'Child table' + `self.child_table` raise KeyError('No such item %s' % key) # we have to get an ordered list of the current keys, # as we'll have to delete one of them anyway. # Deletion will delete any key regardless of visibility def __delitem__(self,key): dummy = self[key] #raise error if not present lowerkey = key.lower() # get rid of all children recursively as well children = [a[0] for a in self.child_table.items() if a[1].parent == lowerkey] for child in children: del self[child] #recursive call del self.dictionary[lowerkey] del self.child_table[lowerkey] try: self.visible_keys.remove(lowerkey) except KeyError: pass self.lower_keys.remove(lowerkey) self.block_input_order.remove(lowerkey) def __len__(self): return len(self.visible_keys) def __contains__(self,item): """Support the 'in' operator""" if not isinstance(item,(unicode,str)): return False if item.lower() in self.visible_keys: return True return False # We iterate over all visible def __iter__(self): for one_block in self.keys(): yield self[one_block] # TODO: handle different case def keys(self): return self.visible_keys # Note that has_key does not exist in 3.5 def has_key(self,key): return key in self def get(self,key,default=None): if key in self: # take account of case return self.__getitem__(key) else: return default def clear(self): self.dictionary.clear() self.lower_keys = set() self.child_table = {} self.visible_keys = [] self.block_input_order = [] def copy(self): newcopy = self.dictionary.copy() #all blocks for k,v in self.dictionary.items(): newcopy[k] = v.copy() newcopy = BlockCollection(newcopy) newcopy.child_table = self.child_table.copy() newcopy.lower_keys = self.lower_keys.copy() newcopy.block_input_order = self.block_input_order.copy() newcopy.characterset = self.characterset newcopy.SetTemplate(self.master_template.copy()) newcopy.scoping = self.scoping #this sets visible keys return newcopy def update(self,adict): for key in adict.keys(): self[key] = adict[key] def items(self): return [(a,self[a]) for a in self.keys()] def first_block(self): """Return the 'first' block. This is not necessarily the first block in the file.""" if self.keys(): return self[self.keys()[0]]
Parent-child utilities. As we are now emulating parent-child relationships using self.child_table, we provide some useful methods.
<Parent child utilities>= (<-U) def get_parent(self,blockname): """Return the name of the block enclosing [[blockname]] in canonical form (lower case)""" possibles = (a for a in self.child_table.items() if a[0] == blockname.lower()) try: first = next(possibles) #get first one except: raise StarError('no parent for %s' % blockname) try: second = next(possibles) except StopIteration: return first[1].parent raise StarError('More than one parent for %s' % blockname) def get_roots(self): """Get the top-level blocks""" return [a for a in self.child_table.items() if a[1].parent==None] def get_children(self,blockname,include_parent=False,scoping='dictionary'): """Get all children of [[blockname]] as a block collection. If [[include_parent]] is True, the parent block will also be included in the block collection as the root.""" newbc = BlockCollection() block_lower = blockname.lower() proto_child_table = [a for a in self.child_table.items() if self.is_child_of_parent(block_lower,a[1].block_id)] newbc.child_table = dict(proto_child_table) if not include_parent: newbc.child_table.update(dict([(a[0],self.PC(a[1].block_id,None)) for a in proto_child_table if a[1].parent == block_lower])) newbc.lower_keys = set([a[0] for a in proto_child_table]) newbc.dictionary = dict((a[0],self.dictionary[a[0]]) for a in proto_child_table) if include_parent: newbc.child_table.update({block_lower:self.PC(self.child_table[block_lower].block_id,None)}) newbc.lower_keys.add(block_lower) newbc.dictionary.update({block_lower:self.dictionary[block_lower]}) newbc.scoping = scoping return newbc def get_immediate_children(self,parentname): """Get the next level of children of the given block as a list, without nested levels""" child_handles = [a for a in self.child_table.items() if a[1].parent == parentname.lower()] return child_handles # This takes time def get_child_list(self,parentname): """Get a list of all child categories in alphabetical order""" child_handles = [a[0] for a in self.child_table.items() if self.is_child_of_parent(parentname.lower(),a[0])] child_handles.sort() return child_handles def is_child_of_parent(self,parentname,blockname): """Return `True` if `blockname` is a child of `parentname`""" checkname = parentname.lower() more_children = [a[0] for a in self.child_table.items() if a[1].parent == checkname] if blockname.lower() in more_children: return True else: for one_child in more_children: if self.is_child_of_parent(one_child,blockname): return True return False def set_parent(self,parentname,childname): """Set the parent block""" # first check that both blocks exist if parentname.lower() not in self.lower_keys: raise KeyError('Parent block %s does not exist' % parentname) if childname.lower() not in self.lower_keys: raise KeyError('Child block %s does not exist' % childname) old_entry = self.child_table[childname.lower()] self.child_table[childname.lower()]=self.PC(old_entry.block_id, parentname.lower()) self.scoping = self.scoping #reset visibility
Making a Block Collection from a set of our own block names. This is used in merging, where we must merge with a Block Collection. Any pointers to parent blocks that are not in the list become None, ie. become top level blocks. We use our own child table to find links between the supplied block names and ourself. ::
<Make a BC from a name list>= (<-U) def makebc(self,namelist,scoping='dictionary'): """Make a block collection from a list of block names""" newbc = BlockCollection() block_lower = [n.lower() for n in namelist] proto_child_table = [a for a in self.child_table.items() if a[0] in block_lower] newbc.child_table = dict(proto_child_table) new_top_level = [(a[0],self.PC(a[1].block_id,None)) for a in newbc.child_table.items() if a[1].parent not in block_lower] newbc.child_table.update(dict(new_top_level)) newbc.lower_keys = set([a[0] for a in proto_child_table]) newbc.dictionary = dict((a[0],self.dictionary[a[0]]) for a in proto_child_table) newbc.scoping = scoping newbc.block_input_order = block_lower return newbc
Adding a new block. A new block is just a new item in our
dictionary, so we add a new entry. We return the new block name
in case we have changed it, so the calling routine can refer to it
later. Also, there is a limit of 75 characters for the block name length,
which we enforce here. By setting fix
to true, blocknames will have
illegal whitespace changed to underscore.
self.standard
is used to enforce differences in treatments of
block names. If self.standard
is set at all, blocks will not
replace a previous block with the same name. DDLm dictionaries
are not permitted identical save frame names, but those save frame
names may be identical to the enclosing datablock. We rename the
access key if an identically-named save frame is introduced
anywhere in the file by appending a '+'. These renames are stored
in the rename dictionary. The name appearing in the output file
is not changed, only the access key. If self.standard
is 'Dic',
then we put block contents before save frames in accordance with
stylistic conventions when printing out.
Note that we must take account of upper/lower case differences being irrelevant for STAR/CIF, but that we want to preserve the original case.
To allow for nested blocks, we can specify a parent block. When the file is printed, the new block will appear inside the parent block if nested frames have been requested or if the parent block is a top-level block.
blockcontents
cannot be set immediately to StarBlock
as a default,
because it will evaluate the constructor once and then assign all new blocks
to the same object.
<Add a new data section>= (<-U) def NewBlock(self,blockname,blockcontents=None,fix=True,parent=None): """Add a new block named `blockname` with contents `blockcontents`. If `fix` is True, `blockname` will have spaces and tabs replaced by underscores. `parent` allows a parent block to be set so that block hierarchies can be created. Depending on the output standard, these blocks will be printed out as nested save frames or ignored.""" if blockcontents is None: blockcontents = self.blocktype() if self.standard == "CIF": blockcontents.setmaxnamelength(75) if len(blockname)>75: raise StarError('Blockname %s is longer than 75 characters' % blockname) if fix: newblockname = re.sub('[ \t]','_',blockname) else: newblockname = blockname new_lowerbn = newblockname.lower() if new_lowerbn in self.lower_keys: #already there if self.standard is not None: toplevelnames = [a[0] for a in self.child_table.items() if a[1].parent==None] if parent is None and new_lowerbn not in toplevelnames: #can give a new key to this one while new_lowerbn in self.lower_keys: new_lowerbn = new_lowerbn + '+' elif parent is not None and new_lowerbn in toplevelnames: #can fix a different one replace_name = new_lowerbn while replace_name in self.lower_keys: replace_name = replace_name + '+' self._rekey(new_lowerbn,replace_name) # now continue on to add in the new block if parent.lower() == new_lowerbn: #the new block's requested parent just got renamed!! parent = replace_name else: raise StarError( "Attempt to replace existing block " + blockname) else: del self[new_lowerbn] self.dictionary.update({new_lowerbn:blockcontents}) self.lower_keys.add(new_lowerbn) self.block_input_order.append(new_lowerbn) if parent is None: self.child_table[new_lowerbn]=self.PC(newblockname,None) self.visible_keys.append(new_lowerbn) else: if parent.lower() in self.lower_keys: if self.scoping == 'instance': self.child_table[new_lowerbn]=self.PC(newblockname,parent.lower()) else: self.child_table[new_lowerbn]=self.PC(newblockname,parent.lower()) self.visible_keys.append(new_lowerbn) else: print('Warning:Parent block %s does not exist for child %s' % (parent,newblockname)) self[new_lowerbn].set_grammar(self.grammar) self[new_lowerbn].set_characterset(self.characterset) self[new_lowerbn].formatting_hints = self.master_template return new_lowerbn #in case calling routine wants to know
Renaming a block. This is a slightly intricate operation as we have to
also make sure the original children are pointed to the new blockname. We assume
that both oldname and newname are already lower case. We can simply change the
key used to identify the block using _rekey
, or we cna change the block name
that is printed using rename
. In the latter case, there must be no name collisions or the
operation will fail.
<Re-identify a data block>= (<-U) def _rekey(self,oldname,newname,block_id=''): """The block with key [[oldname]] gets [[newname]] as a new key, but the printed name does not change unless [[block_id]] is given. Prefer [[rename]] for a safe version.""" move_block = self[oldname] #old block is_visible = oldname in self.visible_keys move_block_info = self.child_table[oldname] #old info move_block_children = [a for a in self.child_table.items() if a[1].parent==oldname] # now rewrite the necessary bits self.child_table.update(dict([(a[0],self.PC(a[1].block_id,newname)) for a in move_block_children])) oldpos = self.block_input_order.index(oldname) del self[oldname] #do this after updating child table so we don't delete children self.dictionary.update({newname:move_block}) self.lower_keys.add(newname) #print 'Block input order was: ' + `self.block_input_order` self.block_input_order[oldpos:oldpos]=[newname] if block_id == '': self.child_table.update({newname:move_block_info}) else: self.child_table.update({newname:self.PC(block_id,move_block_info.parent)}) if is_visible: self.visible_keys += [newname] def rename(self,oldname,newname): """Rename datablock from [[oldname]] to [[newname]]. Both key and printed name are changed. No conformance checks are conducted.""" realoldname = oldname.lower() realnewname = newname.lower() if realnewname in self.lower_keys: raise StarError('Cannot change blockname %s to %s as %s already present' % (oldname,newname,newname)) if realoldname not in self.lower_keys: raise KeyError('Cannot find old block %s' % realoldname) self._rekey(realoldname,realnewname,block_id=newname)
Merging. Originally, this package envisaged Cif and STAR files as collections of either Starblocks or Cifblocks, which differed only in their capacity to hold save frames and nested loops. From version 4.05, we envisage Cif and Star files as collections of StarBlocks, neither of which hold any nested save frames. Instead, save frames relationships are held in a separate table, which we look up when outputting.
This was originally implemented for dictionary merging support, which is
now deprecated with the new DDLm way of combining dictionaries. We cannot
merge CifDic
objects, because the internal data structures for DDL2 and
DDL1 are different (parent-child in particular), so any merge operation
would have to first recreate the original Cif structure before proceeding.
Merging can be strict, overlay or replace. In all cases, if the block name is different, we simply add it in. If it is the same, in strict mode we flag an error, in replace mode we replace it, and in overlay mode we actually add/replace individual data items. The default mode will be determined from the setting of 'standard': if no standard has been specified, the mode is 'replace', otherwise the mode is 'strict'.
If the single_block list is non-empty, we assume that we should merge on the block level, using the given block names as the particular blocks to merge. This is essentially what we have to do for DDL2 dictionaries, where all the definitions are stored in save frames inside a single block.
Note also the related situation where we are in 'strict' mode, and the DDL1 dictionaries both have an "on_this_dictionary" block. So we have an extra keyword argument "idblock" which contains a blockname to ignore during merging, i.e. it will remain the same as before merging.
The suggested overlay method involves adding to loops, rather than replacing them completely. Identical rows must be removed, and any key values with identical values remaining after this have to flag an error. We do not read in the ddl specifications themselves, to avoid messing around with hard-coded filenames, so we require the calling function to provide us with this file (not yet implemented).
The match_att
keyword allows us to match blocks/save frames on a
particular attribute, rather than the block name itself. This means
we can do the right thing and compare _name
entries rather than
block names (the default behaviour).
Note also a problem with the overlay protocol as written up in Vol. G: if we try matching on item.name, we will run into trouble where _item.name is looped in DDL2-style dictionaries. We cannot match on a complete match against all item names in the list, because we would like to be able to add item names in overlay mode. So we have to deduce the 'main' item name from any parent-child information that we have using a helper function which is passed to us.
Nested save frames are emulated through child table lookups, so we should
merge this table when merging block collections. Unless parent
is
not empty, we put all new blocks on the same level. Otherwise, any top-level
blocks in the incoming block collection (parent is None) are given the parent
specified in parent
. In previous versions this was text, but due to the
inability to specify to future callers that the name has been changed, parent
is now itself a datablock.
As for NewBlock
, we allow duplicate save frame names in the precise situation
where one of the blocks is a top-level block.
The drop_att
attribute allows a particular datablock attribute to be used
to determine if datablocks are semantically identical.
<Merge with another block collection>= (<-U) def merge_fast(self,new_bc,parent=None): """Do a fast merge. WARNING: this may change one or more of its frame headers in order to remove duplicate frames. Please keep a handle to the block object instead of the text of the header.""" if self.standard is None: mode = 'replace' else: mode = 'strict' overlap_flag = not self.lower_keys.isdisjoint(new_bc.lower_keys) if parent is not None: parent_name = [a[0] for a in self.dictionary.items() if a[1] == parent] if len(parent_name)==0 or len(parent_name)>1: raise StarError("Unable to find unique parent block name: have %s" % str(parent_name)) parent_name = parent_name[0] else: parent_name = None #an error will be thrown if we treat as a string if overlap_flag and mode != 'replace': double_keys = self.lower_keys.intersection(new_bc.lower_keys) for dup_key in double_keys: our_parent = self.child_table[dup_key].parent their_parent = new_bc.child_table[dup_key].parent if (our_parent is None and their_parent is not None and parent is None) or\ parent is not None: #rename our block start_key = dup_key while start_key in self.lower_keys: start_key = start_key+'+' self._rekey(dup_key,start_key) if parent_name.lower() == dup_key: #we just renamed the prospective parent! parent_name = start_key elif our_parent is not None and their_parent is None and parent is None: start_key = dup_key while start_key in new_bc.lower_keys: start_key = start_key+'+' new_bc._rekey(dup_key,start_key) else: raise StarError("In strict merge mode:duplicate keys %s" % dup_key) self.dictionary.update(new_bc.dictionary) self.lower_keys.update(new_bc.lower_keys) self.visible_keys += (list(new_bc.lower_keys)) self.block_input_order += new_bc.block_input_order #print('Block input order now:' + repr(self.block_input_order)) self.child_table.update(new_bc.child_table) if parent_name is not None: #redo the child_table entries reparent_list = [(a[0],a[1].block_id) for a in new_bc.child_table.items() if a[1].parent==None] reparent_dict = [(a[0],self.PC(a[1],parent_name.lower())) for a in reparent_list] self.child_table.update(dict(reparent_dict)) def merge(self,new_bc,mode=None,parent=None,single_block=[], idblock="",match_att=[],match_function=None): if mode is None: if self.standard is None: mode = 'replace' else: mode = 'strict' if single_block: self[single_block[0]].merge(new_bc[single_block[1]],mode, match_att=match_att, match_function=match_function) return None base_keys = [a[1].block_id for a in self.child_table.items()] block_to_item = base_keys #default new_keys = [a[1].block_id for a in new_bc.child_table.items()] #get list of incoming blocks if match_att: #make a blockname -> item name map if match_function: block_to_item = [match_function(self[a]) for a in self.keys()] else: block_to_item = [self[a].get(match_att[0],None) for a in self.keys()] #print `block_to_item` for key in new_keys: #run over incoming blocknames if key == idblock: continue #skip dictionary id basekey = key #default value if len(match_att)>0: attval = new_bc[key].get(match_att[0],0) #0 if ignoring matching else: attval = 0 for ii in range(len(block_to_item)): #do this way to get looped names thisatt = block_to_item[ii] #keyname in old block #print "Looking for %s in %s" % (attval,thisatt) if attval == thisatt or \ (isinstance(thisatt,list) and attval in thisatt): basekey = base_keys.pop(ii) block_to_item.remove(thisatt) break if not basekey in self or mode=="replace": new_parent = new_bc.get_parent(key) if parent is not None and new_parent is None: new_parent = parent self.NewBlock(basekey,new_bc[key],parent=new_parent) #add the block else: if mode=="strict": raise StarError( "In strict merge mode: block %s in old and block %s in new files" % (basekey,key)) elif mode=="overlay": # print "Merging block %s with %s" % (basekey,key) self[basekey].merge(new_bc[key],mode,match_att=match_att) else: raise StarError( "Merge called with unknown mode %s" % mode)
Checking conformance. CIF and STAR standards differ in allowing nested loops and maximum data name lengths. Although the CIF 1.1 standard allows very long lines (2048 characters), data names are still restricted to be no more than 75 characters in length in the CIF standard.
<Conformance checks>= (<-U) def checknamelengths(self,target_block,maxlength=-1): if maxlength < 0: return else: toolong = [a for a in target_block.keys() if len(a)>maxlength] outstring = "" if toolong: outstring = "\n".join(toolong) raise StarError( 'Following data names too long:' + outstring)
When validating DDL2-type dictionaries against the DDL spec file, we have to be able to see all values of parent data items across all save frames in order to validate parent-child relations (I have inferred this, but if I ever find a standard document this may turn out to be wrong). So this method is provided to return a list of all values taken by the given attribute within all of the blocks inside a block collection.
A flat list is returned, even if looped values happen to occur in a data block. This is because the one routine that calls this method is interested in whether or not a given value occurs, rather than how it occurs or what it occurs with. We also remove duplicate values.
<Collect all values of a single key in all blocks>= (<-U) def get_all(self,item_name): raw_values = [self[a].get(item_name) for a in self.keys()] raw_values = [a for a in raw_values if a != None] ret_vals = [] for rv in raw_values: if isinstance(rv,list): for rvv in rv: if rvv not in ret_vals: ret_vals.append(rvv) else: if rv not in ret_vals: ret_vals.append(rv) return ret_vals
Writing all this stuff out to a string. We loop over each of the individual sections, getting their string representation. We implement this using the cStringIO module for faster work. Note that the default output comment specifies a CIF 1.1 standard file.
Note that child blocks must be save frames, so we hard-code 'save'.
If self.grammar
is '2.0', save frames are not nested and table/list delimiters
are spaces; if 'STAR2', save frames are nested. We allow the maximum line length
to be overridden here although preferably the output length is set when
initialising the file.
<Write out to string representation>= (<-U) def WriteOut(self,comment='',wraplength=80,maxoutlength=0,blockorder=None,saves_after=None): """Return the contents of this file as a string, wrapping if possible at `wraplength` characters and restricting maximum line length to `maxoutlength`. Delimiters and save frame nesting are controlled by `self.grammar`. If `blockorder` is provided, blocks are output in this order unless nested save frames have been requested (STAR2). The default block order is the order in which blocks were input. `saves_after` inserts all save frames after the given dataname, which allows less important items to appear later. Useful in conjunction with a template for dictionary files.""" if maxoutlength != 0: self.SetOutputLength(maxoutlength) if not comment: comment = self.header_comment outstring = StringIO() if self.grammar == "2.0" and comment[0:10] != r"#\#CIF_2.0": outstring.write(r"#\#CIF_2.0" + "\n") outstring.write(comment) # prepare all blocks for b in self.dictionary.values(): b.set_grammar(self.grammar) b.formatting_hints = self.master_template b.SetOutputLength(wraplength,self.maxoutlength) # loop over top-level # monitor output all_names = list(self.child_table.keys()) #i.e. lower case if blockorder is None: blockorder = self.block_input_order top_block_names = [(a,self.child_table[a].block_id) for a in blockorder if self.child_table[a].parent is None] for blockref,blockname in top_block_names: print('Writing %s, ' % blockname + repr(self[blockref])) outstring.write('\n' + 'data_' +blockname+'\n') all_names.remove(blockref) if self.standard == 'Dic': #put contents before save frames outstring.write(self[blockref].printsection(finish_at='_dictionary_valid.application')) if self.grammar == 'STAR2': #nested save frames child_refs = self.get_immediate_children(blockref) for child_ref,child_info in child_refs: child_name = child_info.block_id outstring.write('\n\n' + 'save_' + child_name + '\n') self.block_to_string_nested(child_ref,child_name,outstring,4) outstring.write('\n' + 'save_'+ '\n') elif self.grammar in ('1.0','1.1','2.0'): #non-nested save frames child_refs = [a for a in blockorder if self.is_child_of_parent(blockref,a)] for child_ref in child_refs: child_name = self.child_table[child_ref].block_id outstring.write('\n\n' + 'save_' + child_name + '\n') outstring.write(str(self[child_ref])) outstring.write('\n\n' + 'save_' + '\n') all_names.remove(child_ref.lower()) else: raise StarError('Grammar %s is not recognised for output' % self.grammar) if self.standard != 'Dic': #put contents after save frames outstring.write(str(self[blockref])) else: outstring.write(self[blockref].printsection(start_from='_dictionary_valid.application')) returnstring = outstring.getvalue() outstring.close() if len(all_names)>0: print('WARNING: following blocks not output: %s' % repr(all_names)) else: print('All blocks output.') return returnstring def block_to_string_nested(self,block_ref,block_id,outstring,indentlevel=0): """Output a complete datablock indexed by [[block_ref]] and named [[block_id]], including children, and syntactically nesting save frames""" child_refs = self.get_immediate_children(block_ref) self[block_ref].set_grammar(self.grammar) if self.standard == 'Dic': outstring.write(str(self[block_ref])) for child_ref,child_info in child_refs: child_name = child_info.block_id outstring.write('\n' + 'save_' + child_name + '\n') self.block_to_string_nested(child_ref,child_name,outstring,indentlevel) outstring.write('\n' + ' '*indentlevel + 'save_' + '\n') if self.standard != 'Dic': outstring.write(str(self[block_ref]))
Output template. We process the template file and immediately set all blocks to this value. New blocks will not see this template, so we store the template for application after the blocks are created.
<Set output template>= (<-U) def SetTemplate(self,template_file): """Use `template_file` as a template for all block output""" self.master_template = process_template(template_file) for b in self.dictionary.values(): b.formatting_hints = self.master_template
If we are passed a filename, we open it and read it in, assuming that
it is a conformant STAR file. A StarFile object is a dictionary of
StarBlock objects, accessed by block name.
Parameter maxoutlength
sets the maximum line size for output. If
maxoutlength
is not specified, it defaults to the maximum input
length.
<StarFile class>= (<-U) class StarFile(BlockCollection): <Initialise data structures> <Set URI>
When initialising, we add those parts that are unique to the StarFile as opposed to a simple collection of blocks - i.e. reading in from a file, and some line length restrictions. We do not indent this section in the noweb file, so that our comment characters output at the beginning of the line.
<Initialise data structures>= (<-U) def __init__(self,datasource=None,maxinlength=-1,maxoutlength=0, scoping='instance',grammar='1.1',scantype='standard', permissive=False,**kwargs): super(StarFile,self).__init__(datasource=datasource,**kwargs) self.my_uri = getattr(datasource,'my_uri','') if maxoutlength == 0: self.maxoutlength = 2048 else: self.maxoutlength = maxoutlength self.scoping = scoping if isinstance(datasource,(unicode,str)) or hasattr(datasource,"read"): ReadStar(datasource,prepared=self,grammar=grammar,scantype=scantype, maxlength = maxinlength,permissive=permissive) self.header_comment = \ """#\\#STAR ########################################################################## # STAR Format file # Produced by PySTARRW module # # This is a STAR file. STAR is a superset of the CIF file type. For # more information, please refer to International Tables for Crystallography, # Volume G, Chapter 2.1 # ########################################################################## """
A function to make sure we have the correct file location
<Set URI>= (<-U) def set_uri(self,my_uri): self.my_uri = my_uri
Reading in a file. We use the Yapps3-generated YappsStarParser
module to provide grammar services. The structure returned from
parsing is a StarFile, with possible grammar violations due to
duplicate block names.
We allow fast reads using the compiled StarScan module by passing the option 'flex' to this routine. We also permit an already-opened stream to be passed to us (thanks to Boris Dusek for this contribution). There are 3 possible syntax variations: very old CIF files allowed unquoted data values to begin with open square brackets, version 1.1 disallowed this, and DDLm-conformant files interpret these as actual bracket expressions. The different grammars are selected by the 'grammar' argument.
We allow reading CBF files, which can contain binary sections, by removing all characters found between the strings '-BINARY-FORMAT-SECTION'. This is not a robust approach as this string could theoretically be found in a comment or datavalue.
We save our URL for possible later use in finding files relative to the location of this file e.g. with DDLm dictionary imports.
<Read in a STAR file>= (<-U) def ReadStar(filename,prepared = None, maxlength=-1, scantype='standard',grammar='STAR2',CBF=False, permissive=False): """ Read in a STAR file, returning the contents in the `prepared` object. * `filename` may be a URL, a file path on the local system, or any object with a `read` method. * `prepared` provides a `StarFile` or `CifFile` object that the contents of `filename` will be added to. * `maxlength` is the maximum allowable line length in the input file. This has been set at 2048 characters for CIF but is unlimited (-1) for STAR files. * `grammar` chooses the STAR grammar variant. `1.0` is the original 1992 CIF/STAR grammar and `1.1` is identical except for the exclusion of square brackets as the first characters in undelimited datanames. `2.0` will read files in the CIF2.0 standard, and `STAR2` will read files according to the STAR2 publication. If grammar is `None` or `auto`, autodetection will be attempted in the order `2.0`, `1.1` and `1.0`. This will always succeed for conformant CIF2.0 files. Note that (nested) save frames are read in all grammar variations and then flagged afterwards if they do not match the requested grammar. * `scantype` can be `standard` or `flex`. `standard` provides pure Python parsing at the cost of a factor of 10 or so in speed. `flex` will tokenise the input CIF file using fast C routines. Note that running PyCIFRW in Jython uses native Java regular expressions to provide a speedup regardless of this argument. * `CBF` flags that the input file is in Crystallographic Binary File format. The binary block is excised from the input data stream before parsing and is not available in the returned object. * `permissive` allows non UTF8 encodings (currently only latin1) in the input file. These are a violation of the standard. """ # save desired scoping save_scoping = prepared.scoping from . import YappsStarParser_1_1 as Y11 from . import YappsStarParser_1_0 as Y10 from . import YappsStarParser_2_0 as Y20 from . import YappsStarParser_STAR2 as YST if prepared is None: prepared = StarFile() if grammar == "auto" or grammar is None: try_list = [('2.0',Y20),('1.1',Y11),('1.0',Y10)] elif grammar == '1.0': try_list = [('1.0',Y10)] elif grammar == '1.1': try_list = [('1.1',Y11)] elif grammar == '2.0': try_list = [('2.0',Y20)] elif grammar == 'STAR2': try_list = [('STAR2',YST)] else: raise AttributeError('Unknown STAR/CIF grammar requested, %s' % repr( grammar )) if isinstance(filename,(unicode,str)): # create an absolute URL relpath = urlparse(filename) if len(relpath.scheme) <= 1: if not os.path.isabs(filename): fullpath = os.path.join(os.getcwd(),filename) else: fullpath = filename if have_pathlib: # Python > 3.4 my_uri = Path(fullpath).as_uri() else: # works on Linux/Mac only newrel = list(relpath) newrel[0] = "file" newrel[2] = fullpath my_uri = urlunparse(newrel) else: my_uri = urlunparse(relpath) # print("Full URL is: " + my_uri) filestream = urlopen(my_uri) try: text = filestream.read().decode('utf-8-sig') except UnicodeDecodeError: if permissive: text = filestream.read().decode('latin1') print("WARNING: %s violates standard (latin1 encoding instead of UTF8)." % filename) else: raise StarError("%s: bad encoding (must be utf8 or ascii)" % filename) filestream.close() else: filestream = filename #already opened for us text = filestream.read() if not isinstance(text,unicode): try: text = text.decode('utf-8-sig') #CIF is always ascii/utf8 except UnicodeDecodeError: if permissive: text = filestream.read().decode('latin1') print("WARNING: text violates CIF standard (latin1 encoding instead of UTF8)") else: raise StarError("Bad input encoding (must be utf8 or ascii)") my_uri = "" if not text: # empty file, return empty block return prepared.set_uri(my_uri) # filter out non-ASCII characters in CBF files if required. We assume # that the binary is enclosed in a fixed string that occurs # nowhere else. if CBF: text_bits = text.split("-BINARY-FORMAT-SECTION-") text = text_bits[0] for section in range(2,len(text_bits),2): text = text+" (binary omitted)"+text_bits[section] # we recognise ctrl-Z as end of file endoffile = text.find(chr(26)) if endoffile >= 0: text = text[:endoffile] split = text.split('\n') if maxlength > 0: toolong = [a for a in split if len(a)>maxlength] if toolong: pos = split.index(toolong[0]) raise StarError( 'Line %d contains more than %d characters' % (pos+1,maxlength)) # honour the header string if text[:10] != r"#\#CIF_2.0" and ('2.0',Y20) in try_list: try_list.remove(('2.0',Y20),) if not try_list: raise StarError('File %s missing CIF2.0 header' % (filename)) for grammar_name,Y in try_list: if scantype == 'standard' or grammar_name in ['2.0','STAR2']: parser = Y.StarParser(Y.StarParserScanner(text)) else: parser = Y.StarParser(Y.yappsrt.Scanner(None,[],text,scantype='flex')) # handle encoding switch if grammar_name in ['2.0','STAR2']: prepared.set_characterset('unicode') else: prepared.set_characterset('ascii') proto_star = None try: proto_star = getattr(parser,"input")(prepared) except Y.yappsrt.YappsSyntaxError as e: input = parser._scanner.input Y.yappsrt.print_error(input, e, parser._scanner) except Y.yappsrt.NoMoreTokens: print('Could not complete parsing; stopped around here:',file=sys.stderr) print(parser._scanner,file=sys.stderr) except ValueError: print('Unexpected error:') import traceback traceback.print_exc() if proto_star is not None: proto_star.set_grammar(grammar_name) #remember for output break if proto_star is None: errorstring = 'Syntax error in input file: last value parsed was %s' % Y.lastval errorstring = errorstring + '\nParser status: %s' % repr( parser._scanner ) raise StarError( errorstring) # set visibility correctly proto_star.scoping = 'dictionary' proto_star.set_uri(my_uri) proto_star.scoping = save_scoping return proto_star
If a dictionary is attached to a StarBlock, we can use it to provide automatic value conversion whenever a value is retrieved.
<Working with dictionaries>= (U->) <Assigning a dictionary>
In DDL1 and DDL2, there is not a whole lot of point associating a DDL dictionary with a CIF file in an ongoing way. However, with DDLm the dictionary can be used when searching for attributes, so is no longer simply a checking mechanism but is now also a generative mechanism. So there are advantages to making this assignment for DDLm.
If we are passed a non-DDLm dictionary, we ignore the request as there is nothing we can do with it outside the normal validity checking, for which a different routine is in place.
Having a dictionary in place also implies that values that are returned are automatically converted to the type given in the dictionary.
<Assigning a dictionary>= (<-U) def assign_dictionary(self,dic): if not dic.diclang=="DDLm": print("Warning: ignoring dictionary %s" % dic.my_uri) return self.dictionary = dic def unassign_dictionary(self): """Remove dictionary-dependent behaviour""" self.dictionary = None
DDLm introduced data values which could be lists, tuples or hash tables. We define a distinct StarList class to distinguish them from loop lists, and take the opportunity to expand the getitem method to allow multiple arguments.
<Define a collection datatype>= (<-U) class StarList(list): def __getitem__(self,args): if isinstance(args,(int,slice)): return super(StarList,self).__getitem__(args) elif isinstance(args,tuple) and len(args)>1: #extended comma notation return super(StarList,self).__getitem__(args[0]).__getitem__(args[1:]) else: return super(StarList,self).__getitem__(args[0]) def __str__(self): return "SL("+super(StarList,self).__str__() + ")" class StarDict(dict): pass
A LoopBlock is provided as a row-based interface to a collection of columns, so that iteration over packets is possible. It is initialised with a StarBlock object and dataname and returns an object that accesses the loop containing the dataname. Datavalues is not copied, meaning that changes to the data (e.g. appending a packet) will be apparent in the StarBlock parent (i.e the LoopBlock is like a view onto the parent).
<LoopBlock class>= (<-U) class LoopBlock(object): <Initialise Loop Block> <Add emulation of a mapping type> <Selection of iterators> <Remove a data item> <Get complete looped data> <Packet handling methods> <Change data item order> <Return position of data item> <Get co-looped names> <Add to looped data>
Initialising: We do not check conformance to standards here: it assumed that this has been done by the creating routine.
<Initialise Loop Block>= (<-U) def __init__(self,parent_block,dataname): self.loop_no = parent_block.FindLoop(dataname) if self.loop_no < 0: raise KeyError('%s is not in a loop structure' % dataname) self.parent_block = parent_block
<Add emulation of a mapping type>= (<-U) def keys(self): return self.parent_block.loops[self.loop_no] def values(self): return [self.parent_block[a] for a in self.keys()] #Avoid iterator even though that is Python3-esque def items(self): return list(zip(self.keys(),self.values())) def __getitem__(self,dataname): if isinstance(dataname,int): #a packet request return self.GetPacket(dataname) if dataname in self.keys(): return self.parent_block[dataname] else: raise KeyError('%s not in loop block' % dataname) def __setitem__(self,dataname,value): self.parent_block[dataname] = value self.parent_block.AddLoopName(self.keys()[0],dataname) def __contains__(self,key): return key in self.parent_block.loops[self.loop_no] def has_key(self,key): return key in self def __iter__(self): packet_list = zip(*self.values()) names = self.keys() for p in packet_list: r = StarPacket(p) for n in range(len(names)): setattr(r,names[n].lower(),r[n]) yield r # for compatibility def __getattr__(self,attname): return getattr(self.parent_block,attname)
Packets. We store columns, so extracting packets is a much slower task.
<Packet handling methods>= (<-U) <Get nth loop packet> <Add a packet> <Get item order>
A StarPacket object looks very much like a list, in order to support the DDLm semantics of allowing a particular value to be accessed by attribute. DDLm also allows merged categories, which means that a packet can contain datanames from the appropriate sub-categories.
Furthermore, a StarPacket can derive missing values by calling the appropriate dREL function. To do this, we store the key name used to create the packet.
Note that all attributes must be lower case in order to meet the caseless matching required by the STAR/CIF standards.
<Star packet class>= (<-U) class StarPacket(list): def merge_packet(self,incoming): """Merge contents of incoming packet with this packet""" new_attrs = [a for a in dir(incoming) if a[0] == '_' and a[1] != "_"] self.extend(incoming) for na in new_attrs: setattr(self,na,getattr(incoming,na)) def __getattr__(self,att_name): """Derive a missing attribute""" if att_name.lower() in self.__dict__: return getattr(self,att_name.lower()) if att_name in ('cif_dictionary','fulldata','key'): raise AttributeError('Programming error: can only assign value of %s' % att_name) d = self.cif_dictionary c = self.fulldata k = self.key assert isinstance(k,list) d.derive_item(att_name,c,store_value=True) # # now pick out the new value # self.key is a list of the key values keydict = dict([(v,(getattr(self,v),True)) for v in k]) full_pack = c.GetCompoundKeyedPacket(keydict) return getattr(full_pack,att_name)
Get nth looped packet. This returns a packet of data.
<Get nth loop packet>= (<-U) def GetPacket(self,index): thispack = StarPacket([]) for myitem in self.parent_block.loops[self.loop_no]: thispack.append(self[myitem][index]) setattr(thispack,myitem,thispack[-1]) return thispack
Adding a packet. We are passed a StarPacket object, which is just a list which is accessible by attribute. As I have not yet produced a proper __init__ or __new__ method to allow creation of a new StarPacket, it is advisable to create a new packet by copying an old packet.
<Add a packet>= (<-U) def AddPacket(self,packet): for myitem in self.parent_block.loops[self.loop_no]: old_values = self.parent_block[myitem] old_values.append(packet.__getattribute__(myitem)) self.parent_block[myitem] = old_values
Return order of items - this is just a copy of the list of datanames making up this loop.
<Get item order>= (<-U) def GetItemOrder(self): """Return a list of datanames in this `LoopBlock` in the order that they will be printed""" return self.parent_block.loops[self.loop_no][:]
Move an item to a different position in the loop. This only affects
the printout order. We allow different capitalisation and have to
absorb the possibility of nested loops in the order list, and being
passed a loop reference in the itemname
argument.
<Change data item order>= (<-U) def ChangeItemOrder(self,itemname,newpos): """Change the position at which `itemname` appears when printing out to `newpos`.""" self.parent_block.loops[self.loop_no].remove(itemname.lower()) self.parent_block.loops[self.loop_no].insert(newpos,itemname.lower())
Get co-looped names. Sometimes we just want names, and will get the values ourselves on a need-to-know basis.
<Get co-looped names>= (<-U U->) [D->] def GetLoopNames(self,keyname): if keyname in self: return self.keys() for aloop in self.loops: try: return aloop.GetLoopNames(keyname) except KeyError: pass raise KeyError('Item does not exist')
Adding to a loop. We find the loop containing the dataname that
we have been passed, and then append all of the (key,values) pairs that we
are passed in data
, which is a dictionary. We expect that the data
have been sorted out for us, unlike when data are passed in AddLoopItem
,
when there can be both unlooped and looped data in one set. The dataname
passed to this routine is simply a convenient way to refer to the
loop, and has no other significance.
<Add to looped data>= (<-U U->) [D->] def AddToLoop(self,dataname,loopdata): thisloop = self.GetLoop(dataname) for itemname,itemvalue in loopdata.items(): thisloop[itemname] = itemvalue
A Star Block is no longer simply a LoopBlock. Historically it was distinguished by holding save frames, but this has been removed. Development note: in the original implementation, a StarBlock was just a special type of LoopBlock. In our new implementation, a LoopBlock is a simple structure that is created to access loops in a certain way.
The other difference between LoopBlocks and StarBlocks is that the latter can have a dictionary attached, whereas inner LoopBlocks should not.
<StarBlock class>= (<-U) class StarBlock(object): <Initialise a StarBlock> <Add StarBlock emulation of mapping type> <Return position of data item> <Change order of data item> <Return order of all data items> <Add a data item> <Old multi-item add routine> <Check data name for STAR conformance> <Check data item for STAR conformance> <Regularise data values> <Remove a data item> <Return value of item> <Dealing with loops> <Functions for printing out> <Merge with another block> <Working with dictionaries>
Initialising a StarBlock. If given non-zero data to initialise the block with, we either copy (if it is a dictionary) or else initialise each key-value pair separately (if tuples). We take care to include our special "loop" key if it is not in the supplied dictionary, but apart from this we make no check of the actual conformance of the dictionary items.
To maximise efficiency, we store all keys as lower case, and keep a table of key vs the actual supplied capitalisation for printout.
The overwrite
argument allows values to be silently replaced, as per a
normal python dictionary. However, when reading in from a file, we want to
detect duplicated values, so we set this to false. As DDLm introduces the
unicode character set, we need to indicate which character set we are
prepared to accept.
We store the data in self.block
. Each entry in this table is a tuple
with first element the string value, and second element the corresponding
calculated or actual value. We use a tuple to emphasise that both values
need to be changed together.
Formatting hints are used on output to suggest column positions for looped datanames and delimiters. In practice these are used only for dictionaries where fine-tuned layout is helpful for human readers.
We provide a simple function to change the maximum name length, so that we can read in a StarBlock and then enforce that the names are a maximum length as required by CIF. Values calculated with a dictionary are cached by setting self.cache_vals to True.
<Initialise a StarBlock>= (<-U) def __init__(self,data = (), maxoutlength=2048, wraplength=80, overwrite=True, characterset='ascii',maxnamelength=-1): self.block = {} #the actual data storage (lower case keys) self.loops = {} #each loop is indexed by a number and contains a list of datanames self.item_order = [] #lower case, loops referenced by integer self.formatting_hints = {} self.true_case = {} #transform lower case to supplied case self.provide_value = False #prefer string version always self.dictionary = None #DDLm dictionary self.popout = False #used during load iteration self.curitem = -1 #used during iteration self.cache_vals = True #store all calculated values self.maxoutlength = maxoutlength self.setmaxnamelength(maxnamelength) #to enforce CIF limit of 75 characters self.set_characterset(characterset) #to check input names self.wraplength = wraplength self.overwrite = overwrite self.string_delimiters = ["'",'"',"\n;"] #universal CIF set self.list_delimiter = " " #CIF2 default self.wrapper = textwrap.TextWrapper() if isinstance(data,(tuple,list)): for item in data: self.AddLoopItem(item) elif isinstance(data,StarBlock): self.block = data.block.copy() self.item_order = data.item_order[:] self.true_case = data.true_case.copy() # loops as well self.loops = data.loops.copy() def setmaxnamelength(self,maxlength): """Set the maximum allowable dataname length (-1 for no check)""" self.maxnamelength = maxlength if maxlength > 0: bad_names = [a for a in self.keys() if len(a)>self.maxnamelength] if len(bad_names)>0: raise StarError('Datanames too long: ' + repr( bad_names )) def set_characterset(self,characterset): """Set the characterset for checking datanames: may be `ascii` or `unicode`""" self.characterset = characterset if characterset == 'ascii': self.char_check = re.compile("[][ \n\r\t!%&\\(\\)*+,./:<=>?@0-9A-Za-z\\\\^`{}\\|~\"#$';_-]+",re.M) elif characterset == 'unicode': if sys.maxunicode < 1114111: self.char_check = re.compile(u"[][ \n\r\t!%&\\(\\)*+,./:<=>?@0-9A-Za-z\\\\^`{}\\|~\"#$';_\u00A0-\uD7FF\uE000-\uFDCF\uFDF0-\uFFFD-]+",re.M) else: self.char_check = re.compile(u"[][ \n\r\t!%&\\(\\)*+,./:<=>?@0-9A-Za-z\\\\^`{}\\|~\"#$';_\u00A0-\uD7FF\uE000-\uFDCF\uFDF0-\uFFFD\U00010000-\U0010FFFD-]+",re.M)
Adding emulation of a mapping type. We add any of the other
functions we would like to emulate. __len__
returns the number
of items in this block, either in a loop or not. So it is
not the simple length of the dictionary.
A Star Block can hold save frames in the outermost loop. From version 4.05 we do not allow save frames to be set from within the block; rather, an enclosing block collection should be created (e.g. a Star File) and the save frame added to that block collection with the 'enclosing' StarBlock set as its parent. We catch the saves key and print an error message to show deprecation.
<Add StarBlock emulation of mapping type>= (<-U) def __str__(self): return self.printsection() def __setitem__(self,key,value): if key == "saves": raise StarError("""Setting the saves key is deprecated. Add the save block to an enclosing block collection (e.g. CIF or STAR file) with this block as child""") self.AddItem(key,value) def __getitem__(self,key): if key == "saves": raise StarError("""The saves key is deprecated. Access the save block from the enclosing block collection (e.g. CIF or STAR file object)""") try: rawitem,is_value = self.GetFullItemValue(key) except KeyError: if self.dictionary: # send the dictionary the required key and a pointer to us try: new_value = self.dictionary.derive_item(key,self,store_value=self.cache_vals,allow_defaults=False) except StarDerivationFailure: #try now with defaults included try: new_value = self.dictionary.derive_item(key,self,store_value=self.cache_vals,allow_defaults=True) except StarDerivationFailure as s: print("In StarBlock.__getitem__, " + repr(s)) raise KeyError('No such item: %s' % key) print('Set %s to derived value %s' % (key, repr(new_value))) return new_value else: raise KeyError('No such item: %s' % key) # we now have an item, we can try to convert it to a number if that is appropriate # note numpy values are never stored but are converted to lists if not self.dictionary or not key in self.dictionary: return rawitem print('%s: is_value %s provide_value %s value %s' % (key,repr( is_value ),repr( self.provide_value ),repr( rawitem ))) if is_value: if self.provide_value: return rawitem else: print('Turning %s into string' % repr( rawitem )) return self.convert_to_string(key) else: # a string if self.provide_value and ((not isinstance(rawitem,list) and rawitem != '?' and rawitem != ".") or \ (isinstance(rawitem,list) and '?' not in rawitem and '.' not in rawitem)): return self.dictionary.change_type(key,rawitem) elif self.provide_value: # catch the question marks do_calculate = False if isinstance(rawitem,(list,tuple)): known = [a for a in rawitem if a != '?'] if len(known) == 0: #all questions do_calculate = True elif rawitem == '?': do_calculate = True if do_calculate: # remove old value del self[key] try: new_value = self.dictionary.derive_item(key,self,store_value=True,allow_defaults=False) except StarDerivationFailure as s: try: new_value = self.dictionary.derive_item(key,self,store_value=True,allow_defaults=True) except StarDerivationFailure as s: print("Could not turn %s into a value:" + repr(s)) return rawitem else: print('Set %s to derived value %s' % (key, repr( new_value ))) return new_value return rawitem #can't do anything def __delitem__(self,key): self.RemoveItem(key) def __len__(self): blen = len(self.block) return blen def __nonzero__(self): if self.__len__() > 0: return 1 return 0 # keys returns all internal keys def keys(self): return list(self.block.keys()) #always lower case def values(self): return [self[a] for a in self.keys()] def items(self): return list(zip(self.keys(),self.values())) def __contains__(self,key): if isinstance(key,(unicode,str)) and key.lower() in self.keys(): return True return False def has_key(self,key): return key in self def has_key_or_alias(self,key): """Check if a dataname or alias is available in the block""" initial_test = key in self if initial_test: return True elif self.dictionary: aliases = [k for k in self.dictionary.alias_table.get(key,[]) if self.has_key(k)] if len(aliases)>0: return True return False def get(self,key,default=None): if key in self: retval = self.__getitem__(key) else: retval = default return retval def clear(self): self.block = {} self.loops = {} self.item_order = [] self.true_case = {} # doesn't appear to work def copy(self): newcopy = StarBlock() newcopy.block = self.block.copy() newcopy.loops = [] newcopy.item_order = self.item_order[:] newcopy.true_case = self.true_case.copy() newcopy.loops = self.loops.copy() # return self.copy.im_class(newcopy) #catch inheritance return newcopy def update(self,adict): for key in adict.keys(): self.AddItem(key,adict[key])
This method is used when printing out, which is why it takes both names and numbers.
<Return position of data item>= (<-U <-U) def GetItemPosition(self,itemname): """A utility function to get the numerical order in the printout of `itemname`. An item has coordinate `(loop_no,pos)` with the top level having a `loop_no` of -1. If an integer is passed to the routine then it will return the position of the loop referenced by that number.""" if isinstance(itemname,int): # return loop position return (-1, self.item_order.index(itemname)) if not itemname in self: raise ValueError('No such dataname %s' % itemname) testname = itemname.lower() if testname in self.item_order: return (-1,self.item_order.index(testname)) loop_no = self.FindLoop(testname) loop_pos = self.loops[loop_no].index(testname) return loop_no,loop_pos
This routine moves around the order of objects in the printout. We can only move an item within the loop in which it appears.
<Change order of data item>= (<-U) def ChangeItemOrder(self,itemname,newpos): """Move the printout order of `itemname` to `newpos`. If `itemname` is in a loop, `newpos` refers to the order within the loop.""" if isinstance(itemname,(unicode,str)): true_name = itemname.lower() else: true_name = itemname loopno = self.FindLoop(true_name) if loopno < 0: #top level self.item_order.remove(true_name) self.item_order.insert(newpos,true_name) else: self.loops[loopno].remove(true_name) self.loops[loopno].insert(newpos,true_name)
<Return order of all data items>= (<-U) def GetItemOrder(self): """Return a list of datanames in the order in which they will be printed. Loops are referred to by numerical index""" return self.item_order[:]
Adding a data item.
We check for consistency, by making sure the new item is not in the
block already. If it is, we replace it (consistent with the meaning
of square brackets in Python), unless self.overwrite
is False, in
which case an error is raised.
We skip checking of data values if the precheck
value is true- this
is typically set if the item is being read from a file, and so is already
checked, or will be checked in bulk at the end.
Note that all strings are stored internally as unicode.
<Add a data item>= (<-U) def AddItem(self,key,value,precheck=False): """Add dataname `key` to block with value `value`. `value` may be a single value, a list or a tuple. If `precheck` is False (the default), all values will be checked and converted to unicode strings as necessary. If `precheck` is True, this checking is bypassed. No checking is necessary when values are read from a CIF file as they are already in correct form.""" if not isinstance(key,(unicode,str)): raise TypeError('Star datanames are strings only (got %s)' % repr( key )) key = unicode(key) #everything is unicode internally if not precheck: self.check_data_name(key,self.maxnamelength) # make sure no nasty characters # check for overwriting if key in self: if not self.overwrite: raise StarError( 'Attempt to insert duplicate item name %s' % key) if not precheck: #need to sanitise regval,empty_val = self.regularise_data(value) pure_string = check_stringiness(regval) self.check_item_value(regval) else: regval,empty_val = value,None pure_string = True # update ancillary information first lower_key = key.lower() if not lower_key in self and self.FindLoop(lower_key)<0: #need to add to order self.item_order.append(lower_key) # always remove from our case table in case the case is different try: del self.true_case[lower_key] except KeyError: pass self.true_case[lower_key] = key if pure_string: self.block.update({lower_key:[regval,empty_val]}) else: self.block.update({lower_key:[empty_val,regval]})
This is the original routine for adding a loop item, left in for consistency with old versions. Do not use.
<Old multi-item add routine>= (<-U) def AddLoopItem(self,incomingdata,precheck=False,maxlength=-1): """*Deprecated*. Use `AddItem` followed by `CreateLoop` if necessary.""" # print "Received data %s" % `incomingdata` # we accept tuples, strings, lists and dicts!! # Direct insertion: we have a string-valued key, with an array # of values -> single-item into our loop if isinstance(incomingdata[0],(tuple,list)): # a whole loop keyvallist = zip(incomingdata[0],incomingdata[1]) for key,value in keyvallist: self.AddItem(key,value) self.CreateLoop(incomingdata[0]) elif not isinstance(incomingdata[0],(unicode,str)): raise TypeError('Star datanames are strings only (got %s)' % repr( incomingdata[0] )) else: self.AddItem(incomingdata[0],incomingdata[1])
Checking the data names. The CIF 1.1 standard restricts characters in a data name to ASCII 33-126 and there should be a leading underscore. Items are allowed to have the blank characters as well, i.e. ascii 09,10,13 and 32. Data items may be lists, which we need to detect before checking. We assume that the item has been regularised before this check is called.
The CIF2 standard allows all of Unicode, with certain blocks disallowed. The removal of the disallowed characters takes place on file read.
We have the name length as a separate call as file reading will automatically produce datanames with the correct syntax, so during file reading we do not require any checking, but we do still need to check name length.
<Check data name for STAR conformance>= (<-U) def check_data_name(self,dataname,maxlength=-1): if maxlength > 0: self.check_name_length(dataname,maxlength) if dataname[0]!='_': raise StarError( 'Dataname ' + dataname + ' does not begin with _') if self.characterset=='ascii': if len ([a for a in dataname if ord(a) < 33 or ord(a) > 126]) > 0: raise StarError( 'Dataname ' + dataname + ' contains forbidden characters') else: # print 'Checking %s for unicode characterset conformance' % dataname if len ([a for a in dataname if ord(a) < 33]) > 0: raise StarError( 'Dataname ' + dataname + ' contains forbidden characters (below code point 33)') if len ([a for a in dataname if ord(a) > 126 and ord(a) < 160]) > 0: raise StarError( 'Dataname ' + dataname + ' contains forbidden characters (between code point 127-159)') if len ([a for a in dataname if ord(a) > 0xD7FF and ord(a) < 0xE000]) > 0: raise StarError( 'Dataname ' + dataname + ' contains unsupported characters (between U+D800 and U+E000)') if len ([a for a in dataname if ord(a) > 0xFDCF and ord(a) < 0xFDF0]) > 0: raise StarError( 'Dataname ' + dataname + ' contains unsupported characters (between U+FDD0 and U+FDEF)') if len ([a for a in dataname if ord(a) == 0xFFFE or ord(a) == 0xFFFF]) > 0: raise StarError( 'Dataname ' + dataname + ' contains unsupported characters (U+FFFE and/or U+FFFF)') if len ([a for a in dataname if ord(a) > 0x10000 and (ord(a) & 0xE == 0xE)]) > 0: print('%s fails' % dataname) for a in dataname: print('%x' % ord(a),end="") print() raise StarError( u'Dataname ' + dataname + u' contains unsupported characters (U+xFFFE and/or U+xFFFF)') def check_name_length(self,dataname,maxlength): if len(dataname)>maxlength: raise StarError( 'Dataname %s exceeds maximum length %d' % (dataname,maxlength)) return
<Check data item for STAR conformance>= (<-U) def check_item_value(self,item): test_item = item if not isinstance(item,(list,dict,tuple)): test_item = [item] #single item list def check_one (it): if isinstance(it,unicode): if it=='': return me = self.char_check.match(it) if not me: print("Fail value check: %s" % it) raise StarError('Bad character in %s' % it) else: if me.span() != (0,len(it)): print("Fail value check, match only %d-%d in string %s" % (me.span()[0],me.span()[1],repr( it ))) raise StarError('Data item "' + repr( it ) + u'"... contains forbidden characters') [check_one(a) for a in test_item]
Regularising data. We want the copy.deepcopy operation to work, so we cannot have any arrays passed into the master dictionary. We make sure everything goes in either as a single item or as a dict/list/tuple. We provide an empty datavalue with the same structure as the returned value so that the value/string alternate is correctly initialised/reset.
Note that all string data should be Unicode. To maintain compatibility for Python 2 we apply Unicode to any string data.
<Regularise data values>= (<-U) def regularise_data(self,dataitem): """Place dataitem into a list if necessary""" from numbers import Number if isinstance(dataitem,str): return unicode(dataitem),None if isinstance(dataitem,(Number,unicode,StarList,StarDict)): return dataitem,None #assume StarList/StarDict contain unicode if necessary if isinstance(dataitem,(tuple,list)): v,s = zip(*list([self.regularise_data(a) for a in dataitem])) return list(v),list(s) #return dataitem,[None]*len(dataitem) # so try to make into a list try: regval = list(dataitem) except TypeError as value: raise StarError( str(dataitem) + ' is wrong type for data value\n' ) v,s = zip(*list([self.regularise_data(a) for a in regval])) return list(v),list(s)
Dimension of data. This would ordinarily be the number of nested levels, and if we have a naked string, we have to return zero. We recursively burrow down to the lowest level. If a list is of zero length, we cannot burrow any further, so simply return one more than the current level.
We return as well the length of the received packet. Note that we consider dataitems which are *not* tuples or lists to be primitive. This includes StarLists (which are a single data item) and numpy arrays. Unfortunately this means we have to use the ungainly check involving the __class__ property, as StarLists and Tuples are subclasses of list and tuple and will therefore count as instances of them. In the context of DDLm it is probably more elegant to define a special class for looped data rather than for primitive lists as data items.
This is a method of the module, rather than belonging to any particular class.
<Get data dimension>= (<-U) def get_dim(dataitem,current=0,packlen=0): zerotypes = [int, float, str] if type(dataitem) in zerotypes: return current, packlen if not dataitem.__class__ == ().__class__ and \ not dataitem.__class__ == [].__class__: return current, packlen elif len(dataitem)>0: # print "Get_dim: %d: %s" % (current,`dataitem`) return get_dim(dataitem[0],current+1,len(dataitem)) else: return current+1,0
Numpy arrays are more difficult to check as they don't seem to implement automatic Python-style iteration (at least matrices don't). So we have to pick up this case while attempting to make dependence on Numpy optional.
<Check stringiness>= (U->) def check_stringiness(data): """Check that the contents of data are all strings""" if not hasattr(data,'dtype'): #so not Numpy from numbers import Number if isinstance(data,Number): return False elif isinstance(data,(unicode,str)): return True elif data is None:return False #should be data are None :) else: for one_item in data: if not check_stringiness(one_item): return False return True #all must be strings else: #numerical python import numpy if data.ndim == 0: #a bare value if data.dtype.kind in ['S','U']: return True else: return False else: for one_item in numpy.nditer(data): print('numpy data: ' + repr( one_item )) if not check_stringiness(one_item): return False return True
Removing a data item. We delete the item, and if it is looped, and
nothing is left in the loop, we remove the loop. RemoveLoopItem
is here for compatibility only.
<Remove a data item>= (<-U <-U) def RemoveItem(self,itemname): """Remove `itemname` from the block.""" # first check any loops loop_no = self.FindLoop(itemname) testkey = itemname.lower() if testkey in self: del self.block[testkey] del self.true_case[testkey] # now remove from loop if loop_no >= 0: self.loops[loop_no].remove(testkey) if len(self.loops[loop_no])==0: del self.loops[loop_no] self.item_order.remove(loop_no) else: #will appear in order list self.item_order.remove(testkey) def RemoveLoopItem(self,itemname): """*Deprecated*. Use `RemoveItem` instead""" self.RemoveItem(itemname)
Returning an item value. Note that a looped block has little
meaning without all the items in the loop. Routine GetLoop
is
better in this case. This is a real time-intensive loop, so we
initially assume that the key we have been passed is the right
key (i.e. case is the same) and only check for case if this
fails.
We define an alternative call that returns both the stored value and whether or not it is a non-string value. This saves other routines performing the same check. But any StarLists are considered to be unready for use as values as they may in fact be Arrays or Matrices and therefore require their type to be changed.
Note that if the value is '?', or a list of '?', we could delete the dataitem altogether, however that would lead to inconsistencies with previous calls to has_key, keys() etc.
<Return value of item>= (<-U) def GetItemValue(self,itemname): """Return value of `itemname`. If `itemname` is looped, a list of all values will be returned.""" return self.GetFullItemValue(itemname)[0] def GetFullItemValue(self,itemname): """Return the value associated with `itemname`, and a boolean flagging whether (True) or not (False) it is in a form suitable for calculation. False is always returned for strings and `StarList` objects.""" try: s,v = self.block[itemname.lower()] except KeyError: raise KeyError('Itemname %s not in datablock' % itemname) # prefer string value unless all are None # are we a looped value? if not isinstance(s,(tuple,list)) or isinstance(s,StarList): if not_none(s): return s,False #a string value else: return v,not isinstance(v,StarList) #a StarList is not calculation-ready elif not_none(s): return s,False #a list of string values else: if len(v)>0: return v,not isinstance(v[0],StarList) return v,True
A StarBlock allows dealing with loops on a columnar level. For row-based operations, a LoopBlock can be created with GetLoop and iterated over.
<Dealing with loops>= (<-U) <Create a loop> <Add name to loop> <Find a loop> <Get complete looped data> <Get co-looped names> <Add name to loop> <Add to looped data> <Remove a packet> <Get packet by key> <Get packet by compound key> <Get semantic packet by key> <Get semantic packet by compound key>
Creating loops. In the latest version of PyCIFRW, a loop is simply a collection of datanames that together make up the loop. It is indexed by a number, which goes into the item_order array to produce the loop when printing out. No check of dataname existence is done, so that a loop can be created before the datanames are provided. In order to iterate over loop packets, a LoopBlock needs to be created subsequently.
When we create the loop, we remove the datanames from the item order list to prevent them being output twice, and we also remove them from any other loop. Thus, at any point in time, a dataname belongs to only one loop, but can be switched to another loop trivially.
<Create a loop>= (<-U) def CreateLoop(self,datanames,order=-1,length_check=True): """Create a loop in the datablock. `datanames` is a list of datanames that together form a loop. If length_check is True, they should have been initialised in the block to have the same number of elements (possibly 0). If `order` is given, the loop will appear at this position in the block when printing out. A single-row loop will be created if the provided datanames are all non-lists. A loop counts as a single position.""" if length_check: # check lengths: these datanames should exist listed_values = [a for a in datanames if isinstance(self[a],list) and not isinstance(self[a],StarList)] if len(listed_values) == len(datanames): len_set = set([len(self[a]) for a in datanames]) if len(len_set)>1: raise ValueError('Request to loop datanames %s with different lengths: %s' % (repr( datanames ),repr( len_set ))) elif len(listed_values) != 0: raise ValueError('Request to loop datanames where some are single values and some are not') else: #all are unlisted, turn into lists for d in datanames: self[d] = [self[d]] # store as lower case lc_datanames = [d.lower() for d in datanames] # remove these datanames from all other loops [self.loops[a].remove(b) for a in self.loops for b in lc_datanames if b in self.loops[a]] # remove empty loops empty_loops = [a for a in self.loops.keys() if len(self.loops[a])==0] for a in empty_loops: self.item_order.remove(a) del self.loops[a] if len(self.loops)>0: loopno = max(self.loops.keys()) + 1 else: loopno = 1 self.loops[loopno] = list(lc_datanames) if order >= 0: self.item_order.insert(order,loopno) else: self.item_order.append(loopno) # remove these datanames from item ordering self.item_order = [a for a in self.item_order if a not in lc_datanames]
Removing a loop. The looped names are not removed, but will cause chaos on output unless they are placed into a different loop or deleted.
<Remove a loop>= def remove_loop(self,oldloop): """Remove loop referenced by [[oldloop]]. Datanames remain in the structure and should be removed separately if necessary""" # print "Removing %s: item_order %s" % (`oldloop`,self.item_order) # print "Length %d" % len(oldloop) self.item_order.remove(oldloop) self.loops.remove(oldloop)
Adding a dataname that has already been set to a loop. While relatively trivial, we still need to check that it does not exist in any other loops, and remove this dataname from the item order if it is present. We always use the canonical lower-case form. Also, the access to self[oldname] may trigger a round of evaluation, which we wish to avoid, so we make sure to switch off calculations in this case.
<Add name to loop>= (<-U) def AddLoopName(self,oldname, newname): """Add `newname` to the loop containing `oldname`. If it is already in the new loop, no error is raised. If `newname` is in a different loop, it is removed from that loop. The number of values associated with `newname` must match the number of values associated with all other columns of the new loop or a `ValueError` will be raised.""" lower_newname = newname.lower() loop_no = self.FindLoop(oldname) if loop_no < 0: raise KeyError('%s not in loop' % oldname) if lower_newname in self.loops[loop_no]: return # check length old_provides = self.provide_value self.provide_value = False loop_len = len(self[oldname]) self.provide_value = old_provides if len(self[newname]) != loop_len: raise StarLengthError('Mismatch of loop column lengths for %s: should be %d' % (newname,loop_len)) # remove from any other loops [self.loops[a].remove(lower_newname) for a in self.loops if lower_newname in self.loops[a]] # and add to this loop self.loops[loop_no].append(lower_newname) # remove from item_order if present try: self.item_order.remove(lower_newname) except ValueError: pass
Loops. We should distinguish two loop structures: the loop structures provided by the syntax, and the loop structures defined by the dictionary ('semantic' loops). The members of these loops do not coincide for 'joined' categories, where datanames may appear in either separate loops, or within one loop. Until we have a dictionary, we have no way to find the semantic loops.
The first function below returns the particular loop block containing the specified dataname, so that we can manipulate its contents directly, and therefore refers to a syntactic loop.
<Get complete looped data>= (<-U <-U) def GetLoop(self,keyname): """Return a `StarFile.LoopBlock` object constructed from the loop containing `keyname`. `keyname` is only significant as a way to specify the loop.""" return LoopBlock(self,keyname)
<Find a loop>= (<-U) def FindLoop(self,keyname): """Find the loop that contains `keyname` and return its numerical index or -1 if not present. The numerical index can be used to refer to the loop in other routines.""" loop_no = [a for a in self.loops.keys() if keyname.lower() in self.loops[a]] if len(loop_no)>0: return loop_no[0] else: return -1
Get co-looped names. Sometimes we just want names, and will get the values ourselves on a need-to-know basis.
<Get co-looped names>+= (<-U <-U) [<-D] def GetLoopNames(self,keyname): """Return all datanames appearing together with `keyname`""" loop_no = self.FindLoop(keyname) if loop_no >= 0: return self.loops[loop_no] else: raise KeyError('%s is not in any loop' % keyname)
Adding to a loop. We find the loop containing the dataname that
we have been passed, and then append all of the (key,values) pairs that we
are passed in data
, which is a dictionary. We expect that the data
have been sorted out for us, unlike when data are passed in AddLoopItem
,
when there can be both unlooped and looped data in one set. The dataname
passed to this routine is simply a convenient way to refer to the
loop, and has no other significance.
<Add to looped data>+= (<-U <-U) [<-D] def AddToLoop(self,dataname,loopdata): """*Deprecated*. Use `AddItem` followed by calls to `AddLoopName`. Add multiple columns to the loop containing `dataname`. `loopdata` is a collection of (key,value) pairs, where `key` is the new dataname and `value` is a list of values for that dataname""" self.update(loopdata) for one_name in loopdata: self.AddLoopName(dataname,one_name)
The draft DDLm specification uses square brackets next to a pre-specified identifier to mean "the packet of this category for which the key equals this item". We implement a function which fullfils this role for use in the pythonised dREL script. At this StarFile level we have no idea as to which data name is the key, so that is passed to us from the dictionary processing layer. Note we assume a single key rather than multiple keys for this call, and let the calling layer handle multiple or missing packets.
We guarantee to return a single packet, or else raise a ValueError.
<Get packet by key>= (<-U) def GetKeyedPacket(self,keyname,keyvalue,no_case=False): """Return the loop packet (a `StarPacket` object) where `keyname` has value `keyvalue`. Ignore case in `keyvalue` if `no_case` is True. `ValueError` is raised if no packet is found or more than one packet is found.""" my_loop = self.GetLoop(keyname) #print("Looking for %s in %s" % (keyvalue, my_loop.parent_block)) #print('Packet check on:' + keyname) #[print(repr(getattr(a,keyname))) for a in my_loop] if no_case: one_pack= [a for a in my_loop if getattr(a,keyname).lower()==keyvalue.lower()] else: one_pack= [a for a in my_loop if getattr(a,keyname)==keyvalue] if len(one_pack)!=1: raise ValueError("Bad packet key %s = %s: returned %d packets" % (keyname,keyvalue,len(one_pack))) print("Keyed packet: %s" % one_pack[0]) return one_pack[0]
The current version of DDLm allows compound keys. We implement a routine to return a single packet corresponding to the values of the specified datanames.
<Get packet by compound key>= (<-U) def GetCompoundKeyedPacket(self,keydict): """Return the loop packet (a `StarPacket` object) where the `{key:(value,caseless)}` pairs in `keydict` take the appropriate values. Ignore case for a given `key` if `caseless` is True. `ValueError` is raised if no packet is found or more than one packet is found.""" #print "Looking for %s in %s" % (keyvalue, self.parent_block[keyname]) keynames = list(keydict.keys()) my_loop = self.GetLoop(keynames[0]) for one_key in keynames: keyval,no_case = keydict[one_key] if no_case: my_loop = list([a for a in my_loop if str(getattr(a,one_key)).lower()==str(keyval).lower()]) else: my_loop = list([a for a in my_loop if getattr(a,one_key)==keyval]) if len(my_loop)!=1: raise ValueError("Bad packet keys %s: returned %d packets" % (repr(keydict),len(my_loop))) print("Compound keyed packet: %s" % my_loop[0]) return my_loop[0]
Semantic loops. These are loops defined by a dictionary, as opposed to the syntax. dREL requires us to be able to extract a packet by key, and then attributes of this packet are the individual objects that are found in that category, regardless of whether they co-occur in one loop or child loops.
We use the dictionary ``cat_key_table'' to give us a list of keys for each category. We find the corresponding loops, extract any packets meeting the key requirements, and merge these packets.
A packet for dREL use will need to be able to derive further values using the dictionary, e.g. when an attribute of that packet is requested. In order to do this derivation, we need to store the key names and values, so that the __getattr__ method of the packet can properly derive the needed non-key values.
With a deriving dictionary we run the danger that we will generate keys for a child category for which no other values are defined. Such keys are pointless as the only information we have is that they come from the parent category, and so they can only be copies of the parent key, and therefore the child category is identical to the parent category as it has the same keys. We therefore do not generate keys of child categories; if child category items are present, then the key should already be present.
ON the other hand, if the child category keys are present but the parent keys are missing, then we in principle know that the child keys are a subset of the parent keys, but we cannot use the key to derive any values, as the keys are opaque.
The final DDLm specification allowed compound keys for categories. When combined with child categories, this means that a child key may be absent but its parent key may be present and is considered equivalent.
<Get semantic packet by compound key>= (<-U) def GetMultiKeyedSemanticPacket(self,keydict,cat_id): """Return a complete packet for category `cat_id` where the keyvalues are provided as a dictionary of key:(value,caseless) pairs This routine will understand any joined loops, so if separate loops in the datafile belong to the same category hierarchy (e.g. `_atom_site` and `_atom_site_aniso`), the returned `StarPacket` object will contain datanames from the requested category and any children.""" #if len(keyvalues)==1: #simplification # return self.GetKeyedSemanticPacket(keydict[1][0],cat_id) target_keys = self.dictionary.cat_key_table[cat_id] # update the dictionary passed to us with all equivalents, for # simplicity. parallel_keys = list(zip(*target_keys)) #transpose print('Parallel keys:' + repr(parallel_keys)) print('Keydict:' + repr(keydict)) start_keys = list(keydict.keys()) for one_name in start_keys: key_set = [a for a in parallel_keys if one_name in a] for one_key in key_set: keydict[one_key] = keydict[one_name] # target_keys is a list of lists, each of which is a compound key p = StarPacket() # a little function to return the dataname for a key def find_key(key): for one_key in self.dictionary.key_equivs.get(key,[])+[key]: if self.has_key(one_key): return one_key return None for one_set in target_keys: #loop down the categories true_keys = [find_key(k) for k in one_set] true_keys = [k for k in true_keys if k is not None] if len(true_keys)==len(one_set): truekeydict = dict([(t,keydict[k]) for t,k in zip(true_keys,one_set)]) try: extra_packet = self.GetCompoundKeyedPacket(truekeydict) except KeyError: #one or more are missing continue #should try harder? except ValueError: continue else: continue print('Merging packet for keys ' + repr(one_set)) p.merge_packet(extra_packet) # the following attributes used to calculate missing values p.key = true_keys p.cif_dictionary = self.dictionary p.fulldata = self return p
Plain single key. This is the older routine where we assume that we only have a single key per category. We still have to put the single key into a list as the __getattr__ method of the StarPacket will assume that it has been passed a list of keys.
<Get semantic packet by key>= (<-U) def GetKeyedSemanticPacket(self,keyvalue,cat_id): """Return a complete packet for category `cat_id` where the category key for the category equals `keyvalue`. This routine will understand any joined loops, so if separate loops in the datafile belong to the same category hierarchy (e.g. `_atom_site` and `_atom_site_aniso`), the returned `StarPacket` object will contain datanames from both categories.""" target_keys = self.dictionary.cat_key_table[cat_id] target_keys = [k[0] for k in target_keys] #one only in each list p = StarPacket() # set case-sensitivity flag lcase = False if self.dictionary[target_keys[0]]['_type.contents'] in ['Code','Tag','Name']: lcase = True for cat_key in target_keys: try: extra_packet = self.GetKeyedPacket(cat_key,keyvalue,no_case=lcase) except KeyError: #missing key try: test_key = self[cat_key] #generate key if possible print('Test key is %s' % repr( test_key )) if test_key is not None and\ not (isinstance(test_key,list) and (None in test_key or len(test_key)==0)): print('Getting packet for key %s' % repr( keyvalue )) extra_packet = self.GetKeyedPacket(cat_key,keyvalue,no_case=lcase) except: #cannot be generated continue except ValueError: #none/more than one, assume none continue #extra_packet = self.dictionary.generate_default_packet(cat_id,cat_key,keyvalue) p.merge_packet(extra_packet) # the following attributes used to calculate missing values for keyname in target_keys: if hasattr(p,keyname): p.key = [keyname] break if not hasattr(p,"key"): raise ValueError("No key found for %s, packet is %s" % (cat_id,str(p))) p.cif_dictionary = self.dictionary p.fulldata = self return p
We might also want to remove a packet by key. We operate on the data in place, and need access to the low-level information as we have to remove both the string and value elements.
<Remove a packet>= (<-U) def RemoveKeyedPacket(self,keyname,keyvalue): """Remove the packet for which dataname `keyname` takes value `keyvalue`. Only the first such occurrence is removed.""" packet_coord = list(self[keyname]).index(keyvalue) loopnames = self.GetLoopNames(keyname) for dataname in loopnames: self.block[dataname][0] = list(self.block[dataname][0]) del self.block[dataname][0][packet_coord] self.block[dataname][1] = list(self.block[dataname][1]) del self.block[dataname][1][packet_coord]
The philosophy of outputting strings is to create a StringIO object, and pass this between all the routines. As there are specific rules about when a new line can occur (especially concerning semicolon-delimited strings) we subclass StringIO and fiddle with the write method.
The grammar
attribute is consulted to determine what output
grammar to use.
<Functions for printing out>= (<-U) <Set the output grammar> <Set the output length> <Print a complete block> <Format loop names> <Format loop packets> <Format a single packet item> <Format a string> <Format a data value> <Create a proper ordering> <Convert value to string> <Do wrapping>
We adjust the write method to intelligently output lines, taking care with CIF/STAR rules for output. We allow the caller to specify: (1) a line break prior to output (e.g. for a new dataname) (2) a tab stepsize, in which case we try to pad out to this value (3) that we can do a line break if we wish (4) moving to a nested indent level, starting from the current position (5) Whether or not to align the next item with the tab stops (6) The column that this item should start at. If we are past this column, it is ignored.
We never insert newlines inside supplied strings. Tabs are applied after any requested line breaks, and both are applied before the next item is output. If the character is flagged as a delimiter, it is only output if the previous character is not a delimiter or if the next character will be a line break.
After adding any line breaks and/or tab stops, we recognise the following situations: (1) The supplied string does not overflow the line: we output, and update the length of the current line (2) The supplied string does overflow the line. (i) If we are allowed to break, we output a linefeed, and then the string. (ii) Otherwise, we output the string (3) The supplied string contains linefeeds: we update the current line length according to the number of characters from the beginning of the line.
<Subclass StringIO>= (<-U) class CIFStringIO(StringIO): def __init__(self,target_width=80,**kwargs): StringIO.__init__(self,**kwargs) self.currentpos = 0 self.target_width = target_width self.tabwidth = -1 self.indentlist = [0] self.last_char = "" def write(self,outstring,canbreak=False,mustbreak=False,do_tab=True,newindent=False,unindent=False, delimiter=False,startcol=-1): """Write a string with correct linebreak, tabs and indents""" # do we need to break? if delimiter: if len(outstring)>1: raise ValueError('Delimiter %s is longer than one character' % repr( outstring )) output_delimiter = True if mustbreak: #insert a new line and indent temp_string = '\n' + ' ' * self.indentlist[-1] StringIO.write(self,temp_string) self.currentpos = self.indentlist[-1] self.last_char = temp_string[-1] if self.currentpos+len(outstring)>self.target_width: #try to break if not delimiter and outstring[0]!='\n': #ie <cr>; if canbreak: temp_string = '\n' + ' ' * self.indentlist[-1] StringIO.write(self,temp_string) self.currentpos = self.indentlist[-1] self.last_char = temp_string[-1] else: #assume a break will be forced on next value output_delimiter = False #the line break becomes the delimiter #try to match requested column if startcol > 0: if self.currentpos < startcol: StringIO.write(self,(startcol - self.currentpos)* ' ') self.currentpos = startcol self.last_char = ' ' else: print('Could not format %s at column %d as already at %d' % (outstring,startcol,self.currentpos)) startcol = -1 #so that tabbing works as a backup #handle tabs if self.tabwidth >0 and do_tab and startcol < 0: next_stop = ((self.currentpos//self.tabwidth)+1)*self.tabwidth #print 'Currentpos %d: Next tab stop at %d' % (self.currentpos,next_stop) if self.currentpos < next_stop: StringIO.write(self,(next_stop-self.currentpos)*' ') self.currentpos = next_stop self.last_char = ' ' #calculate indentation after tabs and col setting applied if newindent: #indent by current amount if self.indentlist[-1] == 0: #first time self.indentlist.append(self.currentpos) # print 'Indentlist: ' + `self.indentlist` else: self.indentlist.append(self.indentlist[-1]+2) elif unindent: if len(self.indentlist)>1: self.indentlist.pop() else: print('Warning: cannot unindent any further') #check that we still need a delimiter if self.last_char in [' ','\n','\t']: output_delimiter = False #now output the string - every invocation comes through here if (delimiter and output_delimiter) or not delimiter: StringIO.write(self,outstring) last_line_break = outstring.rfind('\n') if last_line_break >=0: self.currentpos = len(outstring)-last_line_break else: self.currentpos = self.currentpos + len(outstring) #remember the last character if len(outstring)>0: self.last_char = outstring[-1] def set_tab(self,tabwidth): """Set the tab stop position""" self.tabwidth = tabwidth
For non-default output lengths, we include a function which will set the internal attribute that controls maximum line length. As this is a per-block value, this function is most likely called by the StarFile object rather than directly.
Two values control output line formatting: self.wraplength
and
self.maxoutlength
. self.wraplength
is the value at which the
line will be wrapped normally, but long strings will not force an
internal wrap inside the string; self.maxoutlength
is the absolute
maximum length.
<Set the output length>= (<-U) def SetOutputLength(self,wraplength=80,maxoutlength=2048): """Set the maximum output line length (`maxoutlength`) and the line length to wrap at (`wraplength`). The wrap length is a target only and may not always be possible.""" if wraplength > maxoutlength: raise StarError("Wrap length (requested %d) must be <= Maximum line length (requested %d)" % (wraplength,maxoutlength)) self.wraplength = wraplength self.maxoutlength = maxoutlength
Setting up the output grammar. The output grammar determines the list delimiters for CIF2/STAR2, and the available delimiters for 1.0/1.1/2.0, as well as the allowed characters
<Set the output grammar>= (<-U) def set_grammar(self,new_grammar): self.string_delimiters = ["'",'"',"\n;",None] if new_grammar in ['STAR2','2.0']: self.string_delimiters += ['"""',"'''"] if new_grammar == '2.0': self.list_delimiter = " " elif new_grammar == 'STAR2': self.list_delimiter = ", " elif new_grammar not in ['1.0','1.1']: raise StarError('Request to set unknown grammar %s' % new_grammar)
Printing a section. We allow an optional order list to be given, in case the caller wants to order things in some nice way. By default, we use the item_order attribute. Naturally, looped items are grouped together according to their order in the order list.
Note that we must be careful to add spaces between data items, especially when formatting string loop data, where our string addition could get quite hairy. As we are doing so much concatenation, we use a stringIO buffer to speed it up.
As an alternative, we may have formatting hints, perhaps from a template that
we have input through 'process_template'. The formatting hints specify a desired
column and delimiter, and an order of output. We can always satisfy the output order,
but may have to fiddle with columns and delimiters depending on the datavalue contents.
The finish_at
and start_from
arguments cause output to stop/start when one of the
datanames in the arguments is found.
We attempt some nice formatting by printing non-packet items with an apparent tab stop at 40 characters. And of course, we stop providing values.
<Print a complete block>= (<-U) def printsection(self,instring='',blockstart="",blockend="",indent=0,finish_at='',start_from=''): self.provide_value = False # first make an ordering self.create_ordering(finish_at,start_from) #create self.output_order # now do it... if not instring: outstring = CIFStringIO(target_width=80) # the returned string else: outstring = instring # print block delimiter outstring.write(blockstart,canbreak=True) while len(self.output_order)>0: #print "Remaining to output " + `self.output_order` itemname = self.output_order.pop(0) if not isinstance(itemname,int): #no loop item_spec = [i for i in self.formatting_hints if i['dataname'].lower()==itemname.lower()] if len(item_spec)>0: item_spec = item_spec[0] col_pos = item_spec.get('column',-1) name_pos = item_spec.get('name_pos',-1) else: col_pos = -1 item_spec = {} name_pos = -1 if col_pos < 0: col_pos = 40 outstring.set_tab(col_pos) itemvalue = self[itemname] outstring.write(self.true_case[itemname],mustbreak=True,do_tab=False,startcol=name_pos) outstring.write(' ',canbreak=True,do_tab=False,delimiter=True) #space after itemname self.format_value(itemvalue,outstring,hints=item_spec) else:# we are asked to print a loop block outstring.set_tab(10) #guess this is OK? loop_spec = [i['name_pos'] for i in self.formatting_hints if i["dataname"]=='loop'] if loop_spec: loop_indent = max(loop_spec[0],0) else: loop_indent = indent outstring.write('loop_\n',mustbreak=True,do_tab=False,startcol=loop_indent) self.format_names(outstring,indent+2,loop_no=itemname) self.format_packets(outstring,indent+2,loop_no=itemname) else: returnstring = outstring.getvalue() outstring.close() return returnstring
Formatting a data value. Data values may be stored as strings, numbers or compound values. We call this routine recursively to format data values. We use compound
to flag that we are an embedded compound value, so that
we do not insert a line break before the top-level compound delimiter. If hints is supplied, it is a dictionary
containing an entry 'delimiter' that requests a particular delimiter.
<Format a data value>= (<-U) def format_value(self,itemvalue,stringsink,compound=False,hints={}): """Format a Star data value""" global have_numpy delimiter = hints.get('delimiter',None) startcol = hints.get('column',-1) if isinstance(itemvalue,str) and not isinstance(itemvalue,unicode): #not allowed raise StarError("Non-unicode value {0} found in block".format(itemvalue)) if isinstance(itemvalue,unicode): #need to sanitize stringsink.write(self._formatstring(itemvalue,delimiter=delimiter,hints=hints),canbreak = True,startcol=startcol) elif isinstance(itemvalue,(list)) or (hasattr(itemvalue,'dtype') and hasattr(itemvalue,'__iter__')): #numpy stringsink.set_tab(0) stringsink.write('[',canbreak=True,newindent=True,mustbreak=compound,startcol=startcol) if len(itemvalue)>0: self.format_value(itemvalue[0],stringsink) for listval in itemvalue[1:]: # print 'Formatting %s' % `listval` stringsink.write(self.list_delimiter,do_tab=False) self.format_value(listval,stringsink,compound=True) stringsink.write(']',unindent=True) elif isinstance(itemvalue,dict): stringsink.set_tab(0) stringsink.write('{',newindent=True,mustbreak=compound,startcol=startcol) #start a new line inside items = list(itemvalue.items()) if len(items)>0: stringsink.write("'"+items[0][0]+"'"+':',canbreak=True) self.format_value(items[0][1],stringsink) for key,value in items[1:]: stringsink.write(self.list_delimiter) stringsink.write("'"+key+"'"+":",canbreak=True) self.format_value(value,stringsink) #never break between key and value stringsink.write('}',unindent=True) elif isinstance(itemvalue,(float,int,long)) or \ (have_numpy and isinstance(itemvalue,(numpy.number))): #TODO - handle uncertainties stringsink.write(str(itemvalue),canbreak=True,startcol=startcol) #numbers else: raise ValueError('Value in unexpected format for output: %s' % repr( itemvalue ))
Formatting a loop section. We are passed an indent and destination string, and are expected to append a list of item names to the string indented by the indicated number of spaces. If we have loops, we add those in too.
<Format loop names>= (<-U) def format_names(self,outstring,indent=0,loop_no=-1): """Print datanames from `loop_no` one per line""" temp_order = self.loops[loop_no][:] #copy format_hints = dict([(i['dataname'],i) for i in self.formatting_hints if i['dataname'] in temp_order]) while len(temp_order)>0: itemname = temp_order.pop(0) req_indent = format_hints.get(itemname,{}).get('name_pos',indent) outstring.write(' ' * req_indent,do_tab=False) outstring.write(self.true_case[itemname],do_tab=False) outstring.write("\n",do_tab=False)
Formatting a loop packet. Our final packet will involve collecting the ith value of each item in our particular loop. Note that we have to be careful with indentation, as the <return>; digraph must be recognised.
<Format loop packets>= (<-U) def format_packets(self,outstring,indent=0,loop_no=-1): alldata = [self[a] for a in self.loops[loop_no]] loopnames = self.loops[loop_no] #print 'Alldata: %s' % `alldata` packet_data = list(zip(*alldata)) #print 'Packet data: %s' % `packet_data` #create a dictionary for quick lookup of formatting requirements format_hints = dict([(i['dataname'],i) for i in self.formatting_hints if i['dataname'] in loopnames]) for position in range(len(packet_data)): if position > 0: outstring.write("\n") #new line each packet except first for point in range(len(packet_data[position])): datapoint = packet_data[position][point] format_hint = format_hints.get(loopnames[point],{}) packstring = self.format_packet_item(datapoint,indent,outstring,format_hint) outstring.write(' ',canbreak=True,do_tab=False,delimiter=True)
Formatting a single packet item.
<Format a single packet item>= (<-U) def format_packet_item(self,pack_item,indent,outstring,format_hint): # print 'Formatting %s' % `pack_item` # temporary check for any non-unicode items if isinstance(pack_item,str) and not isinstance(pack_item,unicode): raise StarError("Item {0!r} is not unicode".format(pack_item)) if isinstance(pack_item,unicode): delimiter = format_hint.get('delimiter',None) startcol = format_hint.get('column',-1) outstring.write(self._formatstring(pack_item,delimiter=delimiter),startcol=startcol) else: self.format_value(pack_item,outstring,hints = format_hint)
Formatting a string. We make sure that the length of the item value
is less than self.maxoutlength
, or else we should split them, and so on. We check the
value for terminators and impossible apostrophes and length, before
deciding whether to print it and the item on a single line. We try to
respect carriage returns in the string, if the caller has tried to do
the formatting for us. If we are not putting apostrophes around a
string, we make the first character a space, to avoid problems if the
first character of a line is a semicolon.
The STAR specification states that embedded quotes are allowed so long as they are not followed by a space. So if we find any quotes followed by spaces we output a semicolon-terminated string to avoid too much messing around. This routine is called very often and could be improved.
We have to catch empty strings as well, which are legal. Another gotcha concerns 'embedded' strings; if the datavalue begins with a quote, it will be output verbatim (and misunderstood) unless spaces elsewhere force quotation. Note that non-delimited strings may not start with a reserved word ('data','save','global').
The caller is allowed to request a particular delimiter, with 'None' corresponding to no delimiter and the choices being apostrophe, double quote, or semicolon. CIF2-style triple quotes are not currently supported. The 'indent' argument allows the routine to enforce indentation of multi-line strings by the specified amount. Note that this will technically change the datavalue contents by adding spaces, although for datavalues intended only for human consumption this is irrelevant.
'lbprotocol' allows use of the line-breaking protocol from CIF1.1 to express long lines, and 'pref_protocol' allows use of the CIF2 text-prefix protocol.
<Format a string>= (<-U) def _formatstring(self,instring,delimiter=None,standard='CIF1',indent=0,hints={}): if hints.get("reformat",False) and "\n" in instring: instring = "\n"+self.do_wrapping(instring,hints["reformat_indent"]) allowed_delimiters = set(self.string_delimiters) if len(instring)==0: allowed_delimiters.difference_update([None]) if len(instring) > (self.maxoutlength-2) or '\n' in instring: allowed_delimiters.intersection_update(["\n;","'''",'"""']) [allowed_delimiters.difference_update([None]) for k in '[]{}\v\t ,' if k in instring] if len(instring)>0 and instring[0] in '_$#;(': allowed_delimiters.difference_update([None]) if len(instring)>3 and (instring[:4].lower()=='data' or instring[:4].lower()=='save'): allowed_delimiters.difference_update([None]) if len(instring)>5 and instring[:6].lower()=='global': allowed_delimiters.difference_update([None]) if '"' in instring: allowed_delimiters.difference_update(['"',None]) if "'" in instring: allowed_delimiters.difference_update(["'",None]) out_delimiter = "\n;" #default (most conservative) if delimiter in allowed_delimiters: out_delimiter = delimiter elif "'" in allowed_delimiters: out_delimiter = "'" elif '"' in allowed_delimiters: out_delimiter = '"' if out_delimiter in ['"',"'",'"""',"'''"]: return out_delimiter + instring + out_delimiter elif out_delimiter is None: return instring # we are left with semicolon strings # use our protocols: maxlinelength = max([len(a) for a in instring.split('\n')]) if maxlinelength > self.maxoutlength: protocol_string = apply_line_folding(instring) else: protocol_string = instring # now check for embedded delimiters if "\n;" in protocol_string: prefix = "CIF:" while prefix in protocol_string: prefix = prefix + ":" protocol_string = apply_line_prefix(protocol_string,prefix+"> ") return "\n;" + protocol_string + "\n;"
Converting a value to a string.
The canonical version of a value is its string representation. This is different to its output format, which will have delimiters and various conventions applied (see below).
<Convert value to string>= (<-U) def convert_to_string(self,dataname): """Convert values held in dataname value fork to string version""" v,is_value = self.GetFullItemValue(dataname) if not is_value: return v if check_stringiness(v): return v #already strings # TODO...something else return v
If our formatting hints dictionary allows us to reformat a string, *and* the string does not contain at least three spaces in a row (implying that it is already formatted), we insert appropriate spaces and line feeds.
<Do wrapping>= (<-U) def do_wrapping(self,instring,indent=3): """Wrap the provided string""" if " " in instring: #already formatted return instring self.wrapper.initial_indent = ' '*indent self.wrapper.subsequent_indent = ' '*indent # remove leading and trailing space instring = instring.strip() # split into paragraphs paras = instring.split("\n\n") wrapped_paras = [self.wrapper.fill(p) for p in paras] return "\n".join(wrapped_paras)
The line folding protocol allows lines to be broken by appending a backslash as the last
character of a line. It is signalled by a backslash as the first character of the line
following an opening semicolon. We use it to introduce line breaks where appropriate. We
search for whitespace between minwraplength
and maxwraplength
, and if none is
forthcoming we wrap at maxlength-1 (-1 to allow for the backslash).
<Apply line folding>= (U->) def apply_line_folding(instring,minwraplength=60,maxwraplength=80): """Insert line folding characters into instring between min/max wraplength""" # first check that we need to do this lines = instring.split('\n') line_len = [len(l) for l in lines] if max(line_len) < maxwraplength and re.match("\\[ \v\t\f]*\n",instring) is None: return instring outstring = "\\\n" #header for l in lines: if len(l) < maxwraplength: outstring = outstring + l if len(l) > 0 and l[-1]=='\\': #who'da thunk it? A line ending with a backslash outstring = outstring + "\\\n" # outstring = outstring + "\n" # put back the split character else: current_bit = l while len(current_bit) > maxwraplength: space_pos = re.search('[ \v\f\t]+',current_bit[minwraplength:]) if space_pos is not None and space_pos.start()<maxwraplength-1: outstring = outstring + current_bit[:minwraplength+space_pos.start()] + "\\\n" current_bit = current_bit[minwraplength+space_pos.start():] else: #just blindly insert outstring = outstring + current_bit[:maxwraplength-1] + "\\\n" current_bit = current_bit[maxwraplength-1:] outstring = outstring + current_bit if current_bit[-1] == '\\': #a backslash just happens to be here outstring = outstring + "\\\n" outstring = outstring + '\n' outstring = outstring[:-1] #remove final newline return outstring
Believe it or not, a final backslash followed by whitespace is also considered to be part of the line folding protocol, even though the last line obviously cannot be folded together with the next line as there is no next line.
<Remove line folding>= (U->) def remove_line_folding(instring): """Remove line folding from instring""" if re.match(r"\\[ \v\t\f]*" +"\n",instring) is not None: return re.sub(r"\\[ \v\t\f]*$" + "\n?","",instring,flags=re.M) else: return instring
CIF2 introduces a line indenting protocol for embedding arbitrary text strings in a semicolon-delimited string. If the first line ends in one or two backslashes, the text before the first backslash defines an indent that should appear at the beginning of all subsequent lines. For brevity, two backslashes are used to signal that line folding should be performed after indenting. Alternatively, the line folding signal will simply correspond to a second 'header' line in the indented text consisting of the indent followed by a backslash, optional whitespace, and a line feed.
<Apply line indent>= (U->) def apply_line_prefix(instring,prefix): """Prefix every line in instring with prefix""" if prefix[0] != ";" and "\\" not in prefix: header = re.match(r"(\\[ \v\t\f]*" +"\n)",instring) if header is not None: print('Found line folded string for prefixing...') not_header = instring[header.end():] outstring = prefix + "\\\\\n" + prefix else: print('No folding in input string...') not_header = instring outstring = prefix + "\\\n" + prefix outstring = outstring + not_header.replace("\n","\n"+prefix) return outstring raise StarError("Requested prefix starts with semicolon or contains a backslash: " + prefix)
Line indents are signalled by one or two backslashes at the end of the first line. If this is detected,the text before the backslash is removed from every line. We do not use regular expressions for the replacement in case the prefix contains significant characters.
<Remove line indent>= (U->) def remove_line_prefix(instring): """Remove prefix from every line if present""" prefix_match = re.match("(?P<prefix>[^;\\\n][^\n\\\\]+)(?P<folding>\\\\{1,2}[ \t\v\f]*\n)",instring) if prefix_match is not None: prefix_text = prefix_match.group('prefix') print('Found prefix %s' % prefix_text) prefix_end = prefix_match.end('folding') # keep any line folding instructions if prefix_match.group('folding')[:2]=='\\\\': #two backslashes outstring = instring[prefix_match.end('folding')-1:].replace("\n"+prefix_text,"\n") return "\\" + outstring #keep line folding first line else: outstring = instring[prefix_match.end('folding')-1:].replace("\n"+prefix_text,"\n") return outstring[1:] #drop first line ending, no longer necessary else: return instring
A ``template'' is a CifFile containing a single block, where the datanames are laid out in the way that the user desires. The layout elements that are picked up from the template CifFile are: (1) order (2) column position of datavalues (only the first row of a loop block counts) (3) delimiters (4) column position of datanames. Within loops all items will be indented as for the final name in the loop header. The information that is gleaned is converted to entries in the formatting_hints table which are then consulted when writing out. Note that the order from formatting_hints will override the item_order information.
Additionally, if a semicolon-delimited value has a tab or sequence of 2 or more spaces after a line ending, it is assumed to be free text and the text values will be neatly formatted with the same indentation as found after the first line ending in the value.
Constraints on the template: (1) There should only ever be one dataname on each line (2) loop_ and datablock tokens should appear as the only non-blank characters on their lines (3) Comments are flagged by a '#' as the first character (4) Blank lines are acceptable (5) Datavalues should use only alphanumeric characters (6) Semicolon-delimited strings are not recognised in loops
<Input a guide template>= (U->) def process_template(template_file): """Process a template datafile to formatting instructions""" template_as_cif = StarFile(template_file,grammar="2.0").first_block() if isinstance(template_file,(unicode,str)): template_string = open(template_file).read() else: #a StringIO object template_file.seek(0) #reset template_string = template_file.read() #template_as_lines = template_string.split("\n") #template_as_lines = [l for l in template_as_lines if len(l)>0 and l[0]!='#'] #template_as_lines = [l for l in template_as_lines if l.split()[0] != 'loop_'] #template_full_lines = dict([(l.split()[0],l) for l in template_as_lines if len(l.split())>0]) form_hints = [] #ordered array of hint dictionaries find_indent = "^ +" for item in template_as_cif.item_order: #order of input if not isinstance(item,int): #not nested hint_dict = {"dataname":item} # find the line in the file start_pos = re.search("(^[ \t]*(?P<name>" + item + ")[ \t\n]+)(?P<spec>([\\S]+)|(^;))",template_string,re.I|re.M) if start_pos.group("spec") != None: spec_pos = start_pos.start("spec")-start_pos.start(0) spec_char = template_string[start_pos.start("spec"):start_pos.start("spec")+3] if spec_char[0] in '\'";': hint_dict.update({"delimiter":spec_char[0]}) if spec_char == '"""' or spec_char == "'''": hint_dict.update({"delimiter":spec_char}) if spec_char[0] != ";": #so we need to work out the column number hint_dict.update({"column":spec_pos}) else: #need to put in the carriage return hint_dict.update({"delimiter":"\n;"}) # can we format the text? text_val = template_as_cif[item] hint_dict["reformat"] = "\n\t" in text_val or "\n " in text_val if hint_dict["reformat"]: #find the indentation p = re.search(find_indent,text_val,re.M) if p.group() is not None: hint_dict["reformat_indent"]=p.end() - p.start() if start_pos.group('name') != None: name_pos = start_pos.start('name') - start_pos.start(0) hint_dict.update({"name_pos":name_pos}) #print '%s: %s' % (item,`hint_dict`) form_hints.append(hint_dict) else: #loop block testnames = template_as_cif.loops[item] total_items = len(template_as_cif.loops[item]) testname = testnames[0] #find the loop spec line in the file loop_regex = "(^[ \t]*(?P<loop>loop_)[ \t\n\r]+(?P<name>" + testname + ")([ \t\n\r]+_[\\S]+){%d}[ \t]*$(?P<packet>(.(?!_loop|_[\\S]+))*))" % (total_items - 1) loop_line = re.search(loop_regex,template_string,re.I|re.M|re.S) loop_so_far = loop_line.end() packet_text = loop_line.group('packet') loop_indent = loop_line.start('loop') - loop_line.start(0) form_hints.append({"dataname":'loop','name_pos':loop_indent}) packet_regex = "[ \t]*(?P<all>(?P<sqqq>'''([^\n\r\f']*)''')|(?P<sq>'([^\n\r\f']*)'+)|(?P<dq>\"([^\n\r\"]*)\"+)|(?P<none>[^\\s]+))" packet_pos = re.finditer(packet_regex,packet_text) line_end_pos = re.finditer("^",packet_text,re.M) next_end = next(line_end_pos).end() last_end = next_end for loopname in testnames: #find the name in the file for name pos name_regex = "(^[ \t]*(?P<name>" + loopname + "))" name_match = re.search(name_regex,template_string,re.I|re.M|re.S) loop_name_indent = name_match.start('name')-name_match.start(0) hint_dict = {"dataname":loopname,"name_pos":loop_name_indent} #find the value thismatch = next(packet_pos) while thismatch.start('all') > next_end: try: last_end = next_end next_end = next(line_end_pos).start() print('next end %d' % next_end) except StopIteration: break print('Start %d, last_end %d' % (thismatch.start('all'),last_end)) col_pos = thismatch.start('all') - last_end + 1 if thismatch.group('none') is None: if thismatch.group('sqqq') is not None: hint_dict.update({'delimiter':"'''"}) else: hint_dict.update({'delimiter':thismatch.groups()[0][0]}) hint_dict.update({'column':col_pos}) print('%s: %s' % (loopname,repr( hint_dict ))) form_hints.append(hint_dict) return form_hints
Creating a proper ordering for output from the template information. When we output, we expect the ordering to consist of a sequence of datanames or loop references. Our templated ordering is essentially a list of datanames, so we now have to find which loops each dataname corresponds to and adjust each loops ordering accordingly. For dictionary use we allow only a segment of the file to be output be specifying a finish_at/start_from dataname. For consistency, we default to outputting nothing if start_from is not found, and outputting everything if finish_at is not found.
<Create a proper ordering>= (<-U) def create_ordering(self,finish_at,start_from): """Create a canonical ordering that includes loops using our formatting hints dictionary""" requested_order = list([i['dataname'] for i in self.formatting_hints if i['dataname']!='loop']) new_order = [] for item in requested_order: if isinstance(item,unicode) and item.lower() in self.item_order: new_order.append(item.lower()) elif item in self: #in a loop somewhere target_loop = self.FindLoop(item) if target_loop not in new_order: new_order.append(target_loop) # adjust loop name order loopnames = self.loops[target_loop] loop_order = [i for i in requested_order if i in loopnames] unordered = [i for i in loopnames if i not in loop_order] self.loops[target_loop] = loop_order + unordered extras = list([i for i in self.item_order if i not in new_order]) self.output_order = new_order + extras # now handle partial output if start_from != '': if start_from in requested_order: sfi = requested_order.index(start_from) loop_order = [self.FindLoop(k) for k in requested_order[sfi:] if self.FindLoop(k)>0] candidates = list([k for k in self.output_order if k in requested_order[sfi:]]) cand_pos = len(new_order) if len(candidates)>0: cand_pos = self.output_order.index(candidates[0]) if len(loop_order)>0: cand_pos = min(cand_pos,self.output_order.index(loop_order[0])) if cand_pos < len(self.output_order): print('Output starts from %s, requested %s' % (self.output_order[cand_pos],start_from)) self.output_order = self.output_order[cand_pos:] else: print('Start is beyond end of output list') self.output_order = [] elif start_from in extras: self.output_order = self.output_order[self.output_order.index(start_from):] else: self.output_order = [] if finish_at != '': if finish_at in requested_order: fai = requested_order.index(finish_at) loop_order = list([self.FindLoop(k) for k in requested_order[fai:] if self.FindLoop(k)>0]) candidates = list([k for k in self.output_order if k in requested_order[fai:]]) cand_pos = len(new_order) if len(candidates)>0: cand_pos = self.output_order.index(candidates[0]) if len(loop_order)>0: cand_pos = min(cand_pos,self.output_order.index(loop_order[0])) if cand_pos < len(self.output_order): print('Output finishes before %s, requested before %s' % (self.output_order[cand_pos],finish_at)) self.output_order = self.output_order[:cand_pos] else: print('All of block output') elif finish_at in extras: self.output_order = self.output_order[:self.output_order.index(finish_at)] #print('Final order: ' + repr(self.output_order))
Merging. Normally merging of dictionaries is done at the data file level, i.e. a whole block is replaced or added. However, in 'overlay' mode, individual keys are added/replaced, which is a block level operation.
Looped item overlaps are tricky. We distinguish two cases: at least one key in common, and all keys in common. The latter implies addition of rows only. The former implies deletion of all co-occuring looped items (as they will otherwise have data of different lengths) and therefore either completely replacing the previous item, or adding the new data to the end, and including the other co-looped items. But this would mean that we were passed a loop block with different data lengths in the new object, which is illegal, so we can only add to the end if the new dictionary contains a subset of the attributes in the current dictionary. Therefore we have the following rules
(1) Identical attributes in new and old -> append (2) New contains subset of old -> append values for common items and delete extra looped items (3) Old contains subset of new -> new completely replaces old
The match_att
keyword is used when old and new blocks have been matched
based on an internal attribute (usually _name or _item.name). This
attribute should not become looped in overlay mode, obviously, so we
need to have a record of it just in case.
The rel_keys keyword contains a list of datanames which act as unique keys (in a database sense) inside loop structures. If any keys match in separate datablocks, the row will not be added, but simply replaced.
<Merge with another block>= (<-U) def merge(self,new_block,mode="strict",match_att=[],match_function=None, rel_keys = []): if mode == 'strict': for key in new_block.keys(): if key in self and key not in match_att: raise StarError( "Identical keys %s in strict merge mode" % key) elif key not in match_att: #a new dataname self[key] = new_block[key] # we get here if there are no keys in common, so we can now copy # the loops and not worry about overlaps for one_loop in new_block.loops.values(): self.CreateLoop(one_loop) # we have lost case information self.true_case.update(new_block.true_case) elif mode == 'replace': newkeys = list(new_block.keys()) for ma in match_att: try: newkeys.remove(ma) #don't touch the special ones except ValueError: pass for key in new_block.keys(): if isinstance(key,unicode): self[key] = new_block[key] # creating the loop will remove items from other loops for one_loop in new_block.loops.values(): self.CreateLoop(one_loop) # we have lost case information self.true_case.update(new_block.true_case) elif mode == 'overlay': print('Overlay mode, current overwrite is %s' % self.overwrite) raise StarError('Overlay block merge mode not implemented') save_overwrite = self.overwrite self.overwrite = True for attribute in new_block.keys(): if attribute in match_att: continue #ignore this one new_value = new_block[attribute] #non-looped items if new_block.FindLoop(attribute)<0: #not looped self[attribute] = new_value my_loops = self.loops.values() perfect_overlaps = [a for a in new_block.loops if a in my_loops] for po in perfect_overlaps: loop_keys = [a for a in po if a in rel_keys] #do we have a key? try: newkeypos = map(lambda a:newkeys.index(a),loop_keys) newkeypos = newkeypos[0] #one key per loop for now loop_keys = loop_keys[0] except (ValueError,IndexError): newkeypos = [] overlap_data = map(lambda a:listify(self[a]),overlaps) #old packet data new_data = map(lambda a:new_block[a],overlaps) #new packet data packet_data = transpose(overlap_data) new_p_data = transpose(new_data) # remove any packets for which the keys match between old and new; we # make the arbitrary choice that the old data stays if newkeypos: # get matching values in new list print("Old, new data:\n%s\n%s" % (repr(overlap_data[newkeypos]),repr(new_data[newkeypos]))) key_matches = filter(lambda a:a in overlap_data[newkeypos],new_data[newkeypos]) # filter out any new data with these key values new_p_data = filter(lambda a:a[newkeypos] not in key_matches,new_p_data) if new_p_data: new_data = transpose(new_p_data) else: new_data = [] # wipe out the old data and enter the new stuff byebyeloop = self.GetLoop(overlaps[0]) # print("Removing '%r' with overlaps '%r'" % (byebyeloop, overlaps)) # Note that if, in the original dictionary, overlaps are not # looped, GetLoop will return the block itself. So we check # for this case... if byebyeloop != self: self.remove_loop(byebyeloop) self.AddLoopItem((overlaps,overlap_data)) #adding old packets for pd in new_p_data: #adding new packets if pd not in packet_data: for i in range(len(overlaps)): #don't do this at home; we are appending #to something in place self[overlaps[i]].append(pd[i]) self.overwrite = save_overwrite
<Define an error class>= (<-U) class StarError(Exception): def __init__(self,value): self.value = value def __str__(self): return '\nStar Format error: '+ self.value class StarLengthError(Exception): def __init__(self,value): self.value = value def __str__(self): return '\nStar length error: ' + self.value class StarDerivationError(Exception): def __init__(self,fail_name): self.fail_name = fail_name def __str__(self): return "Derivation of %s failed, None returned" % self.fail_name # # This is subclassed from AttributeError in order to allow hasattr # to work. # class StarDerivationFailure(AttributeError): def __init__(self,fail_name): self.fail_name = fail_name def __str__(self): return "Derivation of %s failed" % self.fail_name
These functions do not depend on knowing the internals of the various classes and are therefore kept outside of the class definitions to allow general use.
<Utility functions>= (<-U) <Apply line folding> <Remove line folding> <Apply line indent> <Remove line indent> <List manipulations> <Check stringiness> <Input a guide template>
Listify - used to allow uniform treatment of datanames - otherwise sequence functions might operate on a string instead of a list.
<List manipulations>= (<-U) def listify(item): if isinstance(item,unicode): return [item] else: return item #Transpose the list of lists passed to us def transpose(base_list): new_lofl = [] full_length = len(base_list) opt_range = range(full_length) for i in range(len(base_list[0])): new_packet = [] for j in opt_range: new_packet.append(base_list[j][i]) new_lofl.append(new_packet) return new_lofl # This routine optimised to return as quickly as possible # as it is called a lot. def not_none(itemlist): """Return true only if no values of None are present""" if itemlist is None: return False if not isinstance(itemlist,(tuple,list)): return True for x in itemlist: if not not_none(x): return False return True
<Selection of iterators>= (<-U) <A load iterator> <A recursive iterator> <A one-level iterator>
When loading values, we want to iterate over the items until a "stop_" token is found - this is communicated via the "popout" attribute changing to True. We save the __iter__ method for iterating over packets. Also, when a new packet is begun, all subloops should be extended correspondingly. We are in a special situation where we do not enforce length matching, as we assume that things will be loaded in as we go.
Each yield returns a list which should be appended to with a unitary item. So, as the number of packets increases, we need to make sure that the lowest level lists are extended as needed with empty lists.
<A load iterator>= (<-U) def load_iter(self,coords=[]): count = 0 #to create packet index while not self.popout: # ok, we have a new packet: append a list to our subloops for aloop in self.loops: aloop.new_enclosing_packet() for iname in self.item_order: if isinstance(iname,LoopBlock): #into a nested loop for subitems in iname.load_iter(coords=coords+[count]): # print 'Yielding %s' % `subitems` yield subitems # print 'End of internal loop' else: if self.dimension == 0: # print 'Yielding %s' % `self[iname]` yield self,self[iname] else: backval = self.block[iname] for i in range(len(coords)): # print 'backval, coords: %s, %s' % (`backval`,`coords`) backval = backval[coords[i]] yield self,backval count = count + 1 # count packets self.popout = False # reinitialise # print 'Finished iterating' yield self,'###Blank###' #this value should never be used # an experimental fast iterator for level-1 loops (ie CIF) def fast_load_iter(self): targets = map(lambda a:self.block[a],self.item_order) while targets: for target in targets: yield self,target # Add another list of the required shape to take into account a new outer packet def new_enclosing_packet(self): if self.dimension > 1: #otherwise have a top-level list for iname in self.keys(): #includes lower levels target_list = self[iname] for i in range(3,self.dimension): #dim 2 upwards are lists of lists of... target_list = target_list[-1] target_list.append([]) # print '%s now %s' % (iname,`self[iname]`)
We recursively expand out all values in nested loops and return a simple dictionary type. Although it only seems to make sense to call this from a dimension 0 LoopBlock, if we are not a level 0 LoopBlock, we drill down until we get a simple value to return, then start looping.
We want to build up a return dictionary by adding keys from the deeper loops, but if we simply use the dictionary update method, we will find that we have stale keys from previous inner loops. Therefore, we keep our values as (key,value) tuples which we turn into a Star packet at the last moment.
This is now updated to return StarPackets, which are like lists except that they also have attributes set.
<A recursive iterator>= (<-U) def recursive_iter(self,dict_so_far={},coord=[]): # print "Recursive iter: coord %s, keys %s, dim %d" % (`coord`,`self.block.keys()`,self.dimension) my_length = 0 top_items = self.block.items() top_values = self.block.values() #same order as items drill_values = self.block.values() for dimup in range(0,self.dimension): #look higher in the tree if len(drill_values)>0: #this block has values drill_values=drill_values[0] #drill in else: raise StarError("Malformed loop packet %s" % repr( top_items[0] )) my_length = len(drill_values[0]) #length of 'string' entry if self.dimension == 0: #top level for aloop in self.loops: for apacket in aloop.recursive_iter(): # print "Recursive yielding %s" % repr( dict(top_items + apacket.items()) ) prep_yield = StarPacket(top_values+apacket.values()) #straight list for name,value in top_items + apacket.items(): setattr(prep_yield,name,value) yield prep_yield else: #in some loop for i in range(my_length): kvpairs = map(lambda a:(a,self.coord_to_group(a,coord)[i]),self.block.keys()) kvvals = map(lambda a:a[1],kvpairs) #just values # print "Recursive kvpairs at %d: %s" % (i,repr( kvpairs )) if self.loops: for aloop in self.loops: for apacket in aloop.recursive_iter(coord=coord+[i]): # print "Recursive yielding %s" % repr( dict(kvpairs + apacket.items()) ) prep_yield = StarPacket(kvvals+apacket.values()) for name,value in kvpairs + apacket.items(): setattr(prep_yield,name,value) yield prep_yield else: # we're at the bottom of the tree # print "Recursive yielding %s" % repr( dict(kvpairs) ) prep_yield = StarPacket(kvvals) for name,value in kvpairs: setattr(prep_yield,name,value) yield prep_yield # small function to use the coordinates. def coord_to_group(self,dataname,coords): if not isinstance(dataname,unicode): return dataname # flag inner loop processing newm = self[dataname] # newm must be a list or tuple for c in coords: # print "Coord_to_group: %s ->" % (repr( newm )), newm = newm[c] # print repr( newm ) return newm
Return a series of LoopBlocks with the appropriate packet chosen. This does not loop over interior blocks, so called at the top level it just returns the whole star block.
<A one-level iterator>= (<-U) def flat_iterator(self): my_length = 0 top_keys = self.block.keys() if len(top_keys)>0: my_length = len(self.block[top_keys[0]]) for pack_no in range(my_length): yield(self.collapse(pack_no))
<API documentation flags>= (<-U) #No documentation flags