ITER Physics Data Model Documentation for mse

Motional Stark Effect diagnostic

Notation of array of structure indices: itime indicates a time index; i1, i2, i3, ... indicate other indices with their depth in the IDS. This notation clarifies the path of a given node, but should not be used to compare indices of different nodes (they may have different meanings).

Lifecycle status: alpha since version 3.16.0

Last change occured on version: 3.33.0

Back to top IDS list

By convention, only the upper error node should be filled in case of symmetrical error bars. The upper and lower errors are absolute and defined positive, and represent one standard deviation of the data. The effective values of the data (within one standard deviation) will be within the interval [data-data_error_lower, data+data_error_upper]. Thus whatever the sign of data, data_error_lower relates to the lower bound and data_error_upper to the upper bound of the error bar interval.

Full path name Description Data Type Coordinates
ids_properties Interface Data Structure properties. This element identifies the node above as an IDS structure
ids_properties/comment Any comment describing the content of this IDS {constant} STR_0D
ids_properties/homogeneous_time This node must be filled (with 0, 1, or 2) for the IDS to be valid. If 1, the time of this IDS is homogeneous, i.e. the time values for this IDS are stored in the time node just below the root of this IDS. If 0, the time values are stored in the various time fields at lower levels in the tree. In the case only constant or static nodes are filled within the IDS, homogeneous_time must be set to 2 {constant} INT_0D
ids_properties/source
Lifecycle status: obsolescent since version 3.34.0
Source of the data (any comment describing the origin of the data : code, path to diagnostic signals, processing method, ...). Superseeded by the new provenance structure. {constant} STR_0D
ids_properties/provider Name of the person in charge of producing this data {constant} STR_0D
ids_properties/creation_date Date at which this data has been produced {constant} STR_0D
ids_properties/version_put Version of the access layer package used to PUT this IDS structure
ids_properties/version_put/data_dictionary Version of Data Dictionary used to PUT this IDS {constant} STR_0D
ids_properties/version_put/access_layer Version of Access Layer used to PUT this IDS {constant} STR_0D
ids_properties/version_put/access_layer_language Programming language of the Access Layer high level API used to PUT this IDS {constant} STR_0D
ids_properties/provenance
Lifecycle status: alpha since version 3.34.0
Provenance information about this IDS structure
ids_properties/provenance/node(i1) Set of IDS nodes for which the provenance is given. The provenance information applies to the whole structure below the IDS node. For documenting provenance information for the whole IDS, set the size of this array of structure to 1 and leave the child "path" node empty {constant} struct_array [max_size=20 (limited in MDS+ backend only)] 1- 1...N
ids_properties/provenance/node(i1)/path Path of the node within the IDS, following the syntax given in the link below. If empty, means the provenance information applies to the whole IDS. Click here for further documentation. {constant} STR_0D
ids_properties/provenance/node(i1)/sources(:) List of sources used to import or calculate this node, identified as explained below. In case the node is the result of of a calculation / data processing, the source is an input to the process described in the "code" structure at the root of the IDS. The source can be an IDS (identified by a URI or a persitent identifier, see syntax in the link below) or non-IDS data imported directly from an non-IMAS database (identified by the command used to import the source, or the persistent identifier of the data source). Often data are obtained by a chain of processes, however only the last process input are recorded here. The full chain of provenance has then to be reconstructed recursively from the provenance information contained in the data sources. Click here for further documentation. {constant} STR_1D 1- 1...N
ids_properties/plugins
Lifecycle status: alpha since version 3.39.0
Information about the plugins used to write/read this IDS. This structure is filled automatically by the Access Layer at GET/PUT time, no need to fill it via a user program.. Introduced after DD version 3.38.1 structure
ids_properties/plugins/node(i1) Set of IDS nodes for which a plugin has been applied {constant} struct_array [max_size=20 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/path Path of the node within the IDS, following the syntax given in the link below. If empty, means the plugin applies to the whole IDS. Click here for further documentation. {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2) Plugins used to PUT a node (potentially, multiple plugins can be applied, if so they are listed by order of application) struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/put_operation(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2) Plugins to be used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application) struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/readback(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/readback(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2) Plugins actually used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application). This information is filled by the plugin infrastructure during the GET operation. struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/get_operation(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/infrastructure_put Plugin infrastructure used to PUT the data structure
ids_properties/plugins/infrastructure_put/name Name of software used {constant} STR_0D
ids_properties/plugins/infrastructure_put/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/infrastructure_put/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/infrastructure_put/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/infrastructure_put/repository URL of software repository {constant} STR_0D
ids_properties/plugins/infrastructure_get Plugin infrastructure used to GET the data structure
ids_properties/plugins/infrastructure_get/name Name of software used {constant} STR_0D
ids_properties/plugins/infrastructure_get/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/infrastructure_get/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/infrastructure_get/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/infrastructure_get/repository URL of software repository {constant} STR_0D
channel(i1) Set of channels (lines of sight) struct_array [max_size=30 (limited in MDS+ backend only)] 1- 1...N
channel(i1)/name Name of the channel {static} STR_0D
channel(i1)/detector Detector description structure
channel(i1)/detector/geometry_type Type of geometry used to describe the surface of the detector or aperture (1:'outline', 2:'circular', 3:'rectangle'). In case of 'outline', the surface is described by an outline of point in a local coordinate system defined by a centre and three unit vectors X1, X2, X3. Note that there is some flexibility here and the data provider should choose the most convenient coordinate system for the object, respecting the definitions of (X1,X2,X3) indicated below. In case of 'circular', the surface is a circle defined by its centre, radius, and normal vector oriented towards the plasma X3. In case of 'rectangle', the surface is a rectangle defined by its centre, widths in the X1 and X2 directions, and normal vector oriented towards the plasma X3. {static} INT_0D
channel(i1)/detector/centre If geometry_type=2, coordinates of the centre of the circle. If geometry_type=1 or 3, coordinates of the origin of the local coordinate system (X1,X2,X3) describing the plane detector/aperture. This origin is located within the detector/aperture area. structure
channel(i1)/detector/centre/r Major radius {static} [m] FLT_0D
channel(i1)/detector/centre/z Height {static} [m] FLT_0D
channel(i1)/detector/centre/phi Toroidal angle (oriented counter-clockwise when viewing from above) {static} [rad] FLT_0D
channel(i1)/detector/radius Radius of the circle, used only if geometry_type = 2 {static} [m] FLT_0D
channel(i1)/detector/x1_unit_vector Components of the X1 direction unit vector in the (X,Y,Z) coordinate system, where X is the major radius axis for phi = 0, Y is the major radius axis for phi = pi/2, and Z is the height axis. The X1 vector is more horizontal than X2 (has a smaller abs(Z) component) and oriented in the positive phi direction (counter-clockwise when viewing from above). Click here for further documentation. structure
channel(i1)/detector/x1_unit_vector/x Component along X axis {static} [m] FLT_0D
channel(i1)/detector/x1_unit_vector/y Component along Y axis {static} [m] FLT_0D
channel(i1)/detector/x1_unit_vector/z Component along Z axis {static} [m] FLT_0D
channel(i1)/detector/x2_unit_vector Components of the X2 direction unit vector in the (X,Y,Z) coordinate system, where X is the major radius axis for phi = 0, Y is the major radius axis for phi = pi/2, and Z is the height axis. The X2 axis is orthonormal so that uX2 = uX3 x uX1. Click here for further documentation. structure
channel(i1)/detector/x2_unit_vector/x Component along X axis {static} [m] FLT_0D
channel(i1)/detector/x2_unit_vector/y Component along Y axis {static} [m] FLT_0D
channel(i1)/detector/x2_unit_vector/z Component along Z axis {static} [m] FLT_0D
channel(i1)/detector/x3_unit_vector Components of the X3 direction unit vector in the (X,Y,Z) coordinate system, where X is the major radius axis for phi = 0, Y is the major radius axis for phi = pi/2, and Z is the height axis. The X3 axis is normal to the detector/aperture plane and oriented towards the plasma. Click here for further documentation. structure
channel(i1)/detector/x3_unit_vector/x Component along X axis {static} [m] FLT_0D
channel(i1)/detector/x3_unit_vector/y Component along Y axis {static} [m] FLT_0D
channel(i1)/detector/x3_unit_vector/z Component along Z axis {static} [m] FLT_0D
channel(i1)/detector/x1_width Full width of the aperture in the X1 direction, used only if geometry_type = 3 {static} [m] FLT_0D
channel(i1)/detector/x2_width Full width of the aperture in the X2 direction, used only if geometry_type = 3 {static} [m] FLT_0D
channel(i1)/detector/outline Irregular outline of the detector/aperture in the (X1, X2) coordinate system. Do NOT repeat the first point. structure
channel(i1)/detector/outline/x1(:) Positions along x1 axis {static} [m] FLT_1D 1- 1...N
channel(i1)/detector/outline/x2(:) Positions along x2 axis {static} [m] FLT_1D 1- channel(i1)/detector/outline/x1
channel(i1)/detector/surface Surface of the detector/aperture, derived from the above geometric data {static} [m^2] FLT_0D
channel(i1)/aperture(i2) Description of a set of collimating apertures struct_array [max_size=5 (limited in MDS+ backend only)] 1- 1...N
channel(i1)/aperture(i2)/geometry_type Type of geometry used to describe the surface of the detector or aperture (1:'outline', 2:'circular', 3:'rectangle'). In case of 'outline', the surface is described by an outline of point in a local coordinate system defined by a centre and three unit vectors X1, X2, X3. Note that there is some flexibility here and the data provider should choose the most convenient coordinate system for the object, respecting the definitions of (X1,X2,X3) indicated below. In case of 'circular', the surface is a circle defined by its centre, radius, and normal vector oriented towards the plasma X3. In case of 'rectangle', the surface is a rectangle defined by its centre, widths in the X1 and X2 directions, and normal vector oriented towards the plasma X3. {static} INT_0D
channel(i1)/aperture(i2)/centre If geometry_type=2, coordinates of the centre of the circle. If geometry_type=1 or 3, coordinates of the origin of the local coordinate system (X1,X2,X3) describing the plane detector/aperture. This origin is located within the detector/aperture area. structure
channel(i1)/aperture(i2)/centre/r Major radius {static} [m] FLT_0D
channel(i1)/aperture(i2)/centre/z Height {static} [m] FLT_0D
channel(i1)/aperture(i2)/centre/phi Toroidal angle (oriented counter-clockwise when viewing from above) {static} [rad] FLT_0D
channel(i1)/aperture(i2)/radius Radius of the circle, used only if geometry_type = 2 {static} [m] FLT_0D
channel(i1)/aperture(i2)/x1_unit_vector Components of the X1 direction unit vector in the (X,Y,Z) coordinate system, where X is the major radius axis for phi = 0, Y is the major radius axis for phi = pi/2, and Z is the height axis. The X1 vector is more horizontal than X2 (has a smaller abs(Z) component) and oriented in the positive phi direction (counter-clockwise when viewing from above). Click here for further documentation. structure
channel(i1)/aperture(i2)/x1_unit_vector/x Component along X axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x1_unit_vector/y Component along Y axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x1_unit_vector/z Component along Z axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x2_unit_vector Components of the X2 direction unit vector in the (X,Y,Z) coordinate system, where X is the major radius axis for phi = 0, Y is the major radius axis for phi = pi/2, and Z is the height axis. The X2 axis is orthonormal so that uX2 = uX3 x uX1. Click here for further documentation. structure
channel(i1)/aperture(i2)/x2_unit_vector/x Component along X axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x2_unit_vector/y Component along Y axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x2_unit_vector/z Component along Z axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x3_unit_vector Components of the X3 direction unit vector in the (X,Y,Z) coordinate system, where X is the major radius axis for phi = 0, Y is the major radius axis for phi = pi/2, and Z is the height axis. The X3 axis is normal to the detector/aperture plane and oriented towards the plasma. Click here for further documentation. structure
channel(i1)/aperture(i2)/x3_unit_vector/x Component along X axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x3_unit_vector/y Component along Y axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x3_unit_vector/z Component along Z axis {static} [m] FLT_0D
channel(i1)/aperture(i2)/x1_width Full width of the aperture in the X1 direction, used only if geometry_type = 3 {static} [m] FLT_0D
channel(i1)/aperture(i2)/x2_width Full width of the aperture in the X2 direction, used only if geometry_type = 3 {static} [m] FLT_0D
channel(i1)/aperture(i2)/outline Irregular outline of the detector/aperture in the (X1, X2) coordinate system. Do NOT repeat the first point. structure
channel(i1)/aperture(i2)/outline/x1(:) Positions along x1 axis {static} [m] FLT_1D 1- 1...N
channel(i1)/aperture(i2)/outline/x2(:) Positions along x2 axis {static} [m] FLT_1D 1- channel(i1)/aperture(i2)/outline/x1
channel(i1)/aperture(i2)/surface Surface of the detector/aperture, derived from the above geometric data {static} [m^2] FLT_0D
channel(i1)/line_of_sight Description of the line of sight of the channel, given by 2 points structure
channel(i1)/line_of_sight/first_point Position of the first point structure
channel(i1)/line_of_sight/first_point/r Major radius {static} [m] FLT_0D
channel(i1)/line_of_sight/first_point/z Height {static} [m] FLT_0D
channel(i1)/line_of_sight/first_point/phi Toroidal angle (oriented counter-clockwise when viewing from above) {static} [rad] FLT_0D
channel(i1)/line_of_sight/second_point Position of the second point structure
channel(i1)/line_of_sight/second_point/r Major radius {static} [m] FLT_0D
channel(i1)/line_of_sight/second_point/z Height {static} [m] FLT_0D
channel(i1)/line_of_sight/second_point/phi Toroidal angle (oriented counter-clockwise when viewing from above) {static} [rad] FLT_0D
channel(i1)/active_spatial_resolution(itime) Spatial resolution of the measurement, calculated as a convolution of the atomic smearing, magnetic and beam geometry smearing and detector projection, for a set of time slices (use a single time slice for the whole pulse if the beam and the line of sight are not moving during the pulse) {dynamic} struct_array 1- channel(i1)/active_spatial_resolution(itime)/time
channel(i1)/active_spatial_resolution(itime)/centre Position of the centre of the spatially resolved zone structure
channel(i1)/active_spatial_resolution(itime)/centre/r Major radius {dynamic} [m] FLT_0D
channel(i1)/active_spatial_resolution(itime)/centre/z Height {dynamic} [m] FLT_0D
channel(i1)/active_spatial_resolution(itime)/centre/phi Toroidal angle (oriented counter-clockwise when viewing from above) {dynamic} [rad] FLT_0D
channel(i1)/active_spatial_resolution(itime)/width Full width of the spatially resolved zone in the R, Z and phi directions structure
channel(i1)/active_spatial_resolution(itime)/width/r Major radius {dynamic} [m] FLT_0D
channel(i1)/active_spatial_resolution(itime)/width/z Height {dynamic} [m] FLT_0D
channel(i1)/active_spatial_resolution(itime)/width/phi Toroidal angle (oriented counter-clockwise when viewing from above) {dynamic} [rad] FLT_0D
channel(i1)/active_spatial_resolution(itime)/geometric_coefficients(:) Set of 9 geometric coefficients providing the MSE polarisation angle as a function of the local electric and magnetic field components (these are related to the angle between beam and line of sight). The list is ordered as follows : coefficients of BZ, BR, Bphi, ER (numerator of the MSE angle expression); coefficients of BZ, BR, Bphi, ER, EZ (denominator) {dynamic} [mixed] FLT_1D 1- 1...9
channel(i1)/active_spatial_resolution(itime)/time Time {dynamic} [s] FLT_0D
channel(i1)/polarisation_angle MSE polarisation angle [rad] structure
channel(i1)/polarisation_angle/data(:) Data {dynamic} [as_parent] FLT_1D 1- channel(i1)/polarisation_angle/time
channel(i1)/polarisation_angle/validity_timed(:) Indicator of the validity of the data for each time slice. 0: valid from automated processing, 1: valid and certified by the diagnostic RO; - 1 means problem identified in the data processing (request verification by the diagnostic RO), -2: invalid data, should not be used (values lower than -2 have a code-specific meaning detailing the origin of their invalidity) {dynamic} INT_1D 1- channel(i1)/polarisation_angle/time
channel(i1)/polarisation_angle/validity Indicator of the validity of the data for the whole acquisition period. 0: valid from automated processing, 1: valid and certified by the diagnostic RO; - 1 means problem identified in the data processing (request verification by the diagnostic RO), -2: invalid data, should not be used (values lower than -2 have a code-specific meaning detailing the origin of their invalidity) {constant} INT_0D
channel(i1)/polarisation_angle/time(:) Time {dynamic} [s] FLT_1D 1- 1...N
latency Upper bound of the delay between physical information received by the detector and data available on the real-time (RT) network. {static} [s]. Introduced after DD version 3.32.1 FLT_0D
code Generic decription of the code-specific parameters for the code that has produced this IDS structure
code/name Name of software generating IDS {constant} STR_0D
code/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
code/commit Unique commit reference of software {constant} STR_0D
code/version Unique version (tag) of software {constant} STR_0D
code/repository URL of software repository {constant} STR_0D
code/parameters List of the code specific parameters in XML format {constant} STR_0D
code/output_flag(:) Output flag : 0 means the run is successful, other values mean some difficulty has been encountered, the exact meaning is then code specific. Negative values mean the result shall not be used. {dynamic} INT_1D 1- time
code/library(i1) List of external libraries used by the code that has produced this IDS struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
code/library(i1)/name Name of software {constant} STR_0D
code/library(i1)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
code/library(i1)/commit Unique commit reference of software {constant} STR_0D
code/library(i1)/version Unique version (tag) of software {constant} STR_0D
code/library(i1)/repository URL of software repository {constant} STR_0D
code/library(i1)/parameters List of the code specific parameters in XML format {constant} STR_0D
time(:) Generic time {dynamic} [s] FLT_1D 1- 1...N

Back to top IDS list