ITER Physics Data Model Documentation for waves

RF wave propagation and deposition. Note that current estimates in this IDS are a priori not taking into account synergies between multiple sources (a convergence loop with Fokker-Planck calculations is required to account for such synergies)

Notation of array of structure indices: itime indicates a time index; i1, i2, i3, ... indicate other indices with their depth in the IDS. This notation clarifies the path of a given node, but should not be used to compare indices of different nodes (they may have different meanings).

Lifecycle status: alpha since version 3.5.0

Last change occured on version: 3.39.0

Back to top IDS list

By convention, only the upper error node should be filled in case of symmetrical error bars. The upper and lower errors are absolute and defined positive, and represent one standard deviation of the data. The effective values of the data (within one standard deviation) will be within the interval [data-data_error_lower, data+data_error_upper]. Thus whatever the sign of data, data_error_lower relates to the lower bound and data_error_upper to the upper bound of the error bar interval.

Full path name Description Data Type Coordinates
ids_properties Interface Data Structure properties. This element identifies the node above as an IDS structure
ids_properties/comment Any comment describing the content of this IDS {constant} STR_0D
ids_properties/homogeneous_time This node must be filled (with 0, 1, or 2) for the IDS to be valid. If 1, the time of this IDS is homogeneous, i.e. the time values for this IDS are stored in the time node just below the root of this IDS. If 0, the time values are stored in the various time fields at lower levels in the tree. In the case only constant or static nodes are filled within the IDS, homogeneous_time must be set to 2 {constant} INT_0D
ids_properties/source
Lifecycle status: obsolescent since version 3.34.0
Source of the data (any comment describing the origin of the data : code, path to diagnostic signals, processing method, ...). Superseeded by the new provenance structure. {constant} STR_0D
ids_properties/provider Name of the person in charge of producing this data {constant} STR_0D
ids_properties/creation_date Date at which this data has been produced {constant} STR_0D
ids_properties/version_put Version of the access layer package used to PUT this IDS structure
ids_properties/version_put/data_dictionary Version of Data Dictionary used to PUT this IDS {constant} STR_0D
ids_properties/version_put/access_layer Version of Access Layer used to PUT this IDS {constant} STR_0D
ids_properties/version_put/access_layer_language Programming language of the Access Layer high level API used to PUT this IDS {constant} STR_0D
ids_properties/provenance
Lifecycle status: alpha since version 3.34.0
Provenance information about this IDS structure
ids_properties/provenance/node(i1) Set of IDS nodes for which the provenance is given. The provenance information applies to the whole structure below the IDS node. For documenting provenance information for the whole IDS, set the size of this array of structure to 1 and leave the child "path" node empty {constant} struct_array [max_size=20 (limited in MDS+ backend only)] 1- 1...N
ids_properties/provenance/node(i1)/path Path of the node within the IDS, following the syntax given in the link below. If empty, means the provenance information applies to the whole IDS. Click here for further documentation. {constant} STR_0D
ids_properties/provenance/node(i1)/sources(:) List of sources used to import or calculate this node, identified as explained below. In case the node is the result of of a calculation / data processing, the source is an input to the process described in the "code" structure at the root of the IDS. The source can be an IDS (identified by a URI or a persitent identifier, see syntax in the link below) or non-IDS data imported directly from an non-IMAS database (identified by the command used to import the source, or the persistent identifier of the data source). Often data are obtained by a chain of processes, however only the last process input are recorded here. The full chain of provenance has then to be reconstructed recursively from the provenance information contained in the data sources. Click here for further documentation. {constant} STR_1D 1- 1...N
ids_properties/plugins
Lifecycle status: alpha since version 3.39.0
Information about the plugins used to write/read this IDS. This structure is filled automatically by the Access Layer at GET/PUT time, no need to fill it via a user program.. Introduced after DD version 3.38.1 structure
ids_properties/plugins/node(i1) Set of IDS nodes for which a plugin has been applied {constant} struct_array [max_size=20 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/path Path of the node within the IDS, following the syntax given in the link below. If empty, means the plugin applies to the whole IDS. Click here for further documentation. {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2) Plugins used to PUT a node (potentially, multiple plugins can be applied, if so they are listed by order of application) struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/put_operation(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2) Plugins to be used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application) struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/readback(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/readback(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2) Plugins actually used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application). This information is filled by the plugin infrastructure during the GET operation. struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/get_operation(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/infrastructure_put Plugin infrastructure used to PUT the data structure
ids_properties/plugins/infrastructure_put/name Name of software used {constant} STR_0D
ids_properties/plugins/infrastructure_put/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/infrastructure_put/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/infrastructure_put/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/infrastructure_put/repository URL of software repository {constant} STR_0D
ids_properties/plugins/infrastructure_get Plugin infrastructure used to GET the data structure
ids_properties/plugins/infrastructure_get/name Name of software used {constant} STR_0D
ids_properties/plugins/infrastructure_get/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/infrastructure_get/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/infrastructure_get/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/infrastructure_get/repository URL of software repository {constant} STR_0D
coherent_wave(i1) Wave description for each frequency struct_array [max_size=100 (limited in MDS+ backend only)] 1- 1...N
coherent_wave(i1)/identifier Identifier of the coherent wave, in terms of the type and name of the antenna driving the wave and an index separating waves driven by the same antenna. structure
coherent_wave(i1)/identifier/type Wave/antenna type. index=1 for name=EC; index=2 for name=IC; index=3 for name=LH. Available options (refer to the children of this identifier structure) :
Name Index Description
unspecified 0 unspecified
EC 1 Wave field for electron cyclotron heating and current drive
LH 2 Wave field for lower hybrid heating and current drive
IC 3 Wave field for ion cyclotron frequency heating and current drive
structure
coherent_wave(i1)/identifier/type/name Short string identifier {constant} STR_0D
coherent_wave(i1)/identifier/type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {constant} INT_0D
coherent_wave(i1)/identifier/type/description Verbose description {constant} STR_0D
coherent_wave(i1)/identifier/antenna_name Name of the antenna that launches this wave. Corresponds to the name specified in antennas/ec(i)/name, or antennas/ic(i)/name or antennas/lh(i)/name (depends of antenna/wave type) in the ANTENNAS IDS. {constant} STR_0D
coherent_wave(i1)/identifier/index_in_antenna Index of the wave (starts at 1), separating different waves generated from a single antenna. {constant} INT_0D
coherent_wave(i1)/wave_solver_type Type of wave deposition solver used for this wave. Index = 1 for beam/ray tracing; index = 2 for full wave structure
coherent_wave(i1)/wave_solver_type/name Short string identifier {constant} STR_0D
coherent_wave(i1)/wave_solver_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {constant} INT_0D
coherent_wave(i1)/wave_solver_type/description Verbose description {constant} STR_0D
coherent_wave(i1)/global_quantities(itime) Global quantities for various time slices {dynamic} struct_array 1- coherent_wave(i1)/global_quantities(itime)/time
coherent_wave(i1)/global_quantities(itime)/frequency Wave frequency {dynamic} [Hz] FLT_0D
coherent_wave(i1)/global_quantities(itime)/n_tor(:) Toroidal mode numbers, the wave vector toroidal component being defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction {dynamic} INT_1D 1- 1...N
coherent_wave(i1)/global_quantities(itime)/power Total absorbed wave power {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/power_n_tor(:) Absorbed wave power per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/current_tor Wave driven toroidal current from a stand alone calculation (not consistent with other sources) {dynamic} [A] FLT_0D
coherent_wave(i1)/global_quantities(itime)/current_tor_n_tor(:) Wave driven toroidal current from a stand alone calculation (not consistent with other sources) per toroidal mode number {dynamic} [A] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/electrons Quantities related to the electrons structure
coherent_wave(i1)/global_quantities(itime)/electrons/power_thermal Wave power absorbed by the thermal particle population {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/electrons/power_thermal_n_tor(:) Wave power absorbed by the thermal particle population per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/electrons/power_fast Wave power absorbed by the fast particle population {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/electrons/power_fast_n_tor(:) Wave power absorbed by the fast particle population per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/electrons/distribution_assumption Assumption on the distribution function used by the wave solver to calculate the power deposition on this species: 0 = Maxwellian (linear absorption); 1 = quasi-linear (F given by a distributions IDS). {dynamic} INT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2) Quantities related to the different ion species struct_array 1- 1...N
coherent_wave(i1)/global_quantities(itime)/ion(i2)/element(i3) List of elements forming the atom or molecule struct_array 1- 1...N
coherent_wave(i1)/global_quantities(itime)/ion(i2)/element(i3)/a Mass of atom {dynamic} [Atomic Mass Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/element(i3)/z_n Nuclear charge {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/element(i3)/atoms_n Number of atoms of this element in the molecule {dynamic} INT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/element(i3)/multiplicity
Lifecycle status: obsolescent since version 3.15.0
Multiplicity of the atom {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/z_ion Ion charge (of the dominant ionisation state; lumped ions are allowed). {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/label String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...) {dynamic} STR_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/power_thermal Wave power absorbed by the thermal particle population {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/power_thermal_n_tor(:) Wave power absorbed by the thermal particle population per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/ion(i2)/power_fast Wave power absorbed by the fast particle population {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/power_fast_n_tor(:) Wave power absorbed by the fast particle population per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/ion(i2)/multiple_states_flag Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure {dynamic} INT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/distribution_assumption Assumption on the distribution function used by the wave solver to calculate the power deposition on this species: 0 = Maxwellian (linear absorption); 1 = quasi-linear (F given by a distributions IDS). {dynamic} INT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3) Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...) struct_array 1- 1...N
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/z_min Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/z_max Maximum Z of the charge state bundle (equal to z_min if no bundle) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/label String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...) {dynamic} STR_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/electron_configuration Configuration of atomic orbitals of this state, e.g. 1s2-2s1 {dynamic} STR_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/vibrational_level Vibrational level (can be bundled) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/vibrational_mode Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature. {dynamic} STR_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/power_thermal Wave power absorbed by the thermal particle population {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/power_thermal_n_tor(:) Wave power absorbed by the thermal particle population per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/power_fast Wave power absorbed by the fast particle population {dynamic} [W] FLT_0D
coherent_wave(i1)/global_quantities(itime)/ion(i2)/state(i3)/power_fast_n_tor(:) Wave power absorbed by the fast particle population per toroidal mode number {dynamic} [W] FLT_1D 1- coherent_wave(i1)/global_quantities(itime)/n_tor
coherent_wave(i1)/global_quantities(itime)/time Time {dynamic} [s] FLT_0D
coherent_wave(i1)/profiles_1d(itime) Source radial profiles (flux surface averaged quantities) for various time slices {dynamic} struct_array 1- coherent_wave(i1)/profiles_1d(itime)/time
coherent_wave(i1)/profiles_1d(itime)/grid Radial grid structure
coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm(:) Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation, see time_slice/boundary/b_flux_pol_norm in the equilibrium IDS) {dynamic} [-] FLT_1D 1- 1...N
coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor(:) Toroidal flux coordinate. rho_tor = sqrt(b_flux_tor/(pi*b0)) ~ sqrt(pi*r^2*b0/(pi*b0)) ~ r [m]. The toroidal field used in its definition is indicated under vacuum_toroidal_field/b0 {dynamic} [m] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/grid/rho_pol_norm(:) Normalised poloidal flux coordinate = sqrt((psi(rho)-psi(magnetic_axis)) / (psi(LCFS)-psi(magnetic_axis))) {dynamic} [-] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/grid/psi(:) Poloidal magnetic flux {dynamic} [Wb]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
psi_like .fact_psi
FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/grid/volume(:) Volume enclosed inside the magnetic surface {dynamic} [m^3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/grid/area(:) Cross-sectional area of the flux surface {dynamic} [m^2] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/grid/surface(:) Surface area of the toroidal flux surface {dynamic} [m^2] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/grid/psi_magnetic_axis Value of the poloidal magnetic flux at the magnetic axis (useful to normalize the psi array values when the radial grid doesn't go from the magnetic axis to the plasma boundary) {dynamic} [Wb] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/grid/psi_boundary Value of the poloidal magnetic flux at the plasma boundary (useful to normalize the psi array values when the radial grid doesn't go from the magnetic axis to the plasma boundary) {dynamic} [Wb] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/n_tor(:) Toroidal mode numbers, the wave vector toroidal component being defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction {dynamic} INT_1D 1- 1...N
coherent_wave(i1)/profiles_1d(itime)/power_density(:) Flux surface averaged total absorbed wave power density (electrons + ion + fast populations) {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/power_density_n_tor(:,:) Flux surface averaged absorbed wave power density per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/power_inside(:) Total absorbed wave power (electrons + ion + fast populations) inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/power_inside_n_tor(:,:) Total absorbed wave power (electrons + ion + fast populations) inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/current_tor_inside(:) Wave driven toroidal current, inside a flux surface {dynamic} [A] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/current_tor_inside_n_tor(:,:) Wave driven toroidal current, inside a flux surface, per toroidal mode number {dynamic} [A] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/current_parallel_density(:) Flux surface averaged wave driven parallel current density = average(j.B) / B0, where B0 = vacuum_toroidal_field/b0. {dynamic} [A.m^-2] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/current_parallel_density_n_tor(:,:) Flux surface averaged wave driven parallel current density, per toroidal mode number {dynamic} [A.m^-2] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2) Components of the electric field per toroidal mode number, averaged over the flux surface, where the averaged is weighted with the power deposition density, such that e_field = ave(e_field.power_density) / ave(power_density) struct_array 1- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/plus Left hand polarised electric field component for every flux surface [V.m^-1] structure
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/plus/amplitude(:) Amplitude {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/plus/phase(:) Phase {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/minus Right hand polarised electric field component for every flux surface [V.m^-1] structure
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/minus/amplitude(:) Amplitude {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/minus/phase(:) Phase {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/parallel Parallel electric field component for every flux surface [V.m^-1] structure
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/parallel/amplitude(:) Amplitude {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/e_field_n_tor(i2)/parallel/phase(:) Phase {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/k_perpendicular(:,:) Perpendicular wave vector, averaged over the flux surface, where the averaged is weighted with the power deposition density, such that k_perpendicular = ave(k_perpendicular.power_density) / ave(power_density), for every flux surface and every toroidal number {dynamic} [V.m^-1] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/electrons Quantities related to the electrons structure
coherent_wave(i1)/profiles_1d(itime)/electrons/power_density_thermal(:) Flux surface averaged absorbed wave power density on the thermal species {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/electrons/power_density_thermal_n_tor(:,:) Flux surface averaged absorbed wave power density on the thermal species, per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/electrons/power_density_fast(:) Flux surface averaged absorbed wave power density on the fast species {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/electrons/power_density_fast_n_tor(:,:) Flux surface averaged absorbed wave power density on the fast species, per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/electrons/power_inside_thermal(:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/electrons/power_inside_thermal_n_tor(:,:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/electrons/power_inside_fast(:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/electrons/power_inside_fast_n_tor(:,:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2) Quantities related to the different ion species struct_array 1- 1...N
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/element(i3) List of elements forming the atom or molecule struct_array 1- 1...N
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/element(i3)/a Mass of atom {dynamic} [Atomic Mass Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/element(i3)/z_n Nuclear charge {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/element(i3)/atoms_n Number of atoms of this element in the molecule {dynamic} INT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/element(i3)/multiplicity
Lifecycle status: obsolescent since version 3.15.0
Multiplicity of the atom {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/z_ion Ion charge (of the dominant ionisation state; lumped ions are allowed). {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/label String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...) {dynamic} STR_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_density_thermal(:) Flux surface averaged absorbed wave power density on the thermal species {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_density_thermal_n_tor(:,:) Flux surface averaged absorbed wave power density on the thermal species, per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_density_fast(:) Flux surface averaged absorbed wave power density on the fast species {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_density_fast_n_tor(:,:) Flux surface averaged absorbed wave power density on the fast species, per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_inside_thermal(:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_inside_thermal_n_tor(:,:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_inside_fast(:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/power_inside_fast_n_tor(:,:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/multiple_states_flag Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure {dynamic} INT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3) Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...) struct_array 1- 1...N
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/z_min Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/z_max Maximum Z of the charge state bundle (equal to z_min if no bundle) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/label String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...) {dynamic} STR_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/electron_configuration Configuration of atomic orbitals of this state, e.g. 1s2-2s1 {dynamic} STR_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/vibrational_level Vibrational level (can be bundled) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/vibrational_mode Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature. {dynamic} STR_0D
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_density_thermal(:) Flux surface averaged absorbed wave power density on the thermal species {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_density_thermal_n_tor(:,:) Flux surface averaged absorbed wave power density on the thermal species, per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_density_fast(:) Flux surface averaged absorbed wave power density on the fast species {dynamic} [W.m^-3] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_density_fast_n_tor(:,:) Flux surface averaged absorbed wave power density on the fast species, per toroidal mode number {dynamic} [W.m^-3] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_inside_thermal(:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_inside_thermal_n_tor(:,:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_inside_fast(:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density) {dynamic} [W] FLT_1D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_1d(itime)/ion(i2)/state(i3)/power_inside_fast_n_tor(:,:) Absorbed wave power on thermal species inside a flux surface (cumulative volume integral of the absorbed power density), per toroidal mode number {dynamic} [W] FLT_2D 1- coherent_wave(i1)/profiles_1d(itime)/grid/rho_tor_norm
2- coherent_wave(i1)/profiles_1d(itime)/n_tor
coherent_wave(i1)/profiles_1d(itime)/time Time {dynamic} [s] FLT_0D
coherent_wave(i1)/profiles_2d(itime) 2D profiles in poloidal cross-section, for various time slices {dynamic} struct_array 1- coherent_wave(i1)/profiles_2d(itime)/time
coherent_wave(i1)/profiles_2d(itime)/grid 2D grid in a poloidal cross-section structure
coherent_wave(i1)/profiles_2d(itime)/grid/type Grid type: index=0: Rectangular grid in the (R,Z) coordinates; index=1: Rectangular grid in the (radial, theta_geometric) coordinates; index=2: Rectangular grid in the (radial, theta_straight) coordinates. index=3: unstructured grid. [m^3] structure 1- coherent_wave(i1)/profiles_2d(itime)/grid/rho_tor_norm
coherent_wave(i1)/profiles_2d(itime)/grid/type/name Short string identifier {dynamic} STR_0D
coherent_wave(i1)/profiles_2d(itime)/grid/type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
coherent_wave(i1)/profiles_2d(itime)/grid/type/description Verbose description {dynamic} STR_0D
coherent_wave(i1)/profiles_2d(itime)/grid/r(:,:) Major radius {dynamic} [m] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/z(:,:) Height {dynamic} [m] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/theta_straight(:,:) Straight field line poloidal angle {dynamic} [rad] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/theta_geometric(:,:) Geometrical poloidal angle {dynamic} [rad] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/rho_tor_norm(:,:) Normalised toroidal flux coordinate. The normalizing value for rho_tor_norm, is the toroidal flux coordinate at the equilibrium boundary (LCFS or 99.x % of the LCFS in case of a fixed boundary equilibium calculation) {dynamic} [-] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/rho_tor(:,:) Toroidal flux coordinate. The toroidal field used in its definition is indicated under vacuum_toroidal_field/b0 {dynamic} [m] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/psi(:,:) Poloidal magnetic flux {dynamic} [Wb] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/volume(:,:) Volume enclosed inside the magnetic surface {dynamic} [m^3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/grid/area(:,:) Cross-sectional area of the flux surface {dynamic} [m^2] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/n_tor(:) Toroidal mode numbers, the wave vector toroidal component being defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction {dynamic} INT_1D 1- 1...N
coherent_wave(i1)/profiles_2d(itime)/power_density(:,:) Total absorbed wave power density (electrons + ion + fast populations) {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/power_density_n_tor(:,:,:) Absorbed wave power density per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2) Components of the electric field per toroidal mode number struct_array 1- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/plus Left hand polarised electric field component [V.m^-1] structure
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/plus/amplitude(:,:) Amplitude {dynamic} [as_parent] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/plus/phase(:,:) Phase {dynamic} [as_parent] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/minus Right hand polarised electric field component [V.m^-1] structure
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/minus/amplitude(:,:) Amplitude {dynamic} [as_parent] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/minus/phase(:,:) Phase {dynamic} [as_parent] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/parallel Parallel electric field component [V.m^-1] structure
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/parallel/amplitude(:,:) Amplitude {dynamic} [as_parent] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/e_field_n_tor(i2)/parallel/phase(:,:) Phase {dynamic} [as_parent] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/electrons Quantities related to the electrons structure
coherent_wave(i1)/profiles_2d(itime)/electrons/power_density_thermal(:,:) Absorbed wave power density on the thermal species {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/electrons/power_density_thermal_n_tor(:,:,:) Absorbed wave power density on the thermal species, per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/electrons/power_density_fast(:,:) Absorbed wave power density on the fast species {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/electrons/power_density_fast_n_tor(:,:,:) Absorbed wave power density on the fast species, per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/ion(i2) Quantities related to the different ion species struct_array 1- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/element(i3) List of elements forming the atom or molecule struct_array 1- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/element(i3)/a Mass of atom {dynamic} [Atomic Mass Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/element(i3)/z_n Nuclear charge {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/element(i3)/atoms_n Number of atoms of this element in the molecule {dynamic} INT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/element(i3)/multiplicity
Lifecycle status: obsolescent since version 3.15.0
Multiplicity of the atom {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/z_ion Ion charge (of the dominant ionisation state; lumped ions are allowed). {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/label String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...) {dynamic} STR_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/power_density_thermal(:,:) Absorbed wave power density on the thermal species {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/power_density_thermal_n_tor(:,:,:) Absorbed wave power density on the thermal species, per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/power_density_fast(:,:) Absorbed wave power density on the fast species {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/power_density_fast_n_tor(:,:,:) Absorbed wave power density on the fast species, per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/multiple_states_flag Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure {dynamic} INT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3) Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...) struct_array 1- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/z_min Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/z_max Maximum Z of the charge state bundle (equal to z_min if no bundle) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/label String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...) {dynamic} STR_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/electron_configuration Configuration of atomic orbitals of this state, e.g. 1s2-2s1 {dynamic} STR_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/vibrational_level Vibrational level (can be bundled) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/vibrational_mode Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature. {dynamic} STR_0D
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/power_density_thermal(:,:) Absorbed wave power density on the thermal species {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/power_density_thermal_n_tor(:,:,:) Absorbed wave power density on the thermal species, per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/power_density_fast(:,:) Absorbed wave power density on the fast species {dynamic} [W.m^-3] FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/profiles_2d(itime)/ion(i2)/state(i3)/power_density_fast_n_tor(:,:,:) Absorbed wave power density on the fast species, per toroidal mode number {dynamic} [W.m^-3] FLT_3D 1- 1...N
2- 1...N
3- coherent_wave(i1)/profiles_2d(itime)/n_tor
coherent_wave(i1)/profiles_2d(itime)/time Time {dynamic} [s] FLT_0D
coherent_wave(i1)/beam_tracing(itime) Beam tracing calculations, for various time slices {dynamic} struct_array 1- coherent_wave(i1)/beam_tracing(itime)/time
coherent_wave(i1)/beam_tracing(itime)/beam(i2) Set of rays/beams describing the wave propagation struct_array 1- 1...N
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/power_initial Initial power in the ray/beam {dynamic} [W] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length(:) Ray/beam curvilinear length {dynamic} [m] FLT_1D 1- 1...N
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/position Position of the ray/beam along its path structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/position/r(:) Major radius {dynamic} [m] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/position/z(:) Height {dynamic} [m] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/position/phi(:) Toroidal angle {dynamic} [rad] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/position/psi(:) Poloidal flux {dynamic} [Wb] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/position/theta(:) Poloidal angle {dynamic} [rad] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector Wave vector of the ray/beam along its path structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/k_r(:) Wave vector component in the major radius direction {dynamic} [m^-1] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/k_z(:) Wave vector component in the vertical direction {dynamic} [m^-1] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/k_tor(:) Wave vector component in the toroidal direction {dynamic} [m^-1] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/k_r_norm(:) Normalized wave vector component in the major radius direction = k_r / norm(k) {dynamic} [-]. Introduced after DD version 3.38.1 FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/k_z_norm(:) Normalized wave vector component in the vertical direction = k_z / norm(k) {dynamic} [-]. Introduced after DD version 3.38.1 FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/k_tor_norm(:) Normalized wave vector component in the toroidal direction = k_tor / norm(k) {dynamic} [-]. Introduced after DD version 3.38.1 FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/n_parallel(:) Parallel refractive index {dynamic} [-] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/n_perpendicular(:) Perpendicular refractive index {dynamic} [-] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/n_tor(:) Toroidal wave number, contains a single value if varying_ntor = 0 to avoid useless repetition constant values. The wave vector toroidal component is defined as k_tor = n_tor grad phi where phi is the toroidal angle so that a positive n_tor means a wave propagating in the positive phi direction {dynamic} INT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length OR 1...1
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/wave_vector/varying_n_tor Flag telling whether n_tor is constant along the ray path (0) or varying (1) {dynamic} INT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field Electric field polarization of the ray/beam along its path structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/plus Left hand polarised electric field component [V.m^-1] structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/plus/real(:) Real part {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/plus/imaginary(:) Imaginary part {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/minus Right hand polarised electric field component [V.m^-1] structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/minus/real(:) Real part {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/minus/imaginary(:) Imaginary part {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/parallel Parallel to magnetic field polarised electric field component [V.m^-1] structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/parallel/real(:) Real part {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/e_field/parallel/imaginary(:) Imaginary part {dynamic} [as_parent] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/power_flow_norm Normalised power flow structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/power_flow_norm/perpendicular(:) Normalized power flow in the direction perpendicular to the magnetic field {dynamic} [-] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/power_flow_norm/parallel(:) Normalized power flow in the direction parallel to the magnetic field {dynamic} [-] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/electrons Quantities related to the electrons structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/electrons/power(:) Power absorbed along the beam by the species {dynamic} [W] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3) Quantities related to the different ion species struct_array 1- 1...N
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/element(i4) List of elements forming the atom or molecule struct_array 1- 1...N
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/element(i4)/a Mass of atom {dynamic} [Atomic Mass Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/element(i4)/z_n Nuclear charge {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/element(i4)/atoms_n Number of atoms of this element in the molecule {dynamic} INT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/element(i4)/multiplicity
Lifecycle status: obsolescent since version 3.15.0
Multiplicity of the atom {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/z_ion Ion charge (of the dominant ionisation state; lumped ions are allowed). {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/label String identifying the species (e.g. H+, D+, T+, He+2, C+, D2, DT, CD4, ...) {dynamic} STR_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/power(:) Power absorbed along the beam by the species {dynamic} [W] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/multiple_states_flag Multiple state calculation flag : 0-Only one state is considered; 1-Multiple states are considered and are described in the state structure {dynamic} INT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4) Collisional exchange with the various states of the ion species (ionisation, energy, excitation, ...) struct_array 1- 1...N
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/z_min Minimum Z of the charge state bundle (z_min = z_max = 0 for a neutral) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/z_max Maximum Z of the charge state bundle (equal to z_min if no bundle) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/label String identifying charge state (e.g. C+, C+2 , C+3, C+4, C+5, C+6, ...) {dynamic} STR_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/electron_configuration Configuration of atomic orbitals of this state, e.g. 1s2-2s1 {dynamic} STR_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/vibrational_level Vibrational level (can be bundled) {dynamic} [Elementary Charge Unit] FLT_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/vibrational_mode Vibrational mode of this state, e.g. "A_g". Need to define, or adopt a standard nomenclature. {dynamic} STR_0D
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/ion(i3)/state(i4)/power(:) Power absorbed along the beam by the species {dynamic} [W] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/spot Spot ellipse characteristics. Introduced after DD version 3.38.1 structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/spot/size(:,:) Size of the spot ellipse: distance between the central ray and the peripheral rays in the horizontal (first index of the first coordinate) and vertical direction (second index of the first coordinate) {dynamic} [m] FLT_2D 1- 1...2
2- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/spot/angle(:) Rotation angle for the spot ellipse {dynamic} [rad] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/phase Phase ellipse characteristics. Introduced after DD version 3.38.1 structure
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/phase/curvature(:,:) Inverse curvature radii for the phase ellipse, positive/negative for divergent/convergent beams, in the horizontal direction (first index of the first coordinate) and in the vertical direction (second index of the first coordinate) {dynamic} [m^-1] FLT_2D 1- 1...2
2- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/beam(i2)/phase/angle(:) Rotation angle for the phase ellipse {dynamic} [rad] FLT_1D 1- coherent_wave(i1)/beam_tracing(itime)/beam(i2)/length
coherent_wave(i1)/beam_tracing(itime)/time Time {dynamic} [s] FLT_0D
coherent_wave(i1)/full_wave(itime) Solution by a full wave code, given on a generic grid description, for various time slices {dynamic} struct_array 1- coherent_wave(i1)/full_wave(itime)/time
coherent_wave(i1)/full_wave(itime)/grid Grid description structure
coherent_wave(i1)/full_wave(itime)/grid/identifier Grid identifier. Available options (refer to the children of this identifier structure) :
Name Index Description
unspecified 0 unspecified
linear 1 Linear
cylinder 2 Cylindrical geometry (straight in axial direction)
limiter 3 Limiter
SN 4 Single null
CDN 5 Connected double null
DDN_bottom 6 Disconnected double null with inner X-point below the midplane
DDN_top 7 Disconnected double null with inner X-point above the midplane
annulus 8 Annular geometry (not necessarily with straight axis)
stellarator_island 9 Stellarator island geometry
structured_spaces 10 Structured grid represented with multiple spaces of dimension 1
LFS_snowflake_minus 11 Snowflake grid with secondary x point on the low field side, and the secondary separatrix on top of the primary
LFS_snowflake_plus 12 Snowflake grid with secondary x point to the right of the primary, and the secondary separatrix below the primary
reference 100 Refers to a GGD described in another IDS indicated by grid_path. In such a case, do not fill the grid_ggd node of this IDS
structure
coherent_wave(i1)/full_wave(itime)/grid/identifier/name Short string identifier {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/identifier/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/identifier/description Verbose description {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/path Path of the grid, including the IDS name, in case of implicit reference to a grid_ggd node described in another IDS. To be filled only if the grid is not described explicitly in this grid_ggd structure. Example syntax: 'wall:0/description_ggd(1)/grid_ggd', means that the grid is located in the wall IDS, occurrence 0, with ids path 'description_ggd(1)/grid_ggd'. See the link below for more details about IDS paths Click here for further documentation. {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2) Set of grid spaces Click here for further documentation (or contact imas@iter.org if you can't access this page). struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/identifier Space identifier. Available options (refer to the children of this identifier structure) :
Name Index Description
unspecified 0 unspecified
primary_standard 1 Primary space defining the standard grid
primary_staggered 2 Primary space defining a grid staggered with respect to the primary standard space
secondary_structured 3 Secondary space defining additional dimensions that extend the primary standard space in a structured way
structure
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/identifier/name Short string identifier {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/identifier/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/identifier/description Verbose description {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/geometry_type Type of space geometry (0: standard, 1:Fourier, >1: Fourier with periodicity) structure
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/geometry_type/name Short string identifier {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/geometry_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/geometry_type/description Verbose description {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/coordinates_type(:) Type of coordinates describing the physical space, for every coordinate of the space. The size of this node therefore defines the dimension of the space. The meaning of these predefined integer constants can be found in the Data Dictionary under utilities/coordinate_identifier.xml Click here for further documentation. {dynamic} INT_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3) Definition of the space objects for every dimension (from one to the dimension of the highest-dimensional objects). The index correspond to 1=nodes, 2=edges, 3=faces, 4=cells/volumes, .... For every index, a collection of objects of that dimension is described. struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4) Set of objects for a given dimension struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/boundary(i5) Set of (n-1)-dimensional objects defining the boundary of this n-dimensional object struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/boundary(i5)/index Index of this (n-1)-dimensional boundary object {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/boundary(i5)/neighbours(:) List of indices of the n-dimensional objects adjacent to the given n-dimensional object. An object can possibly have multiple neighbours on a boundary {dynamic} INT_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/geometry(:) Geometry data associated with the object, its detailed content is defined by ../../geometry_content. Its dimension depends on the type of object, geometry and coordinate considered. {dynamic} [mixed] FLT_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/nodes(:) List of nodes forming this object (indices to objects_per_dimension(1)%object(:) in Fortran notation) {dynamic} INT_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/measure Measure of the space object, i.e. physical size (length for 1d, area for 2d, volume for 3d objects,...) {dynamic} [m^dimension] FLT_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/object(i4)/geometry_2d(:,:) 2D geometry data associated with the object. Its dimension depends on the type of object, geometry and coordinate considered. Typically, the first dimension represents the object coordinates, while the second dimension would represent the values of the various degrees of freedom of the finite element attached to the object. {dynamic} [mixed]. Introduced after DD version 3.35.0 FLT_2D 1- 1...N
2- 1...N
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/geometry_content Content of the ../object/geometry node for this dimension. Introduced after DD version 3.33.0. Available options (refer to the children of this identifier structure) :
Name Index Description
unspecified 0 unspecified
node_coordinates 1 For nodes : node coordinates
node_coordinates_connection 11 For nodes : node coordinates, then connection length, and distance in the poloidal plane to the nearest solid surface outside the separatrix
edge_areas 21 For edges : contains 3 surface areas after uniform extension in the third dimension of the edges. Geometry(1) and geometry(2) are the projections of that area along the local poloidal and radial coordinate respectively. Geometry(3) is the full surface area of the extended edge
face_indices_volume 31 For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces
face_indices_volume_connection 32 For faces : coordinates indices (ix, iy) of the face within the structured grid of the code. The third element contains the volume after uniform extension in the third dimension of the faces. The fourth element is the connection length. The fifth element is the distance in the poloidal plane to the nearest solid surface outside the separatrix
structure
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/geometry_content/name Short string identifier {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/geometry_content/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/space(i2)/objects_per_dimension(i3)/geometry_content/description Verbose description {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2) Grid subsets struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/identifier Grid subset identifier Click here for further documentation.. Available options (refer to the children of this identifier structure) :
Name Index Description
unspecified 0 unspecified
nodes 1 All nodes (0D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure). In case of a structured grid represented with multiple 1D spaces, the order of the implicit elements in the grid_subset follows Fortran ordering, i.e. iterate always on nodes of the first space first, then move to the second node of the second space, ... : [((s1_1 to s1_end), s2_1, s3_1 ... sN_1), (((s1_1 to s1_end), s2_2, s3_1, ... sN_1)), ... ((s1_1 to s1_end), s2_end, s3_end ... sN_end)]
nodes_combining_spaces 200 All nodes (0D) belonging to the first space, implicitly extended in other dimensions represented by the other spaces in a structured way. The number of subset elements is thus equal to the number of nodes in the first space. Implicit declaration (no need to replicate the grid elements in the grid_subset structure).
edges 2 All edges (1D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
x_aligned_edges 3 All x-aligned (poloidally) aligned edges belonging to the associated spaces
y_aligned_edges 4 All y-aligned (radially) aligned edges belonging to the associated spaces
cells 5 All cells (2D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
x_points 6 Nodes defining x-points
core_cut 7 y-aligned edges inside the separatrix connecting to the active x-point
PFR_cut 8 y-aligned edges in the private flux region connecting to the active x-point
outer_throat 9 y-aligned edges in the outer SOL connecting to the active x-point
inner_throat 10 y-aligned edges in the inner SOL connecting to the active x-point
outer_midplane 11 y-aligned edges connecting to the node closest to outer midplane on the separatrix
inner_midplane 12 y-aligned edges connecting to the node closest to inner midplane on the separatrix
outer_target 13 y-aligned edges defining the outer target
inner_target 14 y-aligned edges defining the inner target
core_boundary 15 Innermost x-aligned edges
separatrix 16 x-aligned edges defining the active separatrix
main_chamber_wall 17 x-aligned edges defining main chamber wall outside of the divertor regions
outer_baffle 18 x-aligned edges defining the chamber wall of the outer active divertor region
inner_baffle 19 x-aligned edges defining the chamber wall of the inner active divertor region
outer_PFR_wall 20 x-aligned edges defining the private flux region wall of the outer active divertor region
inner_PFR_wall 21 x-aligned edges defining the private flux region wall of the inner active divertor region
core 22 Cells inside the active separatrix
sol 23 Cells defining the main SOL outside of the divertor regions
outer_divertor 24 Cells defining the outer divertor region
inner_divertor 25 Cells defining the inner divertor region
core_sol 26 x-aligned edges defining part of active separatrix separating core and sol
full_main_chamber_wall 27 main_chamber_wall + outer_baffle(s) + inner_baffle(s)
full_PFR_wall 28 outer_PFR__wall(s) + inner_PFR_wall(s)
core_cut_X2 29 y-aligned edges inside the separatrix connecting to the non-active x-point
PFR_cut_X2 30 y-aligned edges in the private flux region connecting to the non-active x-point
outer_throat_X2 31 y-aligned edges in the outer SOL connecting to the non-active x-point
inner_throat_X2 32 y-aligned edges in the inner SOL connecting to the non-active x-point
separatrix_2 33 x-aligned edges defining the non-active separatrix
outer_baffle_2 34 x-aligned edges defining the chamber wall of the outer non-active divertor region
inner_baffle_2 35 x-aligned edges defining the chamber wall of the inner non-active divertor region
outer_PFR_wall_2 36 x-aligned edges defining the private flux region wall of the outer non-active divertor region
inner_PFR_wall_2 37 x-aligned edges defining the private flux region wall of the inner non-active divertor region
intra_sep 38 Cells between the two separatrices
outer_divertor_2 39 Cells defining the outer inactive divertor region
inner_divertor_2 40 Cells defining the inner inactive divertor region
outer_target_2 41 y-aligned edges defining the outer inactive target
inner_target_2 42 y-aligned edges defining the inner inactive target
volumes 43 All volumes (3D) belonging to the associated spaces, implicit declaration (no need to replicate the grid elements in the grid_subset structure)
full_wall 44 All edges defining walls, baffles, and targets
outer_sf_leg_entrance_1 45 y-aligned edges defining the SOL entrance of the first snowflake outer leg
outer_sf_leg_entrance_2 46 y-aligned edges defining the SOL entrance of the third snowflake outer leg
outer_sf_pfr_connection_1 47 y-aligned edges defining the connection between the outer snowflake entrance and third leg
outer_sf_pfr_connection_2 48 y-aligned edges defining the connection between the outer snowflake first and second leg
magnetic_axis 100 Point corresponding to the magnetic axis
outer_mid_plane_separatrix 101 Point on active separatrix at outer mid-plane
inner_mid_plane_separatrix 102 Point on active separatrix at inner mid-plane
outer_target_separatrix 103 Point on active separatrix at outer active target
inner_target_separatrix 104 Point on active separatrix at inner active target
outer_target_separatrix_2 105 Point on non-active separatrix at outer non-active target
inner_target_separatrix_2 106 Point on non-active separatrix at inner non-active target
structure
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/identifier/name Short string identifier {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/identifier/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/identifier/description Verbose description {dynamic} STR_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/dimension Space dimension of the grid subset elements. This must be equal to the sum of the dimensions of the individual objects forming the element. {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element(i3) Set of elements defining the grid subset. An element is defined by a combination of objects from potentially all spaces struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element(i3)/object(i4) Set of objects defining the element struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element(i3)/object(i4)/space Index of the space from which that object is taken {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element(i3)/object(i4)/dimension Dimension of the object {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element(i3)/object(i4)/index Object index {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/base(i3) Set of bases for the grid subset. For each base, the structure describes the projection of the base vectors on the canonical frame of the grid. struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/base(i3)/jacobian(:) Metric Jacobian {dynamic} [mixed] FLT_1D 1- coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/base(i3)/tensor_covariant(:,:,:) Covariant metric tensor, given on each element of the subgrid (first dimension) {dynamic} [mixed] FLT_3D 1- coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element
2- 1...N
3- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/base(i3)/tensor_contravariant(:,:,:) Contravariant metric tensor, given on each element of the subgrid (first dimension) {dynamic} [mixed] FLT_3D 1- coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element
2- 1...N
3- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/metric Metric of the canonical frame onto Cartesian coordinates structure
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/metric/jacobian(:) Metric Jacobian {dynamic} [mixed] FLT_1D 1- coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/metric/tensor_covariant(:,:,:) Covariant metric tensor, given on each element of the subgrid (first dimension) {dynamic} [mixed] FLT_3D 1- coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element
2- 1...N
3- 1...N
coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/metric/tensor_contravariant(:,:,:) Contravariant metric tensor, given on each element of the subgrid (first dimension) {dynamic} [mixed] FLT_3D 1- coherent_wave(i1)/full_wave(itime)/grid/grid_subset(i2)/element
2- 1...N
3- 1...N
coherent_wave(i1)/full_wave(itime)/e_field Components of the wave electric field, represented as Fourier coefficients E(n_tor,frequency) such that the electric is equal to real(E(n_tor,frequency).exp(i(n_tor.phi - 2.pi.frequency.t))) structure
coherent_wave(i1)/full_wave(itime)/e_field/plus(i2) Left hand circularly polarised component of the perpendicular (to the static magnetic field) electric field, given on various grid subsets [V.m^-1] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/plus(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/plus(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/plus(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/plus(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/e_field/plus(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/minus(i2) Right hand circularly polarised component of the perpendicular (to the static magnetic field) electric field, given on various grid subsets [V.m^-1] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/minus(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/minus(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/minus(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/minus(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/e_field/minus(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/parallel(i2) Parallel (to the static magnetic field) component of electric field, given on various grid subsets [V.m^-1] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/parallel(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/parallel(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/parallel(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/parallel(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/e_field/parallel(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/normal(i2) Magnitude of wave electric field normal to a flux surface, given on various grid subsets [V.m^-1] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/normal(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/normal(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/normal(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/normal(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/e_field/normal(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/bi_normal(i2) Magnitude of perpendicular (to the static magnetic field) wave electric field tangent to a flux surface, given on various grid subsets [V.m^-1] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/bi_normal(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/bi_normal(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/e_field/bi_normal(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/e_field/bi_normal(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/e_field/bi_normal(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/b_field Components of the wave magnetic field, , represented as Fourier coefficients B(n_tor,frequency) such that the electric is equal to real(B(n_tor,frequency).exp(i(n_tor.phi - 2.pi.frequency.t))) structure
coherent_wave(i1)/full_wave(itime)/b_field/parallel(i2) Parallel (to the static magnetic field) component of the wave magnetic field, given on various grid subsets [T] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/parallel(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/b_field/parallel(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/b_field/parallel(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/parallel(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/b_field/parallel(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/normal(i2) Magnitude of wave magnetic field normal to a flux surface, given on various grid subsets [T] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/normal(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/b_field/normal(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/b_field/normal(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/normal(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/b_field/normal(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/bi_normal(i2) Magnitude of perpendicular (to the static magnetic field) wave magnetic field tangent to a flux surface, given on various grid subsets [T] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/bi_normal(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/b_field/bi_normal(i2)/grid_subset_index Index of the grid subset the data is provided on {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/b_field/bi_normal(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] CPX_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/b_field/bi_normal(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] CPX_2D 1- coherent_wave(i1)/full_wave(itime)/b_field/bi_normal(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/k_perpendicular(i2) Perpendicular wave vector, given on various grid subsets [V.m^-1] struct_array 1- 1...N
coherent_wave(i1)/full_wave(itime)/k_perpendicular(i2)/grid_index Index of the grid used to represent this quantity {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/k_perpendicular(i2)/grid_subset_index Index of the grid subset the data is provided on. Corresponds to the index used in the grid subset definition: grid_subset(:)/identifier/index {dynamic} INT_0D
coherent_wave(i1)/full_wave(itime)/k_perpendicular(i2)/values(:) One scalar value is provided per element in the grid subset. {dynamic} [as_parent] FLT_1D 1- 1...N
coherent_wave(i1)/full_wave(itime)/k_perpendicular(i2)/coefficients(:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity with finite elements, provided per element in the grid subset (first dimension). {dynamic} [as_parent] FLT_2D 1- coherent_wave(i1)/full_wave(itime)/k_perpendicular(i2)/values
2- 1...N
coherent_wave(i1)/full_wave(itime)/time Time {dynamic} [s] FLT_0D
vacuum_toroidal_field Characteristics of the vacuum toroidal field (used in rho_tor definition) structure
vacuum_toroidal_field/r0 Reference major radius where the vacuum toroidal magnetic field is given (usually a fixed position such as the middle of the vessel at the equatorial midplane) {constant} [m] FLT_0D
vacuum_toroidal_field/b0(:) Vacuum toroidal field at R0 [T]; Positive sign means anti-clockwise when viewing from above. The product R0B0 must be consistent with the b_tor_vacuum_r field of the tf IDS. {dynamic} [T]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
b0_like .sigma_b0_eff
FLT_1D 1- time
magnetic_axis Magnetic axis position (used to define a poloidal angle for the 2D profiles) structure
magnetic_axis/r(:) Major radius {dynamic} [m] FLT_1D 1- time
magnetic_axis/z(:) Height {dynamic} [m] FLT_1D 1- time
code Generic decription of the code-specific parameters for the code that has produced this IDS structure
code/name Name of software generating IDS {constant} STR_0D
code/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
code/commit Unique commit reference of software {constant} STR_0D
code/version Unique version (tag) of software {constant} STR_0D
code/repository URL of software repository {constant} STR_0D
code/parameters List of the code specific parameters in XML format {constant} STR_0D
code/output_flag(:) Output flag : 0 means the run is successful, other values mean some difficulty has been encountered, the exact meaning is then code specific. Negative values mean the result shall not be used. {dynamic} INT_1D 1- time
code/library(i1) List of external libraries used by the code that has produced this IDS struct_array [max_size=10 (limited in MDS+ backend only)] 1- 1...N
code/library(i1)/name Name of software {constant} STR_0D
code/library(i1)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
code/library(i1)/commit Unique commit reference of software {constant} STR_0D
code/library(i1)/version Unique version (tag) of software {constant} STR_0D
code/library(i1)/repository URL of software repository {constant} STR_0D
code/library(i1)/parameters List of the code specific parameters in XML format {constant} STR_0D
time(:) Generic time {dynamic} [s] FLT_1D 1- 1...N

Back to top IDS list