


Upcoming ODSC 
Events









Introduction to AI 
Agents



Source: Awesome List of Agents on GitHub

https://github.com/e2b-dev/awesome-ai-agents?ref=medium


The main idea of an AI agents is to use a 
language model to dynamically select a 
sequence of actions. 

Agents use a language model as a reasoning 
engine to decide which actions to take and in 
what order. This approach allows agents to be 
more flexible and adaptive, responding to 
inputs and situations in a more intelligent and 
context-aware manner.  Agents also select 
which tools to execute those actions. 

AI Agents



Traditional Agents

AGENT

ENVIRONMENT

Actions

● Observations
● Experience

   Memory

   Capabilities

   Knowledge

   Goals

   Sensors



AI Agents Characteristics
You can consider a system an AI agent when it has the following characteristics:

Natural Language Understanding (NLU): An AI agent can understand and process human language in a way that 
is meaningful. This includes understanding syntax, semantics, and the context of the conversation.

Natural Language Generation (NLG): It can generate human-like text based on the input it receives.  

Learning and Adaptation: AI agents can learn from new data and adapt their responses over time. They can be 
fine-tuned for specific tasks using additional training data.

Task Automation:They can perform and automate specific tasks based on user commands, such as scheduling 
appointments or retrieving information.

Contextual Awareness:They maintain context over the course of an interaction, allowing for more meaningful and 
relevant exchanges.

Interactive and Conversational Abilities: AI agents can engage in back-and-forth dialogue with users, providing 
interactive and dynamic responses.

Knowledge & Memory: They can integrate and apply a vast amount of knowledge from their training data to 
answer questions or solve problems.



Components: User Interfaces, 
Voice Interfaces, Chatbots

User Interaction 
Interface:

Components: Language Models, 
Generative NetworksNatural Language 

Generation (NLG):

Components: Machine Learning 
Models, Training Pipelines, and 

Feedback Loop, Update Memory 
Learning and 

Reasoning

Components: API Interfaces, 
ActionsTools, API Interfaces

Components: Inference Engines, 
Decision Trees, Logic Units

Reasoning and 
Decision-Making

Databases, External Knowledge 
Sources, Trained Models, 
Knowledge Bases

Memory &  
Knowledge

Agent building blocks

Components: Sensors, Data 
Collectors, Language Models, 

Tokenizers, Embeddings

Input Processing 
& NLU:

AI Agents Components



Types of Agents (Traditional)
Various approaches to agent-based systems include:

Simple Reflex Agents: act solely based on the current percept ( "sensor input" or "environmental data." ) using 
condition-action rules (if-then rules) to respond to specific conditions in the environment. i.e A thermostat that turns 
on the heater if the temperature drops

Model-Based Reflex Agent:  maintain an internal state that depends on the percept history, which helps them 
handle partially observable environments. Ex. A robot vacuum that maps the layout of a room to navigate more 
efficiently.

Goal-Based Agents : act to achieve specific goals. They consider future states and decide actions that can lead 
to goal achievement. Ex: A chess-playing agent that selects moves to checkmate the opponent.

Utility-Based Agents: These agents act to maximize their utility by considering the desirability of different states 
and make decisions that maximize their overall utility. Ex: A recommendation system that suggests products to 
maximize customer satisfaction and sales.

Learning Agents: These agents improve their performance over time by learning from experiences and consist of 
a learning element that modifies the agent’s behavior based on feedback and a performance element . Ex A 
speech recognition system that improves its accuracy as it processes more voice samples.



Knowledge-Based Agents:
 Characteristics: Utilize a knowledge base and inference mechanisms to make decisions using logical reasoning. Ex: 
Expert systems, diagnostic systems in healthcare.

Reactive Agent: 
Respond in real-time to environmental changes without extensive internal modeling or planning.Ex: Autonomous 
drones, simple robotic systems.

Proactive Agents: 
Take initiative and perform actions to achieve goals, often anticipating future states and events. Ex: Personal 
assistant bots, intelligent scheduling systems.

Hybrid Agents:
Use different approaches, such as reactive and deliberative elements, to balance real-time responsiveness with 
strategic planning.: Advanced autonomous vehicles, ReAct agents.

Social Agents:
Interact with other agents or humans to achieve individual or collective goals, often using communication and 
collaboration. Ex:Multi-agent systems, collaborative robots (cobots).

Types of Agents …continued



Embodied Agents: 
Exist in a physical form and interact with the physical world, often requiring sensory and motor capabilities. Ex : 
Humanoid robots, autonomous drones.

Multi-Agent Systems (MAS):
Consist of multiple interacting agents, which can be either cooperative or competitive, to achieve complex tasks. Ex: 
Traffic management systems, distributed sensor networks.

Autonomous Agents: 
Operate independently, making decisions and acting without human intervention.
Ex: Self-driving cars, autonomous industrial robots.

Adaptive Agents : 
Adjust their behavior based on changes in the environment or their own experiences, often incorporating elements of 
learning. : Personalized learning systems, adaptive security systems.

ReAct Agents: 
Integrate reasoning and acting often used for tasks requiring both strategic planning and immediate responses. 
Currently one of the most popular and exciting agents

Types of Agents …more recent



Features LLM AI Agents Traditional Machine Learning

Definition Systems leveraging large language models (LLMs) for 
natural language tasks.

Algorithms and models designed to make predictions or decisions 
based on data.

Technical 
Expertise

No-code aside, requires expertise in programming 
(LLMs and data preparation. Python 
programing(No-code aside) 

Requires expertise in machine learning algorithms, coding 
(No-code aside) 

Data 
Dependency

Performance heavily depends on the quality and 
breadth of training data.

Relies on the quality of features and data; extensive 
preprocessing often required.

Development 
Speed

Rapid prototyping and deployment with minimal setup. Requires significant time for data preprocessing, feature 
engineering, and model training.

Flexibility Highly adaptable to new tasks with minimal retraining. 
Can adapt to some unseen situations

Often requires new models for different tasks. Can struggle with 
unseen data or distributions

Development 
Speed

Rapid prototyping and deployment with minimal setup. Requires significant time for data preprocessing, feature 
engineering, and model training.

Transparency Often seen as black boxes, difficult to interpret. More interpretable with well-understood algorithms and model 
structures.

User-Friendline
ss

Interacts in natural language, reducing the need for 
specialized interfaces.

Requires specialized knowledge to develop and interpret models; 
user interfaces often need to be custom-built

Accuracy and 
Precision

Can vary; highly dependent on the quality of training 
data and model fine-tuning.

Typically high accuracy within the domain of the data and 
features used; often more precise for specific tasks.



ReActAgent is designed to implement a particular type of AI agent that follows the ReAct (Reflect, Act) paradigm. This paradigm 
involves an agent that can reflect on its actions and the environment before deciding on the next action,

Reasoning: The agent analyzes the task at hand and formulates a plan. This involves considering past interactions, identifying 
missing information, or determining the best course of action.

Acting:The agent takes action based on its reasoning. This could involve: accessing external tools (like web search APIs) or 
Interacting with the environment or requesting clarification from the user

ReaCt Agents

PAPER https://react-lm.github.io/ 

https://react-lm.github.io/


Chain of Thought (CoT) involves guiding an AI model to articulate its thought process in a step-by-step manner, 
similar to human problem-solving. This method helps the model to:

1. Break Down Tasks: Dived a complex problem into smaller, manageable steps, the model can handle intricate 
tasks more effectively.

2. Transparency: CoT makes the reasoning process of the model more transparent, allowing users to 
understand how the model arrives at a conclusion.

3. Enhance Accuracy: Encouraging the model to consider all necessary steps before providing an answer leads 
to more accurate results.

Chain of Reasoning (CoR) builds on CoT by emphasizing logical coherence and causal relationships between the 
steps. It ensures that:

1. Logical: Each step follows logically from the previous one, maintaining a clear causal relationship.
2. Detailed Explanation: CoR provides detailed explanations for each step, enhancing the interpretability and 

reliability of the AI’s reasoning.
3. Robustness in Complex Tasks: CoR is particularly useful for tasks that require deep understanding and 

multiple layers of reasoning.

Chain of Thought and Chain of Reasoning



Sentiment Analysis: Analyzing customer feedback to determine overall 
sentiment towards products or services.

Chatbots and Virtual Assistants: Powering conversational agents that can 
understand and respond to user queries in natural language.

Machine Translation: Translating text or spoken language from one language 
to another, used in services like Google Translate.

Speech Recognition: Converting spoken language into text, used in 
voice-activated assistants like Siri and Alexa.

Text Summarization: Automatically generating a concise summary of a long 
article or document.

Named Entity Recognition (NER): Identifying and classifying text into 
predefined categories, such as names of people, organizations, locations, etc.

Topic Modeling: Discovering the "topics" that occur in a collection of 
documents, helping in organizing, understanding, and summarizing large 
datasets of text.

AI Agent Use Cases



GPT-3.5 Turbo, GPT-4 Tubo, GPT-4o:

● Developed by: OpenAI. An advanced version of GPT-4 Turby, GPT-4o offers enhanced performance for general-purpose AI 
applications. GPT-3.5Turbo is OpenAI’s fastest and most inexpensive model best for simple tasks

Llama 3:, 8B, 70B (Open Source)

● Developer by Meta AI is the latest in Meta's Llama series, Llama 3 comes in 8 billion and 70 billion parameter versions. Designed 
for scalability and real-time processing, making it suitable for applications requiring timely decision-making.

Gemini 1.5:and Gemma (Open Source)

● Developed by Google DeepMind. Gemini 1.5,features a significantly larger context window, allowing it to handle more extensive 
data inputs. Gemma is an open sourced, less capable model but received good reviews

● Developer: Google

Mistral  7B, 8X7B, 8x22B (Open Source) 

● Developed Mistral AI. Mistral offers several models, including the Mixtral 8x22B, which uses a sparse mixture of experts to optimize 
performance and cost. It's suitable for high-demand applications such as real-time analytics and autonomous systems.

Claude 3, Opus, Sonnet, and Haiku:

● Developed by: Anthropic and Known for its focus on ethical AI, Claude 3 is used in applications like Slack, Notion, and Zoom. It 
excels in handling complex queries and providing safe, reliable interactions. Includes three models: Opus, Sonnet, and Haiku

Which LLM for You Agent

https://platform.openai.com/docs/models
https://ai.meta.com/blog/meta-llama-3/
https://blog.google/technology/developers/gemma-open-models/
https://mistral.ai/news/mixtral-8x22b/
https://www.anthropic.com/claude


AI tools are specialized software components that empower AI and act as an AI agent's toolbox, The tools encompass a variety of 
functionalities that allow agents to collaborate and access information to complete complex tasks. some common types:

1. Information Retrieval Tools:

● These tools allow agents to access and process information from external sources. Examples include:
○ Web Scraping Libraries: Agents can extract data from websites for further processing.
○ Search APIs: Agents can query search engines like Google Custom Search or Bing Web Search to retrieve relevant 

information.
○ Database, Vector Database, or Knowledge Graph: These tools allow agents to access structured or unstructured 

information from knowledge repositories.

2. Communication and Interaction Tools:

● These tools facilitate communication between agents and with external systems. Examples include:
○ API Integration Tools: Agents can interact with various APIs like stocks APIs or map APIs to gather real-time data.
○ Messaging Tools: Agents can send messages to other agents within the chain or to external systems for further 

processing such as email, chat, message boards etc.

Agent Tools



3. Text Processing Tools:

● These tools allow agents to manipulate and analyze text data. Examples include:
○ Tokenization: Breaking down text into individual words or units.
○ Named Entity Recognition: Identifying and classifying entities within text (e.g., people, locations).
○ Natural Language Processing (NLP) Libraries: Providing advanced text analysis capabilities like sentiment analysis or 

summarization.

4. Content Generation Tools:

● These tools allow agents to generate different creative text formats. Examples include:
○ Text Summarization: Summarizing longer pieces of text for conciseness.
○ Creative Text Generation: Generating poems, scripts, or other creative text formats based on prompts.
○ Machine Translation: Translating text from one language to another.

5. Reasoning and Decision-Making Tools:

● These tools, still under development, aim to equip agents with reasoning capabilities. Examples (potential future tools):
○ Causal Reasoning: Understanding cause-and-effect relationships between events.
○ Logical Reasoning: Applying logical rules to draw conclusions.

Agent Tools



AI, agents are like intelligent assistants, constantly 
learning and interacting with their environment.

some tasks require more than just one agent. This is 
where AI agent CHAINS come in, combining the strengths 
of multiple agents to tackle complex challenges.

For Example: Research Agent

You work for a big 4 consulting firm. You need an AI assistant 
to summarize multiple research papers across various and 
generally an industry focused report.  Depending on the topics 
surface, send a well crafted email to the relevant clients 
interested in the various  industries well crafted email 
summarizing the attached report . 

A single LLM agent might excel at summarizing text, but it 
might lack the knowledge to find relevant clients or properly 
structure a professional email and send it

Agent Chains for Complex Sequences



23

initiates the process by 
submitting a request - 

“Summarize research papers

Begin

The "researcher" agent then 
shares the extracted information 

(topics, author background, 
citations, summaries) with the 

next agent in the chain.

Knowledge 
Transfer

Agents can interact and share information 
throughout the process. The "researcher" agent 
might identify gaps in the paper, prompting the 

LLM agent to generate additional content based 
on its findings.

 Agent 
Collaboration

Email Report: The chain culminates in a 
completed summary research report, 
combined with a well crafted email to 
the client

Agent 3
Email

Content Generation: This might be an LLM 
agent skilled in research summarization. It 

utilizes the information from the 
"researcher" agent to structure the reort 

and generate text sections.The chain 
culminates in a completed research paper, 

a collaborative effort by multiple 
specialized agents.

Agent 2
Summarize

Information Gathering: The 
first agent in the chain, a 

"researcher" agent, might use 
web scraping or search APIs to 
find relevant academic papers.

Agent 1
Web Scrape

Agent Chain Example: Research Agent



Benefits of AI Agent Chains:

Tackling Complex Tasks: By combining specialized agents, chains can handle tasks beyond the capabilities of a 
single agent.

Enhanced Efficiency: Different agents can work on their tasks simultaneously, potentially accelerating the completion 
process.

Improved Accuracy: Information sharing between agents allows for cross-checking and improved overall accuracy of 
the final output.

Modular Design: Chains can be easily adapted by adding or removing agents depending on the specific task and 
required skills.

Challenges and Considerations:

Communication Protocols: Clear communication protocols between agents are crucial for smooth information 
exchange and seamless collaboration.

Error Propagation: Errors from one agent can propagate through the chain, leading to issues in the final output. 
Robust error handling is essential..

Agent Chains for Complex Sequences



Some notable tools and frameworks used for building AI agent chains:

1. LLama Index  
○  Provides tools and utility functions to build effective AI agent chains, including FunctionTool and QueryEngineTool for 

handling specific tasks. :Supports function calling and query engine integration and provides utility tools for handling 
large datasets and complex queries.

2. LangChain
○  A framework designed to build applications that involve complex interactions with large language models 

(LLMs).Supports chaining multiple LLM calls. Integrates external data sources and services.
3. BabyAGI

○ : An experimental AI agent framework that automates task completion through recursive self-improvement and 
planning.Features Autonomous task generation and prioritization. And Recursive task execution and improvement.

4. Auto-GPT
○  An autonomous AI agent framework that uses GPT-4 to generate and execute tasks without human intervention. 

Fetures goals and tasks generation  based on a user's initial input. Executes tasks autonomously and generates new 
tasks based on progress.

5. ReAct Agent
○  A framework for building reactive AI agents that respond to real-time data and events. Features:Real-time decision 

making and can Integration with real-time data sources.

AI Agent Chains : Frameworks



Framework designed to simplify the development of applications using large language models (LLMs). It provides tools 
and abstractions to create, manage, and deploy LLM-based applications efficiently.

Key Features:

1. Modular Design: LangChain offers a modular approach, allowing developers to use one or more components 
2. Prompt Management: Tools for creating, storing, and managing prompts
3. Chains: Facilitates the creation of sequences of actions or calls (chains) that an agent can follow to perform 

complex tasks.
4. Memory: Supports short-term and long-term memory for agents, enabling them to maintain context across 

interactions.
5. Integration: Seamless integration with various APIs and data sources, making it versatile for different applications.

Thus langchain Conversational Agents: Building chatbots and virtual assistants that can handle complex dialogues.

● Automated Workflows: Creating agents that automate multi-step workflows, such as data processing or customer 
support.

● Content Generation: Developing tools for generating articles, reports, or creative content based on user inputs.
● Data Analysis: Leveraging LLMs to interpret and analyze large datasets, providing insights and summaries.

LangChain Framework



LangChain Framework
LangChain streamlines the process of 
creating and managing AI agents by offering 
tools to handle LLM interactions effectively. Its 
modular approach allows developers to build 
sophisticated agents that can perform a 
variety of tasks, from simple responses to 
complex decision-making processes.

Contribution to AI Agents:

Customization: Highly customizable, allowing 
developers to tweak models, prompts, and 
chains to suit specific use cases.



LlamaIndex (formerly known as GPT Index) is a framework designed to simplify the integration of large language models into 
applications, particularly focusing on data indexing and retrieval.

Key Features:

1. Data Indexing: Provides robust tools for indexing various data sources for efficient retrieval of large datasets.
2. Query Optimization: Enhances the process of querying indexed data using LLMs, making data access efficient & accurate.
3. Integration with LMs: Integration with popular LLMs, allowing for powerful data processing and interaction capabilities.
4. Scalability: Designed to handle large-scale data, making it suitable for enterprise-level applications.
5. Custom Query Handlers: for  customization to meet specific application needs and improve response accuracy.

LamaIndex Famework



LlamaIndex Framework
LlamaIndex enhances the capability of AI 
agents by providing solid data indexing 
and retrieval mechanisms. 

This allows agents to handle large 
volumes of information and respond fairly 
quickly to user queries, making them 
more effective in knowledge-intensive 
tasks.

Use Cases:

RAG system, Enterprise Search, 
Knowledge Management, Search 
Engines, Customer Support:, Data 
Analysis: and Contribution to AI 
Agents:



Both LangChain and LlamaIndex provide powerful tools for developing AI agents, each with a unique focus:

● LangChain: Emphasizes modular design, prompt management, and workflow automation, making it ideal 
for building conversational agents and complex automation tasks. 

Very popular but first few implementations were buggy. these bugs can cause unexpected behavior or 
errors when running agent chains.  In turn agents chains can be difficult to debug. Other concerns include 
complex abstractions and obfuscated prompts

● LlamaIndex: Focuses on data indexing and retrieval, optimizing how agents interact with large datasets, 
and is particularly useful for knowledge management and search applications. Popular and robust

Lacks the breadth and depth of langchain functionalities and tools. Specific details of how LlamaIndex 
indexes and retrieves data might not be entirely transparent (to me at the last use time)

LangChain Vs LamaIndex



While incredibly powerful, building and using LLM AI agents involve navigating a complex landscape of technical, ethical, and 
practical challenges. including:

1. Integration Complexity: Integrating multiple APIs, tools and services can be complex, requiring extensive customization 
Latency:High latency in response times can degrade the user experience, especially in real-time applications.

2. Data Handling and Privacy:Ensuring that sensitive user data is handled securely and in compliance with privacy regulations 
and integrating data from various sources while maintaining data integrity and consistency.

6. User Experience: Designing user-friendly interfaces that facilitate smooth interactions with the AI agent. New UX paradigm
7. Maintenance and Updates: Rregularly updating and maintaining the AI agents to fix bugs, improve performance, and adapt 

to new requirements, latest version. Ensuring that AI agents can continuously learn from new data and interactions
8. Dependency on High-Quality Data: High-quality, diverse datasets are essential for training effective AI agents. Poor data 

quality can lead to suboptimal performance.
9. Responsible AI : agents face hurdles in data quality, explainability, safety, and considerations like bias and fairness.

10. Hallucinations and Inconsistent Outputs: LLMs can sometimes generate outputs that are factually incorrect or nonsensical, 
often called hallucinations. This lack of consistency can make it difficult to trust the agent's responses.

11. Limited Explainability: Understanding how LLMs arrive at their outputs can be challenging. This "black box" nature makes it 
difficult to debug errors or identify the reasoning behind an agent's response.

12. Limited User Control: Users might have limited control over the information sources or reasoning processes used by agent.
13. Identifying Trustworthy Responses: It can be difficult for users to assess the accuracy and reliability of the information 

generated by the LLM agent.

Challenges of LLM AI Agents



RAG (Retrieval-Augmented Generation) Overview

Retrieval-Augmented Generation (RAG) is a framework that combines retrieval-based methods with generative models to 
create more accurate and contextually relevant responses. By integrating retrieval mechanisms, RAG enhances the generative 
capabilities of large language models (LLMs) like GPT-3.

Key Features:

1. Retrieval Component: Retrieves relevant documents or data from a large corpus based on the input query.
2. Generation Component: Uses a generative model to produce responses, leveraging the retrieved documents to 

enhance accuracy and relevance.
3. End-to-End Training: The retrieval and generation components can be trained together, optimizing the entire pipeline for 

better performance.

Use Cases:

● Question Answering: Providing accurate answers by retrieving relevant documents and generating responses based on 
them.

● Conversational Agents: Enhancing chatbot responses with contextually relevant information retrieved from knowledge 
bases.

● Content Creation: Generating detailed and accurate content by incorporating relevant information from large datasets.

RAG: Supercharging LLM Agents with Real-World Knowledge



RAG: Vectors Embeddings
The VECTORS in RAG (and our llamaindex 

notebook example) represents a document or 
a chunk of text in a high-dimensional 
space.

Vector EMBEDDINGS are high-dimensional 
numerical representations of textual data. 
These embeddings capture the semantic 
meaning of the text, enabling the system to 
perform similarity searches effectively

So Imagine each word or concept within the 
text being assigned a numerical value along 
multiple dimensions.

This numerical representation captures the 
semantic meaning and relationships between 
words in the text.



RAG: Chunking
 CHUNKING is the process of breaking 
down large documents or datasets into 
smaller, manageable pieces, or 
"chunks," which can then be indexed 
and retrieved more efficiently. 

Key technique for enhancing the 
performance and accuracy of RAG.

Challenges:

Chunks too small: May not capture enough 
context, leading to a loss of meaning and 
hindering the LLM's understanding of the 
retrieved information.
Chunks too large: Can be computationally 
expensive to process and might still contain 
irrelevant details, reducing retrieval precision.



RAG: Chunking





Lesson 1: Hands-on Notebook



Lesson 2: Hands-on Notebook



Lesson 3: Hands-on Notebook



Addendum



An embedding is a term used to describe 
a set of techniques aimed at capturing 
semantic (relationship, meaning, 
interpretation..) properties of words by 
representing them as low-dimensional, 
continuous vectors. These vectors are 
also known as "embeddings". Here's a 
deeper look at the concept:

Definition: Embedding

Image Credit: Nomic AI



TF : How frequently a term appears in a document. The idea is to consider all terms equally important ( 
however account for bias such as long documents). This is a Counting Based Embedding Techniques

Inverse Document Frequency (IDF): This diminishes the weight of terms that occur very frequently in the 
document set and increases the weight of terms that occur rarely. 

Definition: Term Frequency & IDF



Man

Woman
King

Queen

Man

King Queen

Woman
female

female

RoyalRoyal

Popular technique for generating dense word embeddings. 

Word2Vec converts words from the vocabulary of a corpus into vectors of real numbers in a 
high-dimensional space. The core idea is to represent words in such a way that the spatial 
relationships between vectors capture semantic relationships between the words they represent, 
such as similarity and dissimilarity, contextual closeness, and so on.

Word2Vec



● Create dummy variables. 
● Each category is represented 

by a binary vector with all 
zeros

● except for a 1 at the index of 
the category (sparse Vectors)

Recall machine-learning algorithms operate on vectors of numbers 

ONE-HOT ENCODING Convert categorical data variables into numerical format. This encoding helps 
algorithms better understand and process the dataset. This results in Sparse Vectors  

Sparse Vectors are not very effective ( lots of zeros) so these are converted into Embeddings 
called Dense Vectors

Vectors and: One-Hot Encoding



Tokens
Try OpenAI’s Tokenizer

https://platform.openai.com/tokenizer




The one-hot vectors can be then fed into an embedding layer. This layer sparse vectors into 
high-dimensional (dense) vectors. These vectors capture semantic information, meaning words 
with similar contexts are represented by vectors that are close to each other in the vector space.  
Using embeddings we can  process language based on the similarity of word meanings and their 
context.

Tokenization: The process begins by breaking down input text into manageable pieces, known as 
tokens. Tokens can be words, parts of words, or even characters etc

Vectorization: Each token is then mapped to a vector in a high-dimensional space (each word). 
These vectors are learned during the training phase of the model, allowing the model to capture 
the nuances of language.

Semantic Relationships: Through training on huge datasets, embedding vectors learn to encode 
semantic relationships between words and contextual relevance.

Embedding Layers 



Embedding Layers in NLP
Vector embeddings are just lists of numbers to allow machine learning algorithms  to perform various 
operations with them. A whole paragraph of text or any other object can be reduced to a vector.

Image credit: https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/



Semantic Similarity
Vectors representation makes it possible to translate semantic similarity as perceived by us to proximity 
in a vector space. The semantic similarity of these objects and concepts can be quantified by how close 
they are to each other as points in vector spaces. 

Source: https://www.pinecone.io/learn/vector-embeddings/



Tokenization: The model breaks down the input into tokens and then vectors: ["3 bedrooms", "2 baths", 
"ocean view", "newly renovated"].

"3 bedrooms": [1, 0, 0, 0]   "2 baths": [0, 1, 0, 0]   "ocean view": [0, 0, 1, 0 "newly renovated": [0, 0, 0, 1]

Vectorization:  Each token is converted into an embedding vector. For example, "ocean view" might be 
closely related to other terms like "beachfront" in the model's learned vector space.

"3 bedrooms" → [0.85, -0.24, 0.15, 0.67, 0.32]  (5 dimensions)

Semantic Relationships:

As the model processes these vectors through its layers, it uses the semantic information encoded in 
the embeddings to generate a contextually rich property description. For example, knowing the appeal 
of "ocean view" properties, the model might generate: "Enjoy breathtaking ocean views from this newly 
renovated home, featuring 3 spacious bedrooms and 2 modern bathrooms."

Embedding Layers Example



Traditional neural networks struggle to understand the order of elements in a sequence and and 
transformer models don't inherently process sequential data in order. Positional encodings are 
added to the input embeddings to provide information about the position of each token in the 
sequence. 

Ocean view: [0.9, -0.1, 0.3]

Positional encodings address this by injecting information about the relative position of each 
element (word) in the sequence. This allows the LLM to grasp the context and meaning even 
without relying solely on word order. Think of it like adding numbers to each word to indicate its 
place in the line.

Position Encoding(for "Ocean view"): [0.2, 0.2, 0.2]

This understanding is crucial in contexts where the arrangement of words alters the meaning or 
emphasis of a message, such as in real estate listings, where the placement of features can 
significantly impact a property's appeal.

Step 2: Positional Encoding 



Generate a property description emphasizing proximity to amenities.  The sentence "Located in a vibrant 
neighborhood, the apartment is just a short walk from popular restaurants and convenient subway stops."

The order in which features are mentioned can influence a potential buyer's interest.
● “vibrant neighborhood" sets a lively context, 
● followed by the convenience of "popular restaurants" 
● "Close to subway stops" enhances the property's appeal.

Embedding without positional ending

vibrant neighborhood": [0.9, -0.1, 0.3]   popular restaurants": [0.8, 0.2, -0.5]  

The model understands that the mention of "a vibrant neighborhood" at the beginning is strategically 
placed to catch attention, and "a short walk from popular restaurants and convenient subway stops" 
highlights essential amenities

Psitional encoding: Position 2 (for "popular restaurants"): [0.1, 0.1, 0.1]

Embedding with Psitional encoding: popular restaurants": [0.9, 0.3, -0.4]  

Positional Encoding Example 



AI+ Additional Sources

East 2024 Bootcamp Bundle

Foundations in math, computer 
science and probability

Deep Learning with Jon Krohn

Generative Ai and Large Language 
Models

https://app.aiplus.training/courses/east-2024-primer-courses
https://aiplus.training/foundations
https://aiplus.training/foundations
https://app.aiplus.training/courses/take/certificate-generative-ai-fundamentals
https://app.aiplus.training/courses/take/certificate-generative-ai-fundamentals


THANK YOU


