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Installation

Requirements

Make sure you have installed Python 3.8 by typing

python --version

in your shell.
(Older version might work, but are not actively tested)

Consider using the python version management pyenv.

Install

Install the latest version of viroconcom from PyPI by typing

pip install viroconcom

Alternatively, you can install from viroconcom repository’s Master branch by typing

pip install https://github.com/virocon-organization/viroconcom/archive/master.zip



Example: Sea state contour

Let’s start this user guide with a simple example.

Based on a dataset, the long-term joint distribution of sea states is estimated and this distribution will be used to
construct an environmental contour with a return period of 50 years.

import matplotlib.pyplot as plt

from viroconcom.fitting import Fit

from viroconcom.contours import IFormContour

from viroconcom.read_write import read_ecbenchmark_dataset
from viroconcom.plot import plot_contour

# Load sea state measurements from the NDBC buoy 44007 .
sample_hs, sample_tz, label_hs, label_tz = \
read_ecbenchmark_dataset('datasets/lyear_dataset_A.txt')

# Define the structure of the probabilistic model that will be fitted to the
# dataset. This model structure has been proposed in the paper "Global
# hierarchical models for wind and wave contours: Physical interpretations
# of the dependence functions" by Haselsteiner et al. (2020).
dist_description_hs = {'name': 'Weibull_Exp'}
dist_description_tz = {'name': 'Lognormal_SigmaMu',

'dependency': (@, None, 0),

'functions': ('asymdecrease3', None, 'lnsquare2')}
model_structure = (dist_description_hs, dist_description_tz)



# Fit the model to the data.
fit = Fit((sample_hs, sample_tz), model_structure)
fitted_distribution = fit.mul_var_dist

# Compute an IFORM contour with a return period of 50 years.
tr = 50 # Return period in years.

ts = 1 # Sea state duration in hours.

contour = IFormContour(fitted_distribution, tr, ts)

# Plot the data and the contour.

fig, ax = plt.subplots(l, 1)

plt.scatter(sample_tz, sample_hs, c="black', alpha=0.5)

plot_contour(contour.coordinates[1], contour.coordinates[@],
ax=ax, x_label=label_tz, y_label=label_hs)

plt.show()

The code, which is available as a Python file here, will create this plot:
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Overall work flow and software architecture

Figure 1 shows a flowchart that captures the overall functionality of viroconcom. A statistical model of the off-
shore environment can be created by fitting a model structure to measured data. Then, this statistical model can

be used to construct an environmental contour.
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Figure 1. Flowchart showing how the process of fitting a model structure to measured data and constructing
an environmental contour.

In viroconcom the class Fit handles the fitting, the class
MultivariateDistribution represents the statistical model and the class

Contour (and its child classes) handles the contour construction.

Figure 2 shows viroconcom’s class diagram.
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Figure 2. Class diagram showing among others the class Fit, which handles fitting a model structure to a da-
taset, and the class Contour, which handles contour construction. This class diagram was created for virocon-
com version 1.1.0.



Define a joint distribution and calculate a contour

This chapter will explain how joint distributions and contours are handled in viroconcom. The process of estima-
ting the parameter values of a joint distribution, the “fitting” is explained in the next chapter.

To create an environmental contour, first, we need to define a joint distribution. Then, we can choose a specific
contour method and initiate the calculation. viroconcom uses so-called global hierarchical models to define the
joint distribution and offers four common methods how an environmental contour can be defined based on a gi-
ven joint distribution.

If the joint distribution is known, the procedure of calculating an environmental contour with viroconcom can be
summarized as:

1. Create a first, independent univariate distribution.

2. Create another, usually dependent univariate distribution and define its dependency on the previous
distributions.

Repeat step 2, until you have created a univariate distribution for each environmental variable.
Create a joint distribution by bundling the created univariate distributions.

Define the contour’s return period and environmental state duration.

Choose a type of contour: IFormContour, ISormContour, DirectSamplingContour or
HighestDensityContour.

7. Initiate the calculation.
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These steps are explained in more detail in the following.

The file calculate_contours_similar_to_docs contains all the code that we will show on this page. We will use the
sea state model that was proposed by Vanem and Bitner-Gregersen (2012; DOI: 10.1016 /j.apor.2012.05.006) and
compute environmental contours with return periods of 25 years.



Create independent distribution

Distributions are represented by the abstract class Distribution. This class is further subclassed by the ab-
stract class ParametricDistribution. Distributions of this kind are described by three or four parameters:
shape, loc, scale and possibly shape2. Though not all distributions need to make use of all parameters.

Currently there are five parametric distribution subclasses one can use to instantiate a distribution:

e WeibullDistribution
ExponentiatedWeibullDistribution
LognormalDistribution
NormalDistribution
InverseGaussianDistribution

This table shows, which variables of the probability density function are defined by specifying the scale, shape
and location parameters:
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Distributions implemented in viroconcom and their parameters.



For the parameters there is the abstract class Param. As we want to create an independet distribution, we use
the subclass ConstantParam to define shape, loc, and scale.

Say we want to create a Weibull distribution with shape=1.471, 1oc=0.8888, and scale=2.776 (as in the
model proposed by Vanem and Bitner-Gregersen).

We first create a WeibullDistribution object:

dist@® = WeibullDistribution(shape=1.471, loc=0.8888, scale=2.776)

We also need to create a dependency tuple for creating a MultivariateDistribution later on. This is a 3-
element tuple with either int or None as entries. The first entry corresponds to shape, the second to 1oc and
the third to scale. For an independent distribution all entries need to be set to None.

dep® = (None, None, None)



Create dependent distribution

In a global hierarchical model, the dependency of a parametric distribution is described with dependence func-
tions for the distribution’s parameters. In Chapter Create independent distribution we used ConstantParam
for the parameters. There is also FunctionParam, which can represent different dependence functions. It is
callable and returns a parameter value depending on the value called with.

The following dependence functions, f(x), are available under the given labels:

e power3: f(x) =a+ b *x°

e exp3: f(x) =a+ bxe™

o Insquare2: f(x) = In[a + b * /(x/9.81)]

o powerdecrease3: f(x) = a+ 1/(x + b)*

e asymdecrease3: f(x) =a + b/(1 + c * x)

o logistics4 : f(x) = a + b/[1 + e~ ¥Icl+x=d)]

« alpha3: f(x) = (a+ b * x°)/2.0445 esisricsatrerercs.co)

Say we have a random variable X that is described by the distribution created in Create independent distributi-
on. Now we want to create a distribution that describes the random variable Y, which is dependent on X (in
common notation Y| X).

For this, we first need to define an order of the distributions, so that we can determine on which distributions
another may depend. We define this order, as the order in which the univariate distribution are later on passed to
the MultivariateDistribution constructor. For now we use the order of creation. The first distribution
(that was described in Chapter Create independent distribution) has the index @. Thus, using our previously in-
troduced random variables, X; = X and X; = Y. In viroconcom, we need to use this order in the dependency
tuples.



As already described in Chapter Create independent distribution the 3 entries in the tuple correspond to the
shape, loc, and scale parameters and the entries are either int or None. If an entry is None, the corre-
sponding parameter is independent. If an entry is an int the parameter depends on the distribution with that
index, in the order defined above.

For example, a dependency tuple of (@, None, 1) means, that shape depends on the first distribution, 1oc
is independent and scale depends on the second distribution.

We now want to create a dependent lognormal distribution that will represent the second variable, X;|X. Op-
posed to, for example, a Weibull or normal distribution, a lognormal distribution is often not described by
shape, loc, and scale, but by the mean mu and standard deviation sigma of the corresponding normal dis-
tribution. In this example, we want mu and sigma to depend on the prior created Weibull distribution. The 1oc
parameter is ignored by the LognormalDistribution.

The conversion between shape, scale, mu and sigma is:
shape = o
scale = e*
The class LognormalDistribution has a constructor for ~shape and scale as well as for mu and sigma.

Say we want to define the following dependence structure for X| X, where x is a realization of X:

0(x0) = 0.04 + 0.1748 % ¢~02243*x0

u(xo) = 0.1 + 1.489%0*0.1901



In viroconcom, to define this dependence structure, first we create the parameters as FunctionParam using
the keywords “exp3” and “power” to specify the wanted dependence functions

my_sigma = FunctionParam('exp3', 0.04, 0.1748, -0.2243)
my_mu = FunctionParam('power3', 0.1, 1.489, 0.1901)

Then we create the LognormalDistribution using the mu sigma constructor:
distl = LognormalDistribution(sigma=my_sigma, mu=my_mu)

And eventually define the dependency tuple:

depl = (@, None, 0)

Alternativly we could have defined the distribution as follows, using the wrapper argument of the
FunctionParam:

shape = FunctionParam(0.04, 0.1748, -0.2243, "exp3")

scale = FunctionParam(@.1, 1.1489, 0.1901, "power3", wrapper=numpy.exp)
distl = LognormalDistribution(shape, None, scale)

depl = (@, None, 0)



Bundle distributions and dependencies in a multivariate
distribution

To create a contour, we need a joint distribution. In viroconcom joint distributions can be represented by the
MultivariateDistribution class.

To create a MultivariateDistribution we first have to bundle the distributions and dependencies in lists:

distributions = [dist@, distl]
dependencies = [dep@, depl]

The MultivariateDistribution can now simply be created by passing these lists to the constructor:

mul_dist = MultivariateDistribution(distributions, dependencies)



Constructing the contour

Next, we need to define the contour’s exceedance probability, @, which is calculated using the return period, tg,
and the model’s state duration, tg:

a = tS/tR

In viroconcom the return period is assumed to be given in years and the state duration is assumed to be given in
hours.

Then we can select one of the four contour methods:

o Inverse first-order reliabilty method (IFORM)
 Inverse second-order reliablity method (ISORM)
e Direct sampling contour method

» Highest density contour method

Inverse first-order reliability method (IFORM)

With all contours, we need to specify the return period and the state duration. In addition, to create an IFORM
contour we need to specify the number of points along the contour that shall be calculated.

Let us calculate 90 points along the contour such that we have a resolution of 2 degrees. With the previously
created mul_dist, we can compute a contour with a return_period of 25 years and a state_duration
of 6 hours like this:

iform_contour = IFormContour(mul_dist, 25, 6, 90)



Highest density contour method

To create a highest density contour, for the used numerical integration, we need to specify a grid in the variable
space in addition to return period and state duration. This is done by passing the grid’s 1imits and deltas to
the constructor. Limits has to be a list of tuples containing the min and max limits for the variable space, one
tuple for each dimension. deltas specifies the grid cell size. It is either a list of length equal to the number of
dimension, containing the step size per dimensions or a scalar. If it is a scalar it is used for all dimensions.

The grid includes the min and max values: x = [min, min + delta, ..., max - delta, max]

To create a highest density contour for the previously created mul_dist with a return_period of 25 years
and a state_duration of 6, we first define the variable space to be between 0 and 20 and set the step size to
0.5 in the first and 0.1 in the second dimension.:

limits = [(@, 20), (0, 20)]
deltas = [0.5, 0.1]

The contour can then be created as follows:

hdens_contour = HighestDensityContour(mul_dist, 25, 6, limits, deltas)



Plotting the contour

To plot the contour we need to access the coordinates attribute of the contour.

Using for example matplotlib the following code...

import matplotlib.pyplot as plt

plt.scatter(iform_contour.coordinates[1], iform_contour.coordinates[@],
label="IFORM contour')

plt.scatter(hdens_contour.coordinates[1], hdens_contour.coordinates[@],
label="Highest density contour')

plt.xlabel('Zero-up-crossing period, Tz (s)')

plt.ylabel('Significant wave height, Hs (m)')

plt.legend()

plt.show()

creates this plot:
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Alternatively, we could use viroconcom’s standard plotting function...

from viroconcom.plot import plot_contour

plot_contour(iform_contour.coordinates[1], iform_contour.coordinates[@],
X_label="Tp (s)', y_label="Hs (m)")
plt.show()

to create this plot:
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Fit a model structure to measured data

The module fitting implements functionality to fit a model structure to measured environmental data. In other
words, it can be used to estimate the parameter values of a joint distribution.

To fit a model structure to a dataset, we need to build an object of the class Fit in this module.

Exemplary call:
example_fit = Fit((sample_0, sample_1), (dist_description_0, dist_description_1))

It is important that the parameter samples is in the form (sample_0, sample_1, ...). Each sample is a collection
of data from type list and also all samples have the same length. The parameter dist_descriptions descri-
bes the structure of the probabilistic model that should be fitted to the sample. It should be from type list and
should contain a dictionary for each dimension in the same sequence of the samples. It should accordingly have
the same length as samples.



Each dist_description dictionary describes one dimension of the probabilistic model structure. It must
contain the name of the current distribution under the key name, which could be, for example, "Lognormal".
If the distribution is conditional, it also must contain the keys dependency and functions. The
dependency value must be of type list. In the sequence of shape, loc, scale, it contains integers for the
dependency of the current parameter or None if it has no dependency. An entry of 0 means that the parameter
depends upon the variable with index 0, for example X;| X, if the second dimension (index 1) is specified. The
functions value is of type list too, and is interpreted in the sequence shape, loc, scale. Its entries defi-
ne which dependence functions are fitted. Additional keys such as width_of_intervals or
min_datapoints_for_fit are optional and can be used to control the fitting procedure.

The following distributions are available under the given key values:

e Weibull_2p : 2-parameter Weibull distribution

e Weibull_3p : translated Weibull distribution (sometimes simply called 3-parameter Weibull distribution)
e Weibull_Exp : exponentiated Weibull distribution

e Lognormal : lognormal distribution parametrized with exp(mu) and sigma

e Lognormal_SigmaMu : lognormal distribution parametrized with mu and sigma

e Normal : normal distribution

« InverseGaussian : inverse gaussian distribution (not the inverse of the normal distribution)



The following dependence functions are available under the given key values:

power3:a + b x ¢

exp3:a + b * e®*¢

Insquare2 : In[a + b * /(z/9.81)]
powerdecrease3: a + 1/(x + b)°
asymdecrease3:a +b/(1 4+ c* )

logistics4 : a + b/[1 + e~ 1*lcl*(z—d)]

alpha3 : (a + bx wc)/2.04451/log‘istics4(:1:,cl,62,03,04)
polyl:axz +b

poly2:a* 22+ b* x + ¢, with c — % >0.e50
None : no dependency

The following optional keys and values are available:

number_of_intervals : int. The sample of this variable will be divided into the given number of intervals.
Intervals will be equally spaced.

width_of_intervals : float. The sample of this variable will be divided into intervals with the given width.
points_per_interval : int. The sample of this variable will be divided into intervals with the given number
of points.

min_datapoints_for_fit : int. A marginal distribution will only be fitted to an interval if the interval conta-
ins at least the given number of observations.

do_use_weights_for_dependence_function : boolean. If true the dependence function is fitted with
weights that normalize each parameter value.

fixed_parameters : list with one entry for each parameter. None means that the parameter is free - it will be
estimated. If a number is given, the parameter is fixed to that number and the value will not be estimated.



Example for a dist_description that could represent the marginal distribution of significant wave height:

dist_description_@ = {'name': 'Weibull_Exp',
'width_of_intervals': 1}

Example for a dist_description that could represent the conditonal distribution of zero-up-crossiong
period:

dist_description_1l = {'name': 'Lognormal_SigmaMu',
"dependency': (@, None, 0),
"functions': ('asymdecrease3', None, 'lnsquare2'),
"'min_datapoints_for_fit': 50

}

In the given exemplary call (first code snipped), if Fit() is finished, the object example_f1it will have the attri-
bute mul_var_dist thatis an object of MultivariateDistribution, holding the fitted joint distribution.
Additionally, example_f1it will have the attribute multiple_fit_inspection_data, which can be used
to analyze the goodness of fit.



Comprehensive example

The following example is based on the file fit_distribution_similar_to_docs .

First, let us load a dataset that holds measurements of sea states. The first variable is significant wave height, H,
and the second variable zero-up-crossing period, T,

import matplotlib.pyplot as plt
import numpy as np

from viroconcom.read_write import read_ecbenchmark_dataset

from viroconcom.fitting import Fit

from viroconcom.contours import IFormContour

from viroconcom.plot import SamplePlotData, plot_sample, plot_marginal_fit, \
plot_dependence_functions, plot_contour

sample_0@, sample_1l, label_hs, label_tz = \
read_ecbenchmark_dataset('datasets/lyear_dataset_A.txt')

fig, ax = plt.subplots(l, 1, figsize=(5, 4.5))
sample_plot_data = SamplePlotData(sample_1, sample_0)
plot_sample(sample_plot_data, ax)
plt.xlabel('Zero-up-crossing period (s)')
plt.ylabel('Significant wave height (m)')

plt.show()



The code snipped will create this plot:
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1 year of measurements from NDBC’s buoy 44007.



Now we describe the type of multivariate distribution that we want to fit to this data

dist_description_@ = {'name': 'Weibull_Exp',
'width_of_intervals': 1}
dist_description_1l = {'name': 'Lognormal_SigmaMu',
'"dependency': (@, None, 0),
"functions': ('asymdecrease3', None, 'lnsquare2'),
"'min_datapoints_for_fit': 50
}

Based on this description, we can compute the fit and save the two fitted distributions in dedicated variables

my_fit = Fit((sample_0, sample_1), (dist_description_0, dist_description_1))

fitted_hs_dist
fitted_tz_dist

my_fit.mul_var_dist.distributions[0]
my_fit.mul_var_dist.distributions[1]

Now, let us visualize the fit for the first variable using a QQ-plot

fig, ax = plt.subplots(l, 1, figsize=(5, 4.5))
plot_marginal_fit(sample_0, fitted_hs_dist, fig, ax, label="'$h_s$ (m)',
dataset_char="A")

plt.show()



x Dataset A
8 4 Exponentiated Weibull

= (a=0.248, p=0.685, 6=6.35)

Ordered values, hs (m)
-

I I T

0 2 - 6 8
Theoretical quantiles, hs (m)

—

QQ-plot showing the fitted exponentiated Weibull distribution and the empirical wave height data..



For our second variable, we need some more plots to inspect it properly. Let us start with the marginal distributi-
ons that were fitted to Hs-intervals

n_fits = len(my_fit.multiple_fit_inspection_data[1l].scale_at)

fig, axs = plt.subplots(l, n_fits, figsize=(14, 4))

for i in range(n_fits):
axs[i].set_title('Tz distribution for ' + str(i) + 'sHs<' + str(i + 1))
axs[i].hist(my_fit.multiple_fit_inspection_data[1l].scale_samples[i], density=1)
X = np.linspace(@, 12, 200)
interval_center = my_fit.multiple_fit_inspection_data[1l].scale_at[1i]
f = fitted_tz_dist.pdf(x, np.zeros(x.shape) + interval_center, (@, None, 0))
axs[i].plot(x, f)

plt.show()
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Now, let us analyze how well our dependence functions fit to the marginal distributions’ four scale and shape
values

fig = plt.figure(figsize=(9, 4.5))

plot_dependence_functions(my_fit, fig, unconditonal_variable_label=label_hs,
factor_draw_longer=2)

plt.show()
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Finally, let us use the fitted joint distribution to compute an environmental contour

iform_contour = IFormContour(my_fit.mul_var_dist, 50, 1)

fig, ax = plt.subplots(l, 1, figsize=(5, 4.5))

plot_contour(iform_contour.coordinates[1l], iform_contour.coordinates[@],
ax=ax, X_label=label_tz, y_label=label_hs,
sample_plot_data=sample_plot_data, upper_ylim=13)

plt.show()
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