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1 Introduction
Why yet another package of routines for time series analysis (TSA)? This is so
as comparatively little effort so far was spend on tools for unevenly sampled time
series. Due to day, moon and season cycles such observations are most often
encountered in astronomy. Hence, our first rmotivation is to provide modern tools
to handle such series. The second reason is to offer astronomers possibility to
evaluate signifcance of their results with modern statistical tools. The classical
Power Spectrum precludes such evaluation. Our third reason is to provide routines
more fully incorporating weighting of observations than those aviaible so far. Our
package is intended for observers analysing their data. However, in our opinion
statistical procedures not be used as black boxes, lest serious errors may occure.
For this reason we provide here an extended background on TSA to help user find
its way in the statistical maze.

The present documentation is not meant to be a substitute for a textbook on
TSA, however. For brief introduction to TSA we recommend the reviews by
Deeming (1975) and Schwarzenberg-Czerny (1998) for a general introduction.
On larger scale books by Brandt (1970) and Eadie et al. (1971) provide extremely
good introduction to general statistics, the former on somewhat easier level. It
would became clear through this document that for astronomers TSA is best seen
as another exercise in fitting data with a model. For this reason such general sta-
tistical text are quite useful. Relevant statistical tables are listed in Brandt (1970)
and Abramovitz & Stegun (1972), and a code for the computation of the proba-
bility functions is provided by Press et al. (1986), in the R package (http://www.r-
project.org/) and in Mathematica, among others.

We explain here the concepts used in the description of our software and point
out their statistical context (Sect. 2). Next we discuss tools to evaluate methods
performance and ways to optimize it (Sect. 3). We briefly review backround of
statistical procedures, including Fourier analysis in Sect. 4). Sect. 5 contains the
general description of the python TSA package and its commands. A summary
of the commands and their syntaxes is listed in Sect. 6. Examples of some typical
problems and their treatment within python are given in Sect. 7.

The interests of galactic and extragalactic astronomers in time series analysis
differ markedly. The former are particularly interested in the analysis of genuinely
periodic, i.e. deterministic variations, while the latter are more often concerned
with the stochastic phenomena. We have implemented tools to satisfy the ba-
sic needs of both types of users, with emphasis on the periodic variations. This
chapter provides general guidelines for the user of the python TSA package. De-
tailed technical information is provided separately as help for each command of
the package.

The ancestors of this pyaov procedures are two stand-alone interactive pack-
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ages ula and zuza developed in fortran77 and 90 consecutively at Warsaw
University Observatory and Copernicus Astronomical Centre in Warsaw. Then
some routines were ported into European Southern Observatory MIDAS environ-
ment as TSA contributed context.

2 Basic principles of time series analysis
The practical problems in the analysis of time series concern

1. 1. the detection of a signal against noise,

2. the estimation of the parameters characterizing the signal, and

3. the presentation of the results.

Presentation and/or evaluation of the results involves a function of the time
series called statistics. Detection of a signal, e.g. a period, and evaluation of its
properties, e.g. error and significance, then usually mean finding and characteriz-
ing a related signal in the associated statistics which is normally based on some
model of the signal.

2.1 Signals and their models
Signals can be classified broadly into deterministic and stochastic signals. A de-
terministic signal, e.g. a periodic signal, can be predicted for arbitrary spaces of
time. For a stochastic signal, no such prediction can be made beyond a certain
time interval, called a correlation length lcorr. For any finite time series the clas-
sification into these two categories is ambiguous so one usually relies on some
prejudice on the signal nature. Sometimes methods suitable for both stochastic
and periodic signals could be applied to any time series with some success (e.g.
quasiperiodic oscillations, Sect. 4.4).

Usually processes in the source of the signal (e.g. the nucleus of an active
galaxy) and/or observational errors introduce a random component into the series,
called noise. The analysis of such series usually aims at removing the noise and
fitting a model to the remaining component of the series. Suitable models can be
obtained by shifting a known series by some time lag, l, or by repeating fragments
of it with some frequency, ν. Accordingly, we are speaking of an analysis in
the time and frequency domain. In these domains the correlation length lcorr and
oscillation frequency ν0, respectively, have particularly simple meanings. It is
transparent that the stochastic signals are analysed more comfortably in the time
domain and periodic signals in the frequency domain.
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One way to fit data with a model is to minimise their least squares (LSQ).
Our expposition of LSQ relies on R.A. Fisher theory. Let n observations x =
(x1, · · · , xn) are fitted with the orthogonal model x∥ =

∑
i cipi(φ), such that

vectors/functions pi(φ) ≡ pi(2πt) are mutually orthogonal with respect to the
scalar product defined by observed phases:

0 = (pi,pj) ≡
∑
φ

wϕpi(φ)pj(φ) for i ̸= j (1)

Hereafter we assume that the average values (1,x) = (1,x∥) = 0. By virtue of
Fisher lemma the model x∥ and residuals from fit x⊥ ≡ x − x∥ are orthogonal
(x∥,x⊥) = 0. In consequence an n-dimensional analogue of Pythagoras theorem
holds:

∥x∥2 = ∥x∥∥2+ ∥x⊥∥2 where
n = n∥+ n⊥
observation = model+ residuals

(2)

∥x∥2 ≡ (x,x) and n, n∥ and n⊥ denote number of observations, number of model
parameters and number of degrees of freedom of residuals. Because of the relation
∥x − x∥∥2 = ∥x∥2 − 2(x,x∥) + ∥x∥∥2 where only the middle term depends on
the frequency ν, our considerations for LSQ also apply for the case of cross-
correlation function (CCF) periodogram.

Suitable families of orthogonal functions pi are either Szegö trigonometric
polynomials or the tophat functions corresponding to the phase bins (Schwarzenberg-
Czerny, 1996, 1989). Nominally, Szegö polynomials follow from Gramm-Schmidt
ortonormalization of Fourier harmonics, yet convenient recurrence formulae also
exist. Phase folding and binning of data is equivalent to LSQ fitting of a step func-
tion built of a linear combination of tophats. The box function employed for plane-
tary transit search corresponds to two phase bins of unequal width (Schwarzenberg-
Czerny & Beaulieu, 2006), so the present considerations aplly in this area too.
Quite unique orthogonal functions were employed by MACHO (Akerlof et al.,
1994).

2.2 Signal detection
A statistics Θ(ν,x) is the merit figure indicating quality of the fit. A periodogram
is the plot of Θ(ν,x) against ν. Patterns in the periodogram may relate to the
presence in data of the oscillations with the corresponding frequency. Classically
signal detection proceeds by assumption that data consist of pure noise (so called
null hypothesis H0) and then demonstrating that in such case the observed value
of Θ is unlikely. This procedure is not unlike mathematical proofs by reductio ad
absurdum. Hence significance of detection depends on the probability distribution
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Table 1: Basic Classes of Period Statistics

Statistics Definition Distribution Name Analogues
ΘAOV =

∥x∥∥
∥x⊥∥ F (n∥, n⊥; ΘAOV ) Fisher-Snedecor aovw(1),amhw(2)

Θ∥ =
∥x∥∥
∥x∥ β(n∥, n⊥; Θ∥) β distribution Power(3), L-S(4,5)

Θ⊥ = ∥x⊥∥
∥x∥ β(n⊥, n∥; Θ⊥) β distribution χ2,PDM∗ (6,7)

References: (1)- Schwarzenberg-Czerny (1989), (2)- Schwarzenberg-Czerny (1996), (3)- Deeming (1975), (4)- Lomb
(1976), (5)- Scargle (1982), (6)- Stellingwerf (1978) with corrected distribution in (7)- Schwarzenberg-Czerny (1997)

of Θ for the hypothetical data consisting of a pure noise. This case is called in
Statistics null hypothesis H0.

2.3 Test statistics
The test statistic used for detection is a special case of a function of random vari-
ables. Θ must be dimension-less as no statistical conclusions may depend on
units. There are three ways to construct dimension-less Θ statistics from the di-
mensioned ∥x∥, ∥x∥∥ and ∥x⊥∥ (Table 1). The probability distributions listed in
the table are discussed by e.g. Eadie et.al. (1971), Brandt (1970), and Abramovitz
& Stegun (1972). The two latter references contain tables. For a computer code
for the computation of the cumulative probabilities see Press et. al. (1986).

Because of Eq. (2) all these Θ’s are uniquely related:

Θ⊥ = 1−Θ∥ =
1

1 + ΘAOV

(3)

hence the corresponding F and β distributions may be obtained from each other
by the suitable change of variable. From this we find, that conclusions drawn from
the ΘAOV , Θ∥ and Θ⊥ periodograms must all be identical if and only if the model
x∥ remains the same. In other words what merits is not a shape of the periodogram
peak but its probability (Schwarzenberg-Czerny, 1998). Turning this argument ad
absurdum, one may argue that to obtain a clean single peak periodogram suffices
to raise any periodogram to the power of 1000 or so. As no additional information
was supplied, such a nice view has spurious meaning. In practical terms it suffices
to discuss periodograms in which oscillations correspond to peaks. Any results
would also apply to the periodograms showing throughs at the corresponding fre-
quencies.

For the human eye the equivalent periodograms may look deceptively differ-
ent, however. For high S/N and χ2 periodogram, an alias minimum of Θ⊥ twice
as high as the true minimum would not look significant. At the same time the
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corresponding alias peak power Θ∥ = 1−Θ⊥ would almost match the true peak,
pretending to be significant. From this point of view for periodograms in the fre-
quency domain we recommend Fisher ΘAOV statistics, or still better 0.5 logΘAOV

which has near normal probability distribution.
Depending on different signal models, the ΘAOV is implemented in the pyaov

routines amhw, aovw and atrw (Sect. 5.5). amhw uses trigonometric series
and aovw and atrw usee step function (phase binning) as models. Except for
Θ∥ → ΘAOV conversion Lomb-Scargle periodogram constitutes a mere special
case of amhw for nh2=2. In the time domain, in pyaov.covar routine we
rely on ∥x⊥∥2 or on Θ⊥ statistics, often imprecisely called χ2. (Sect. 5.6).
pyaov.covar serves to compare two series of observations (possibly identi-
cal). It employs a step function (binning).

3 Sensitivity of Detection

3.1 Test Power
To evaluate sensitivity of detection we must consider two different hypothetical
data sets: for a pure noise noise of standard deviation 1 and for the noise plus a
periodic signal of amplitude A (same units). In Statistics these two cases are called
the null and alternative hypotheses, H0 and H1, respectively. Accordingly, for H0

and H1, Θ obey different probability distributions P0(Θ) and P1(Θ). Ideally the
two distributions are separated by a critical value Θc. Say, Θ < Θc corresponds to
a pure noise and Θ > Θc to the detected of signal. However, in realistic situations
the two distributions overlap over a range of Θ. Thus two kinds of errors arise:
one claims detection while in reality H0 is true (false positives) and reversly, one
claims no detection while in reality H1 remains true (misses). In the classical
statistics one fixes Θc so that false positives occure seldom, i.e. the significance
level α = P0(Θ < Θc) is close to 1. Then test power of the criterion Θc is defined
as β = P1(Θ < Θc), where probability of misses is 1 − β. Thus for a fixed Θc,
large β corresponds to good detection sensitivity. Tha analytical formulae for P0

are listed in Table 1. No corresponding formulae are known for P1 as they depend
in a complex way on signal shape. However, for small signal-to-noise A/1 ≪ 1
it is possible to derive approximate asymptotic formulae for P1 (Schwarzenberg-
Czerny, 1999). In this approximation P0 and P1 retain the same shape yet are
shifted, in units of their standard deviation, by

∆Θ/
√
V ar{Θ} = A2n

∥s∥∥2√
2n∥

where (4)
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∥s∥∥2 =
(x∥signal, x∥model)

2

∥x∥signal∥2∥x∥model∥2
(5)

and x∥signal, x∥model denote shapes of the real signal and of the fitted model, re-
spectively. The bigger ∆Γ the more sensitive is our method / model for a given
signal.

Let us first consider a sinusoidal oscillation with an amplitude not exceeding
the noise. Then, all statistics based on models with 3 parameters have similar
values of the test power: power spectrum, Scargle statistics, χ2(3) fit of a sinu-
soid, amhw(...,nh2=3), aov(...,nh2=3) and corrected PDM(3) statis-
tics. (Please note that we depart here from the conventional notation by indicating
in brackets the number nm of the degrees of freedom of the model e.g. the num-
ber of series terms or phase bins instead of the number of the residual degrees of
freedom n⊥.) Statistics with more than 3 parameters, e.g. amhw(...,nh2=n),
aov(...,nh2=n), PDM(n) and χ2(n) with n ≫ 3 and an extended Fourier se-
ries have less power. Our final choice is guided by the availability of the analytical
probability distribution of the test statistics. Summing up, we recommend tu use
for the detection of sinusoidal and other smooth oscillations of small amplitude
the statistics with a coarse phase resolution, e.g. amhw(...,nh2=3), Scargle
and aov(...,nh2=3).

For a narrow gaussian pulse or eclipse of width w repeating with period P (i.e.
duty cycle w/P ), the most powerful statistics are these with the matching reso-
lution: amhw(...,nh2≈ P/2w), aov(...,nh2≈ P/2w) and χ2(P/2w).
Power spectrum, Scargle, amhw(...,nh2=3), aov(...,nh2=3 and χ2(3)
all have less power. Note the equivalence of the χ2(3) and Scargle’s statistic
(Lomb, 1976, Scargle, 1982) and the near-equivalence of the power spectrum and
Scargle’s statistics in the case of nearly uniformly sampled observations. Consid-
ering both test power and computational convenience we recommend for signals
with sharp features, e.g. narrow pulses or eclipses, to use the ORT and AOV with
the resolution matched to the width of these features.

Among many other statistics we mention the one by Lafler & Kinman (1965),
phase dispersion minimization (PDM) also known as the Whittaker & Robinson
statistic (Stellingwerf, 1978), string length (Dvoretsky, 1983), and statistic intro-
duced by Renson (1983).

3.2 Corrected Significance: Bandwidth Penalty
From Table 1 one may derive the analytic tail probability of large Θ for a single
frequency: Q1(Θ > Θ0) ≡ 1 − P1(Θ < Θ0). As more and more frequencies
are examined in the periodogram, probability of spurious occurence of a peak due
to pure noise increases, in the same way as the probability of winning a lotery
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increases with the number of trials. This increase of the probability, called band-
width penalty, has to be accounted for any realistic statistical evaluation. Because
of aliasing values of a periodogram at different frequencies may be strongly cor-
related, so that out of N investigated frequencies only Neff ≤ N may be inde-
pendent. If so, the postulated tail probability could be (e.g. Horne & Baliunas
1986):

QN(Θ0) = Q1(Θ0)
Neff . (6)

The hitch is in the unknown value of Neff . Paltani (2004) proposed a useful
method to estimate Neff by MC simulations, yet relying on their mean rather than
extreme values.

Estimation of bandwidth penalty is less of a problem in large photometric sur-
veys. There many light curves are obtained from the same stack of images, hence
they suffer from this effect in the same way, so reliable detection criteria may be
obtained from analysis of Θ. However, such criteria may not be transfered reliably
from one fielt into other as they suffer from different sampling effects. Then full
conversion to probabilities, including bandwidth penalty correction, remains the
only reliable solution, in our opinion.

3.3 Corrected Significance: Correlation or Red Noise Effect
Presence of a correlation (red noise) in observations may ruin simplistic statis-
tical estimates. For example LSQ fit of a sine to the solar spot Wolfer numbers
spanning 100 years yields the nominal period P ≈ 11 y with an error of or-
der 0.002P . However, propagation of such an ephemeris for the next 50 years
demonstrates that a realistic period error was ≈ 0.1P . This happens as consecu-
tive residuals from the fit are correlated (keep the same sign over decades) while
the standard LSQ error estimates implicitly assume that residuals are (uncorre-
lated) white noise. Conversly, for the simulated data consisting of white noise
plus the oscilation of the same variances/amplitudes as above, the 0.002P error
estimate proves realistic.

This remarkable effect of the correlation is seldom discussed in texts on LSQ.
In fact, correlation of every Ncorr consecutive observations decreases the effective
number of observations roughly by a factor of Ncorr and hence increases the real
LSQ errors by a factor of

√
Ncorr(Schwarzenberg-Czerny, 1991). A simple way

to estimate Ncorr is by counting the number of sign changes in the residualds from
fit (the post mortem analysis). For white noise one expects Nobs/2 changes of sign
(every second residual should change sign, on average). If the observed number
of sign changes of residuals is Nsign < Nobs/2 then the number of consecutive
correlated observations is Ncorr ≈ Nobs/(2Nsign).
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4 Methods

4.1 Fourier transforms
Transformations which take functions, e.g. x, y as arguments and return functions
as results are called operators. The direct and inverse Fourier transform, F±1 ,
and the convolution, Λ, are operators defined in the following way:

F±1[x](ν) = C±

∫ +∞

−infty
e±2πitνx(t)dt =

1

n
1±1
2

o

∑
k

= 1noxke
±2πitkν (7)

[x ∗ y] (l) = C±

∫ +∞

−infty
x(t)y(l − t)dt =

1

no

∑
k

= 1noxkyl−k (8)

where square brackets, [], indicate the order of the operators and round brackets,
(), indicate the arguments of the input and output functions. Without loss of gen-
erality we consider here functions with zero mean value. Note that because of the
finite and infinite correlation length of stochastic and periodic series, respectively,
no unique normalization C applies in the continuous case.

The discrete operators F±1 and ∗ are well defined only for observations and
frequencies which are spaced evenly by δt and δν = 1/∆t, respectively, and span
ranges ∆t and ∆ν = 1/δt. Then and only then F±1 reduces to orthogonal matri-
ces. It follows directly from Eq. (7) that we implicitly assume that the observa-
tions and their transforms are periodic with the periods ∆t and ∆ν , respectively.
The assumption is of consequence only for data strings which are short compared
to the investigated periods or coherence lengths or for a sampling which is coarse
compared to these two quantities. Such situations should be avoided also in the
general case of unevenly sampled observations.

The following properties of F±1 and ∗ are noteworthy:

F [x+ y] = F [x] + F [y] (9)
F [x ∗ y] = F [x]F [y] (10)
Fe±2πitν0 = δνo(ν) (11)

where δx denotes the Dirac symbol:
∫
δxf(y)dy = f(x). In the discrete case, δx

assumes the value no for x and 0 elsewhere.

4.2 The power spectrum and covariance statistics
Let us define power spectrum, covariance and autocovariance statistics P,Cov
and ACF :

P [x](ν) = |Fx|2 (12)
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Cov[x, y](l) = x(t) ∗ y(−t) (13)
ACF [x](l) = Cov[x, x](l) (14)

The power spectrum is special among the periodograms in that it is the square of a
linear operator and reveals the important correspondence between frequency and
time domain analyses:

P [x](ν) = |F [ACF [x](l)x](ν) (15)

by virtue of Eq. (12.5).
Let us consider which linear operators or matrices convert series of inde-

pendent random variables into series of independent variables. For the discrete,
evenly sampled observations the ACF is computed as the scalar product of vectors
obtained by circularly permutating the data of the series. For a series of indepen-
dent random variables, e.g. white noise, the vectors are orthogonal. It is known
from linear algebra that only orthogonal matrices preserve orthogonality. So, only
in the special case of evenly spaced discrete observations and frequencies (Sect.
4.1) are F [x] (and P [x]) independent for each frequency. In the next subsection
we discuss the case of dependent and correlated values of P [x].

4.3 Sampling patterns
The effect of a certain sampling pattern in the frequency analysis is particularly
transparent for the power spectrum. Let s be the sampling function taking on
the value 1 at the (unevenly spaced) times of the observations observation and 0
elsewhere. The power spectrum of the sampling function

W (ν) = |Fs|2 (16)

is an ordinary, nonrandom function called the spectral window function. The
discrete observations are the product of s and the model function f : x = sf so
that their transform is a convolution of transforms: Fx = [Fs] ∗ [Ff ] ≡ S ∗ F ,
where S = Fs and F = Ff . For f = A cos 2πλt ≡ A

(
e+2πλt + e−2πλt

)
/2 and

F = Ff = A(δ+ν+δ−ν)/2 we obtain the result Fx = A(S(ν−λ)+S(ν+λ))/2.
Because of the linearity of F our result extends to any combination of frequencies.
Taking the square modulus of the result equation, we obtain both squared and
mixed terms. The mixed terms S(ν+λk)S(ν+λj) correspond to an interference of
frequencies ν+λk and ν+λj , differing by either sign or absolute value. Therefore,
if interference between frequencies is small, the power spectrum reduces to the
sum of the window functions shifted in frequency:

P (ν) ≈
∑

|[Fs](ν + λk)|2 ≡
∑

W (ν + λk) (17)
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In the opposite case of strong interference, ghost patterns may arise in the power
spectrum due to interference of window function patterns belonging to positive as
well as negative frequencies. The ghost patterns produced at frequencies nearby
or far from the true frequency are called aliases and power leaks, respectively.

4.4 Time domain analysis
As noted before stochastic signals are best analysed in the time domain. The anal-
ysis in the time domain often involves the comparison of two different signals
while in the frequency domain analyses usually concern only one signal. The ex-
pectation value of the covariance function of uncorrelated signals is zero. The ex-
pected value of the autocorrelation function (E{ACF}, Sect. 4.2) of white noise
also is zero everywhere except for 1 at 0 lag. The expected ACF of a stochastic
signal of correlation length l vanishes outside a range ±l about the lags. The ACF
of a deterministic function does not vanish at infinity. In particular the ACF of a
function with period P has the same value, P . Signals of intermediate or mixed
type with an ACF which has several maxima spaced evenly by l and a correlation
length L ≫ l is called a quasiperiodic oscillation. Its power is significantly above
the noise in the 1/±1/L range of frequencies and its correlation length L is called
the coherence length.

4.5 Parameter estimation
In this context, ν (or, in the time domain, l) are no longer independent variables.
They are treated like any of the other parameters: i.e. are assumed to be random
variables to be estimated from the observations by fitting a model. Parameter es-
timation in the frequency domain is best done by fitting models using χ2 statistics
(least squares). The present package contains just one such model, namely Fourier
series (pyaov.fouw). However, note that with its non-linear least squares fitting
package, pylab offers very versatile, dedicated tools for model fitting.

In the time domain, the most important parameters to be estimated from the
data are the correlation length of and time lag between the input signals. This
measurement can be done with the command pyaov.peak. The correlation
length can be obtained as the width of the line centered at zero lag. The time lag
can be measured as the center of the corresponding line in the ACF.

4.6 Presentation and inspection of results
A simple way to graphically present the results of a TSA is to plot the test statistics
S against its parameter ν or l, depending on whether the analysis was performed
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in the frequency or time domain. Plots in the frequency domain are called pe-
riodograms. In them, oscillations are revealed by the presence of spectral lines.
However, some (often many) lines are spurious and simply arise from random
fluctuations of the signal. By means of the confidence level α and the probabil-
ity distribution of S one can find the critical value S crit for significant features.
Examples of statistics used in the time domain are covariance and correlation
functions. The correlation of a signal with itself or with another signal produces
maxima in these functions at particular lags. Detection of genuine lags then con-
sists of testing the significance of such maxima.

5 Python utilities for time series analysis
In this section we describe the functioning of the Python time series analysis
(TSA) package. For a detailed description of syntax and usage we refer the reader
to the respective help information. We precede the command description with the
description of the scope of the applications and the structure of the TSA input and
output files and of the keywords holding the relevant parameters.

5.1 Scope of applications
Our package is well suited to the analysis of small to modest sized data sets, with
no regard to the sampling which may be even or uneven. Thus our package suits
astronomers who often have to deal with unevenly sampled observations well.
One of the advantages of the package is the availability of tools for a statistical
evaluation of the results.

Data sets containing many observations but covering only few cycles and/or
characteristic time intervals can be reduced in number by averaging or decima-
tion, usually with little loss of information. However, the analysis of very ex-
tensive datasets, which cover many cycles, contain, say, over 10 5 observations
and/or are sampled evenly, is more demanding in terms of computing efficiency
than in the choice of the method. With the present package, python offers an
excellent general purpose environment and a variety of tools for the analysis of
astronomical data. Any overheads are minimal as computing-intensive routines
are implemented in f95 and pyton wrappers are used only to pass parameters.
Very large data sets usually concern important problems and therefore deserve
extra attention in the analysis. For such cases any extra overhead is undesirable,
whereas extra efficiency can be gained from specialized algorithms implemented
as purpose-built standalone codes. One important class of such specialized algo-
rithms not covered here is based upon the fast Fourier transform technique (see
e.g. Bloomfield, 1976, Press and Rybicki, 1991).
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5.2 The TSA environment
Before any of the commands of the pyaov package can be used in python, the
package must be enabled by issuing import pyaov command. Some parame-
ters are optional and can be skipped by call. If on a command line a parameter is
omitted, it assumes the default value indicated after = sign in command descrip-
tion.

5.3 Input & Output Data
To read an ascii file with numerical data in python, use load command.

from pylab import load
x = load(’ascii.dat’, comments=’!’, skiprows=2)

Above one also specifies a characted that is used to recognize disregarded
comment lines (default character is ’#’) and one skips the first two lines. The rest
of the file should have numerical data, same number of columns on each line. The
result is returned as an array of numbers. For example, x[:,0] will be the first
column and x[-1,:] the last row read from the file. A numeric array can again
be written as an ascii file by using save

from pylab import save
save(’ascii.out’, x)

With additional arguments one can specify, for example, the formatting used
in the writing of the numerical values.Python supports flexible, on the run data
conversion. All data are considered float or double precision in case of times.
Some command parameters are integers or strings.

5.4 Fourier analysis
Orthogonality of Fourier harmonics in the sense of Eq. (1) holds only for even
spaced observations and suitable FFT frequency grid. In consequence of non-
orthogonality for uneven sampled observations, results of Fourier analysis are
non-optimal as they suffer more from noise interference as do the orthogonal
methods discussed later. Only for pure sine model this drawback could be re-
moved by using Lomb-Scargle (LS) periodogram (Lomb 1976Scargle 1982). The
LS periodogram is provided here as a special case of more general multi-harmonic
AOV periodogram. However, we provide belof the Power Spectrum and Fourier
series fit routines as they serve two important applications. Namely, time sampling
pattern is best evaluated by means of window function calculated with pyaovpspw.
The next versatile routine, pyaov.fouw, needs preliminary value of frequency
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and serves for such purposes as: improvement of period accuracy, calculation of
Fourier coefficients and pre-whitening data with the given period or trend removal.
However, for basic tasks of periodogram analysis one should employ methods of
the next section.

pyaov.pspw – Discrete Power Spectrum (DPS): th,fr,frmax=pyaov.pspw(time,
valin, error, fstop, fstep, fr0=0.) This command com-
putes the DPS for unevenly sampled data. This implementation has rare
property of beeing able to account for weights/errors of measurements.
Generally power spectrum is not optimal for period analysis, because lack
of its model orthogonality in the sense of Eq. (1). One important application
of this routine is to calculate window function for evaluation of time sam-
pling pattern. For this particular application, set all data values in column
valin to 1 and then in pyaov.amhw apply pyaov.pspw. The result-
ing power spectrum is the window function of the data set. The advantage
of PS stems directly from its excess sensitivity to poor sampling patterns.
Excellent discussion of PS and its relevance for different types of signals is
by Deeming (1975).

pyaov.fouw – Fourier series fit: Basicaly this routine fits data with a Fourier
series for or a given frequency. This initial frequency value may be obtained
by call of a periodogram routine and/or pyaov.peak. The returned values
are Fourier coefficients and their errors. The value of frequency may be
further refined by nonlinear LSQ iterations and its error is estimated. The
corresponding value ofχ2 may in principle be recovered from the standard
deviation σ0 =

√
χ2(df)/df , where df = no − n∥ and n0 and n⊥ are the

number of observations and the number of Fourier coefficients (including
the mean value), respectively.

Supply negative value of frequency to prevent its adjustment. This versatile
command may be used not just for parameter estimation but also for data
massaging, to remove a given frequency from the data by prewhitening or
just for trend removal (high pass filtering). For the latter purpose choose
a low value for frequency, so that only few cycles cover the time interval
spanned by the observations. Specify just 1 iteration, so that the routine
does not attempt a frequency correction. Subtraction of such data from
the raw data returns the fitted trend (low pass filtering). The results are
in a format suitable for renewed input to the other frequency domain TSA
commands.

The returned vector of residuals is obtained by subtraction of this Fourier se-
ries from the data. It may serve several purposes. LSQ are known to grossly
underestimate frequency errors for correlated observations. To avoid that,
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analyse the returned vector of residuals with pyaov.totals routine to
find number of sign changes and hence the average number of consecutive
correlated observations ncorr as explained in (Sect. 3.3). To obtain realistic
estimates multiply the errors by

√
ncorr (Schwarzenberg-Czerny, 1991).

Residuals may be again analysed by any method supported by the TSA
package. In this way, the command can be used to perform pre-whitening
and a CLEAN-like analysis by manually removing individual oscillations
one by one in the time domain (see Gray & Desikachary 1973, Roberts et
al. 1987).

pyaov.perw – trig polynomials fit: Basicaly for or a given frequency this rou-
tine fits data with a series of trigonometric orthogonal polynomials. Thus
it resembles pyaov.fouw, yet should be more robust for its fit involves
diagonal covariance matrix. The initial frequency value may be obtained by
call of a periodogram routine and/or pyaov.peak. The returned values
are Fourier coefficients and their errors. The value of frequency may be fur-
ther refined within the procedure by recomputing of the periodogram and
finding its new peak.

5.5 Time series analysis in the frequency domain
The AOV periodograms already have been in use over 20 years as they found
application in half thousend papers. Basing on accumulated experience and the-
oretical analysis of test power we recommend for smooth signals, e.g. sinusoids,
use of either pyaov.amhwwith nh2=2 or 4, or pyaov.aovwwith nh2=3 or 5
bins. The former routine is 10 times slower yet has slightly better statistical prop-
erties. The latter was already used for analysis over 105 stellar light curves and
proved fast and reliable. The sensitivity of these statistics to sharp signals (such as
strongly pulsed variations or light curves of very wide eclipsing binaries) is poor.
For the detection of such signals better use pyaov.amhw or pyaov.aovw with
the width of these features matched by the width of the of the top harmonics or
the width of a phase bin, respectively. The command pyaov.fouw serves two
purposes: a) least squares estimation of the parameters of a detected signal and
b) filtering the data for a given frequency (so-called prewhitening). The trend
removal (zero frequency) constitutes a special case of this filtering. For a pure
sinusoid model, the χ2 statistic used in pyaov.fouw is related to that used in
Lomb-Scargle (Lomb, 1976, Scargle, 1982).

pyaov.amhw – Multiharmonic analysis of variance periodogram: The com-
mand computes the analysis of variance (AOV) periodogram for fitting data
with a (multiharmonic) Fourier series. The fit of the Fourier series is done
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by a new efficient algorithm, employing projection onto orthogonal trigono-
metric polynomials. The results of the fit are evaluated using the AOV
statistics, a powerful method newly adapted for the time series analysis
(Schwarzenberg-Czerny, 1996, 1989). The model used in this method is
the Fourier series of n harmonics. The resolution of the method may be
tuned by change of n. Hence it is the method of choice for both smooth and
sharp signals. The AOV statistic is the ratio S(ν) = V ar∥ = V ar⊥. The
distribution of S for white noise (H0 hypothesis) and nj order bins is the
Fisher-Snedecor distribution F (2n+ 1;no − 2, n− 1). The expected value
of the AOV statistics for pure noise is 1 for uncorrelated observations and
ncorr for observations correlated in groups of size ncorr.

Lomb-Scargle– (LS) periodogram is obtained by call of pyaov.amhwwith
nh2=2. The returned periodogram is of ΘAOV type. In principle it may be
converted to its traditional Θ∥ by use of Eq. (3). This should be seldom
needed, as we demonstrated in Sect. 2.3 that any statistical conclusions
drawn from them must be entirely equivalent. The slight yet important dif-
ference between DPS and LS periodograms stems from selection of oscil-
lation phase so that sine and cosine model functions become orthogonal.
The pyaov.amhw implementation of LS is improved as it involves further
correction for orthogonal fit of data with an additive constant as argued by
Ferraz-Mello (1981). In some applications this has a small effect, yet Foster
(1995) (his Fig. 1.) provides an example of data when despite mean sub-
traction, fit of a constant has profound effect. We recommend this version of
pyaov.amhw periodogram for the detection of smooth, nearly sinusoidal
signals, since then its test power is large and the statistical properties are
known. In particular the expected value is 1. For observations correlated in
groups of size ncorr, divide the value of LS statistics by ncorr (Sect. 3.3).

pyaov.aovw – Analysis of variance for phase bins: This routine computes the
analysis of variance (AOV) periodogram for phase folded and binned data.
Depending on choice of nh2=3 or nh2 large the AOV method is suitable
respectively either for smooth or sharp, nonsinusoidal signals (Schwarzenberg-
Czerny, 1989). Its slight statistical inefficiency in comparison to pyaov.amhw
stems from use of the step function model, i.e. phase binning. Such a model
does not fit exacly observed light curves. However, in most applications the
speed of the AOV routine more than offsets any drawbacks. Its operation
count O(nnν), where n and nν denote number of observations and frequen-
cies, remains at least factor 10 less than that of pyaov.amhw. In fact in
application to typical astronomical data spanning seasonal gaps the binned
AOV algorithm is the fastest available as it beats even FFT due to avoidance
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of calculations in the gap.

For observations correlated in groups of size ncorr, divide the value of LS
statistics by ncorr (Sect. 3.3). As indicated in Table 1 the AOV peri-
odograms of both pyaov.amhwand pyaov.aovw have distinct advan-
tage in obeying F analytical probability distribution with well known sta-
tistical properties, for small samples too. On large samples, AOV is not
less sensitive than other statistics using phase binning, i.e. the step function
model: χ2 , Whittaker & Roberts and PDM. Therefore we recommend the
pyaov.amhwand pyaov.aovw commands with matching larger nh2 for
samples of all sizes and particularly for signals with narrow sharp features
(pulses, eclipses). For numerous observations and sharp light curves use
phase bins of width comparable to that of the narrow features (e.g. pulses,
eclipses). For peaks/eclipses lasting fraction ϵ of the period, use nh2 of
order 1/ϵ. For smooth light curves use low order, 2 ≤ nh2 ≤ 6, for optimal
sensitivity.

Note that for any periodogram phase coverage and consequently quality of
the statistics near 0 frequency are notoriously poor for most observations.

pyaov.atrw – Analysis of variance for planetary transits/eclipses: This pro-
cedure consits a powerfull variant of aovw employing only two unequal
size phase bins. The smaller one is selected to coincide with en eclipse/planetary
transit in the light curve (Schwarzenberg-Czerny & Beaulieu, 2006). In ef-
fect this routine implements the box-like eclipse model in the very economic
way. To our knowledge, current method remains the only one with known
analytical properties of its probability distribution and sensitivity, while it
is not surpassed in terms of sensitivity and speed by any competition. This
analitical results enabled evaluation of the cost involved in commonly used
box-like model profile as compared to the realistic profile. The effect is
equivalent to loss of mere 5% in-transit observations.

This detection method is particularly powerfull in application to light curves
pre-filtered of any variations on the scale longer than the transit duration.
Then variance of the data in the large bin becomes minimal, aiding detection
od departures in the small bin. For best results choose such nh2 that 1/nh2
matches the transit duty cycle (width-to-period ratio). Remember, that the
probability derived from ΘAOV returned by this routine has to be multiplied
by nh2 to account for multiplicity of transit phases.
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5.6 Analysis in the time domain
The commands pyaov.covar serves for the calculation of the covariance and
autocovariance functions. Pairs of signals with matching ACF functions may be
analysed further with pyaov.delay. Matching ACF functions may be obtained
for some data after some massaging.

pyaov.covar – Covariance analysis: This command computes the discrete
covariance function for unevenly sampled data. Alexander (1997) method
is used for the estimation of the cross correlation function (CCF) of un-
evenly sampled series. The binned covariance function is returned with its
gaussian errors. Significant are the portions of the curve differing from 0 by
more than a number of standard deviations. This command can also be used
for the calculation of the autocovariance function (ACF) by simply using
the same series for the two input data sets. Here one shifted series is used
as a model for the other. The covariance statistic is used to evaluate the
consistency of the two series. The covariance statistics is akin to the power
spectrum statistics and hence to the χ2 statistics (Sect. 4.2). The number of
degrees of freedom varies among time lag bins. Thus, in order to facilitate
the evaluation of the results, errors of the ACF are returned. The expected
value of the ACF for pure noise is zero. The value returned for 0 lag cor-
responds to the correlation of nearby but not identical observations. This
is so because the correlation of any observation with itself is ignored in the
present algorithm, for numerical reasons. The correlation function for a lag
identical to zero can be easily computed as the signal variance.

5.7 Auxiliary utilities
The following commands implement auxiliary utilities for time series analysis:

pyaov.grid – Frequency grid: The frequency grid suitable for the analysis
of evenly sampled observations is well determined. However, for uneven
sampling no simple rules exist in general. pyaov.grid may be used to
find a reasonable guess for the frequency grid. The returned parameters
of the frequency grid may be subsequently used in calls of the periodogram
routines amhw, aovw .... pyaov.gridmay err, as usual in guessing;
its results must be checked for consistency. pyaov.covar – Correlation
length: The statistical evaluation of TSA results rests on the assumption that
the noise in the data is white noise. However, quite often this assumption
is wrong. One way to test its justification is to compute the residuals from
the model fit (e.g. by using pyaov.fouw) and to examine the correlation
length in the residuals from the autocorrelation function (ACF; computed
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with pyaov.covar). The average number of observations per correlation
length is the average number of correlated observations ncorr . For white
noise this number should be of order 1.

pyaov.normalize – Normalize mean & variance: Normalize mean and (op-
tionally) variance of a column to 0 and 1, respectively. Subtraction of the
average value from the data is always recommended for numerical reasons.
Certain commands will not work correctly for large mean values. Normal-
ization of the variances to the same unit value is required for pyaov.delay.
Note the same error of values must be is used for weighting of both times
and values of observations.

pyaov.peak – Find peak and return its parameters: This simple routine fits
a parabola to top 3 points of input vector and returns peak position and value
as well as its half width at the continuum level. The continuum iscalculated
as mediane of input.

pyaov.pldat Plot time-value data: pldat(time, value)

pyaov.plper Plot periodogram and phase folded data: plper(frmax, time, value,
fre qs, th)
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6 Command summary
amhw th,fr,frmax=pyaov.amhw(time,valin,error,fstop,fstep,

nh2=3,fr0=0.)
Compute multiharmonic analysis of variance periodogram (Sect. 5.5).

aovw th,fr,frmax=pyaov.aovw(time,valin,error,fstop,fstep,
nh2=3,fr0=0.,ncov=2)
Compute analysis of variance periodogram (Sect. 5.5).

atrw th,fr,frmax=pyaov.atrw(time,amplitude,error,fstop, fstep,
nh2=30,fr0=0.,ncov=2)
Calculate box-like function AOV periodogram for detection of planetary transits
and eclipses (Sect. 5.5).

covar lav,lmi,lmx,cc,cmi,cmx=pyaov.covar(t1,d1,v1,t2,d2,v2,
nct=11,eps=0.0,iscale=0,ifunct=0)
Compute discrete covariance function for unevenly sampled data (Sect. 5.6).

fgrid fstop,fstep,fr0=pyaov.fgrid(time)
Evaluate frequency band for time series analysis (Sect. 5.7).

fouw fr,valout,cof,dcof=pyaov.fouw(time,valin,error,frin, bacgnd=0.,nh2=2)
Fit ordinary Fourier series with adjustment of frequency,if required (Sect. 5.4).

perw fr,valout=pyaov.perw(time,valin,error,frin, bacgnd=0.,nh2=2)
Fit trig orthogonal polynomial series with adjustment of frequency, if required
(Sect. 5.4).

normalize y = normalize(x, error, mean=0.,var=1.)
Normalize weighted mean and (optionally) variance to 0 and 1,respectively (Sect.
5.7). Note the same error of values must be used for weighting of both times and
values of observations.

peak xm,fm,dx = pyaov.peak(fx)
Evaluate spectral line width and profile (Sect. 5.7).

pldat pldat(time,value)
Plot time-value data (Sect. 5.7).

plper plper(frmax,time,value, freqs,th)
Plot periodogram and phase folded data (Sect. 5.7).

pspw th,fr,frmax=pyaov.pspw(time,valin,error,fstop, fstep, fr0=0.)
Compute discrete power spectrum for uneven sampling by slow method (Sect. 5.4).

totals pyaov.totals(x)
Prints some general characteristics of input vector (Sect. 5.7).
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7 Examples

7.1 Period analysis
Let us assume that file ex1.dat contains observations of a periodic phenomenon.
Note that to move to the next step you have to close currrent plot.

from pylab import *
import aov as _aov
import pyaov
o=mlab.load(’ex1.dat’,comments=’!’,skiprows=0)
od=pyaov.normalize(o[:,1],var=0.) # Subtract mean
fstop,fstep,fr0=pyaov.fgrid(o[:,0])# Find suitable frequency band
th,fr,frmax=pyaov.pspw(o[:,0],od*0.+1.,o[:,2],fstop,fstep)

# Compute window
pyaov.plper(0.,o[:,0],od,fr,th) # Plot spectral window (time & value ignored)
th,fr,frmax=pyaov.amhw(o[:,0],od,o[:,2],fstop,fstep,nh2=3)

# Calculate periodogram
pyaov.plper(frmax,o[:,0],od,fr,th) # Inspect periodogram &

# phase folded data
th,fr,frmax=pyaov.amhw(o[:,0],od,o[:,2],2.8,fstep/10.,nh2=3,fr0=2.7)
pyaov.plper(frmax,o[:,0],od,fr,th) # Inspect zoomed periodogram
#xm,fm,dx = pyaov.peak(fr) # Find periodogram peak parameters
fr0,dfr,od1,cof,dcof=pyaov.fouw(o[:,0],od,o[:,2],frmax, nh2=2)

# Remove one oscillation from data
th,fr,frmax=pyaov.amhw(o[:,0],od1,o[:,2],fstop,fstep,nh2=3)

# Periodogram of pre-whitened data
pyaov.plper(frmax,o[:,0],od1,fr,th)# Inspect this periodogram
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7.2 Comparison of two stochastic processes
Let the two files ex2a.dat and ex2b.dat contain light curves of two images
of a gravity lens, presumably similar yet shifted in time.

from pylab import *
import aov as _aov
import pyaov
from scipy.optimize import curve_fit
def acf(lag, *p):

return p[0]+p[1]*np.exp(-0.5*(lag/p[2])**2)

oa=mlab.load(’ex2a.dat’,comments=’!’,skiprows=0)
ob=mlab.load(’ex2b.dat’,comments=’!’,skiprows=0)
oad=pyaov.normalize(oa[:,1],var=0.) # Subtract mean from data A
obd=pyaov.normalize(ob[:,1],var=0.) # Subtract mean from data B
lav,lmi,lmx,cc,cmi,cmx=pyaov.covar(oa[:,0],oad,oa[:,2], \

oa[:,0],oad,oa[:,2],nct=20) # Compute autocov. of A
pyaov.pldat(lav,cc) # Plot autocovariance of A

p0 = np.array([0.,0.7,3.])
popt, pcov = curve_fit(acf, lav, cc, p0=p0)
print ’fitted ACF parameters:’
for i in range(p0.size):

print popt[i],’+/-’,np.sqrt(pcov[i,i])
lav,lmi,lmx,cc,cmi,cmx=pyaov.covar(ob[:,0],obd,ob[:,2], \

ob[:,0],obd,ob[:,2],nct=20) # Compute autocov. of B
pyaov.pldat(lav,cc) # Plot autocovariance of B
lav,lmi,lmx,cc,cmi,cmx=pyaov.covar(oa[:,0],oad,oa[:,2], \

ob[:,0],obd,ob[:,2],nct=20) # Compute crosscov. of A and B
pyaov.pldat(lav,cc) # Plot cross-covariance
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