
Basic Drive Commands
Welcome to your first lesson with Zumi!

🎉

 Before you begin machine
learning with Zumi, she needs help from you to learn how to go forward, reverse, left,
and right. Later in this lesson, you will learn how to make a custom remote control.

Import libraries
 The first step to running any code with Zumi will be to import libraries.
In other words, this cell imports all of Zumi’s necessary features, like the drive
commands, camera, or screen. If you don’t run this cell, the rest of your program won’t
work! You only need to run the following cell once in each lesson, unless you restart
the Jupyter Notebook.

In []:

from zumi.zumi import Zumi
import time

zumi = Zumi()

Drive Commands

 Zumi uses functions to drive. In this lesson, we will go more in-depth
with what functions are, what they do, and how you can use them to create your
remote control.

What are functions?
 To make Zumi drive, we need to use some functions. Think of functions
as packages of code that you can use to make your program more efficient. They can
take inputs and can have outputs.

Zumi functions
Below is a list of the basic drive functions:

forward(): Drive forward in the direction Zumi is facing at speed 40
for 1 second
reverse(): Reverse in the direction Zumi is facing at speed 40 for 1
second
turn_left(): Pivot 90 degrees to the left
turn_right(): Pivot 90 degrees to the right

How to call functions

 In computer science, calling anything is basically asking it to
run. Functions must be called using the object name, which in this case is
zumi.

The cell below has an example using the forward() function. Zumi will
drive forward for one second, so make sure you have enough space in its
area!

In []:

zumi.forward()

 Now try going in reverse...

In []:

TODO Write code so Zumi reverses for 1 second

Let's go over the next two functions. Calling turn_left() and
turn_right() will cause Zumi to turn to the left or turn to the right.
Test this code below and then add more commands in any order to see
what happens. If you want to have some time between each command,
include a time.sleep(seconds) to delay the program for the specified
number of seconds. Run the code below to see how this works, and then
try adding some more commands to the code.

In []:

zumi.forward() # Drive forward for 1 second then stop
time.sleep(2) # Wait 2 seconds
zumi.turn_right() # Turn right 90 degrees
Add more code here!

Parameters
 At this point, you may want to change the duration,
direction, and speed that Zumi drives forward. Some functions will allow
you to input parameters, which are extra pieces of information that allow
you to further customize your function for your needs. Right now
forward() has a default speed, duration, and direction, but you can alter
the parameters to change how fast Zumi drives, as well as for how long in a
certain direction.

We’re going to skip changing Zumi’s direction since it requires some more
understanding of Zumi's sensors, but you can change the speed and
duration by defining them inside of the function call. In the cell below, the
code has been modified to reduce the speed to 30 and drive for 2 seconds.
Make sure you have enough space!

In []:

zumi.forward(speed=30, duration=2)

 You can do the same for reverse. Change the speed and
duration for reverse()below:

In []:

TODO Modify reverse() to go at speed 20 for 3 seconds

Degrees
The functions turn_left() and turn_right() also have parameters
you can change. The default value is set to 90 degrees, but that value can
be changed as well.
The code below will have Zumi turn right 45 degrees instead of 90:

In []:

zumi.turn_right(45)

Try out the accuracy of the turns by testing different angles. Use this
diagram for reference if you need it! Zumi isn't perfect, so the actual angle
that Zumi stops at might be off by one or two degrees.

Note: There is another hidden default parameter in turn_right() and
turn_left(). When you call turn_left(45), you are actually calling
turn_left(desired_angle=45, duration=1). The duration is what
determines how much time Zumi has to complete that turn. One second is
enough time for smaller turns, but what if you wanted to turn 135 degrees?
You will also have to increase the time that Zumi needs to make the turn.
zumi.turn_left(120, 1.5)

Since Zumi is turning 120 degrees, you should increase the duration or
Zumi will not be able to finish. You may need to adjust the second
parameter because each Zumi is unique. Use the cell below to experiment
driving and making turns.

In []:

Test some code here

Recalibrating
If you find that Zumi isn't going straight, you may need to recalibrate. This
may happen if Zumi starts to overheat. Make sure you aren't picking up
Zumi and she is resting on a flat surface.

In []:

zumi.mpu.calibrate_MPU()

Now you know the basics! Use the cell below to test out some more code.
For an added challenge, use some materials around you to build a simple
obstacle course and write some code for Zumi to go through it without
hitting anything. In the next lesson you will learn how to combine the drive
commands with if statements to make your own remote control.

In []:

Write some more code here!

Extension Activities

Bridge Challenge

Build a bridge out of the object of your choice. However, this object should
be flat and relatively wide so Zumi’s wheels don’t get stuck. Popsicle sticks
will work well. Constraints like the degree of incline, height, width, and
number of popsicle sticks can be used. After building the bridge, see if a)
Zumi is able to cross it and/or b) if the bridge can support Zumi’s weight.
For an extra challenge, a payload can be added to Zumi.

Calculate Speed

Drive your Zumi for a certain distance or time while measuring the other.
Next, use the equation d=rt to find the rate of travel. Afterwards, graph your
results either and analyze the results. To incorporate physics, add a payload
to Zumi. How does this affect Zumi’s rate?

