Cornell University, Fall 2016 CS 6820: Algorithms
Lecture notes: Matchings 24 Aug—2 Sep

These notes analyze algorithms for optimization problems involving matchings in bipar-
tite graphs. Matching algorithms are not only useful in their own right (e.g., for matching
clients to servers in a network, or buyers to sellers in a market) but also furnish a concrete
starting point for learning many of the recurring themes in the theory of graph algorithms
and algorithms in general. Examples of such themes are augmenting paths, linear program-
ming relaxations, and primal-dual algorithm design.

1 Bipartite maximum matching

In this section we introduce the bipartite maximum matching problem, present a naive
algorithm with O(mn) running time, and then present and analyze an algorithm due to
Hopcroft and Karp that improves the running time to O(m+/n).

1.1 Definitions

Definition 1. A matching in an undirected graph is a set of edges such that no vertex
belongs to more than element of the set.

When we write a bipartite graph G as an ordered triple G = (U, V, E), the notation
means that U and V' are disjoint sets constituting a partition of the vertices of G, and that
every edge of G has one endpoint (the left endpoint) in U and the other endpoint (the right
endpoint) in V.

Definition 2. The bipartite maximum matching problem is the problem of computing a
matching of maximum cardinality in a bipartite graph.

We will assume that the input to the bipartite maximum matching problem, G =
(U, V, E), is given in its adjacency list representation, and that the bipartition of G—that is,
the partition of the vertex set into U and V—is given as part of the input to the problem.

Exercise 1. Prove that if the bipartition is not given as part of the input, it can be con-
structed from the adjacency list representation of G in linear time.

(Here and elsewhere in the lecture notes for CS 6820, we will present exercises that may
improve your understanding. You are encouraged to attempt to solve these exercises, but
they are not homework problems and we will make no effort to check if you have solved
them, much less grade your solutions.)

1.2 Alternating paths and cycles; augmenting paths

The following sequence of definitions builds up to the notion of an augmenting path, which
plays a central role in the design of algorithms for the bipartite maximum matching problem.

Definition 3. If G is a graph and M is a matching in G, a vertex is called matched if it
belongs to one of the edges in M, and free otherwise.

An alternating component with respect to M (also called an M -alternating component)
is an edge set that forms a connected subgraph of G' of maximum degree 2 (i.e., a path or
cycle), in which every degree-2 vertex belongs to exactly one edge of M. An augmenting path
with respect to M is an M-alternating component which is a path both of whose endpoints
are free vertices.

In the following lemma, and throughout these notes, we use the notation A& B to denote
the symmetric difference of two sets A and B, i.e. the set of all elements that belong to one
of the sets but not the other.

Lemma 1. If M is a matching and P is an augmenting path with respect to M, then M & P
15 a matching containing one more edge than M.

Proof. P has an odd number of edges, and its edges alternate between belonging to M and
its complement, starting and ending with the latter. Therefore, M & P has one more edge
than M. To see that it is a matching, note that vertices in the complement of P have the
same set of neighbors in M as in M & P, and vertices in P have exactly one neighbor in
Mo P. O

Lemma 2. A matching M in a graph G is a maximum cardinality matching if and only if
it has no augmenting path.

Proof. We have seen in that if M has an augmenting path, then it does not have
maximum cardinality, so we need only prove the converse. Suppose that M* is a matching
of maximum cardinality and that |M| < |M*|. The edge set M & M* has maximum degree
2, and each vertex of degree 2 in M & M* belongs to exactly one edge of M. Therefore
each connected component of M @& M* is an M-alternating component. At least one such
component must contain more edges of M* than of M. It cannot be an alternating cycle
or an even-length alternating path; these have an equal number of edges of M* and M. It
also cannot be an odd-length alternating path that starts and ends in M. Therefore it must
be an odd-length alternating path that starts and ends in M*. Since both endpoints of this
path are free with respect to M, it is an M-augmenting path as desired. O

1.3 Bipartite maximum matching: Naive algorithm

The foregoing discussion suggests the following general scheme for designing a bipartite
maximum matching algorithm.

Algorithm 1 Naive iterative scheme for computing a maximum matching
1: Initialize M = (.
2: repeat

3: Find an augmenting path P with respect to M.

4

5

M+~ MeP
. until there is no augmenting with respect to M.

By [Lemma 1], the invariant that M is a matching is preserved at the end of each loop
iteration. Furthermore, each loop iteration increases the cardinality of M by 1, and the
cardinality cannot exceed n/2, where n is the number of vertices of G. Therefore, the
algorithm terminates after at most n/2 iterations. When it terminates, M is guaranteed to

be a maximum matching by [Lemma 2]

The algorithm is not yet fully specified because we have not indicated the procedure for
finding an augmenting path with respect to M. When G is a bipartite graph, there is a
simple linear-time procedure that we now describe.

Definition 4. If G = (U, V, E) is a bipartite graph and M is a matching, the graph D(G, M)
is the directed graph formed from G by orienting each edge from U to V' if it does not belong
to M, and from V to U otherwise.

Lemma 3. Suppose M is a matching in a bipartite graph G, and let F' denote the set of
free vertices. M -augmenting paths are in one-to-one correspondence with directed paths from

UNF toVNF in DG,M).

Proof. 1f P is a directed path from UN F to V N F in D(G, M) then P starts and ends at
free vertices, and its edges alternate between those that are directed from U to V' (which are
in the complement of M) and those that are directed from V to U (which are in M), so the
undirected edge set corresponding to P is an augmenting path.

Conversely, if P is an augmenting path, then each vertex in the interior of P belongs to
exactly one edge of M, so when we orient the edges of P as in D(G, M) each vertex in the
interior of P has exactly one incoming and one outgoing edge, i.e. P becomes a directed path.
This path has an odd number of edges so it has one endpoint in U and the other endpoint
in V. Both of these endpoints belong to F', by the definition of augmenting paths. Thus,
the directed edge set corresponding to P is a path in D(G, M) from UNF to VN F. O

implies that in each loop iteration of [Algorithm 1] the step that requires

finding an augmenting path (if one exists) can be implemented by building the auxiliary
graph D(G, M) and running a graph search algorithm such as BFS or DFS to search for a
path from UNF to VN F. Building D(G, M) takes O(m +n) time, where m is the number
of edges in G, as does searching D(G, M) using BFS or DFS. For convenience, assume
m > n/2; otherwise G contains isolated vertices which may be eliminated in a preprocessing

step requiring only O(n) time. Then [Algorithm 1| runs for at most n/2 iterations, each
requiring O(m) time, so its running time is O(mn).

Remark 1. When G is not bipartite, our analysis of still proves that it finds a
maximum matching after at most n/2 iterations. However, the task of finding an augmenting

3

path, if one exists, is much more subtle. The first polynomial-time algorithm for finding an
augmenting path was discovered by Jack Edmonds in a 1965 paper entitled “Paths, Trees,
and Flowers” that is one of the most influential papers in the history of combinatorial
optimization. Edmonds’ algorithm finds an augmenting path in O(mn) time, leading to a
running time of O(mn?) for finding a maximum matching in a non-bipartite graph. Faster
algorithms have subsequently been discovered.

1.4 The Hopcroft-Karp algorithm

One potentially wasteful aspeect of the naive algorithm for bipartite maximum matching
is that it chooses one augmenting path in each iteration, even if it finds many augmenting
paths in the process of searching the auxiliary graph D(G, M). The Hopcroft-Karp algorithm
improves the running time of the naive algorithm by correcting this wasteful aspect; in each
iteration it attempts to find many disjoint augmenting paths, and it uses all of them to
increase the size of M.

The following definition specifies the type of structure that the algorithm searches for in
each iteration.

Definition 5. If G is a graph and M is a maximum matching, a blocking set of augmenting
paths with respect to M is a set {Py, ..., Py} of augmenting paths such that:

1. the paths Py, ..., P, are vertex disjoint;

2. they all have the same length, /;

3. £ is the minimum length of an M-augmenting path;

4. every augmenting path of length ¢ has at least one vertex in common with P, U- - -U P.

In other words, a blocking set of augmenting paths is a (setwise) maximal collection of
vertex-disjoint minimum-length augmenting paths.

The following lemma generalizes and its proof is a direct generalization of the
proof of that lemma.

Lemma 4. If M is a matching and { Py, ..., Py} is any set of vertex-disjoint M -augmenting
paths then M & Py @ Py & - -+ @& Py is a matching of cardinality |M| + k.

Generalizing we have the following.

Lemma 5. Suppose G is a graph, M is a matching in G, and M* is a mazimum matching;
let k = |M*| —|M]|. The edge set M & M* contains at least k vertez-disjoint M -augmenting
paths. Consequently, G has at least one M-augmenting path of length less than n/k, where
n denotes the number of vertices of G.

Proof. The edge set M & M* has maximum degree 2, and each vertex of degree 2 in M & M*
belongs to exactly one edge of M. Therefore each connected component of M @& M* is an
M-alternating component. Each M-alternating component which is not an augmenting path
has at least as many edges in M as in M*. Each M-augmenting path has exactly one fewer
edge in M as in M*. Therefore, at least k of the connected components of M & M* must

be M-augmenting paths, and they are all vertex-disjoint. To prove the final sentence of the
lemma, note that G has only n vertices, so it cannot have k disjoint subgraphs each with
more than n/k vertices. O

These lemmas suggest the following method for finding a maximum matching in a graph,
which constitutes the outer loop of the Hopcroft-Karp algorithm.

Algorithm 2 Hopcroft-Karp algorithm, outer loop
1: M=10
2: repeat
3: Let {Py,..., Py} be a blocking set of augmenting paths with respect to M.
4
5

M—~MoP&P® - &P
. until there is no augmenting path with respect to M

The key to the improved running-time guarantee is the following pair of lemmas which
culminate in an improved bound on the number of outer-loop iterations.

Lemma 6. The minimum length of an M-augmenting path strictly increases after each
iteration of the Hopcroft-Karp outer loop in which a non-empty blocking set of augmenting
paths is found.

Proof. We will use the following notation.

M = matching at the start of one loop iteration
Py, ..., P, = blocking set of augmenting paths found

Q=P U---UPF
R=E\Q

M' = M & @ = matching at the end of the iteration

F = {vertices that are free with respect to M}

F" = {vertices that are free with respect to M'}

d(v) = length of shortest path in D(G, M) from U N F to v
(If no such path exists, d(v) = c0.)

If (z,y) is any edge of D(G, M) then d(y) < d(z) + 1. Edges of D(G, M) that satisfy
d(y) = d(z) + 1 will be called advancing edges, and all other edges will be called retreating
edges. Note that a shortest path in D(G, M) from U N F to any vertex v must be formed
entirely from advancing edges. In particular, () is contained in the set of advancing edges.

In the edge set of D(G,M’), the orientation of every edge in @ is reversed and the
orientation of every edge in R is preserved. Therefore, D(G, M') has three types of directed
edges (z,y):

1. reversed edges of @, which satisfy d(y) = d(z) — 1;

2. advancing edges of R, which satisfy d(y) = d(z) + 1;

3. retreating edges of R, with satisfy d(y) < d(x).

ot

Note that in all three cases, the inequality d(y) < d(z) + 1 is satisfied.

Now let ¢ denote the minimum length of an augmenting path with respect to M, i.e.
¢ = min{d(v) | v € VN F}. Let P be any path in D(G, M’) from U N F’ to VN F'. The
lemma asserts that P has at least ¢ edges. The endpoints of P are free in M’, hence also
in M. As w ranges over the vertices of P, the value d(w) increases from 0 to at least ¢,
and each edge of P increases the value of d(w) by at most 1. Therefore P has at least ¢
edges, and the only way that it can have ¢ edges is if d(y) = d(x) 4+ 1 for each edge (x,y)
of P. We have seen that this implies that P is contained in the set of advancing edges of
R, and in particular P is edge-disjoint from (). It cannot be vertex-disjoint from () because
then {Py, ..., P, P} would be a set of k + 1 vertex-disjoint minimum-length M-augmenting
paths, violating our assumption that {Py, ..., Py} is a blocking set. Therefore P has at least
one vertex in common with P, ..., P, i.e. PN Q # (. The endpoints of P cannot belong
to @, because they are free in M’ whereas every vertex in () is matched in M’. Let w be a
vertex in the interior of P which belongs to). The edge of M’ containing w belongs to P,
but it also belongs to). This violates our earlier conclusion that P is edge-disjoint from (),
yielding the desired contradiction. O

Lemma 7. The Hopcroft-Karp algorithm terminates after fewer than 2+/n iterations of its
outer loop.

Proof. After the first \/n iterations of the outer loop are complete, the minimum length of
an M-augmenting path is greater than /n. This implies, by , that |M*| — |[M| <
Vv/n, where M* denotes a maximum cardinality matching. Each remaining iteration strictly
increases | M|, hence there are fewer than y/n iterations remaining. O

The inner loop of the Hopcroft-Karp algorithm must compute a blocking set of augment-
ing paths with respect to M. We now describe how to do this in linear time.

Recalling the distance labels d(v) defined in the proof of d(v) is the length of
the shortest alternating path from a free vertex in U to v; if no such path exists d(v) = co.
Recall also that an advancing edge in D(G, M) is an edge (z,y) such that d(y) = d(z) + 1,
and that every minimum-length M-augmenting path is composed exclusively of advancing
edges. The Hopcroft-Karp inner loop begins by performing a breadth-first search to compute
the distance labels d(v), along with the set A of advancing edges and a counter ¢(v) for each
vertex that counts the number of incoming advancing edges at v, i.e. advancing edges of the
form (u,v) for some vertex u. It sets £ to be the minimum length of an M-augmenting path
(equivalently, the minimum of d(v) over all v € V' N F'), marks every vertex as unexplored,
and repeatedly finds augmenting paths using the following procedure. Start at an unexplored
vertex v in V' N F such that d(v) = ¢, and trace backward along incoming edges in A until a
vertex u with d(u) = 0 is reached. Add this path P to the blocking set and add its vertices
to a “garbage collection” queue. While the garbage collection queue is non-empty, remove
the vertex v at the head of the queue, mark it as explored, and delete its incident edges
(both outgoing and incoming) from A. When deleting an outgoing edge (v,w), decrement
the counter c¢(w), and if ¢(w) is now equal to 0, then add u to the garbage collection queue.

The inner loop performs only a constant number of operations per edge — traversing it
during the BFS that creates the set A, traversing it while creating the blocking set of paths,

deleting it from A during garbage collection, and decrementing its tail’s counter during
garbage collection — and a constant number of operations per vertex: visiting it during the
BF'S that creates the set A, initializing d(v) and c(v), visiting it during the search for the
blocking set of paths, marking it as explored, inserting it into the garbage collection queue,
and removing it from that queue. Therefore, the entire inner loop runs in linear time.

By design, the algorithm discovers a set of minimum-length M-augmenting paths that are
vertex disjoint, so we need only prove that this set is maximal. By induction on the number
of augmenting paths the algorithm has discovered, the following invariants hold whenever
the garbage collection queue is empty.

1. For every vertex v, ¢(v) counts the number of advancing edges (u,v) that have not yet
been deleted from A.

2. Whenever an edge e is deleted or a vertex v is placed into the garbage collection queue,
any path made up of advancing edges that starts in U N F' and includes edge e or vertex
v must have a vertex in common with the selected set of paths.

3. For every unmarked vertex v, ¢(v) > 0 and there exists a path in A from U N F to v.
(The existence of such a path follows by tracing backwards along edges of A from v to
a vertex u such that d(u) = 0.)

The third invariant ensures that whenever the algorithm starts searching for an augmenting
path at an unmarked free vertex, it is guaranteed to find such a path. The second invariant
ensures that when there are no longer any unmarked free vertices v with d(v) = ¢, the set of
advancing edges no longer contains a path from U N F to V N F that is vertex-disjoint from
the selected ones; thus, the selected set forms a blocking set of augmenting paths as desired.

2 Bipartite min-cost perfect matching and its LP re-
laxation

In the bipartite minimum-cost perfect matching problem, we are given an undirected bipar-
tite graph G = (U, V, E) as before, together with a (non-negative, real-valued) cost ¢, for
each edge e € E. Let c(u,v) = ¢ if e = (u,v) is an edge of G, and c(u,v) = oo otherwise.
As always, let n denote the number of vertices and m the number of edges of G.

A perfect matching M can be described by a matrix (x,,) of 0’s and 1’s, where z,, = 1 if
and only if (u,v) € M. The sum of the entries in each row and column of this matrix equals
1, since each vertex belongs to exactly one element of M. Conversely, for any matrix with
{0, 1}-valued entries, if each row sum and column sum is equal to 1, then the corresponding
set of edges is a perfect matching. Thus, the bipartite minimum-cost matching problem can
be expressed as follows.

min Y c(u, V) Ty

st D, Tuw =1 Yu
Y ou Ty =1 Yo
Ty €{0,1} Yu, v

7

This is a discrete optimization problem because of the constraint that x,, € {0,1}. Although
we already know how to solve this discrete optimization problem in polynomial time, many
other such problems are not known to have any polynomial-time solution. It’s often both
interesting and useful to consider what happens when we relax the constraint z,, € {0,1} to
Ty 2> 0, allowing the variables to take any non-negative real value. This turns the problem
into a continuous optimization problem, in fact a linear program.

min Y c(u, V)T

st D, Ty =1 Yu
Yo Ty =1 You
Tuw > 0 Yu, v

How should we think about a matrix of values x,, satisfying the constraints of this linear
program? We've seen that if the values are integers, then it represents a perfect matching.
A general solution of this constraint set can be regarded as a fractional perfect matching.
What does a fractional perfect matching look like? An example is illustrated in Figure [I}
Is it possible that this fractional perfect matching achieves a lower cost than any perfect

C Iléc C I/ZC

Figure 1: A fractional perfect matching.

matching? No, because it can be expressed as a convex combination of perfect matchings
(again, see Figure 1)) and consequently its cost is the weighted average of the costs of those
perfect matchings. In particular, at least one of those perfect matchings costs no more than
the fractional perfect matching illustrated on the left side of the figure. This state of affairs is
not a coincidence. The Birkhoff-von Neumann Theorem asserts that every fractional perfect
matching can be decomposed as a convex combination of perfect matchings. (Despite the
eminence of its namesakes, the theorem is actually quite easy to prove. You should try
finding a proof yourself, if you’ve never seen one.)

Now suppose we have an instance of bipartite minimum-cost perfect matching, and we
want to prove a lower bound on the optimum: we want to prove that every fractional perfect
matching has to cost at least a certain amount. How might we prove this? One way is to
run a minimum-cost perfect matching algorithm, look at its output, and declare this to be
a lower bound on the cost of any fractional perfect matching. (There exist polynomial-time
algorithms for minimum-cost perfect matching, as we will see later in this lecture.) By
the Birkhoff-von Neumann Theorem, this produces a valid lower bound, but it’s not very
satisfying. There’s another, much more direct, way to prove lower bounds on the cost of

every fractional perfect matching, by directly combining constraints of the linear program.
To illustrate this, consider the graph with edge costs as shown in Figure 2] Clearly, the

Figure 2: An instance of bipartite minimum cost perfect matching.

minimum cost perfect matching has cost 5. To prove that no fractional perfect matching
can cost less than 5, we combine some constraints of the linear program as follows.

2.1'11 + 21)21 = 2
—xrn — T2 = —1
4%12 + 41’22 = 4

Adding these constraints, we find that

Tr11 + 31‘12 + 21’21 + 4.1‘22 = 5 (1)
T11 + 33312 + 31‘21 + 4%22 2 5 (2)
Inequality is derived from because the only change we made on the left side was to
increase the coefficient of x9; from 2 to 3, and we know that z9; > 0. The left side of

is the cost of the fractional perfect matching m. We may conclude that the cost of every
fractional perfect matching is at least 5.

What’s the most general form of this technique? For every vertex w € U UV, the linear
program contains a “degree constraint” asserting that the degree of w in the fractional perfect
matching is equal to 1. For each degree constraint, we multiply its left and right sides by
some coeflicient to obtain

Zpuxuv = Pu
v

Z QuTyy = o

for some v € V. Then we sum all of these equations, obtaining

Z(pu + QU)xuv = Zpu + Z Q- (3)

U,V

for some u € U, or

If the inequality p, + ¢, < c(u,v) holds for every (u,v) € U x V, then in the final step of the
proof we (possibly) increase some of the coefficients on the left side of to obtain

D e, v) T =Y put Y,

u,v

9

thus obtaining a lower bound on the cost of every fractional perfect matching. This technique
works whenever the coefficients p,,, g, satisty p, +q, < c(z,y) for every edge (z,y), regardless
of whether the values p,, ¢, are positive or negative. To obtain the strongest possible lower
bound using this technique, we would set the coefficients p,, g, by solving the following linear
program.

max Zupu + Zv qy
st put g <clu,v) Yu,v

This linear program is called the dual of the min-cost-fractional-matching linear program.
We've seen that its optimum constitutes a lower bound on the optimum of the min-cost-
fractional-matching LP. For any linear program, one can follow the same train of thought
to develop a dual linear program. (There’s also a formal way of specifying the procedure; it
involves taking the transpose of the constraint matrix of the LP.) The dual of a minimization
problem is a maximization problem, and its optimum constitutes a lower bound on the
optimum of the minimization problem. This fact is called weak duality; as you've seen,
weak duality is nothing more than an assertion that we can obtain valid inequalities by
taking linear combinations of other valid inequalities, and that this sometimes allows us to
bound the value of an LP solution from above or below. But actually, the optimum value of
an LP is always ezactly equal to the value of its dual LP! This fact is called strong duality
(or sometimes simply “duality”), it is far from obvious, and it has important ramifications
for algorithm design. In the special case of fractional perfect matching problems, strong
duality says that the simple proof technique exemplified above is actually powerful enough
to prove the best possible lower bound on the cost of fractional perfect matchings, for every
instance of the bipartite min-cost perfect matching problem.

It turns out that there is a polynomial-time algorithm to solve linear programs. As you
can imagine, this fact also has extremely important ramifications for algorithm design, but
that’s the topic of another lecture.

3 Primal-dual algorithm

In this section we will construct a fast algorithm for the bipartite minimum-cost perfect
matching algorithm, exploiting insights gained from the preceding section. The basic plan of
attack is as follows: we will design an algorithm that simultaneously computes two things:
a minimum-cost perfect matching, and a dual solution (vector of p, and ¢, values) whose
value (sum of p,’s and ¢,’s) equals the cost of the perfect matching. As the algorithm
runs, it maintains the a dual solution p, ¢ and a matching M, and it preserves the following
invariants:

1. Every edge (u,v) satisfies p, + ¢, < c(u,v). If p, + ¢, = c(u,v) we say that edge
e = (u,v) is tight.

2. The elements of M are a subset of the tight edges.

3. The cardinality of M increases by 1 in each phase of the algorithm, until it reaches n.

10

Assuming the algorithm can maintain these invariants until termination, its correctness will
follow automatically. This is because the matching M at termination time will be a perfect

matching satisfying
Z C(“?”) = Z Dut Q= Zpu + qu’

(uv)eM (u,v)eM uelU veV

where the final equation holds because M is a perfect matching. The first invariant of the
algorithm implies that p, ¢'is a feasible dual solution, hence the right side is a lower bound on
the cost of any fractional perfect matching. The left side is the cost of the perfect matching
M, hence M has the minimum cost of any fractional perfect matching.

So, how do we maintain the three invariants listed above while growing M to be a perfect
matching? We initialize M = () and p’= ¢ = 0. Note that the three invariants are trivially
satisfied at initialization time. Now, as long as |M| < n, we want to find a way to either
increase the value of the dual solution or enlarge M without violating any of the invariants.
The easiest way to do this is to find an M-augmenting path P consisting of tight edges: in
that case, we can update M to M & P without violating any invariants, and we reach the end
of a phase. However, sometimes it’s not possible to find an M-augmenting path consisting
of tight edges: in that case, we must adjust some of the dual variables to make additional
edges tight.

The process of adjusting dual variables is best described as follows. The easiest thing
would be if we could find a vertex v € U that doesn’t belong to any tight edges. Then we
could raise p, by some amount ¢ > 0 until an edge containing u became tight. However,
maybe every u € U belongs to a tight edge. In that case, we need to raise p, by 0 while
lowering some other ¢, by the same amount 0. This is best described in terms of a vertex
set T" which will have the property that if one endpoint of an edge e € M belongs to T', then
both endpoints of e belong to 7. Whenever 7" has this property, we can set

d = min{c(u,v) —py —q|lue UNT,v e V\T} (4)

and adjust the dual variables by setting p, < p,+96,q, < q,— 0 forallu e UNT,v € VNT.
This preserves the feasibility of our dual solution p, ¢ (by the choice of) and it preserves
the tightness of each edge e € M because every such edge has either both or neither of its
endpoints in T

Let F be the set of free vertices, i.e. those that don’t belong to any element of M. T
will be constructed by a sort of breadth-first search along tight edges, starting from the set
UNF of free vertices in U. We initialize T'= UNF'. Since |M| < n, T is nonempty. Define ¢
as in ; if 0 > 0 then adjust dual variables as explained above. Call this a dual adjustment
step. If § = 0 then there is at least one tight edge e = (u,v) from UNT to V\T. If v is a free
vertex, then we have discovered an augmenting path P consisting of tight edges (namely, P
consists of a path in T that starts at a free vertex in U, walks to u, then crosses edge e to
get to v) and we update M to M @ P and finish the phase. Call this an augmentation step.
Finally, if v is not a free vertex then we identify an edge e = (v’,v) € M and we add both
v and v’ to T and call this a T-growing step. Notice that the left endpoint of an edge of M
is always added to T at the same time as the right endpoint, which is why 7" never contains
one endpoint of an edge of M unless it contains both.

11

A phase can contain at most n T-growing steps and at most one augmentation step.
Also, there can never be two consecutive dual adjustment steps (since the value of § drops
to zero after the first such step) so the total number of steps in a phase is O(n). Let’s figure
out the running time of one phase of the algorithm by breaking it down into its component
parts.

1. There is only one augmentation step and it costs O(n).
2. There are O(n) T-growing steps and each costs O(1).
3. There are O(n) dual adjustment steps and each costs O(n).

4. Finally, every step starts by computing the value § using . Thus, the value of §
needs to be computed O(n) times. Naively it costs O(m) work each time we need to
compute 9.

Thus, a naive implementation of the primal-dual algorithm takes O(mn?).

However, we can do better using some clever book-keeping combined with efficient data
structures. For a vertex w € T, let s(w) denote the number of the step in which w was
added to T'. Let o, denote the value of ¢ in step s of the phase, and let A, denote the sum
01 + -+ + 0s. Let pys, qv s denote the values of the dual variables associated to vertices u,v
at the end of step s. Note that

u +AS_ASU 1fu€UﬂT
Pu,s = {p . () (5)

Pu,0 lfUEU\T
Qo — As + Agy fveVnT

Qv,s = 0 ®) . (6)
0,0 ifveV\T

Consequently, if e = (u,v) is any edge from UNT to V \ T at the end of step s, then

C('LL, U) — Pus — Qus = C(U, U) — Puo — As + As(u) —qv,0

The only term on the right side that depends on s is —A,, which is a global value that is
common to all edges. Thus, choosing the edge that minimizes ¢(u, v) — py.s — ¢v s is equivalent
to choosing the edge that minimizes c¢(u,v) — pu,o + Agw) — Gvo- Let us maintain a priority
queue containing all the edges from UNT to V \ T. An edge e = (u,v) is inserted into this
priority queue at the time its left endpoint u is inserted into T". The value associated to e in
the priority queue is c(u,v) — puo + As@w) — v, and this value never changes as the phase
proceeds. Whenever the algorithm needs to choose the edge that minimizes ¢(u, v) —py.s—qu.s,
it simply extracts the minimum element of this priority queue, repeating as necessary until
it finds an edge whose right endpoint does not belong to T'. The total amount of work
expended on maintaining the priority queue throughout a phase is O(mlogn).

Finally, our gimmick with the priority queue eliminates the need to actually update the
values p,, ¢, during a dual adjustment step. These values are only needed for computing
the value of d5, and for updating the dual solution at the end of the phase. However, if we

12

store the values s(u), s(v) for all u, v as well as the values A, for all s, then one can compute
any specific value of p, s or ¢, s in constant time using —@. In particular, it takes O(n)
time to compute all the values p,, g, at the end of the phase, and it only takes O(1) time to
compute the value 65 = ¢(u,v) — p, — ¢, once we have identified the edge e = (u,v) using
the priority queue. Thus, all the work to maintain the values p,, ¢, amounts to only O(n)
per phase.

In total, the amount of work in any phase is bounded by O(mlogn) and consequently
the algorithm’s running time is O(mnlogn).

13

Cornell University, Fall 2016 CS 6820: Algorithms
Lecture notes: Flows and Cuts 7 Sep—12 Sep

Network flows are a structure with many nice applications in algorithms and combi-
natorics. A famous result called the maz-flow min-cut theorem exposes a tight relationship
between network flows and graph cuts; the latter is also a fundamental topic in combinatorics
and combinatorial optimization, with many important applications.

These notes introduce the topic of network flows, present and analyze some algorithms
for computing a maximum flow, prove the max-flow min-cut theorem, and present some
applications in combinatorics. There are also numerous applications of these topics elsewhere
in computer science. For example, network flow has obvious applications to routing in
communication networks. Algorithms for computing minimum cuts in graphs have important
but less obvious applications in computer vision. Those applications (along with many other
practical applications of maximum flows and minimum cuts) are beyond the scope of these
notes.

1 Basic Definitions

We begin by defining flows in directed multigraphs. (A multigraph is a graph that is allowed
to have parallel edges, i.e. two or more edges having the same endpoints.)

Definition 1. In a directed multigraph G = (V| E), a flow with source s and sink ¢ (where
s and t are vertices of GG) is an assignment of a non-negative value f, to each edge e, called
the “flow on e”, such that for every v # s,t, the total flow on edges leaving v equals the
total flow on edges entering v. This equation is called “flow conservation at v”. The value
of the flow, denoted by | f|, is the total amount of flow on edges leaving the source, s.

One can formulate a clean notation for re-expressing this definition using the incidence
matriz of G, which is the matrix B with rows indexed by vertices, and columns indexed by
edges, whose entries are defined as follows.

1 if wis the head of e, i.e. € = (u,v) and w = v
Bye = —1 if w is the tail of e, i.e. e = (u,v) and w = u

0 otherwise

For any vertex v let 1, denote the indicator vector of v, i.e. the column vector (with rows
indexed by V') whose entries are defined as follows.

(1) = {1 ifv=w

0 otherwise

In this notation, if we interpret a flow f as a column vector whose rows are indexed by F,
then a vector of non-negative numbers, f, is a flow from s to ¢ if and only if Bf = A(1; — 1)
for some scalar A € R, in which case the value of f is given by |f| = \.

A useful interpretation of flows is that “a flow is a weighted sum of source-sink paths and
cycles”.

Lemma 1. For an edge set S let its characteristic vector 1g be the vector in RF whose e

entry equals 1 ife € S, 0 if e € S. A vector f € RE is a flow from s to t if and only if f is
equal to a weighted sum (with non-negative weights) of vectors 1g as S ranges over s-t paths,
t-s paths, and directed cycles. The value of f is the combined weight of s-t paths minus the
combined weight of t-s paths in any such weighted-sum decomposition.

Proof. Let R, denote the set of non-negative real numbers. When S is the edge set of (i) an
s-t path, (ii) a t-s path, or (iii) a directed cycle, we have 1¢ € R, and Blg = Ag(1; — 1;)
where Ag equals 1 in case (i), -1 in case (ii), and 0 in case (iii), respectively. Taking weighted
sums of these identities, this verifies that any non-negative weighted sum of source-sink paths
and cycles is a flow with the stated value.

Conversely, if f is a low we must prove that it is a non-negative weighted sum of source-
sink paths and cycles. Let E,(f) = {e | fe > 0}. The proof will be by induction on the
number of edges in F, (f). When this number is zero, the lemma holds vacuously, so assume
|EL(f)] > 0. If E(f) contains an s-t path, a t-s path, or a directed cycle, then let S denote
the edge set of this path or cycle, and let w = min{f. | e € S}. The vector g = f —wlg is a
flow of value |g| = | f| — wAs, and |E,(g)| < |E+(f)|, so by the induction hypothesis we can
decompose g as a weighted sum of s-t paths, ¢-s paths, and cycles, and |g| is the combined
weight of s-t paths minus the combined weight of ¢-s paths. The induction step then follows
because f = g+ wlg.

To complete the proof we need to show that when |E.(f)| > 0 there is an s-t path, a
t-s path, or a directed cycle contained in E, (f). If E,(f) does not contain a directed cycle
then (V, E,(f)) is a directed acyclic graph with non-empty edge set. As such, it must have
a source vertex, i.e. a vertex uy with at least one outgoing edge, but no incoming edges.
Construct a path P = ug, uq, ..., u starting from uy and choosing u;, for ¢ > 1, by following
an edge (u;_1,u;) € E.(f). Since E,(f) contains no cycles this greedy path construction
process must terminate at a vertex with no outgoing edges. Flow conservation implies that
every vertex other than s and ¢ which belongs to an edge in F,(f) has both incoming and
outgoing edges. Therefore, the endpoints of P are s and ¢ (in some order) which completes
the proof that £, (f) has either a path joining the source to the sink (in some order) or a
directed cycle.]

Definition 2. A flow network is a directed multigraph G' = (V| E) together with a non-
negative capacity c(e) for each edge e. A walid flow in a flow network is a flow f in G that
satisfies the capacity constraints f. < c(e) for all edges e. A mazimum flow is a valid flow of
maximum value.

Maximum flow turns out to be a versatile problem that encodes many other algorithmic
problems. For example, the maximum bipartite matching in a graph G = (U, V, E) can be
encoded by a flow network with vertex set U UV U {s,t} and with edge set ({s} x U) U
E U (V x {t}), all edges having capacity 1. For each edge (u,v) € E, the flow network
contains a three-hop path P, = (s, u,v,t), and for any matching M in G one can sum up the
characteristic vectors of the paths P, (e € M) to obtain a valid flow f such that |f| = |M]|.

2

Conversely, any valid flow f satisfying f. € Z for all e is obtained from a matching M via
this construction. As we will see shortly, in any flow network with integer edge capacities,
there always exists an integer-valued maximum flow. Thus, the bipartite maximum matching
problem reduces to maximum flow via the simple reduction given in this paragraph.

The similarity between maximum flow and bipartite maximum matching also extends
to the algorithms for solving them. The most basic algorithms for solving maximum flow
revolve around a graph called the residual graph which is analogous to the directed graph
D(G, M) that we defined when presenting algorithms for the bipartite maximum matching
problem.

Definition 3. Let G = (V, E, ¢) is a flow network and f a valid flow in G. Let E denote a set
containing a directed edge € for every e € E, whose endpoints are the same as the endpoints

of e but in the opposite order. If e € F and € € E, the residual capacities cs(e), cs(€) are
defined by

C(e) - .fe
Je-

The residual graph G is the flow network Gy = (V, Ey, ¢y), where Ey is the set of all edges
in U E with positive residual capacity. An augmenting path is a path from s to ¢ in G.

cy(e)
cr(€)

To any valid flow & in G one can associate the vector 7(h) € R¥ defined by
7(h)e = he — he.
The vectors 7(h) encode all the ways of modifying f to another valid flow in G.

Lemma 2. If f is a valid flow in G and h is a valid flow in the residual graph Gy then
f+m(h) is a valid flow in G. Conversely, every valid flow in G can be expressed as f+m(h)
for some valid flow h in Gy.

Proof. The equation Bh = Br(h) follows from the definition of 7(h), and implies that 7 (h)
satisfies the flow conservation equations, hence f + m(h) does as well. The residual capacity
constraints in G are designed precisely to guarantee that the value of f+m(h) on each edge
e lies between 0 and c(e), hence f + m(h) is a valid flow in G. Conversely, suppose f is any
valid flow in G. Using the notation x* to denote max{x,0} for any real number x, we may

define

he = (fe —f)t forallee
he = (f.— f.)© forallee E
and verify that h is a valid flow in G satisfying f=7Ff+ m(h).]

Lemma 3. If f is a valid flow in G, then f is a mazimum flow if and only if Gy does not
contain an augmenting path.

Proof. If f is not a maximum flow then let f* be any maximum flow and write f* = f+m(h).
Since |f*| = |f] + |h| > |f|, we must have |h| > 0. According to [Lemma 1] the flow h
decomposes as a weighted sum of vectors 1g where S ranges over s-t paths, t-s paths, and
directed cycles in Gy, and at least one s-t path must have a positive coefficient in this
decomposition because |h| > 0. In particular, this implies that G; contains an s-t path,
i.e. an augmenting path. Conversely, if Gy contains an augmenting path P, let §(P) be the
minimum residual capacity of an edge of P. The flow f + §(P)w(1p) is a valid flow with
value |f| + 6(P), so f is not a maximum flow. O

1.1 Comparison with Other Definitions

The Kleinberg-Tardos textbook assumes that s has no incoming edges and ¢ has no outgoing
edges. In these notes we do not impose any such assumption. Consequently G may contain
a path from ¢ to s, leading to the somewhat counter-intuitive convention that a flow on a
path from ¢ to s is considered to be an s-t flow of negative value. This convention is useful,
for example, in Where it allows us to simply say that if f and f are two s-t flows in
G, then their difference f — f can always be represented by an s-t flow in the residual graph
Gy.

The Kozen textbook represents a flow using a skew-symmetric matrix, whose (u, v) entry
represents the difference f,,, — fou, i.€. the net flow from u to v along edges that join the two
vertices directly. This allows for a beautifully simple formulation of the flow conservation
equations and of the lemma that the difference between any two flows is represented by a flow
in the residual graph. However, when the graph contains a two-cycle comprising edges (u, v)
and (v, u), the representation of a flow as a skew-symmetric matrix eliminates the distinction
between sending zero flow on (u, v) and (v, u) and sending an equal (but non-zero) amount in
both directions. Philosophically, I believe these should be treated as distinct flows so I have
opted for a definition that enables such a distinction. The cost of making this choice is that
some definitions become messier and more opaque, especially those involving the residual
graph and the function 7 that maps flows in G to flows in G.

2 The Max-Flow Min-Cut Theorem

One important corollary of is the maz-flow min-cut theorem, which establishes a
tight relationship between maximum flows and cuts separating the source from the sink. We
first present some definitions involving cuts, and then we present and prove the theorem.

Definition 4 (s-t cut). An s-t cut in a directed graph G = (V, E)) with vertices s and ¢ is
a partition of the vertex set V into two subsets S, 7T such that s € S and t € T. An edge
e = (u,v) crosses the cut (S,T) if u € S and v € T. (Note that edges from T to S do not
cross the cut (S5,7), under this definition.) The capacity of cut (S,7T), denoted by ¢(S,T),
is the sum of the capacities of all edges that cross the cut.

Theorem 4 (Max-flow min-cut). For any flow network, the value of any mazximum flow is
equal to the capacity of any minimum s-t cut.

Proof. Let (S,T) be any s-t cut, and let 17 be the vector in RV whose v component is 1 if
veT,0if vgT. The row vector x = 17.B satisfies z. = 1 if e goes from S to T, z. = —1
if e goes from T' to S, and x. = 0 otherwise.

For a flow f and two disjoint vertex sets @, R, let f(Q, R) denote the sum of f. over all
edges e going from () to R. We have

1LBf = af = f(S.T) ~ f(T,S) < ¢(S.T) (1)

where the last inequality is justified because f. < ¢(e) for all e from S to T, and f. > 0 for
all e from T to S. Since f is a flow, we have

17Bf =131 = 1)|f[= /] (2)

Combining equations and yields the conclusion that the value of any flow is bounded
above by the capacity of any s-t cut; in particular, the min-cut capacity is an upper bound
on the maximum flow value.

To prove that this upper bound is tight, first note that in our derivation of the inequal-
ity |f| < ¢(S,T), the only step that was an inequality (rather than an equation) was the
inequality at the end of line . Reviewing our justification for that inequality, one can see
that the two sides are equal if f. = c(e) for all edges e from S to T and f. = 0 for all edges
e from T to S. When f is a maximum flow, we can find a cut (S,T) that satisfies these
properties by applying [Lemma 3| which says that there is no s-t path in the residual graph
Gy. Define S to be the set of all vertices reachable from s via a directed path in G, and T’
to be the complement of S; note that s € S and ¢t € T, so (S,T) is a valid cut. Since Gy
contains no edges from S to 7', it must be the case that for each edge e from S to 7', the
residual capacity cy(e) is zero (hence f. = c(e)) and for each edge e from 7" to S, the residual
capacity cy(€) is zero (hence f. = 0). This confirms that S, T satisfies the conditions for the
left and right sides of to equal one another. m

3 Combinatorial Applications

In combinatorics, there are many examples of “min-max theorems” asserting that the mini-
mum of XXX equals that maximum of YYY, where XXX and YYY are two different combinatorially-
defined parameters related to some object such as a graph. Often these min-max theorems
have two other salient properties.

1. It’s straightforward to see that the maximum of YYY is no greater than the minimum
of XXX, but the fact that they are equal is usually far from obvious, and in some cases
quite surprising.

2. The theorem is accompanied by a polynomial-time algorithm to compute the minimum
of XXX or the maximum of YYY.

Most often, these min-max relations can be derived as consequences of the max-flow min-cut
theorem. (Which is, of course, one example of such a relation.) This also explains where the
accompanying polynomial-time algorithm comes from.

There is a related phenomenon that applies to decision problems, where the question is
whether or not an object has some property P, rather than a question about the maximum or
minimum of some parameter. Once again, we find many theorems in combinatorics asserting
that P holds if and only if Q holds, where:

1. It’s straightforward to see that Q is necessary in order for P to hold, but the fact that
Q is also sufficient is far from obvious.

2. The theorem is accompanied by a polynomial-time algorithm to decide whether prop-
erty P holds.

Once again, these necessary and sufficient conditions can often be derived from the max-flow
min-cut theorem

The main purpose of this section is to illustrate five examples of this phenomenon. Before
getting to these applications, it’s worth making a few other remarks.

1. The max-flow min-cut theorem is far from being the only source of such min-max
relations. For example, many of the more sophisticated ones are derived from the
Matroid Intersection Theorem, which is a topic that we will not be discussing this
semester.

2. Another prolific source of min-max relations, namely LP Duality, has already been
discussed informally this semester, and we will be coming to a proof later on. LP
duality by itself yields statements about continuous optimization problems, but one
can often derive consequences for discrete problems by applying additional special-
purpose arguments tailored to the problem at hand.

3. The “applications” in these notes belong to mathematics (specifically, combinatorics)
but there are many real-world applications of maximum flow algorithms. See Chap-
ter 7 of Kleinberg & Tardos for applications to airline routing, image segmentation,
determining which baseball teams are still capable of getting into the playoffs, and
many more.

3.1 Preliminaries

The combinatorial applications of max-flow frequently rely on an easy observation about
flow algorithms. The following theorem asserts that essentially everything we’ve said about
network flow problems remains valid if some edges of the graph are allowed to have infinite
capacity. Thus, in the following theorem, we define the term flow network to be a directed
graph G = (V, E) with source and sink vertices s,t and edge capacities (c.)ccp as before
— including the stipulation that the vertex set V is finite — but we allow edge capacities
c(u,v) to be any non-negative real number or infinity. A flow is defined as before, except
that when c(u,v) = oo it means that there is no capacity constraint for edge (u,v).

Theorem 5. If G is a flow network containing an s-t path made up of infinite-capacity edges,
then there is no upper bound on the mazimum flow value. Otherwise, the maximum flow value

and the minimum cut capacity are finite, and they are equal. Furthermore, any mazimum
flow algorithm that specializes the Ford-Fulkerson algorithm (e.g. Edmonds-Karp or Dinic)
remains correct in the presence of infinite-capacity edges, and its worst-case running time
remains the same.

Proof. 1f P is an s-t path made up of infinite capacity edges, then we can send an unbounded
amount of flow from s to ¢ by simply routing all of the flow along the edges of P. Otherwise,
if S denotes the set of all vertices reachable from s by following a directed path made up of
infinite-capacity edges, then by hypothesis ¢t ¢ S. So if we set T'=V \ S, then (S,T) is an
s-t cut and every edge from S to T has finite capacity. It follows that ¢(.S,T) is finite, and
the maximum flow value is finite.

We now proceed by constructing a different flow problem G with the same directed graph
structure finite edge capacities ¢., and arguing that the outcome of running Ford-Fulkerson
doesn’t change when its input is modified from G to G. The modified edge capacities in G
are defined by

c(S,T)+1 if c(u,v) = 0.

If (8, T") is any cut in G then either &(S",T") > &(S,T) = ¢(S,T), or else &(S", T") = (S, T");
in particular, the latter case holds if (S’,7”) is a minimum cut in G. To see this, observe
that if ¢(S',T") < ¢(S,T) = ¢(S,T), then for any u € S',v € T', we have ¢(u,v) < ¢(S,T)
and this in turn implies that ¢(u,v) = c(u,v) for all u € S’;v € T', and consequently
(ST =ce(S',T).

Since G has finite edge capacities, we already know that any execution of the Ford-
Fulkerson algorithm on input G will terminate with a flow f whose value is equal to the
minimum cut capacity in G. As we've seen, this is also equal to the minimum cut capacity
in G itself, so the low must be a maximum flow in G itself. Every execution of Ford-Fulkerson
on G is also a valid execution on G and vice-versa, which substantiates the final claim about
running times. O

o, v) = {c(u,v) if ¢(u,v) < o0

3.2 Menger’s Theorem

As a first application, we consider the problem of maximizing the number of disjoint paths
between two vertices s,t in a graph. Menger’s Theorem equates the maximum number of
such paths with the minimum number of edges or vertices that must be deleted from G in
order to separate s from t.

Definition 5. Let G be a graph, either directed or undirected, with distinguished vertices
s,t. Two s —t paths P, P’ are edge-disjoint if there is no edge that belongs to both paths.
They are vertex-disjoint if there is no vertex that belongs to both paths, other than s and t.
(This notion is sometimes called internally-disjoint.)

Definition 6. Let G be a graph, either directed or undirected, with distinguished vertices
s,t. An s —t edge cut is a set of edges C' such that every s — ¢t path contains an edge of
C. An s —t vertex cut is a set of vertices U, disjoint from {s, ¢}, such that every s — ¢ path
contains a vertex of U.

Theorem 6 (Menger’s Theorem). Let G be a (directed or undirected) graph and let s,t be
two distinct vertices of G. The maximum number of edge-disjoint s — t paths equals the
minimum cardinality of an s —t edge cut, and the mazimum number of vertex-disjoint s —t
paths equals the minimum cardinality of an s — t vertexr cut. Furthermore the maximum
number of disjoint paths can be computed in polynomial time.

Proof. The theorem actually asserts four min-max relations, depending on whether we work
with directed or undirected graphs and whether we work with edge-disjointness or vertex-
disjointness. In all four cases, it is easy to see that the minimum cut constitutes an upper
bound on the maximum number of disjoint paths, since each path must intersect the cut
in a distinct edge/vertex. In all four cases, we will prove the reverse inequality using the
max-flow min-cut theorem.

To prove the results about edge-disjoint paths, we simply make G into a flow network by
defining c(u,v) = 1 for all directed edges (u,v) € E(G); if G is undirected then we simply set
c(u,v) = ¢(v,u) = 1 for all (u,v) € E(G). The theorem now follows from two claims: (A) an
integer s —t flow of value k implies the existence of k edge-disjoint s —t paths and vice versa;
(B) a cut of capacity k implies the existence of an s — t edge cut of cardinality k& and vice-
versa. To prove (A), we can decompose an integer flow f of value k into a set of edge-disjoint
paths by finding one s — ¢ path consisting of edges (u,v) such that f(u,v) = 1, setting the
flow on those edges to zero, and iterating on the remaining flow; the transformation from
k disjoint paths to a flow of value k is even more straightforward. To prove (B), from an
s — t edge cut C' of cardinality £ we get an s — ¢ cut of capacity k£ by defining S to be all
the vertices reachable from s without crossing C'; the reverse transformation is even more
straightforward.

To prove the results about vertex-disjoint paths, the transformation uses some small “gad-
gets”. Every vertex v in G is transformed into a pair of vertices viy, Vout, With ¢(vin, Vous) = 1
and ¢(Vout, Vin) = 0. Every edge (u,v) in G is transformed into an edge from gy, to vy, with
infinite capacity. In the undirected case we also create an edge of infinite capacity from vy
to uy,. Now we solve max-flow with source s.,; and sink t;,. As before, we need to establish
two claims: (A) an integer So.¢ — tin flow of value k implies the existence of k vertex-disjoint
s —t paths and vice versa; (B) a cut of capacity k implies the existence of an sou; — i, vertex
cut of cardinality k£ and vice-versa. Claim (A) is established exactly as above. Claim (B) is
established by first noticing that in any finite-capacity cut, the only edges crossing the cut
must be of the form (vi,, oy); the set of all such v then constitutes the s —t vertex cut. [

3.3 The Konig-Egervary Theorem

Recall that a matching in a graph is a collection of edges such that each vertex belongs to at
most one edge. A verter cover of a graph is a vertex set A such that every edge has at least
one endpoint in A. Clearly the cardinality of a maximum matching cannot be greater than
the cardinality of a minimum vertex cover. (Every edge of the matching contains a distinct
element of the vertex cover.) The Konig-Egervary Theorem asserts that in bipartite graphs,
these two parameters are always equal.

Theorem 7 (Koénig-Egervary). If G is a bipartite graph, the cardinality of a mazximum
matching in G equals the cardinality of a minimum vertex cover in G.

Proof. The proof technique illustrates a very typical way of using network flow algorithms:
we make a bipartite graph into a flow network by attaching a “super-source” to one side and
a “super-sink” to the other side. Specifically, if G is our bipartite graph, with two vertex
sets X,Y, and edge set E, then we define a flow network G = (X UY U{s,t},c, s,t) where
the following edge capacities are nonzero, and all other edge capacities are zero:

c(s,z)y=1 forallz e X
c(y,t)=1 forallyeY
c(x,y) =00 forall (z,y) € F

For any integer flow in this network, the amount of flow on any edge is either 0 or 1. The
set of edges (z,y) such that x € X,y € Y, f(x,y) = 1 constitutes a matching in G whose
cardinality is equal to |f|. Conversely, any matching in G gives rise to a flow in the obvious
way. Thus the maximum flow value equals the maximum matching cardinality.

If (S,T) is any finite-capacity s — t cut in this network, let A = (X NT) U (Y N S).
The set A is a vertex cover in G, since an edge (x,y) € E with no endpoint in A would
imply that x € S,y € T, c(x,y) = oo contradicting the finiteness of ¢(S,T'). The capacity of
the cut is equal to the number of edges from s to T" plus the number of edges from S to ¢
(no other edges from S to T exist, since they would have infinite capacity), and this sum is
clearly equal to |A|. Conversely, a vertex cover A gives rise to an s — ¢ cut via the reverse
transformation, and the cut capacity is |A|. O

3.4 Hall’s Theorem

Theorem 8. Let G be a bipartite graph with vertex sets X,Y and edge set E. Assume
| X | =Y. Forany W C X, let I'(W) denote the set of ally € Y such that (w,y) € E for at
least one w € W. In order for G to contain a perfect matching, it is necessary and sufficient

that each W C X satisfies |I'(W)| > |W].

Proof. The stated condition is clearly necessary. To prove it is sufficient, assume that
IT(W)| > |W] for all W. Transform G into a flow network G as in the proof of the Konig-
Egervary Theorem. If there is a integer flow of value |X | in G, then the edges (, y) such that
x € X,yeY, f(x,y) =1 constitute a perfect matching in G and we are done. Otherwise,
there is a cut (5,7 of capacity k < n. We know that

IXNT|+|YNnS|=k<n=|XNT|+|XNS|

from which it follows that [Y' NS| < |X NS|. Let W =X NS. The set I'(W) is contained
in Y NS, as otherwise there would be an infinite-capacity edge crossing from S to T'. Thus,
IT(W)| <Y NS| < |W]|, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.]

3.5 Dilworth’s Theorem

In a directed acyclic graph G, let us say that a pair of vertices v, w are incomparable if there
is no path passing through both v and w, and define an antichain to be a set of pairwise
incomparable vertices.

Theorem 9. In any finite directed acyclic graph G, the mazimum cardinality of an antichain
equals the minimum number of paths required to cover the vertex set of G.

The proof is much trickier than the others. Before presenting it, it is helpful to introduce
a directed graph G* called the transitive closure of G. This has same vertex set V, and its
edge set E* consists of all ordered pairs (v, w) such that v # w and there exists a path in
G from v to w. Some basic facts about the transitive closure are detailed in the following
lemma.

Lemma 10. If G is a directed acyclic graph, then its transitive closure G* is also acyclic. A
vertex set A constitutes an independent set in G* (i.e. no edge in E* has both endpoints in
S) if and only if A is an antichain in G. A sequence of vertices vy, vy, ..., v constitules a
path in G* if and only if it is a subsequence of a path in G. For all k, G* can be partitioned
into k or fewer paths if and only if G can be covered by k or fewer paths.

Proof. The equivalence of antichains in G' and independent sets in G* is a direct consequence
of the definitions. If vg,..., v is a directed walk in G* — i.e., a sequence of vertices such
that (v;_1,v;) is an edge for each ¢ = 1,..., k — then there exist paths P; from v;_; to v;
in GG, for each 7. The concatenation of these paths is a directed walk in G, which must be
a simple path (no repeated vertices) since G is acyclic. This establishes that vy, ..., vy is
a subsequence of a path in GG, as claimed, and it also establishes that vy # vy, hence G*
contains no directed cycles, as claimed. Finally, if G* is partitioned into k paths then we
may apply this construction to each of them, obtaining k paths that cover GG. Conversely,
given k paths Py, ..., P, that cover GG, then G* can be partitioned into paths Py,..., P}
where P is the subsequence of P; consisting of all vertices that do not belong to the union
of Pi,...,Pi_. m

Using these facts about the transitive closure, we may now prove Dilworth’s Theorem.

Proof of Theorem[9. Define a flow network G = (W, e, s,t) as follows. The vertex set W
contains two special vertices s, t as well as two vertices z,, y, for every vertex v € V(G). The
following edge capacities are nonzero, and all other edge capacities are zero.

c(s,z,) =1 forallveV
c(xy,yy) = 00 for all (v,w) € E*
(Y, t) =1 forallweV

For any integer flow in the network, the amount of flow on any edge is either 0 or 1. Let
F denote the set of edges (v,w) € E* such that f(z,,y,) = 1. The capacity and flow
conservation constraints enforce some degree constraints on F: every vertex of G* has at

10

most one incoming edge and at most one outgoing edge in F'. In other words, F' is a union
of disjoint paths and cycles. However, since G* is acyclic, F' is simply a union of disjoint
paths in G*. In fact, if a vertex doesn’t belong to any edge in F', we will describe it as a
path of length 0 and in this way we can regard F' as a partition of the vertices of G* into
paths. Conversely, every partition of the vertices of G* into paths translates into a flow in
G in the obvious way: for every edge (v, w) belonging to one of the paths in the partition,
send one unit of flow on each of the edges (s,), (Tv, Yw)s (Y, t)-

The value of f equals the number of edges in F'. Since F' is a disjoint union of paths,
and the number of vertices in a path always exceeds the number of edges by 1, we know that
n = |F| 4 p(F). Thus, if the maximum flow value in G equals k, then the minimum number
of paths in a path-partition of G* equals n — k, and Lemma (10| shows that this is also the
minimum number of paths in a path-covering of G. By max-flow min-cut, we also know that
the minimum cut capacity in G equals k, so to finish the proof, we must show that an s — t
cut of capacity k in G implies an antichain in G — or equivalently (again using Lemma
an independent set in G* — of cardinality n — k.

Let S,T be an s — ¢ cut of capacity k in G. Define a set of vertices A in G* by specifying
that v € A if z, € S and y,inT. If a vertex v does not belong to A then at least one of
the edges (s, z,) or (y,,t) crosses from S to T', and hence there are at most k such vertices.
Thus |A|] > n — k. Furthermore, there is no edge in G* between elements of A: if (v, w) were
any such edge, then (v,w’) would be an infinite-capacity edge of G crossing from S to T.
Hence there is no path in GG between any two elements of A, i.e. A is an antichain. n

4 The Ford-Fulkerson Algorithm

constitutes the basis for the Ford-Fulkerson algorithm, which computes a maximum
flow iteratively, by initializing f = 0 and repeatedly replacing f with f + §(P)m(1p) where
P is an augmenting path in Gy, and §(P) is the minimum residual capacity of an edge in P.
The algorithm terminates when Gy no longer contains an augmenting path, at which point
guarantees that f is a maximum flow.

Algorithm 1 FORDFULKERSON(G)
f+0; GG
while Gy contains an s-t path P do
Let P be one such path.
Let 6(P) = min{cs(e) | e € P}.
[+ [f+6(P)n(1p) // Augment f using P.
Update GY.
end while
return f

Theorem 11. In any flow network with integer edge capacities, any execution of the Ford-
Fulkerson algorithm terminates and outputs an integer-valued mazimum flow, f*, after at
most | f*| iterations of the main loop.

11

Proof. At any time during the algorithm’s execution, the residual capacities c; are all in-
tegers; this can easily be seen by induction on the number of iterations of the main loop,
the key observation being that the quantity (P) computed during each loop iteration must
always be an integer.

It follows that |f| increases by at least 1 during each loop iteration, so the algorithm
terminates after at most | f*| loop iterations, where f* denotes the output of the algorithm.
Finally, [Lemma 3| ensures that f* must be a maximum flow because, by the algorithm’s
termination condition, its residual graph has no augmenting path. O]

Each iteration of the Ford-Fulkerson main loop can be implemented in linear time, i.e. the
time required to search for the augmenting path P in G (using BF'S or DFS) and to construct
the new residual graph after updating f. For the sake of simplicity, we will express the
running time of each loop iteration as O(m) rather than O(m+ n), which can be justified by
making a standing assumption that each vertex of the graph is incident to at least one edge,
hence m > n/2. (If the standing assumption is violated, isolated vertices can be removed
using a trivial O(n) preprocessing step, which adds O(n) to the running time of every
algorithm considered in these notes.) The benefit of the standing assumption is that it leads
to simpler and more readable running time bounds for the maximum-flow algorithms we are
analyzing. In integer-capacitated graphs, we have seen that the Ford-Fulkerson algorithm
runs in at most | f*| linear-time iterations, where | f*| is the value of a maximum flow, hence
the algorithm’s running time is O(m|f*|).

5 The Edmonds-Karp and Dinitz Algorithms

The Ford-Fulkerson algorithm’s running time is pseudopolynomial, but not polynomial. In
other words, its running time is polynomial in the magnitudes of the numbers constituting
the input (i.e., the edge capacities) but not polynomial in the number of bits needed to
describe those numbers. To illustrate the difference, consider a flow network with vertex set
{s,t,u,v} and edge set {(s,u), (u,t),(s,v), (v,t), (u,v)}. The capacities of the edges are

c(s,u) = c(u,t) = c(s,v) = c(v,t) =27, c(u,v) = 1.

The maximum flow in this network sends 2" units on each of the paths (s, u,t) and (s, v,),
and if the Ford-Fulkerson algorithm chooses these as its first two augmenting paths, it
terminates after only two iterations. However, it could alternatively choose (s, u,v,t) as its
first augmenting path, sending only one unit of flow on the path. This results in adding the
edge (v, u) to the residual graph, at which point it becomes possible to send one unit of flow
on the augmenting path (s, u,v,t). This process iterates 2" times.

A more sophisticated example shows that in a flow network whose edge capacities are
irrational numbers, the Ford-Fulkerson algorithm may run through its main loop an infinite
number of times without terminating.

In this section we will present two maximum flow algorithms with strongly polynomial
running times. This means that if we count each arithmetic operation is consuming only one
unit of running time (regardless of the number of bits of precision of the numbers involved)

12

then the running time is bounded by a polynomial function of the number of vertices and
edges of the network.

5.1 The Edmonds-Karp Algorithm

The Edmonds-Karp algorithm refines the Ford-Fulkerson algorithm by always choosing the
augmenting path with the smallest number of edges.

Algorithm 2 EDMONDSKARP(G)

: f <0 Gf +— G

while Gy contains an s — ¢ path P do
Let P be an s —t path in Gy with the minimum number of edges.
[+ f+6(P)n(1p) // Augment f using P.
Update G

end while

return f

To begin our analysis of the Edmonds-Karp algorithm, note that the s-t path in Gy with
the minimum number of edges can be found in O(m) time using breadth-first search. Once
path P is discovered, it takes only O(n) time to augment f using P and O(n) time to update
G, so we see that one iteration of the while loop in EDMONDSKARP(G) requires only O(m)
time. However, we still need to figure out how many iterations of the while loop could take
place, in the worst case.

To reason about the maximum number of while loop iterations, we will assign a distance
label d(v) to each vertex v, representing the length of the shortest path from s to v in Gjy.
We will show that d(v) never decreases during an execution of EDMONDSKARP(G). Recall
that the same method of reasoning was instrumental in the running-time analysis of the
Hopcroft-Karp algorithm.

Any edge (u,v) in Gy must satisfy d(v) < d(u) + 1, since a path of length d(u) + 1 can
be formed by appending (u,v) to a shortest s-u path in Gy. Call the edge advancing if
d(v) = d(u) + 1 and retreating if d(v) < d(u). Any shortest augmenting path P in Gy is
composed exclusively of advancing edges. Let Gy and G ¢ denote the residual graph before
and after augmenting f using P, respectively, and let d(v),d(v) denote the distance labels
of vertex v in the two residual graphs. Every edge (u,v) in G 7 is either an edge of Gy or the
reverse of an edge of P; in both cases the inequality d(v) < d(u) + 1 is satisfied. Therefore,
on any path in G s the value of d increases by at most one on each hop of the path, and
consequently d(v) > d(v) for every v. This proves that the distance labels never decrease,
as claimed earlier.

When we choose augmenting path P in Gy, let us say that edge e € E(Gy) is a bottleneck
edge for P if it has the minimum residual capacity of any edge of P. Notice that when
e = (u,v) is a bottleneck edge for P, then it is eliminated from G after augmenting f using
P. Suppose that d(u) = ¢ and d(v) = ¢ + 1 when this happens. In order for e to be added
back into Gy later on, edge (v,u) must belong to a shortest augmenting path, implying

13

d(u) = d(v) +1 > i+ 2 at that time. Thus, the total number of times that e can occur as
a bottleneck edge during the Edmonds-Karp algorithm is at most n/2. There are 2m edges
that can potentially appear in the residual graph, and each of them serves as a bottleneck
edge at most n/2 times, so there are at most mn bottleneck edges in total. In every iteration
of the while loop the augmenting path has at least one bottleneck edge, so there are at most
mn while loop iterations in total. Earlier, we saw that every iteration of the loop takes
O(m) time, so the running time of the Edmonds-Karp algorithm is O(m?n).

5.2 The Dinitz Algorithm

Similar to the way that the Hopcroft-Karp algorithm improves the running time for finding
a maximum matching in a graph by finding a mazimal set of shortest augmenting paths all
at once, there is a maximum-flow algorithm due to Dinitz that improves the running time
of the Edmonds-Karp algorithm by finding a so-called blocking flow in the residual graph.

Definition 7. If G is a flow network, f is a flow, and A is a flow in the residual graph Gy,
then h is called a blocking flow if every shortest augmenting path in Gy contains at least one
edge that is saturated by h, and every edge e with h, > 0 belongs to a shortest augmenting
path.

Algorithm 3 EDMONDSKARP(G)

c f0; Gy G

while Gy contains an s — ¢ path P do
Let h be a blocking flow in G.
[« f+mn(h)
Update G

end while

return f

Later we will specify how to compute a blocking flow. For now, let us focus on bounding
the number of iterations of the main loop. As in the analysis of the Edmonds-Karp algorithm,
the distance d(v) of any vertex v from the source s can never decrease during an execution
of Dinitz’s algorithm. Furthermore, the length of the shortest path from s to t in G must
strictly increase after each loop iteration: the edges (u,v) which are added to Gy at the end
of the loop iteration satisfy d(v) < d(u) (where d(-) refers to the distance labels at the start
of the iteration) so any s-t path of length d(t) in the new residual graph would have to be
composed exclusively of advancing edges which existed in the old residual graph. However,
any such path must contain at least one edge which was saturated by the blocking flow,
hence deleted from the residual graph. Therefore, each loop iteration strictly increases d(t)
and the number of loop iterations is bounded above by n.

The algorithm to compute a blocking flow explores the subgraph composed of advancing
edges in a depth-first manner, repeatedly finding augmenting paths.

14

Algorithm 4 BLOCKINGFLOW(GY)

1: h< 0

2: Let G’ be the subgraph composed of advancing edges in Gy.
3: Initialize ¢/(e) = cy(e) for each edge e in G'.

4: Initialize stack with (s).

5. repeat

6 Let u be the top vertex on the stack.

7 if u =1 then

8: Let P be the path defined by the current stack. // Now augment h using P.
9: Let 6(P) = min{c/(e) | e € P}.

10: h < h+6(P)lp.

11: d(e) < d(e) —(P) for all e € P.

12: Delete edges with ¢(e) = 0 from G'.

13: Let (u,v) be the newly deleted edge that occurs earliest in P.
14: Truncate the stack by popping all vertices above wu.

15: else if G’ contains an edge (u,v) then

16: Push v onto the stack.

17: else

18: Delete u and all of its incoming edges from G'.

19: Pop w off of the stack.

20: end if

21: until stack is empty
22: return h

The block of code that augments h using P is called at most m times (each time results
in the deletion of at least one edge) and takes O(n) steps each time, so it contributes O(mn)
to the running time of BLOCKINGFLOW(G). At most n vertices are pushed onto the stack
before either a path is augmented or a vertex is deleted, so O(mn) time is spent pushing
vertices onto the stack. The total work done initializing G’, as well as the total work done
deleting vertices and their incoming edges, is bounded by O(m). Thus, the total running
time of BLOCKINGFLOW(GY) is bounded by O(mn), and the running time over Dinitz’s
algorithm overall is bounded by O(mn?).

A modification of Dinitz’s algorithm using fancy data structures achieves running time
O(mnlogn). The preflow-push algorithm, presented in Section 7.4 of Kleinberg-Tardos, has
a running time of O(n3). The fastest known strongly-polynomial algorithm, due to Orlin,
has a running time of O(mn). There are also weakly polynomial algorithms for maximum
flow in integer-capacitated networks, i.e. algorithms whose running time is polynomial in the
number of vertices and edges, and the logarithm of the largest edge capacity, U. The fastest
such algorithm, due to Lee and Sidford, has a running time of O(m+/n poly(logn,logU)).

15

Analysis of Algorithms Linear Programming Notes
CS 6820 Fall 2014 Lectures, October 3-20, 2014

1 Linear programming

The linear programming (LP) problem is the following optimization problem. We are given
matrix A and vectors b and ¢ and the problem is to find x that

max(cz such that: Az < b}.

Assume that A is an n by m matrix, b is an m vector, and ¢ and x are n vectors so the
multiplications, and inequalities above make sense. So x is a vector of n variables, and
Ax < bis a set of m inequalities. An example in two variables would be

maxxy + xo
21131 + Zo
T1 + 279

€

IV IV IA A
o o ot w

X2

/

Figure 1: linear program in two dimensions.

An algorithm for linear programming takes A, b and ¢ as input, and returns one of the
following three answers:

e “no solutions exist”, if there is no solution = such that Az <b.
e “the maximum is unbounded”, if for any y there is a solution Az < b with cx > 7.

e return a vector z that satisfies Az < b and achieves the maximum of cz.

2 First example matching and fractional matching

As a first example of linear programming consider the matching problem. We are given a
graph G = (V| E). To think of matching this way, we associate a variable z. with every edge
e € E. We would like to think of these variables taking values 0 or 1 with x. = 1 indicating
that edge e in the matching, and 0 when its not in the matching. To write the maximum
matching problem as a set of inequalities we have

z. € {0,1}foralleec E
Z z., < lforallveV

€ adjacent to vV

mazx E Te
e

Note that this is an integer linear program, as we require x. to be 0 or 1, and not a fractional
value between the two.

Lemma 1 Integer solutions x to the above inequalities are in one-to-one correspondence to
matchings M = {e : x. = 1}, with the matching of maximum size corresponding to the
optimal solution.

To define the fractional matching problem we replace the constrain z, € {0,1} by 0 < x, < 1
for all edges. So the fractional matching problem is

0<z, < lforallee F
Z 7. < lforallveV

e adjacent to U

max E Te
e

What can we say about the maximum? One way to derive bounds on the sum is to add
up all the n = |V| inequalities for the nodes. We get

Z Z Te <M.

vV e adjacent to U

Each edge e = (v,u) occurs twice on the left hand side, as e is on the list of edges for the
sum at the node v and u, so the inequality is

22% <n,
e

i.e., the sum is at most n/2. Not only the maximum matching is limited to at most half the
number of vertices, but also the maximum fractional matching.

Alternately, we can add up a subset of the inequalities. A subset A C V' is a vertex cover
if A contains at least one of the ends at each edge e. Adding the inequalities for v € A we

get
)z <Al

VEA e adjacent to v

Since A is a vertex cover, each edge variable z, occurs at least once on the left hand side,
and some occurs twice. However, we also have that x, > 0, so we also have

x> > w <Al

VEA e adjacent to v

for all vertex covers A. The minimum vertex cover problem is to find a vertex cover of
minimum size. The above inequality is true for all vertex covers, and hence also for the
minimum vertex cover.

Lemma 2 The mazimum), x. for a fractional matching is at most the minimum size | Al
of a vertex cover.

We can further strengthen the inequality by considering fractional verter cover: adding
each inequality with a nonnegative multiplier y,. A vector g, > 0 for all v € V' is a fractional
vertex cover if for each edge e = (v,u) we have y, + y, > 1. Note that a fractional vertex
cover where y, € {0, 1} is a regular vertex cover.

Lemma 3 Integer solutions y to the above inequalities are in one-to-one correspondence to
vertex covers A = {v :y, = 1}, with the vertex cover of minimum size corresponding to the
integer solution with minimum Y, Y.

Consider a fractional vertex cover y. Multiplying re < 1 by y, we get

e adjacent to v €

Yo Z Te < Yo

e adjacent to U

and adding the inequalities for all nodes (and turning the sides around to help the write-up),
we get

v = D> w D> w

veV veV e adjacent to vV

- Z xe(yv + yu)

e=(u,v)€E

sze

e=(u,v)€E

where the equation in the middle is just reordering the sum, and the inequality follows as y
is a fractional vertex cover and x is nonnegative.
Summing up we get the following main theorem

Theorem 4

Al

max ‘M‘ S max:r E :Ce S mz/n’y E yv S m?’nA vertexr cover
matching M
e v
where the maximum in the middle is over fractional matchings x, and the minimum is over
fractional vertex covers y.

Remark. Recall from a couple lectures ago we have seen as an application of max-flows
and min-cuts that in bipartite graph the size of a maximum matching equals the minimum
size of a vertex cover, so there is equation throughout the chain on inequalities above in
bipartite graphs. This is not true in general graphs. Consider for example a triangle. The
maximum matching is of size 1, the minimum vertex cover needs 2 nodes, and note that
x. = 0.5 for all e, and y, = 0.5 for all v define fractional matching and fractional vertex
covers with values 1.5. More generally, consider a complete graph on n = 2k 4+ 1 nodes. The
maximum matching is of size n, we can get a fractional matching of size n/2, by say using a
triangle with 1/2 on each edge, and a matching on the rest. Putting y, = 1/2 in each node
gives a fractional vertex cover of value n/2 also, while the minimum size of an integer vertex
cover is n — 1.

3 Linear programs and their duals

Using the example of fractional matching, we derived upper bounds on the maximum, by
adding up fractional copies of the inequalities (multiplying each by a nonnegative value y,.
Thinking about such bounds more generally leads to the concept of the dual of a linear
program. Consider again linear programs in the general form

max(cx such that: Az < b}.

Let a;x < b; denote the inequality in the 7th row of this system. For any nonnegative y; > 0
we can get the inequality y;(a;z) < y;b;, and adding up such inequalities for a vector y > 0

we get
Z yi(a;r) < Z Yib;

or using vector notation, we have y(Az) < yb. If it happens to be the case, that yA = ¢,
than the inequality we just derived is cx < yb, hence yb is an upper bound of the maximum
our linear program seeks to find. The dual linear program is the best such upper bound
possible. More formally, it is the program

min(yb : y > 0 and yA = c}.

By the way we derived this program, for each y the value yb is an upper bound of our original
linear program, which immediately gives us the following.

Theorem 5 (weak duality) For any linear program defined by matriz A and vectors b and
c we have
max(cz : Az < b} <min(yb:y >0 and yA = c}.

4 Fractional matchings, flows, and linear programs in
nonnegative variables

Going back to fractional matching, the fractional matching problem had inequalities for all
vertices, but also had constraints that require each variable 0 < z, < 1. Observe that the
constraints ., < 1 for an edge e = (u, v) are redundant, as they follow from the inequalities
that the variables associated with edges adjacent to, say the vertex v, need to sum to at
most 1. However, the constraints x. > 0 are important. It is useful to thing about what is
the dual of a linear program with = > 0 constraints. To take the dual of this linear program
with the method we have seen so far, we need to introduce nonnegative variables associates
with both the Ax < b constraints, as well as the x > 0 constraints (which we may want
to write as —z < 0). Lets call this second set of variables s. Taking the dual we get the
following;:
min(yb+ s0:y > 0,s <0 and yA — s = c}.

Since the right hand side of the second set of constraints is 0, the s variables do not contribute
to the objective function, so we can simply the dual linear program to be the following

min(yb : y > 0 and yA < c}.
We get the

Theorem 6 (weak duality II) For any linear program defined by matriz A and vectors b
and c where the solution is required to be nonnegative, we have

max(cx:x >0, Az < b} < min(yb:y >0 and yA > c}.

Notice that this applying this to fractional matching we see that fractional vertex cover is
the dual linear program for fractional matching. When we write the fractional matching
inequalities as a matrix Ax < b, we have a variable for each edge, and a constraint for each
vertex. The matrix A therefore is m = |E| by n = |V|. The matrix A has 0/1 entries. A
row of A corresponding to vertex v has 1 in positions corresponding to edges e adjacent to
v, and hence a column of A corresponding to an edge e = (u,v) has 1 in the two positions
associated with the two vertices v and v. So the dual inequality yA > ¢ becomes vy, + vy, > 1
for all edges e = (u,v).

Corollary 7 The dual linear program for fractional matching is the linear program for frac-
tional vertex cover.

Recall that in bipartite graphs we have seen that the maximum matching is the same size
as the minimum size of a vertex cover. This implies that in bipartite graphs the maximum
fractional matching is the same size as the minimum fractional vertex cover also. We also
have seen that the integer matching and integer vertex cover is not the same size on a
triangle, but we’ll show below that the maximum size of a fractional matching is the same
as the minimum size of a fractional vertex cover on all graphs. This will follow from the
strong linear programming duality.

Next we consider the maximum flow problem. You may recall the formulation of max-
imum flow with variables on paths. Given a directed graph G = (V, FE) with nonnegative
capacities ¢, > 0 on the edges, and a source-sink pair s,t € V, the flow problem is defined
as a linear program with variables associated with all s — ¢t paths. Let P denote the set of
paths in G from s to t. Now the problem is (using = as a variable name rather than f to
make it more similar to our other linear programs):

xp > Oforall PeP
pr < ¢ forallee F

P:ecP
max E Ip
P

The dual of this linear program has variables associated with the edges (the inequalities of
the above system), and has a variable associated with each path P € P. The dual program
then becomes the following.

Y > Oforallee E
> ye > lforallPeP

man E Cele
e

Notice that since the capacities ¢, are nonnegative, an optimal solution will have y. < 1
for all edges. Now consider an integer solution when gy, is 0 or 1 on all edges, and let
F ={e:y. = 1} be the selected set of edges. The constraint on paths requires that all s —¢
path must contain an edge in F, so F' must contain an (s,?) cut, and by minimality, and
optimal solution is then an (s,t)-cut, and its value is exactly the capacity of the cut.

ecP

Lemma 8 Integer optimal solutions to the above dual linear program are in one-to-one cor-
respondence with minimum capacity (s,t)-cuts in the graph.

We know from linear programming duality that the maximum fractional flow has the
same value as the minimum of the dual program. Note that in the case of flows, we have
seen that the integer max flow is equal to the min cut value. Our observation that min-cuts
are the integer solutions of the dual linear program shows that the dual linear program also
has an integer dual solution.

Corollary 9 The above dual of the max-flow problem is guaranteed to have an optimal
solution with variables y integer, and hence the flow linear problem and its dual has the same
optimal solution value.

5 Strong duality of linear programs

We have seen that the primal and dual linear programs have equal values in the max-flow
problem. While not all linear programs solve optimally in integer variables, we’ll see that
the primal and dual linear programs always have equal solution values. This is the main
theorem of linear programming, called strong duality, i.e., that in inequality in the weak
duality theorem is always equal.

Theorem 10 (strong duality) For any linear program defined by matriz A and vectors b
and ¢, if there is a solution x such that Az < b then we have

max(cx : Az < b} = min(yb:y > 0 and yA = c}.

as well as
max(cx:x > 0,Ar < b} =min(yb:y > 0 and yA > c}.

First observe the second statement follows from the first, by simply applying the first to
linear programs with « > 0 as part of the constraint matrix. Second recall that by weak
duality, we know that all solutions z and all solutions y have cx < yb. To prove the equality,
all we have to do is to exhibit a pair of solutions z* and y* such that cz* = y*b. Once we do
this we have that for al solutions x the value cx < y*b = cx* so x* is optimal, and similarly,
for all solutions y we have that yb > cx* = yb*, so y* is optimal.

We will not formally prove this theorem that such an x* and y* must exists, rather will
present a“proof” based on physics principles, that we hope will give good intuition why the
theorem is true without being too complex. We will think of the area P = {z : Az <} as
a physical area enclosing say a small metal ball. The walls of the area are bounded by the
inequalities a;x < b;, and x will denote the location of the ball. We will also imagine that
there a strong magnet “at infinity” in direction of ¢ that is puling the ball, however, the ball
cannot leave the bounding area P.

1. if the ball keeps accelerating in ¢ direction forever, the value of cx will go to infinity as
the ball moves, so max cx = oo.

2. If the ball cannot accelerate forever, it must come to a stop. Let x denote the place it
stops.

3. At this point the ball has a force ¢ on it from the magnet, the walls of the bounding
area must exert force that compensates the magnet’s force. The wall a;x < b; can exert
force in a; direction, so this force can be of the form y;a; for a nonnegative number
y; > 0. The ball stopped, so the forces acting on it sum to 0, so we get c— > . y;a;, = 0.

4. Finally observe that only walls that touch the ball can exert any force on it, so if
a;x <,b; we must have y; = 0.

We claim that the place z* where the ball stops and the vector y* = (yi,...,y},) form
optimal primal and dual solutions.

Lemma 11 The properties listed above that are derived from physical principles, imply that
the place x* where the ball stops and the vector y* = (yi,...,ys,) form optimal primal and
dual solutions.

Proof. First we note that * and y* are feasible solutions. The ball is inside the region P, so
Ax* < b by definition. We also have that y* > 0 as the wall holds the ball inside by exerting
force, but is not pulling the ball towards the wall, so y7 > 0 for all 7, and we have seen that
c =),y a; as the forces add up to 0.

Next we want to show that x* is of maximum value cx and y* has minimum value yb.
Recall that all we have to do to show this is to argue that cx* = y * b. To see this consider
the chain of inequalities

cxt = (yA)z* <y (Ax") = ny(alx*) < nybi,

that is true for all feasible solutions z* and y* (the first equality is by ¢ = y*A, the second
by rearranging terms, and the inequality follows as its true term by term: y(a;z*) < yib;
for all 7, as y; > 0 and a;x* < b;. Now recall the last property, that force can be only exerted
by walls that touch the ball z*. This property implies that y; > 0 only possible if a;xz* = b;,
or in other words either yf = 0 or a;x* = b; for all . In either case y;(a;x*) = y/b;, and so
the last inequality above is actually equal. B

Notice that the chain on inequalities is true for all feasible vectors z and feasible dual
solutions y. The argument we just went through can be used to recognize a pair of optimal
solutions.

Corollary 12 For a solution x of Ax < b and a vector y > 0 that satisfies c = yA, x and y
are optimal solutions of the linear program and its dual if and only if for each i either y; = 0
or a;x = b;. Or put it differently, x and y are optimal solutions of the linear program and
its dual if and only if for all i we have y;(b; — a;x) = 0.

6 The ellipsoid method

Next we will roughly sketch one of the methods for solving linear programs, the ellipsoid
method. This was the first polynomial time algorithm discovered for the problem. Its not
the most efficient practically: practical algorithms either use the simplex method (which may
be exponential in the worst case) or interior point methods. However, the ellipsoid method
is based on a simple geometric idea, and it is the most powerful in the sense of being able
to solve extensions of linear programs also in polynomial time.

The basis idea of the ellipsoid method is the following. Suppose we know that our feasible
region P = {z : Ax < b} is contained in a ball, say the ball B = {z : 2% = ;27 < 1}.
If we also knew that say x; > 0 for all points in P, then P is contained in a half ball
BN {x:z; >0}, which is only half as big as B. Unfortunately, a half-ball is a much more
complex object. The idea is to enclose the half ball in an ellipsoid E. The ellipsoid will
still be smaller than B (tough by much less smaller than the half-ball), it will still contain
the region of our interest P, and be again a simple shape, like a ball, so we will be able to
recurse.

To develop the idea above, we need to find an ellipse £ that encloses the half-ball as

shows in the figure below. Our ellipse will be centered at ¢ = (n+r1, 0,...,0). So the ball B

Figure 2: The ellipse E enclosing the top half of the ball B.

translated be centered at a point ¢ would have definition B(c) = {z : Y .(z; — ¢;)* < 1}.
The ellipse we are interested in is a bit squashed version of this ball defined as F = {z :

nl i<o 7 + (" (21 — =5))? < 1}, where n is the dimension of the space = € R™.

Lemma 13 The ellipse E contain the half ball BN {x : 1 > 0}.

Proof. First test two points x = (1,0...,0). This point satisfies the ellipse inequality as

n?—1 s n+1 1 o, n+l n
‘ — — -1

1<2

x2 = 1. For

Second, consider a point x = (0,2a,...,7,) on the “equator”, i.e. where),

such a point we get

n*—1 5 o n+1 1 , n?-—1 n+l 1 ., n*—1 1

n? n+1 n? n n+1 n? n?
Finally, consider a general point z in the half ball, and let >._, 27 = s* for some value s.
If z; < %H, i.e., the point is below the level of the center, the argument we just used for

the equator works again. For the point is above the center, n+r1 < x7 we use the fact that
1 < V1 — 5% So we get

1 1

n+1

(0= =< (VI=s = —)?

In this case we get a rather complicated expression in s for our bound

n®—1 n+1 1 n?—1 n+1 1
Doal+ (o = —) S st (VI - —)

2 2
n = n-+1 n n n-+1

Maybe the simplest way to show that this is at most 1 is to use calculus to show that the
maximum of this expression on the interval s € [0, 1] occurs at the two ends, and we have
just seen that at s =0 or 1 the valueis 1. B

Next we need to show that our ellipse F indeed has significantly smaller volume that the
ball B, as we hope to claim to make progress by shrinking the volume. To do this, its useful
to remember the expression for the volume of a ball with radius r in n dimension is v, r" for
a constant v that depends on the dimension. For example, in 2 dimension v, = 7, while in
3 dimension 73 = 3m. We are thinking about ellipses of the form Ey = {z : (a;)* < 1}. A
ball of radius r is expressed this way with «; = 1/r for all i. More generally, the volume of
the ellipse just defined is V(Ey) = v,/ [[; a;. Using this expression we can get the ratio of

the ellipse E containing the half-ball and the ball.

Lemma 14 The ratio of the volumes of the ellipse E and the ball B is bounded by V(E)/V(B) <
o= 1/4(n+1)

Proof. The ball B has radius 1, so its volume is 7,. In computing the ratio, 7, cancels. In

. . 2__
= = while o for i > 2 we have /%51, So we get

defining the ellipse F we used o

2

VIE)/V(B) = — ()"

. . . ~ o 1
To estimate this expression we can use that 1+z ~ e® for small z, and use that 25 = (1—-5)
1

n2—1

and similarly n?—il =(1+) so we get

V(E)/V(B) ~ 6*1/(TL+1)(61/(712,1))(7171)/2 — o YD) +1/2(n+1) _ ~1/2(n+1)

Being a bit more careful with the small error in the 14 x = e* approximation, decreases the
bound a bit further, but we can get the bound claimed by the lemma. Unfortunately, the
decrease is quite minimal. W

Now we are ready to use the above geometry in an algorithm. To help the presentation, we
will make a number of simplifying assumptions. As we make each assumption, we comment
on how one may be able to solve problems without the assumption, but we will not elaborate
in these further.

1. We will assume that we are looking for is known to be contained in a large ball By =
{z : 2 < R?} for a parameter R. For example, if we know that the variables are
0 < x; < 1 than we can use R = y/n. Similarly, if there are upper bounds on the
variables, this implies an upper bound on R. Without any such bound, one would
have to argue that if the maximum of the linear program is not infinite, it occurs in a
bounded region.

2. To simplify the presentation, we will focus on just finding a feasible solution z satisfying
Az < b without a maximization. One can incorporate an objective function of max cz,
for example, by adding a constraint that cz > v and binary searching on the maximum
value of v for which the system remains feasible.

3. Instead of looking for an exact solution of Ax < b, we will be satisfied with an ap-
proximate solution. Assume that we are given an error parameter ¢ > 0. By dividing
the inequalities in Az < b by appropriate constants, we can assume that each entry
in the matrix is at most 1, i.e.,that |a;;| < 1 for all ¢ and j. With this assumption in
place we will accept an x as a solution if for each constraint ¢ it satisfies a;x < b; + €.
However, the algorithm can conclude that no solution exists, assuming the original
system Ax < b has no solution.

Notice that there are cases that it is not clear upfront what this approximate solution
algorithm should output. If there is no solution to Az < b, but there is a solution to
the related system of a;x < b; 4+ € for all ¢ the algorithm can find either answer. In
most applications such an approximate solution is OK. To make the algorithm precise
we would have to do two things. First find a small enough value € > 0 that guarantees
that of Az < b has no solution, than a;x < b; + € for all 7 also has no solution. Second,
we need to show that for a small enough € > 0 a solution z of the approximate system
a;x < b; + € for all 7 can be rounded to become a solution of the original system.

The main idea of the algorithm is to start with the ball in assumption 1 that is known to
contain all solutions. While we have not found a solution, we will have an ellipsoid F; that
contains all solutions. In each iteration, we test the center ¢ of our ellipsoid E;. If ¢ is
an (approximate) solution to our system, we return z = ¢’ and we are done. If ¢’ is not a
solution, than it must violate one of the constraints of the system a;c’ > b; + €. In this case,
all solutions, even all approximate solutions, are in the half of the ellipsoid defined by the
cut through the center of our ellipsoid a;z < a;c¢’. We then define the next ellipsoid E;,; to
contain this half-ellipsoid E; N {z : a;z < a;c'}.

We defined an enclosing ellipsoid for a half-ball, with the ball centered at 0, and the half
defined by one of the coordinate directions. However, now we need this for an ellipsoid with
a different center, and a direction that may not be one of the coordinate directions. While
working out the algebraic expression for this new ellipsoid is a bit complex, the geometric
idea is simple via a geometric steps. To see how this translates to an algebraic expression,
you may want to look at the notes by Santosh Vempala posted in the course web page.

e By translating the space we can assume that any given point c¢ is the origin.

e For an ellipsoid E defined by the inequality), (a;z;) < 1 we can stretch the coordi-
nates, by using a new coordinate system with y; = a;x;, and the ellipsoid E becomes
the unit ball in the new coordinate system.

e Finally, we want to take a half-space defined by an arbitrary vector ax > 0, rather
than a coordinate direction. To do this, we can again change coordinate systems, by
letting the unit vector in direction a become our first coordinate, and extending this
to an orthogonal system of coordinates for the space.

Using these reductions allows us to take the ellipsoid defined in the beginning of this section
for the unit ball as part of an iterative algorithm. From Lemma 14 we know that the volume
in each iteration decreases by at least a bit. The last question we need to answer is how
many iterations we need before we can conclude. In fact, we need to wonder about how the
algorithm can conclude. It may find that the centers of one of the ellipsoids is a solution,
and hence can terminate. But how does it terminate when there is no solution? The idea
is to note that if Az < b has a solution, than the set of approximate solutions must have a
volume . This is useful, as if we ever find that our ellipsoid FE; at some iteration has volume
smatter than 0 than we can conclude that Az < b cannot have a solution, and hence can
terminate.

Lemma 15 If the system of inequalities {x : Az < b} has a solution, and |a;;| < 1 for all
entries than the volume of the set {x : a;x < b; + € for all i} must be at least § = (2¢/n)".

Proof. Consider a solution x* such that Az* < b. We define a small box around x* as
B(z*) ={z : |z, — 27| < ¢€/n for all i}

Observe that all points z € B(z*) must satisfy the approximate inequalities, and the volume
V(B(z*)) is exactly d proving the lemma. W

Theorem 16 Under the simplifying assumptions 1-3 made above, the ellipsoid algorithm

solve the problem of finding a feasible solution to a system of inequalities in n dimension in
O(n?*log(Rn/e€) iterations.

Proof. By the 1st assumption we start out with a ball of volume R"™?. By Lemma 14
each iteration decreases the volume of our ellipsoid by a factor of e/2"1) 5o 2(n + 1)
iterations decrease the volume by a factor of e, i.e., by a constant factor. what is the range
of volume that we need to decrease? we need to go from R™"? to (2¢/n)", a range less than
(Rn/e)™. This happens after the volume decreases log((Rn/e)™) = nlog(Rn/epsilon) times
by a constant factor, so overall will take O(n?log(Rn/¢) iterations as claimed. B

7 Linear Programming and Randomized Rounding

As an application of linear programming, we will consider the following disjoint path problem.
Given a directed graph G = (V, E), capacities on the edges ¢, > 0 for e € E, and pairs of

nodes s;,t; € V for i = 1,... k, the problem is to find paths P; from s; to t; that don’t use
any edge e more than c, times. For example, when c. = 1 for all e we are looking for disjoint
paths. There may not be k such paths in GG, so we will try to find as many as possible.

The first natural idea is to reduce the problem to max-flow, but unfortunately, this won’t
work out so well. To see why, note that the natural reduction would add a supersource s with
edges to each s; with capacity 1, and a supersink ¢ with edges from each ¢; to ¢ with capacity
1, and than find a max-flow from s to t. We have seen that a flow can be decomposed into
paths from s to ¢, with integer capacities, each flow will carry an integer amount of flow,
and with the source and sink edges having capacity 1, each paths will have one unit of flow.
What goes wrong is the pairing of the sources and sinks. There is nothing guaranteeing that
the path starting at s; ends at its pair ¢;, rather than at some other terminal ¢;. In fact, this
approach cannot as finding disjoint paths (when ¢, = 1 for all e) is an NP-complete problem.
Here we will find a close to optimal solution when the capacities are high enough.

The high level idea is to take advantage that linear programs can be solved in polynomial
time. The above paths problem can be formulated as an integer problem. We solve a
fractional version, and then will want to use the fractional solution to get an integer solution.
The most natural way to formulate the path problem is to have a variable xp associated
with every paths. Let P; denote the set of paths in G from s; to t;. Then we write

> 0 for all P € U;P;
pr < c foralleec F

1 for all ¢

gk
5
A

The inequality for the edges enforces the capacities, the other set of inequalities is asking
to select at most one total of the paths between any source and sink. While we didn’t include
the zp < 1 constraint, this is implied by the inequality that is asking to select at most one
total of the paths between any source and sink. So integer solutions will have xp either 0 or
1, and we can think of the paths P with xp = 1 as being selected.

Lemma 17 Integer solutions to the above inequalities are in one-to-one correspondence to
paths that satisfy the capacity constraints.

However, unlike maximum flow, this linear program does not solve in integers, the opti-
mal solution will result in fractional values. Before we start thinking about how to use the
solution to this linear program, we need to worry if we can solve it at all. The problem is
that the linear program as stated can have exponentially many variables, one for each paths.
We will give a compact, polynomial size version by using the traditional flow formulation
with flows on edge, but doing this separately for each edge e. We’ll use variables f;(e) to
denote the amount of flow from s; to ¢; on edges e, that is f;(e) = Zpen-:eep Tp.

v

0 for all e € E and all ¢
c.forallec F

fie)
Zfz‘(e)

Z fi(e) — Z file) = Oforalliandallv eV, v#s,t;

€ enters U € leaves v

>, file)= D file)

eenters 1; € leaves t;

max Y Y A0 Y i)

i e enters l; € leaves t;

IA

1 for all ¢

IN

We have a separate set of flow conservation constraints for each flow f;, a bound of 1 on
flow between any given source-sink paths, a joint capacity constraint founding the total flow
>, fi(e), and the goal is to maximize the total flow. The advantage of this linear program is
its compact size. For a graph with n nodes and m edges, we have mk nonnegative variables,
and m + nk constraints. Integer solutions to this linear program also are solutions to the
original path problem. Its not hard to see that in an integer solution the set of edges with
fi(e) = 1 for a given index i can form cycles and possibly a single path from s; to ¢;. Cycles
do not contribute to the objective value, and path contribute 1. So ignoring the possible
cycles in a solution, we get the following.

Lemma 18 Integer solutions to the new inequalities correspondence to paths that satisfy the
capacity constraints with the number of paths equal to the objective value.

Further, we have seen that an edge-flow can be converted to be a path flow of equal value,
so any (fractional) solution to the second linear program can be converted to a solution to
the first linear program in polynomial time. Recall, the way we get around the exponential
number of variables is that our solution will have most of them set to 0, and will define the
solution by listing the non-zero values only.

Lemma 19 The two linear programs have the same optimal value, and a solution to one
can be converted to a solution to the other in polynomial time. The resulting solution of the
path flow linear program will have only polynomially many paths with nonzero xp wvalues.
Further, the linear programming optimum value is at least as high as the mazimum number
of paths that can be selected.

Now suppose we have a solution to our path flow linear program. The next question is,
how is this useful to find real paths. The idea is to use the variables xp for all P € P; as
probabilities. For each i independently, we want to select at most one path from s; to t;,
selecting a given (s;,t;) path with probability zp. This is possible as

Zl’pél

PeP;

Note that if we have a strict inequality here, with some probability we will not select any
(s;,t;) path. There are some basic facts we can get about this selection method using linearity
of expectation.

Lemma 20 The expected number of paths selected by our random selection is Y p,xp , and
the expected number of paths using any edge e is at most c. for each e.

Proof. A path P contributes to the expected number of path by its probability of being
selected, so the expected number of path overall, by linearity of expectation is Y, zp as
claimed. The expected number of paths using an edge e is). . p 2p, Which is bounded by
ce. by our capacity constraint. Wl

We would like to show that the number of paths on any edge is below its capacity high
probability. This simply won’t be true if the expectation is an high as c.. To help with this,
we need to modify the algorithm to use (1 — €)xp as the probability of selecting path P for
all P. This decreases the expected number of paths selected by a factor of (1 —e€), but allows
us to bound the probability that the number of paths exceeds ¢, on any edge.

Lemma 21 If the expected number of paths on an edge e is at most (1—€)c, and (1 —¢€)c, >
2¢=2logm than the probability that there are more paths than c. using edge e is at most 1/m?.

Proof. We use Chernoff bound. Focusing on edge e let X; = 1 of the s; to ¢; path selected
uses edge e. By construction, the X; variables are 0/1 and independent, and the number of
paths using e is X = >, X;. Also note that E(X) < (1—¢)c., which we can call = (1—¢€)c,
and (1 +¢e)u = (1 — €?)ce < ce, S0 we get
—0.5¢2 —€)c 1
Pr(X > c.) < (e705)maee < —
as claimed. W

Theorem 22 Assuming that all capacities c. > € 2logm, then the above randomized round-
ing method, solving the linear program, using (1 — €')xp for some ¢ > 0 as probabilities
independently for each i, finds a solution to the path problem with high at high probability
(say probability at east 3/4) using a number of path no less than a factor 1 — O(€) less than
the optimal.

Proof. We have seen by Lemma 19 that the expected number of paths using this method
is at least (1 — €’) times the optimal. For each edge, Lemma 21 shows that, we can get the
probability of a single violated very low: Pr(X > ¢.) < 5. Let X(e) denote the number of
paths on edge e. Using Lemma 21 and the union bound for all edges, we get

1 1
Prob(3e : X, > ¢.) < Z Prob(X, > c.) < m-— = —.
m m

Similarly, the probability that the total number of paths is below (1—¢’) times its expectation
can also be bounded by # due to the lower bound version of the Chernoff bound. Using the
union bound on these two events, the probability that the method has (1 — €)? ~ (1 — 2¢)
times the maximum possible number of path, and all edges have at most ¢, paths is at least

1 — L — = which is high enough assuming the graph is not too small. W

Cornell University, Fall 2016 CS 6820: Algorithms
Supplementary lecture notes on linear programming 26 Sep—28 Sep

1 The Simplex Method

We will present an algorithm to solve linear programs of the form

maximize cTx
subject to Az <b (1)
z>=0

assuming that b > 0, so that © = 0 is guaranteed to be a feasible solution. Let n denote the
number of variables and let m denote the number of constraints.

A simple transformation modifies any such linear program into a form such that each
variable is constrained to be non-negative, and all other linear constraints are expressed as
equations rather than inequalities. The key is to introduce additioinal variables, called slack
variables which account for the difference between and left and right sides of each inequality
in the original linear program. In other words, linear program is equivalent to

maximize cTx
subject to Ax+y=0> (2)
z,y=0

where z € R" and y € R™.

The solution set of {Az +y =b, x = 0, y = 0} is a polytope in the (n + m)-dimensional
vector space of ordered pairs (z,y) € R™ x R™. The simplex algorithm is an iterative
algorithm to solve linear programs of the form by walking from vertex to vertex, along
the edges of this polytope, until arriving at a vertex which maximizes the objective function
clx.

To illustrate the simplex method, for concreteness we will consider the following linear
program.

maximize 2x1 + 32,

subject to 1+ 29 <8
2.1'1 + T2 < 12
xr, + 2[L‘2 S 14

x1,22 >0

This LP has so few variables, and so few constraints, it is easy to solve it by brute-force
enumeration of the vertices of the polytope, which in this case is a 2-dimensional polygon.

The vertices of the polygon are [9], [2], [1], [§], [§]. The objective function 2z + 3z is

maximized at the vertex [2], where it attains the value 22. It is also easy to certify that

this is the optimal value, given that the value is attained at [2]: simply add together the
inequalities

$1+$2§8
Ty + 22° < 14

to obtain
21’1 + 31’2 S 22,

which ensures that no point in the feasible set attains an objective value greater than 22.

To solve the linear program using the simplex method, we first apply the generic trans-
formation described earlier, to rewrite it in equational form as

maximize 221 + 319

subject to T1+ 20 +y1 =8
201 + 19+ yo = 12
1+ 209+ ys =14
T1, T2, Y1, Y2, Y3 2> 0

From now on, we will be choosing a subset of two of the five variables (called the basis),
setting them equal to zero, and using the linear equations to express the remaining three
variables, as well as the objective function, as a function of the two variables in the basis.
Initially the basis is {1, 22} and the linear program can be written in the form

maximize 211 + 319

subject toy; =8 — 17 — X9
Yo = 12 — 221 — 29
ys = 14 — 21 — 229
T1,T2,Y1,Y2,Ys 2> 0

which emphasizes that each of yy,ys, y3 is determined as a function of z, x5. Now, as long
as the basis contains a variable which has a positive coefficient in the objective function,
we select one such variable and greedily increasing its value until one of the non-negativity
constraints becomes tight. At that point, one of the other variables attains the value zero: it
enters the basis, and the variable whose value we increased leaves the basis. For example, we
could choose to increase x; from 0 to 6, at which point y» = 0. Then the new basis becomes
{ya, x2}. Rewriting the equation y, = 12 — 221 — x5 as
1 1

=6— =Yy — — 3
T 2y2 2$2, ()

2

we may substitute the right side of in place of x; everywhere in the above linear program,
arriving at the equivalent form

maximize 12 — yo + 279
subject toy; = 2 + %yg — %1’2
T =6— %yz — X2
ys = 8+ 342 — 512
T1,T2,Y1,Y2, Y3 = 0

At this point, x5 still has a positive coefficient in the objective function, so we increase xs
from 0 to 4, at which point y; = 0. Now x5 leaves the basis, and the new basis is {y1, y2}.
We use the equation xo = 4 4y — 2y, to substitute a function of the basis variables in place
of x9 everywhere it appears, arriving at the new linear program

maximize 20 —4y; + yo
subject tore =4+ y2 — 21
r1=4—y+u
Ys =2 —y2 + 3y
T1,T2,Y1,Y2, Y3 = 0

Now we increase y, from 0 to 2, at which point y3 = 0 and the new basis is {y;,y3}.
Substituting y» = 2 — y3 + 3y, allows us to rewrite the linear program as

maximize 22 —y1 — s
subject tors =6 + y1 — ys
T, =2—2y; +ys3 (4)
Yo =2+ 3y1 — ys
T1,T2,Y1, Y2, Y3 > 0
At this point, there is no variable with a positive coefficient in the objective function, and

we stop.

It is trivial to verify that the solution defined by the current iteration—namely, x; =
2,19 = 6,y = 0, y2 = 2, y3 = 0—is optimal. The reason is that we have managed to
write the objective function in the form 22 — y; — y3. Since the coefficient on each of the
variables 1, y3 is negative, and y; and y3 are constrained to take non-negative values, the
largest possible value of the objective function is achieved by setting both y; and y3 to zero,
as our solution does.

More generally, if the simplex method terminates, it means that we have found an equiv-
alent representation of the original linear program in a form where the objective function

3

attaches a non-positive coefficient to each of the basis variables. Since the basis variables
are required to be non-negative, the objective function is maximized by setting all the basis
variables to zero, which certifies that the solution at the end of the final iteration is optimal.

Note that, in our running example, the final objective function assigned coefficient —1 to
both y; and y3. This is closely related to the fact that the simple “certificate of optimality”
described above (before we started running the simplex algorithm) we obtained by summing
the first and third inequalities of the original linear program, each with a coefficient of 1.
We will see in the following section that this is not a coincidence.

Before leaving this discussion of the simplex method, we must touch upon a subtle issue
regarding the question of whether the algorithm always terminates. A basis is an n-element
subset of n + m variables, so there are at most (”Zm) bases; if we can ensure that the
algorithm never returns to the same basis as in a previous iteration, then it must terminate.
Note that each basis determines a unique point (x,y) € R**™—defined by setting the basis
variables to zero and assigning to the remaining variables the unique values that satisfy
the equation Az + b = y—and as the algorithm proceeds from basis to basis, the objective
function value at the corresponding points never decreases. If the objective function strictly
increases when moving from basis B to basis B’, then the algorithm is guaranteed never to
return to basis B, since the objective function value is now strictly greater than its value at
B, and it will never decrease. On the other hand, it is possible for the simplex algorithm to
shift from one basis to a different basis with the same objective function value; this is called
a degenerate pivot, and it happens when the set of variables whose value is 0 at the current
solution is a strict superset of the basis.

There exist pivot rules (i.e., rules for selecting the next basis in the simplex algorithm)
that are designed to avoid infinite loops of degenerate pivots. Perhaps the simplest such rule
is Bland’s rule, which always chooses to remove from the basis the lowest-numbered variable
that has a positive coefficient in the objective function. (And, in case there is more than
one variable that may move into the objective function to replace it, the rule also chooses
the lowest-numbered such variable.) Although the rule is simple to define, proving that it
avoids infinite loops is not easy, and we will omit the proof from these notes.

2 The Simplex Method and Strong Duality

An important consequence of the correctness and termination of the simplex algorithm is
linear programming duality, which asserts that for every linear program with a maximization
objective, there is a related linear program with a minimization objective whose optimum
matches the optimum of the first LP.

Theorem 1. Consider any pair of linear programs of the form

maximize cTx minimize b™n
subject to Az <b and subject to ATp=c (5)
z>=0 n>=0

If the optimum of the first linear program is finite, then both linear programs have the same
optimum value.

Proof. Before delving into the formal proof, the following intuition is useful. If a; denotes the
i*h row of the matrix A, then the relation Az < b can equivalently be expressed by stating
that a]x < b; for j = 1,...,m. For any m-tuple of non-negative coefficients 7y, ..., 7y, we

can form a weighted sum of these inequalities,

i majT < i 1ibs, (6)
P =1

obtaining an inequality implied by Ax < b. Depending on the choice of weights 7y, ..., 7n,
the inequality @ may or may not imply an upper bound on the quantity c¢Tx, for all x > 0.
The case in which @ implies an upper bound on ¢Tz is when, for each variable z; (j =
1,...,n), the coefficient of z; on the left side of @ is greater than or equal to the coefficient
of z; in the expression cTz. In other words, the case in which @ implies an upper bound on

cTx for all x = 0 is when
Vje {1,,n} Zmaij ij. (7)
i=1

We can express @ and more succinctly by packaging the coefficients of the weighted
sum into a vector, . Then, inequality @ can be rewritten as

n'Az < n'b, (8)
and the criterion expressed by can be rewritten as
nTA = c. (9)

The reasoning surrounding inequalities @ and can now be summarized by saying that
for any vector n € R™ satisfying n = 0 and nTA > ¢7, we have

cTe <nTAx <n™b (10)

for all x > 0 satisfying Az < b. (In hindsight, proving inequality is trivial using the
properties of the vector ordering < and our assumptions about z and 7.)

Applying , we may immediately conclude that the minimum of n7b over all n = 0
satisfying nTA > T, is greater than or equal to the maximum of ¢Tz over all z > 0 satisfying
Ax <b. That is, the optimum of the first LP in is less than or equal to the optimum of
the second LP in (5], a relation known as weak duality.

To prove that the optima of the two linear programs are equal, as asserted by the theo-
rem, we need to furnish vectors xz, n satisfying the constraints of the first and second linear
programs in , respectively, such that ¢Tz = bT. To do so, we will make use of the sim-
plex algorithm and its termination condition. At the moment of termination, the objective
function has been rewritten in a form that has no positive coefficient on any variable. In
other words, the objective function is written in the form v — {Tx — nTy for some coefficient
vectors £ € R™ and n € R™ such that £, = 0.

5

An invariant of the simplex algorithm is that whenever it rewrites the objective function,
it preserves the property that the objective function value matches c¢Tz for all pairs (z,y) €
R"™ x R™ such that Ax +y = b. In other words, we have

VeeR" v—Ex—nT(b— Ax) = cTx. (11)

Equating the constant terms on the left and right sides, we find that v = nTb. Equating the
cofficient of x; on the left and right sides for all j, we find that nTA = {7 4 ¢ = ¢T. Thus,
the vector n satisfies the constraints of the second LP in (/5).

Now consider the vector (x,y) which the simplex algorithm outputs at termination. All
the variables having a non-zero coefficient in the expression —(Tx — 1Ty belong to the algo-
rithm’s basis, and hence are set to zero in the solution (z,y). This means that

v=v—E&r—ny=cx

and hence, using the relation v = n7b derived earlier, we have cTx = b™n as desired. O]

Cornell University, Fall 2012 CS 6820: Algorithms
Lecture notes on approximation algorithms October 10-15, 2010

1 Introduction: Approximation Algorithms

For many important optimization problems, there is no known polynomial-time algorithm to
compute the exact optimum. In fact, when we discuss the topic of NP-completeness later in the
semester, we’ll see that a great many such problems are all equivalently hard to solve, in the
sense that the existence of a polynomial-time algorithm for solving any one of them would imply
polynomial-time algorithms for all the rest.

The study of approximation algorithms arose as a way to circumvent the apparent hardness of
these problems by relaxing the algorithm designer’s goal: instead of trying to compute an exactly
optimal solution, we aim to compute a solution whose value is as close as possible to that of the
optimal solution. However, in some situations it is desirable to run an approximation algorithm
even when there exists a polynomial-time algorithm for computing an exactly optimal solution.
For example, the approximation algorithm may have the benefit of faster running time, a lower
space requirement, or it may lend itself more easily to a parallel or distributed implementation.
These considerations become especially important when computing on “big data,” where the
input size is so astronomical that a running time which is a high-degree polynomial of the input
size (or even quadratic, for that matter) cannot really be considered an efficient algorithm, at
least on present-day hardware.

To make the definition of approximation algorithms precise, we say that an algorithm ALG
for a maximization problem is an a-approximation algorithm (or that its approximation factor
is a) if the following inequality holds for every input instance x:

ALG(z) < OPT(z) < a - ALG(2).

Here OPT(x) denotes the value of the problem’s objective function when evaluated on the op-
timal solution to input instance z, and ALG(x) denotes the algorithm’s output when it runs
on input instance x. Note that the definition only requires the algorithm to output a number
(approximating the value of the optimal solution) and not the approximate solution itself. In
most cases, it is possible to design the algorithm so that it also outputs a solution attaining the
value ALG(z), but in these notes we adopt a definition of approximation algorithm that does
not require the algorithm to do so.
Similarly, for a minimization problem, an a-approximation algorithm must satisfy

OPT(z) < ALG(z) < a- OPT(x).

Note that in both cases the approximation factor « is a number greater than or equal to 1.

2 Approximation Algorithms Based on Linear Program-
ming

Linear programming is an extremely versatile technique for designing approximation algorithms,
because it is one of the most general and expressive problems that we know how to solve in
polynomial time. In this section we’ll discuss three applications of linear programming to the
design and analysis of approximation algorithms.

2.1 LP Rounding Algorithm for Weighted Vertex Cover

In an undirected graph G = (V, E), if S C V is a set of vertices and e is an edge, we say that S
covers e if at least one endpoint of e belongs to S. We say that S is a vertex cover if it covers
every edge. In the weighted vertex cover problem, one is given an undirected graph G = (V, E)
and a weight w, > 0 for each vertex v, and one must find a vertex cover of minimum combined
weight.

We can express the weighted vertex cover problem as an integer program, by using decision
variables x, for all v € V' that encode whether v € S. For any set S C V' we can define a vector
x, with components indexed by vertices of GG, by specifying that

1 ifves
Ty =
0 otherwise.

S is a vertex cover if and only if the constraint x, + x, > 1 is satisfied for every edge e = (u,v).
Conversely, if x € {0,1}V satisfies z, + 7, > 1 for every edge ¢ = (u,v) then the set S = {v |
x, = 1} is a vertex cover. Thus, the weighted vertex cover problem can be expressed as the
following integer program.

min Y vey Woly
s.t. Ty+x,>1 Ve=(uv)€eE (1)
z, € {0,1} YoeV

To design an approximation algorithm for weighted vertex cover, we will transform this integer
program into a linear program by relaxing the constraint z, € {0, 1} to allow the variables x,, to
take fractional values.

min Y vey Woly
s.t. Ty+x,>1 Ve=(u,v)€eFE (2)
T, >0 YveV

It may seem more natural to replace the constraint z, € {0,1} with z, € [0,1] rather than
x, > 0, but the point is that an optimal solution of the linear program will never assign any of
the variables x, a value strictly greater than 1, because the value of any such variable could always
be reduced to 1 without violating any constraints, and this would only improve the objective
function Y w,z,. Thus, writing the constraint as =, > 0 rather than z, € [0,1] is without loss
of generality.

It is instructive to present an example of a fractional solution of (2) that achieves a strictly
lower weight than any integer solution. One such example is when G is a 3-cycle with vertices
u, v, w, each having weight 1. Then the vector x = (%, %, %) satisfies all of the constraints of (2)
and the objective function evaluates to % at x. In contrast, the minimum weight of a vertex
cover of the 3-cycle is 2.

We can solve the linear program (2) in polynomial time, but as we have just seen, the
solution may be fractional. In that case, we need to figure out how we are going to post-process
the fractional solution to obtain an actual vertex cover. In this case, the natural idea of rounding

to the nearest integer works. Let x be an optimal solution of the linear program (2) and define

ivz{l if 7, > 1/2 3)

0 otherwise.

Now let S = {v | &, = 1}. Note that S is a vertex cover because for every edge e = (u,v) the
constraint x, + x, > 1 implies that at least one of x,, x, is greater than or equal to 1/2.

Finally, the analyze the approximation ratio of this algorithm, we observe that the rounding
rule (3) has the property that for all v,

Ty < 21,.

Letting S denote the vertex cover chosen by our LP rounding algorithm, and letting OPT denote
the optimum vertex cover, we have

Zwv :Zwv:f:v §22wvxv <2 Z Wy,

vES veV veV veOPT

where the final inequality holds because the fractional optimum of the linear program (2) must
be less than or equal to the optimum of the integer program (1) because its feasible region is at
least as big.

2.2 Primal-Dual Algorithm for Weighted Vertex Cover

The algorithm presented in the preceding section runs in polynomial time, and we have seen that
it outputs a vertex cover whose weight is at most twice the weight of the optimum vertex cover,
a fact that we express by saying that its approzimation factor is 2.

However, the algorithm needs to solve a linear program and although this can be done in
polynomial time, there are much faster ways to compute a vertex cover with approximation
factor 2 without solving the linear program. One such algorithm, that we present in this section,
is a primal-dual approximation algorithm, meaning that it makes choices guided by the linear
program (2) and its dual but does not actually solve them to optimality.

Let us write the linear programming relaxation of weighted vertex cover once again, along
with its dual.

min Y vey Woly
s.t. Tyt+z,>1 Ve=(u,v)€E (4)
T, >0 YoeV
max Y ecr Ye
s.t. doecswyYe SWwy VWEV (5)
Ye > 0 Vee E

Here, the notation d(v) denotes the set of all edges having v as an endpoint. One may interpret
the dual LP variable y. as prices associated to the edges, and one may interpret w, as the wealth
of vertex v. The dual constraint) . s(v) Ye < Wy asserts that v has enough wealth to pay for
all of the edges incident to it. If edge prices satisfy all the constraints of (5) then every vertex
has enough wealth to pay for its incident edges, and consequently every vertex set S has enough
combined wealth to pay for all of the edges covered by S. In particular, if S is a vertex cover
then the combined wealth of the vertices in S must be at least) . ¥, which is a manifestation
of weak duality: the optimum value of the dual LP is a lower bound on the optimum value of
the primal LP.

The dual LP insists that we maximize the combined price of all edges, subject to the con-
straint that each vertex has enough wealth to pay for all the edges it covers. Rather than exactly
maximizing the combined price of all edges, we will set edge prices using a natural (but subopti-
mal) greedy heuristic: go through the edges in arbitrary order, increasing the price of each one as
much as possible without violating the dual constraints. This results in the following algorithm.

Algorithm 1 Primal-dual algorithm for vertex cover

1: Initialize S =0, y. =0Ve € E, s, =0Vv € V.
2: for all e € F do
3: 0 =min{w, — Sy, W, — Sy}

4: Ye = Ye + 0

5 Sy =8, +0

6: Sy = 8y +0

7. if s, = w, then
8: S=SuU{u}
9: end if

10: if s, = w, then
11: S =Su{v}
12: end if

13: end for

14: return S

The variables s, keep track of the sum 5., ¥e (i.e., the left-hand side of the dual constraint
corresponding to vertex v) as it grows during the execution of the algorithm. The rule for updat-
ing S by inserting each vertex v such that s, = w, is inspired by the principle of complementary
slackness from the theory of linear programming duality: if x* is an optimal solution of a primal
linear program and y* is an optimal solution of the dual, then for every ¢ such that = # 0 the
ith dual constraint must be satisfied with equality by y*; similarly, for every j such that y; # 0,
the 7™ primal constraint is satisfied with equality by z*. Thus, it is natural that our decisions
of which vertices to include in our vertex cover (primal solution) should be guided by keeping
track of which dual constraints are tight (s, = w,).

It is clear that each iteration of the main loop runs in constant time, so the algorithm runs
in linear time. At the end of the loop processing edge e = (u, v), at least one of the vertices u, v
must belong to S. Therefore, S is a vertex cover. To conclude the analysis we need to prove that
the approximation factor is 2. To do so, we note the following loop invariants — statements that
hold at the beginning and end of each execution of the for loop, though not necessarily in the
middle. Each of them is easily proven by induction on the number of iterations of the for loop.

1. y is a feasible vector for the dual linear program.
2. 5, = Zeeé(v) Ye.

3. S={v]s, =wy}.

4 Y ev 5o =2 cep Ve

Now the proof of the approximation factor is easy. Recalling that > _pye < > _opp Wy by
weak duality, we find that

Dwe=> 5,<> 5,=2) 4 <2 > w,

vES veS veV e€EE veOPT

2.3 Greedy Algorithm for Weighted Set Cover

Vertex cover is a special case of the set cover problem, in which there is a set U of n elements,
and there are m subsets Si,...,S,, € U, with positive weights wy,...,w,,. The goal is to
choose a subcollection of the m subsets (indexed by an index set .# C {1,...,m}), such that
Uicr Si = U, and to minimize the combined weight) .., w;. We will analyze the following
natural greedy algorithm that chooses sets according to a “minimum weight per new element
covered” criterion. (The variable T in the pseudocode below keeps track of the set of elements
that are not yet covered by (J,c , Si.)

Algorithm 2 Greedy algorithm for set cover

1: Initialize & =0, T = U.

2: while T # () do

3: i:argmink{%’1§k§m,TﬂSk7§®}.
4: I =7 U {Z}

5: T=T \ S;.

6: end while

7: return ¥

It is clear that the algorithm runs in polynomial time and outputs a valid set cover. To
analyze the approximation ratio, we will use the linear programming relaxation of set cover and
its dual.

min o wim

St Yiegw>1 VjeU (6)
2 >0 Vi=1,....m

max ZJ.GU Yj

s.t. djes, Ui Swi Vi=1,...,m (7)
y; >0 Vjeu

It will be helpful to rewrite the greedy set cover algorithm by adding some extra lines that do
not influence the choice of which sets to place in ., but merely compute extra data relevant
to the analysis. Specifically, in the course of choosing sets to include in ., we also compute a
vector z indexed by elements of U. This is not a feasible solution of the dual LP, but at the end
of the algorithm we scale it down to obtain another vector y that is feasible for the dual LP.
The scale factor o will constitute an upper bound on the algorithm’s approximation ratio. This
is called the method of dual fitting.

Algorithm 3 Greedy algorithm for set cover
Initialize & =0, T =U, z; =0Vj € U.
while T # () do
i:argmink{%’ 1<k<m, TnNSy #@}
S =7 U{i}.
for all j €T NS, do
cj = |Tﬁf§i|'
end for
T=T\5;.
end while
a=1 + In (maXlgigm ‘S’LD
Ty = éZ.
: return ¥

— = =

The following three loop invariants are easily shown to hold at the beginning and end of each
while loop iteration, by induction on the number of iterations.

L. ZjEU 2 =D ics Wi

2. For all j € U, if the algorithm ever assigns a nonzero value to z; then that value never
changes afterward.

Below, in Lemma 1, we will show that the vector y is feasible for the dual LP (7). From this,
it follows that the approximation ratio is bounded above by o = 1 + In (maxi<;<; |:Si|) . To see

this, observe that
Zwi = sz :aZyj <« Z Wi,

= jeu jeu i€OPT

where the last line follows from weak duality.
Lemma 1. The vector'y computed in Algorithm (3) is feasible for the dual linear program (7).

Proof. Clearly y; > 0 for all j, so the only thing we really need to show is that Zj es, Yi < w; for
every set S;. Let p = |S;| and denote the elements of S; by sg, s1, ..., s,_1, where the numbering
corresponds to the order in which nonzero values were assigned to the variables z; by Algorithm 3.
Thus, a nonzero value was assigned to zy, before z,,, and so on. We know that

w;

— (8)

p

Rsg >

because at the time the value z,, was assigned, all of the elements of S; still belonged to 7T". In
that iteration of the while loop, the cost-effectiveness of S; was judged to be w;/p, the algorithm
chose a set with the same or better cost-effectiveness, and all of the values z; assigned during
that iteration of the while loop were set equal to the cost-effectiveness of that set. Similarly, we
know that for all ¢ < p,

2, < — (9)

pP—q

because at the time the value z,, was assigned, all of the elements s4, s411,. .., s,—1 still belonged
to T. In that iteration of the while loop, the cost-effectiveness of S; was judged to be w;/(p — q)
or smaller, the algorithm chose a set with the same or better cost-effectiveness, and all of the

values z; assigned during that iteration of the while loop were set equal to the cost-effectiveness
of that set.
Summing the bounds (9) for ¢ =0,...,p — 1, we find that

1 1 P dt
>z <w (ot +§+1><wi-<1+/ 7>:wi~(1+lnp).
- 1

JES;

The lemma follows upon dividing both sides by «. O]

3 Randomized Approximation Algorithms

Randomized techniques give rise to some of the simplest and most elegant approximation algo-
rithms. This section gives several examples.

3.1 A Randomized 2-Approximation for Max-Cut

In the max-cut problem, one is given an undirected graph G = (V, E) and a positive weight w,
for each edge, and one must output a partition of V' into two subsets A, B so as to maximize the
combined weight of the edges having one endpoint in A and the other in B.

We will analyze the following extremely simple randomized algorithm: assign each vertex at
random to A to B with equal probability, such that the random decisions for the different vertices
are mutually independent. Let F(A, B) denote the (random) set of edges with one endpoint in
A and the other endpoint in B. The expected weight of our cut is

E w, - Pr(e € E(A, B)) We.
D> owe| =2 -5

e€E(A,B) eckE eeE

Since the combined weight of all edges in the graph is an obvious upper bound on the weight of
any cut, this shows that the expected weight of the cut produced by our algorithm is at least
half the weight of the maximum cut.

3.1.1 Derandomization using pairwise independent hashing

In analyzing the expected weight of the cut defined by our randomized algorithm, we never
really used the full power of our assumption that the random decisions for the different vertices
are mutually independent. The only property we needed was that for each pair of vertices u, v,
the probability that v and v make different decisions is exactly % It turns out that one can
achieve this property using only k = [log,(n)] independent random coin tosses, rather than n
independent random coin tosses.

Let [Fy denote the field {0, 1} under the operations of addition and multiplication modulo 2.
Assign to each vertex v a distinct vector x(v) in the vector space F%; our choice of k = [log,(n)]
ensures that the vector space contains enough elements to assign a distinct one to each vertex.
Now let r be a uniformly random vector in F%, and partition the vertex set V into the subsets

Ay ={v|r -x(v) =0}
By ={v|r -x(v) =1}

For any edge e = (u,v), the probability that e € F(A,, B;) is equal to the probability that
r - (x(v) —x(u)) is nonzero. For any fixed nonzero vector w € F5, we have Pr(r-w # 0) = 5
because the set of r satisfying r - w = 0 is a linear subspace of F5 of dimension k — 1, hence
exactly 2871 of the 2¥ possible vectors r have zero dot product with w and the other 28! of
them have nonzero dot product with w. Thus, if we sample r € F§ uniformly at random, the
expected weight of the cut defined by (A, By) is at least half the weight of the maximum cut.

The vector space F4 has only 28 = O(n) vectors in it, which suggests a deterministic alter-
native to our randomized algorithm. Instead of choosing r at random, we compute the weight
of the cut (A, B;) for every r € F5 and take the one with maximum weight. This is at least as
good as choosing r at random, so we get a deterministic 2-approximation algorithm at the cost
of increasing the running time by a factor of O(n).

3.1.2 Derandomization using conditional expectations

A different approach for converting randomization approximation algorithms into deterministic
ones is the method of conditional expectations. In this technique, rather than making all of
our random decisions simultaneously, we make them sequentially. Then, instead of making the
decisions by choosing randomly between two alternatives, we evaluate both alternatives according
to the conditional expectation of the objective function if we fix the decision (and all preceding
ones) but make the remaining ones at random. Then we choose the alternative that optimizes
this conditional expectation.

To apply this technique to the randomized max-cut algorithm, we imagine maintaining a
partition of the vertex set into three sets A, B, C' while the algorithm is running. Sets A, B are
the two pieces of the partition we are constructing. Set C' contains all the vertices that have
not yet been assigned. Initially C' =V and A = B = (). When the algorithm terminates C' will
be empty. At an intermediate stage when we have constructed a partial partition (A, B) but C
contains some unassigned vertices, we can imagine assigning each element of C' randomly to A
or B with equal probability, independently of the other elements of C'. If we were to do this, the
expected weight of the random cut produced by this procedure would be

w(A, B,C) = Z we—l—— Z we—l—— Z we—l—— Z We.
e€E(A,B) eeE(A) eeE B,C) eeE(C)

This suggests the following deterministic algorithm that considers vertices one by one, assigning
them to either A or B using the function w(A, B, C) to guide its decisions.

Algorithm 4 Derandomized max-cut algorithm using method of conditional expectations
1: Initialize A=B=0,C=1V.
2: for all v € V do
3: Compute w(A+v,B,C —v) and w(A, B+ v,C —v).

4. if wA+v,B,C—v)>w(A, B+ v,C —v) then
5: A=A+

6: else

7: B=B+wv

8 end if

9: C=C-vw

10: end for

11: return A, B

The analysis of the algorithm is based on the simple observation that for every partition of
V into three sets A, B, C' and every v € C, we have

1
—w(A+4+v,B,C —v)+ éw(A,B +v,C —v) =w(A,B,C).
Consequently
max{w(A + v, B,C —v), w(A,B+v,C —v)} >w(A, B,C)

so the value of w(A, B, C) never decreases during the execution of the algorithm. Initially the
value of w(A, B,C) is equal to 3> _pw., whereas when the algorithm terminates the value
of w(A, B,C) is equal to > 4 p)we. We have thus proven that the algorithm computes a
partition (A, B) such that the weight of the cut is at least half the combined weight of all edges
in the graph.

Before concluding our discussion of this algorithm, it’s worth noting that the algorithm can
be simplified by observing that

w(A+v,B,C —v) —w(A,B+v,C —v) = Z we—— Z We.

eGE B,v) eGE Aw)

The algorithm runs faster if we skip the step of actually computing w(A+ v, B, C'—v) and jump
straight to computing their difference. This also means that there’s no need to explicitly keep
track of the vertex set C.

Algorithm 5 Derandomized max-cut algorithm using method of conditional expectations
1: Initialize A = B = ().
2: for allv € V do
3: if ZeEE(B,v) We — ZEEE(A,U) We > 0 thel’l

4: A=A+
5. else

6: B=B+w
7. end if

8: end for

9: return A, B

This version of the algorithm runs in linear time: the amount of time spent on the loop
iteration that processes vertex v is proportional to the length of the adjacency list of that vertex.
It’s also easy to prove that the algorithm has approximation factor 2 without resorting to any
discussion of random variables and their conditional expectations. One simply observes that the

property
S owz Y wt Y ow

e€E(A,B) e€E(A,A) e€E(B,B)

is a loop invariant of the algorithm. The fact that this property holds at termination implies
that > . BB We = 5 Zee 5 We and hence the algorithm’s approximation factor is 2.

3.1.3 Semidefinite programming and the Goemans-Williamson algorithm

So far, in our discussion of max-cut, we have made no mention of linear programming. It’s worth
considering for a moment the question of whether the natural linear programming relaxation of
the max-cut problem can achieve an approximation factor better than 2. It’s actually not so easy
to write down the natural linear programming relaxation of max-cut. We can define decision
variables {z, | v € V}, taking values in [0, 1], with the intended semantics that x, = 0 if v € A
and x, = 1 if v € B. The trouble is that the natural way to write the objective function is
Y ecr |Tu — x|, which is not a linear function because the absolute value function is non-linear.
A workaround is to define a variable y, for each edge e, with the intended semantics that y, = 1
if e crosses the cut (A, B) and otherwise y. = 0. This suggests the following linear programming
relaxation of max-cut.

max Zee £ Ye

s.t. Yo < Ty + T, Ve = (u,v) € E
(10)
Ye < (1 —) + (1 —) Ve = (u,v) € E

0<z, <1 YoeV

As noted earlier, for every partition of V' into two sets A, B we can set z, =0ifv e A, z, =1
if v € B, and y. = 1 if and only if e crosses the cut (A, B); this yields a valid integer solution
of the linear program (10) such that the LP objective value equals the number of edges crossing
the cut.

Unfortunately, for every graph the linear program (10) also has a fractional solution whose
objective value equals m, the number of edges in the graph. Namely, setting z, = % for all v
and y. = 1 for all e satisfies the constraints of the linear program and achieves the objective
value m. Since there exists graphs whose maximum cut contains barely more than half the
edges (e.g., a complete graph on n vertices), solving this LP relaxation of max-cut only yields
a 2-approximation, the same approximation factor achieved by the much simpler algorithms
presented above.

For many years, it was not known whether any polynomial-time approximation algorithm
for max-cut could achieve an approximation factor better than 2. Then in 1994, Michel Goe-
mans and David Williamson discovered an algorithm with approximation factor roughly 1.14,
based on semidefinite programming (SDP). Since then, SDP has found an increasing number
of applications algorithm design, not only in approximation algorithms (where SDP has many
other applications besides max-cut), but also in machine learning and high-dimensional statistics,
coding theory, and other areas.

So what is semidefinite programming? An SDP is an optimization problem that seeks the
maximum of a linear function over the set of symmetric positive semidefinite n x n matrices,
subject to linear inequality constraints. See Lemma 2 below for the definition and some ba-
sic properties of symmetric positive semidefinite matrices. For now, we limit ourselves to the
following remarks motivating why semidefinite programming is a powerful tool.

1. Semidefinite programming is solvable (to any desired precision) in polynomial time. The
solution may contain irrational numbers, even if the input is made up exclusively of rational
numbers, which is why the parenthetical remark about “to any desired precision” was
necessary.

2. One of the main themes of algorithm design is, “When you have a discrete optimization
problem that you don’t know how to solve, formulate a related continuous optimization
problem that you do know how to solve, and then try to figure out how to transform a
solution of the continuous problem into a solution (either exact or approximate) or the
original discrete problem. An obvious consequence of this theme is: any time someone
discovers a continuous optimization problem that can be solved by an efficient algorithm,
that’s a potential opportunity to design better algorithms for discrete optimization problems
too. This remark alone could justify the importance of SDP’s in algorithm design.

3. Any linear program can be reformulated as a semidefinite program, by optimizing over the
set of diagonal positive semidefinite matrices. Thus, SDP is at least as powerful as LP.

4. Often, one thinks of LP as relaxing a discrete optimization problem by allowing {0, 1}-
valued quantities to take continuous (scalar) values. In the same spirit, SDP can be thought
of as further relaxing the problem by allowing scalar quantities to take (potentially high-
dimensional) vector values.

To define semidefinite programming, we start with a lemma about real symmetric matrices.
Any matrix satisfying the equivalent conditions listed in the lemma is called a symmetric positive
semidefinite (PSD) matrix. The notation A = 0 denotes the fact that A is PSD.

Lemma 2. For a real symmetric matriz A, the following properties are equivalent.
1. Every eigenvalue of A is non-negative.

2. A can be expressed as a weighted sum of the form
A= Z Civiy; (11)
i=1

where the coefficients ¢; are non-negative.
3. A= XXT for some matriz X.

4. There exists a vector space containing vectors Xy, . ..,X, such that A is the matriz of dot
products of these vectors, i.e. for 1 <i,j < n, the dot product x; - x; occurs in the i™ row
and j*" column of A.

5. For every vector z, A satisfies the inequality z" Az > 0.

Proof. To prove that the first property implies the second, we use the fact that every real sym-
metric matrix is orthogonally diagonalizable, i.e. that A can be written in the form A = QDQT
where () is an orthogonal matrix and D is a diagonal matrix whose entries are the eigenvalues of
A. Defining ¢; to be the i*" diagonal entry of D, and y; to be the i** column of @, the equation
A =QDQT expands as A =" ¢;y;y], as desired.

It is elementary to prove that (2) — (3) — (5) — (1), as follows. If A is represented by a
weighted sum as in (11), then A = XX T where X is a matrix with & columns whose i*" column
is /G- yi. It A= XXT, then for every z we have 2T Az = (27X)(Xz) = || XTz|* > 0. If the
inequality 2T Az > 0 is satisfied for every vector z, then in particular it is satisfied whenever z is
an eigenvector of A with eigenvalue A. This implies that 0 < 2T Az = 2T(Az) = \||2||? and hence
that A > 0. Having proven that (1) — (2) in the preceding paragraph, we may now conclude that

all properties except possibly the fourth are equivalent. Finally, observe that the fourth property
is simply a restatement of the third, adopting the notation x; to denote the vector representing
the i'" row of X. Thus, (3) and (4) are trivially equivalent. O

To begin relating the max-cut problem to a semidefinite program, it begins to reformulate
max-cut as a problem about labeling vertices of a graph with {£1} rather than {0,1}. Encoding
cuts in that way, we can write max-cut as the following quadratic optimization problem.

max : Z (u,v) EE(Iuﬂfv)

s.t. w2 =1 YoeV

(12)

The next step in transforming this into a semidefinite program is to treat the variables z, as
vectors rather than scalars. We’ll change the notation to x, to reflect this shift.

max 5 Z (u,v) EE(— Xu - X”)

(13)
s.t. |%,[]? = YoeV

For every {£1} solution of (12) there is a corresponding solution of (13) in which the vectors
{x, | v € V} are all equal to £w for some fixed unit vector w. On the other hand, there are
also solutions of (13) that do not correspond to any {£1} solution of (12), so (13) is a relaxation
of (12) and an optimal solution of (13) might be able to achieve a strictly higher objective value

than the size of the maximum cut in the graph G.
Using Lemma 2 we know that (13) is equivalent to solving the following semidefinite program
to optimize over PSD matrices A = (a,,) whose entries are indexed by ordered pairs of vertices

of G.

max 2 Z (u,v) GE = Oy
s.t. Qpp = 1 YveV (14)
A=0

Furthermore, given the matrix A that solves (14), we can obtain, in polynomial time, a matrix
X such that A = XXT. (This is tantamount to computing the eigenvalues and eigenvectors of
A. Tt would be more accurate to say that we can compute X to arbitrary precision in polynomial
time.) The rows of this X constitute the vectors x, representing a solution of (13).

The question now arises: given the vectors {x,}, how do we output a cut in G such that
the number of edges in the cut is approximately as large as %Z(l — X, - X,)? The idea that
works in this algorithms, and many other applications of semidefinite programming, is to choose
a random hyperplane through the origin, partitioning R™ into two halfspaces. Then we partition
the vertices of the graph according to which halfspace their corresponding vector belongs to. If
(u,v) is an edge of G with corresponding vectors x,,, X, and if § denotes the angle between those
two vectors, then the probability that the random halfspace separates Xu from x, is 6 /7, whereas
the contribution of edge (u,v) to the objective function of the SDP is (1 —x,-x,) = 5(1—cos#).
It is an elementary exercise in calculus to prove that

V0 € [0, 7] £ > (0.878) - [1(1 — cosf)].

Therefore, the approximation ratio of the algorithm is at most 1/(0.878) ~ 1.14.

3.2 A Randomized 2-Approximation for Vertex Cover

For the unweighted vertex cover problem (the special case of weighted vertex cover in which
w, = 1 for all v) the following incredibly simple algorithm is a randomized 2-approximation.

Algorithm 6 Randomized approximation algorithm for unweighted vertex cover

1: Initialize S = 0.

2: for all e = (u,v) € £ do

3: if neither u nor v belongs to S then

4: Randomly choose u or v with equal probability.
5: Add the chosen vertex into S.

6: end if

7: end for

8 return S

Clearly, the algorithm runs in linear time and always outputs a vertex cover. To analyze its
approximation ratio, as usual, we define an appropriate loop invariant. Let OPT denote any
vertex cover of minimum cardinality. Let S; denote the contents of the set S after completing
the i'" iteration of the loop. We claim that for all i,

E[|S; N OPT|| > E[|S; \ OPT]. (15)

The proof is by induction on i. In a loop iteration in which e = (u,v) is already covered by S;_1,
we have S; = S;_1 so (15) clearly holds. In a loop iteration in which e = (u, v) is not yet covered,
we know that at least one of u, v belongs to OPT. Thus, the left side of (15) has probability at
least 1/2 of increasing by 1, while the right side of (15) has probability at most 1/2 of increasing
by 1. This completes the proof of the induction step.

Consequently, letting S denote the random vertex cover generated by the algorithm, we have
E[|SNOPT|] > E[|S \ OPT|] from which it easily follows that E[|S|] < 2-|OPT|.

The same algorithm design and analysis technique can be applied to weighted vertex cover.
In that case, we choose a random endpoint of an uncovered edge (u,v) with probability inversely
proportional to the weight of that endpoint.

Algorithm 7 Randomized approximation algorithm for weighted vertex cover

1: Initialize S = 0.

2: for all e = (u,v) € E do

3: if neither u nor v belongs to S then

4: Randomly choose u with probability ;== and v with probability =«
5: Add the chosen vertex into S.

6: end if

7: end for

8 return S

The loop invariant is

E

> w

veS;NOPT

> E Zwv

’UGSZ'\OPT

In a loop iteration when (u,v) is uncovered, the expected increase in the left side is at least

—utv whereas the expected increase in the right side is at most 2w,
W, +Wo Wy +Wo

4 Linear Programming with Randomized Rounding

Linear programming and randomization turn out to be a very powerful when used in combination.
We will illustrate this by presenting an algorithm of Raghavan and Thompson for a problem of
routing paths in a network to minimize congestion. The analysis of the algorithm depends on the
Chernoff bound, a fact from probability theory that is one of the most useful tools for analyzing
randomized algorithms.

4.1 The Chernoff bound

The Chernoff bound is a very useful theorem concerning the sum of a large number of independent
random variables. Roughly speaking, it asserts that for any fixed § > 1, the probability of the
sum exceeding its expected value by a factor greater than [tends to zero exponentially fast as
the expected sum tends to infinity.

Theorem 3. Let Xy,..., X, be independent random variables taking values in [0,1], let X denote
their sum, and let p = E[X]. For every > 1,

Pr(X > Bu) < e~ HBm(B)=(6-1)] (16)

For every f < 1,
Pr(X < Bu) < B I(B)—(B-1)] (17)

Proof. The key idea in the proof is to make use of the moment-generating function of X, defined
to be the following function of a real-valued parameter ¢:

Mx(t) =E [e*].

From the independence of X;,..., X, we derive:
Mx(t) =E [e™1eX2 ...] = HE [e"]. (18)

To bound each term of the product, we reason as follows. Let Y; be a {0,1}-valued random
variable whose distribution, conditional on the value of X;, satisfies Pr(Y; =1 | X;) = X;. Then
for each = € [0, 1] we have

E[e™|X;=z2] =z + (1 —2)e’ > =E ["M| X; = z],

where the inequality in the middle of the line uses the fact that e'* is a convex function. Since
this inequality holds for every value of x, we can integrate over x to remove the conditioning,
obtaining

E [em] >E [etX’i] .

Letting u; denote E[X;] = Pr(Y; = 1) we find that
[eX] <[] = e’ + (1=) = 1+ (e’ = 1) < exp (e’ = 1)),

where exp(x) denotes e, and the last inequality holds because 1 + z < exp(x) for all . Now
substituting this upper bound back into (18) we find that

E [¢"] < Hexp (pi(e® — 1)) = exp (p(e' — 1)).

i=1

The proof now splits into two parts depending on whether § > 1 or § < 1. In both cases we
will be choosing ¢t = In 8 for a reason to be disclosed later. If § > 1 then ¢t = In§ > 0, hence
e!X > et whenever X > Bu. Since e'X > 0 regardless, we have E [etX] > et Pr(X > Bp) and

Pr(X > fu) < exp (u(e' —1— Bt)). (19)

If 3 <1thent=Inp < 0, hence e!X > e whenever X < Bu. Since e > 0 regardless, we
have E [e"*] > " Pr(X < Bu) and

Pr(X < fu) < exp (u(e' —1—pt)). (20)

In both cases, our choice of ¢ is designed to minimize the right-hand side of (19) or (20); elemen-
tary calculus reveals that the global minimum is attained when ¢ = In 3. Substituting this value
of t into (19) and (20) completes the proof of the theorem. O

Corollary 4. Suppose X1, ..., X} are independent random variables taking values in [0,1], such
that B[X + -+ + Xy| < 1. Then for any N > 2 and any b > lggl‘f(%g]\]fv, where log denotes the
base-2 logarithm, we have

1
Proof. Let = E[X; 4+ -+ Xi] and 5 = b/pu. Applying Theorem 3 we find that

Pr(X; + -+ X > b) < exp (—pSIn(3) + pf — p)

— exp (—b(In(8) — 1) — p) < M), (22)
Now, 8 =b/pu > b, so
B S b S 3log N
e e eloglog N

and

() (atiogm) ™ (eies)
— 3In(N) - (1 _ In(log loli g;)g_]\fl;l@) a 1) > In(N), (23)

where the last inequality holds because one can verify that In(logz) —In(3) +1 < 2 In(z) for all
x > 1 using basic calculus. Now, exponentiating both sides of (23) and combining with (22) we
obtain the bound Pr(X; 4+ --- 4+ X3 > b) < 1/N, as claimed. O

4.2 An approximation algorithm for congestion minimization

We will design an approximation algorithm for the following optimization problem. The input
consists of a directed graph G = (V, E) with positive integer edge capacities c., and a set of
source-sink pairs (s;,¢;), i = 1,..., k, where each (s;, ;) is a pair of vertices such that G contains
at least one path from s; to ¢;. The algorithm must output a list of paths P, ..., P such that P,
is a path from s; to t;. The load on edge e, denoted by /., is defined to be the number of paths
P; that traverse edge e. The congestion of edge e is the ratio £./c., and the algorithm’s objective
is to minimize congestion, i.e. minimize the value of max.cg (¢./c.). This problem turns out to
be NP-hard, although we will not prove that fact here.

The first step in designing our approximation algorithm is to come up with a linear program-
ming relaxation. To do so, we define a decision variable z; . for each i = 1,...,k and each e € E,
denoting whether or not e belongs to P;, and we allow this variable to take fractional values.
The resulting linear program can be written as follows, using 67 (v) to denote the set of edges
leaving v and 6~ (v) to denote the set of edges entering v.

min r
1 ifv=s;
s.t. Zeeﬁ(v)xi,e_Zeeaf(v)xi,e: -1 ifvo=¢t Vi=1,...,k,veV
0 if v=£s;,t; (24)
Z,’f:l Tie < Ce- T Vee E
Tie >0 Vi=1,...,k,ec E

When (z;.) is a {0, 1}-valued vector obtained from a collection of paths Pi,..., P, by setting
z; = 1 for all e € P;, the first constraint ensures that P; is a path from s; to ¢; while the second
one ensures that the congestion of each edge is bounded above by r.

Our approximation algorithm solves the linear program (24), does some postprocessing of
the solution to obtain a probability distribution over paths for each terminal pair (s;,¢;), and
then outputs an independent random sample from each of these distributions. To describe
the postprocessing step, it helps to observe that the first LP constraint says that for every
i€ {l,...,k}, the values z;. define a network flow of value 1 from s; to ¢;. Define a flow to be
acyclic if there is no directed cycle C' with a positive amount of flow on each edge of C'. The
first step of the postprocessing is to make the flow (x;.) acyclic, for each . If there is an index
i € {l,...,k} and a directed cycle C such that z;. > 0 for every edge e € C, then we can let
d = min{z;. | e € C} and we can modify z; . to z; . — 0 for every e € C. This modified solution
still satisfies all of the LP constraints, and has strictly fewer variables z; . taking nonzero values.
After finitely many such modifications, we must arrive at a solution in which each of the flow
(i), 1 <i <k is acyclic. Since this modified solution is also an optimal solution of the linear
program, we may assume without loss of generality that in our original solution (z;.) the flow
was acyclic for each 1.

Next, for each i € {1,...,k} we take the acyclic flow (x;.) and represent it as a probability
distribution over paths from s; to t;, i.e. a set of ordered pairs (P, 7p) such that P is a path from
s; to t;, wp is a positive number interpreted as the probability of sampling P, and the sum of the
probabilities mp over all paths P is equal to 1. The distribution can be constructed using the
following algorithm.

Algorithm 8 Postprocessing algorithm to construct path distribution

1: Given: Source s;, sink t;, acyclic flow z; . of value 1 from s; to ¢;.

2: Initialize D; = 0.

3: while there is a path P from s; to ¢; such that z;. > 0 for all e € P do
4 7p=min{xz;. | e € P}

5: Dl:’DzU{(P,TI’p)}

6: for alle e P do

7 Tie = Tje — TP

8 end for

9: end while

10: return D;

Each iteration of the while loop strictly reduces the number of edges with z; . > 0, hence the
algorithm must terminate after selecting at most m paths. When it terminates, the flow (z;.)
has value zero (as otherwise there would be a path from s; to ¢; with positive flow on each edge)
and it is acyclic because (z;.) was initially acyclic and we never put a nonzero amount of flow
on an edge whose flow was initially zero. The only acyclic flow of value zero is the zero flow, so
when the algorithm terminates we must have z; . = 0 for all e.

Each time we selected a path P, we decreased the value of the flow by exactly mp. The value
was initially 1 and finally 0, so the sum of 7mp over all paths P is exactly 1 as required. For any
given edge e, the value z; . decreased by exactly mp each time we selected a path P containing
e, hence the combined probability of all paths containing e is exactly z; .

Performing the postprocessing algorithm 8 for each i, we obtain probability distributions
D1, ..., Dy over paths from s; to t;, with the property that the probability of a random sample
from D; traversing edge e is equal to ;.. Now we draw one independent random sample from
each of these k distributions and output the resulting k-tuple of paths, P, ..., P,. We claim that
with probability at least 1/2, the parameter max.cg {f./c.} is at most ar, where o = 3log(2m)

log log(2m)
This follows by a direct application of Corollary 4 of the Chernoff bound. For any given edge e,

we can define independent random variables X, ..., X} by specifying that
)y if P.
X, - (Ce- 1) if e € K
0 otherwise.

These are independent and the expectation of their sum is Zle Tie/(ce - 1), which is at most 1
because of the second LP constraint above. Applying Corollary 4 with N = 2m, we find that the
probability of X + - -+ X} exceeding « is at most 1/(2m). Since X;+ -+ Xy = le(ce -)7, this
means that the probability of ¢./c. exceeding ar is at most 1/(2m). Summing the probabilities
of these failure events for each of the m edges of the graph, we find that with probability at least
1/2, none of the failure events occur and max.cg {f./c.} is bounded above by ar. Now, r is a
lower bound on the parameter max.cg {{./c.} for any k-tuple of paths with the specified source-
sink pairs, since any such k-tuple defines a valid LP solution and r is the optimum value of the
LP. Consequently, our randomized algorithm achieves approximation factor o with probability
at least 1/2.

Cornell University, Fall 2013 CS 6820: Algorithms
Lecture notes: The multiplicative weights update method October 9-11, 2013

The multiplicative weights update method is a family of algorithms that have found many
different applications in CS: algorithms for learning and prediction problems, fast algorithms
for approximately solving certain linear programs, and hardness amplification in complexity
theory, to name a few examples. It is a general and surprisingly powerful iterative method
based on maintaining a vector of state variables and applying small multiplicative updates to
the components of the vector to converge toward an optimal solution of some problem. These
notes introduce the basic method and explore two applications: online prediction problems and
packing/covering linear programs.

1 Investing and combining expert advice

In this section we analyze two inter-related problems. The first problem is an investment problem
in which there are n stocks numbered 1,...,n, and an investor with an initial wealth W (0) = 1
must choose in each period how to split the current wealth among the securities. The price
of each stock then increases by some factor between 1 and 1 + ¢ (a different factor for each
stock, not known to the investor at the time of making her investment) and the wealth increases
accordingly. The goal is to do nearly as well as buying and holding the single best-performing
stock.

Let’s introduce some notation for the investment problem. At time ¢t = 1,...,T, the investor
chooses to partition her wealth into shares x1(t),...,z,(t). These shares must be non-negative
(short-selling stocks is disallowed) and they must sum to 1 (the investor’s money must be fully
invested).

S owmt)=1 Wt
i=1
zi(t) >0 ViVi

We summarize these constraints by saying that the vector x(t) = (x1(¢), ..., z,(f)) belongs to the
probability simplex A(n). As stated earlier, the amount by which the price of stock i appreciates
at time ¢ is a number between 1 and 1 + ¢. Denote this number by (1 4 &)"().

If we let W(t) denote the investor’s wealth at the end of round ¢, then the wealth at the start
of round ¢ is W(t — 1) and the amount invested in stock i is z;(t)W (¢t — 1). We thus have

n

W(t)=> (1+e) Wz (t)W(t - 1),

i=1

The prediction problem that we will study bears some superficial similarities to the investment
problem. (And, as we will see, the similarity extends much deeper.) In this problem there is
a gambler and n “experts”. At time ¢t = 1,...,n, the gambler bets $1 by dividing it among
the experts. Once again, we will use x(f) € A(n) to denote the vector representing how the
gambler splits her bet at time t. Each expert generates a payoff at time ¢t denoted by (), and
the gambler’s payoff is the dot product x(¢) - r(¢). In other words, placing a bet of x;(t) on
expert ¢ yields a payoff of x;(t)r;(t) in round ¢, and the gambler’s total payoff is the sum of these

payoffs. The goal is to gain nearly as much payoff as the strategy that always bets on the single
best-performing expert.

There are some clear relationships between the two problems, but also some clear differences,
chiefly that payoffs accumulate multiplicatively in one problem, and additively in the other.
Consequently, the relationship between the problems becomes clearer when we take the logarithm
of the investor’s wealth. For example, if the investor follows the strategy of buying and holding
stock 7, her wealth after time ¢ would satisfy

(1+¢)m®

Il
EW

Wi(t)

<.
Il

M-

logy . W(t) ri(t) = ri(1: 1)

=1

where the last equation should be interpreted as the definition of the notation 7;(1 : ¢). Similarly,
if the investor follows the “uniform buy-and-hold strategy” of initially investing 1/n in each stock,
and never performing any trades after that, then her investment in stock ¢ after time ¢ is given
by (1 +)7 and her log-wealth after time ¢ satisfies

1 - . .
logy . W(t) = log, ;. (ﬁ >+ 5)”“'“) :

i=1
Letting 7 denote an arbitrary stock (e.g. the best-performing one), the wealth of the uniform
buy-and-hold strategy satisfies

1 1
log, . W(t) > log,,. (E(l + 5)““'”) =7r;i(1:t) —log,.(n).

This already gives a useful bound on the additive difference in log-wealth between the uniform
buy-and-hold strategy and the strategy that buys and holds the single best-performing stock.

An important relationship between the investment and prediction problems is expressed by
the following calculation, which applies to an investor who distributes her wealth at time ¢ using
vector x(t). The log-wealth after time ¢ then satisfies the following.

log1+s W(t) = logl-i-e (Zn:(l + g)“(t)xz(t)W(t - 1))

=1

=log, . W(t—1)+log,. (Z(l + S)Ti(t)xi(t))
i=1

< logy, W(t — 1) + log, .. <Z<1 T en(t»xi(t))

log,, Wt — 1)+ O inz(:;j Zz')(t)xi(t))
<log, . W(t—1)+ mx(t) -r(t).

Summing over t = 1,...,7T, we find that

log, . W(T) < m ;xa) x(t),

which implies a relation between the log-wealth of an investor using strategy x(1),...,x(7") and
the payoff of a gambler using the same strategy sequence in the prediction problem.

Recall that the uniform buy-and-hold strategy was actually a pretty good strategy for the
investor. This implies that the corresponding prediction strategy is pretty good for the gambler.
In the gambling context (also known as the predicting from expert advice context) the strategy
that corresponds to uniform-buy-and-hold is known as the multiplicative weights algorithm

or Hedge. At time t it predicts the vector x(t) whose i*" component is given by

(1 + E_:)ri(lzt)
S (42

We have seen that the payoff of the multiplicative weights algorithm satisfies

T

S x(t) - 1(t) = 2 g, wr)
> @m(l 1) — Mlogpren
S (1= e)r(l:) 1“?"

The last line used the identity < In(1 +) > 1 — z which is valid for any z > 0. (See the proof
in Appendix ?7.)

The role of the parameter ¢ > 0 in the two problems deserves some discussion. In the
investment problem, ¢ is a parameter of the model, and one can either treat it as an assumption
about the way stock prices change in discrete time — never by a factor of more than 1+ ¢ from
one time period the next — or one can instead imagine that stock prices change continuously
over time, and the parameter ¢ is determined by how rapidly the investor chooses to engage in
trading. In the prediction problem, on the other hand, the model does not define £ and it is
instead under the discretion of the algorithm designer. There is a tradeoff between choosing a
small or a large value of €, and the performance guarantee

> x(t)x(t) > (1 —e)ry(l:t)— Inn

9
t=1

neatly summarizes the tradeoff. A smaller value of £ allows the gambler to achieve a better
multiplicative approximation to the best expert, at the cost of a larger additive error term. In
short, £ can be interpreted as a “learning rate” parameter: with a small € (slow learning rate)
the gambler pays a huge start-up cost in order to eventually achieve a very close multiplicative
approximation to the optimum; with a large £ the eventual approximation is more crude, but
the start-up cost is much cheaper.

2 Solving linear programs with multiplicative weights

This section presents an application of the multiplicative-weights method to solving packing and
covering linear programs. When A is a non-negative matrix and p, b are non-negative vectors, the
following pair of linear programs are called a packing and a covering linear program, respectively.

max pTy min bTx
s.t. Ay <0 s.t. ATx = p
y=0 r=0

Note that the covering problem is the dual of the packing problem and vice-versa. To develop
intuitions about these linear programs it is useful to adopt the following metaphor. Think of
the entries a;; of matrix A as denoting the amount of raw material ¢ needed to product one unit
of product j. Think of b; as the total supply of resource 7 available to a firm, and p; as the
unit price at which the firm can sell product j. If the vector y in the first LP is interpreted as
the quantity of each product to be produced, then the vector Ay encodes the amount of each
resource required to produce y, the constraint Ay < b says that the firm’s production is limited
by its resource budget, and the optimization criterion (maximize pTy) specifies that the firm’s
goal is to maximize revenue.

The dual LP also admits an interpretation within this metaphor. If we think of the vector
x as designating a unit price for each raw material, then the constraint ATx > p expresses the
property that for each product j, the cost of resources required to produce one unit of j exceeds
the price at which it can be sold. Therefore, if a vector x is feasible for the dual LP, then the
cost of obtaining the resource bundle b at prices (namely, bTx) exceeds the revenue gained
from selling any product bundle y that can be made from the resources in b (namely, pTy). This
reflects weak duality, the assertion that the maximum of pTy over primal-feasible vectors y is less
than or equal to the minimum of bTx over dual-feasible vectors x. Strong duality asserts that
they are in fact equal; the algorithm we will develop supplies an algorithmic proof of this fact.

The multiplicative weights method for solving packing and covering linear programs was
pioneered by Plotkin, Shmoys, and Tardos and independently by Grigoriadis and Khachiyan.
The version we present here differs a bit from the Plotkin-Shmoys-Tardos exposition of the
algorithm, in order to leverage the connection to the multiplicative weights method for online
prediction, as well as to incorporate a “width reduction” technique introduced by Garg and
Konemann. We will make the simplifying assuymption that b = B - 1, for some scalar B > 0.
We can always manipulate the linear program so that it satisfies this assumption, by simply
changing the units in which resource consumption is measured. Also, after rescaling the units
of resource consumption (by a common factor) we can assume that 0 < a;; < 1 for all 4,5 —
possibly at the expense of changing the value of B.

The algorithm is as follows.

Algorithm 1 Multiplicative weights algorithm for packing/covering LP’s

1: Given: parameters €, > 0.
2: Initialize: ¢t < 0,Y « 0. // Y is a vector storing d(y1 + -+ + Yi)-
3: while AY < B1 do
4: t+—t+1. AV
5: Vi=1,...,n (x;); Z?(Z:Zle)dy)j/é.
. x] Ay
6: Y < argming c a () { ;Ty } .

8: end while

The vector z; is being set using the multiplicative weights algorithm with payoff sequence
ry = Ay,. In the expression defining y;, the ratio I;TT—A;’ can be interpreted as the cost-benefit ratio
of producing a product randomly sampled from the probability distribution y. The arg min of
this ratio will therefore be a point-mass distribution concentrated on the single product with the
smallest cost-benefit ratio, i.e. one can always choose the vector y; to have only one non-zero
entry.

To analyze the algorithm, we begin with the performance guarantee of the multiplicative
weights prediction algorithm. Let T be the time when the algorithm terminates.

S af Ay, > <1—s>mgx{Z<Ayt>i}—m?” >(1-g)- 22" 1)

€
t=1
(The second inequality is justified by the stopping condition for the algorithm.)
Next we work on deriving an upper bound on the quantity on the left side of (1). The
definition of y; implies that for any other vector vy,
z{ Ay > xIAyt' 2)
Py Pyt
Setting y in this inequality equal to y,, the optimum solution of the primal linear program, we
find that

xT Ay, (pT
PTYs«
Let denote the weighted average of the vectors xq,...,zr, averaged with weights Z{%:
5 I
T=y > Ty, (4)
t=1
Summing (3) over t = 1,...,T and using the definition of Z, we obtain
T
1 p'Y
. 7T T
5 o T Ay, > ;xt Ay;. (5)
Each of the vectors 1, ..., z7 satisfies /1 = 1, so their weighted average T satisfies 271 = 1 as

well. Using the inequality Ay, < B1, which follows from primal feasibility of y,, we now deduce
that

B =z7(B1) > z7 Ay.. (6)
Combining (1), (5), (6) we obtain
p'Y B B Inn
o> (1—g) = -
L 29— o
pTY dlnn
1l—e— :
PTYs : eB ®)

Thus, if we want to ensure that the algorithm computes a vector Y which is at least a (1 — 2¢)-
approximation to the optimum of the linear program, it suffices to set § = i—lj.

To bound the number of iterations of the algorithm’s while loop, let v be a parameter such
that every column of A has an entry bounded below by ~. Then, in every iteration some entry
of the vector AY increases by at least 9. Since the algorithm stops as soon as some entry of
AY exceeds B, the number of iterations is bounded above by nB/(yd). Substituting § = 2

Inn’
this means that the number of iterations is bounded by (nlogn)/(e%y).

3 Multicommodity Flow

Now it’s time to see how these ideas are applied in the context of a concrete optimization problem,
multicommodity flow, which is a generalization of network flow featuring multiple source-sink
pairs.

3.1 Problem definition

A multicommodity flow problem is specified by a graph (directed or undirected) G, a collection
of k source-sink pairs {(s;,;)}%_,, and a non-negative capacity c(e) for every edge e = (u,v). A
multicommodity flow is a k-tuple of flows (fi,..., fx) such that f; is a flow from s; to ¢;, and the
superposition of all k flows satisfies the edge capacity constraints in the sense that for every edge
e = (u,v) we have

k
[Undirected case] — c(e) > Z | fi(u,v)]
i=1

k
[Directed case] — c(e) > Zmax{o, fi(u,v)}

There are two different objectives that are commonly studied in multicommodity flow theory.
Maximum throughput: Maximize Zle | fi]-

Maximum concurrent flow: Maximize minj<;< | f;|.

3.2 The case of uniform edge capacities

It is fairly straightforward to apply the multiplicative-weights algorithm to solve multicommodity
flow problems in graphs where all edges have identical capacity. (We will consider the general
case, in which edges don’t necessarily have identical capacity, in the next section of these notes.)
Letting B denote the capacity of each edge, the multicommodity flow problem can be expressed
by the following linear program with exponentially many variables yp, where P ranges over all
paths that join some source-sink pair (s;,t;).

max Y .pYp
s.t. > pecpyp < cle) Ve (9)
yp >0 VP

This problem is a packing linear program. The objective function of the packing problem has
coefficient vector p = 1, and the constraint matrix A has entries a;; = 1 if edge e; belongs to
path P;. Note that every column of A contains at least one entry equal to 1, so this problem has
v = 1. Thus, the multiplicative weights algorithm finds a (1 — 2¢)-approximation of the optimal
solution in at most mlogn/e? iterations, where m denotes the number of edges. (In previous
sections we referred to the number of constraints in the packing LP as n rather than m, but it
would be too confusing to use the letter n to denote the number of edges in a graph, which is
always denoted by m. Accordingly, we have switched to using m in this section.)
In any iteration of the algorithm, we must solve the minimization problem arg min{(z{ Ay)/(17y) |

y € A(paths)}, where A(paths) denotes the set of all probability distributions over paths that

join some (s;,t;) pair. Recalling that the minimum is always achieved at a distribution y that
assigns probability 1 to one path and 0 to all others, and that the vector Ay in this case is a
{0, 1}-vector that identifies the edges of the path, we see that the expression z{ Ay can be inter-
preted as the combined cost of the edges in path y, when edge costs are given by the entries of the
vector x;. The expression 1Ty is simply equal to 1, so it can be ignored. Thus, the minimization
problem that we must solve in one iteration of the algorithm is to find a minimum-cost path
with respect to the edge costs given by x;. This is easily done by running Dijkstra’s algorithm
to find the minimum cost (s;, ;) path for each i = 1,... k.

In summary, we have derived the following algorithm for approximately solving the maximum-
throughput multicommodity flow problem in graphs whose edges all have identical capacity B.
The algorithm reduces computing a (1 — 2¢)-approximate maximum multicommodity flow to
solving km Inm/e? shortest-path problems. In the pseudocode, the variable z, for an edge e = ¢;
keeps track of the amount of flow we have sent on edge e, and x, = (1+¢)?*/? is a variable whose
value in loop iteration ¢ is proportional to (but not equal to) the i*" entry of the vector z; in
the above discussion. The algorithm’s validity is unaffected by the fact that the vector (x.)cep
is a scalar multiple of the vector x; in the above discussion, because the outcome of the min-cost
path computation with respect to edge cost vector x is unaffected by rescaling the costs.

Algorithm 2 Max-throughput multicommodity flow algorithm, uniform-capacity case.

1: Given: Parameter ¢ > 0.

2: Initialize: 6 =&?B/(Inm), x =1, fi=---= f, =0, 2 =0.
3: while 2z < B1 do

4: fori=1,...,kdo

5: P; < minimum cost path from s; to t;, with respect to edge costs z..
6: end for

7 i < argmin, ;. {cost(F;)}.

8: Update flow f; by sending ¢ units of flow on F;.

9: for all e € P; do

10: Te + (14 ¢)z..

11: Ze < Ze + 0.

12: end for

13: end while

Note that in this example, the fact that the packing linear program has exponentially many
variables did not prevent us from designing an efficient algorithm to solve it. That is because,
although the matrix A and vector Y in the multiplicative-weights algorithm have exponentially
many entries, the algorithm never explicitly stores and manipulates them. This theme is quite
common in applications of the multiplicative-weights method: the space requirement of the
algorithm scales linearly with the number of constraints in the primal LP, but we can handle
exponentially many variables in polynomial space and time, provided that we have a subroutine
that efficiently solves the minimization problem argmin{(z{Ay)/(pTy)}.

3.3 General edge capacities

When edges have differing capacities, a small modification to the foregoing algorithm permits us
to use it for computing an approximate maximum-throughput multicommodity flow.

The issue is that the multiplicative-weights algorithm we have presented in these notes re-
quires a packing LP in which all of the constraints have the same number, B, appearing on their
right-hand side. As a first step in dealing with this, we can rescale both sides of each constraint:

Z?JPSC(G) <:>Z ?JP<1

P:ecP P: EP

The trouble with this rescaling is that now the constraint matrix entry a;; is equal to 1/c(e;) if
edge e; belongs to path P;. Our algorithm requires 0 < a;; < 1 and this could be violated if
some edges have capacity less than 1.

The simplest way to deal with this issue is to preprocess the graph, scaling all edge capacities
by 1/¢min Where ¢, denotes the minimum edge capacity, to obtain a graph whose edge capacities
are bounded below by 1. Then we can solve for an approximate max-flow in the rescaled graph,
and finally scale that flow down by c,;, to obtain a flow that is feasible — and still approximately
throughput-maximizing — in the original graph. To bound the number of iterations that this
algorithm requires, we must determine the value of 7y for the rescaled graph. The rescaled capacity
of edge e is ¢(€)/Cmin, SO the matrix entry a;; is cmin/c(e;) if edge e; belongs to path P;. Thus,
the maximum entry in column j of the constraint matrix is ¢min/Cmin(F;), Where cin(FP;) denotes
the minimum edge capacity in P;. Thus v = min;{cmin/cmn(F;)} and the number of iterations

is
mlnm mlnm {cmin(Pj)}

ver e i Cmin
This could be a very large number of iterations, if the graph contains some very “fat” paths whose
minimum-capacity edge has much more capacity than the globally minimum edge capacity.

Rather than rescaling all of the edge capacities in the graph by the same common factor, a
smarter solution is to rescale the flow on path P; by the factor cyin(P;). More precisely, define
the “P-saturating flow ” to be the flow that sends ¢y, (P) units on every edge of P, and zero
on all other edges. Our LP will have variables yp for every path P that joins s; to ¢; for some
1 =1,...,k, and a primal-feasible solution will correspond to a multicommodity flow that is a
weighted sum of P-saturating flows, scaled by the values yp.

This leads to the following linear programming formulation of maximum-throughput multi-

commodity flow.

max > p Cmin(P)yp
s.t. Y Pecp C"‘C”‘ P)yp <1 Ve (10)
yp >0 VP

The constraint matrix has entries a;; = C“‘C‘ne if e; belongs to P;. By the definition of ¢yin(F;),
this implies that all entries are between 0 and 1, and that every column of A has at least
one entry equal to 1. Thus the multiplicative Welghts method, applied to this LP formula-
tion, yields a (1 — 2¢)-approximate solution after at most m?;m iterations. To conclude the
discussion of this algorithm, we should specify a procedure for solving the minimization problem

arg min{(z] Ay)/(pTy)} in every iteration of the while loop If y is the indicator vector for a path

P, then pTy = cuin(P) while Ay is the vector whose ith entry is %)) if e; belongs to P, and 0

otherwise. Thus,

T o Cmin(P>$ti
=
ecP

ndy g o

vy 2z cle)

so the minimization problem that must be solved in each loop iteration is merely finding a

minimum-cost path with respect to the edge costs cost(e;) = jg).

Summarizing this discussion, we have the following algorithm which finds a (1—2¢)-approximate
maximum-throughput multicommodity flow in general graphs using mi# loop iterations, each
of which requires £ minimum-cost path computations. In the pseudocode, the variable z, for an
edge e = e; keeps track of the fraction of e’s capacity that has already been consumed by the
flow sent in previous loop iterations. The variable z, = (1 +)?/? is a variable whose value in
loop iteration ¢ is proportional to (but not equal to) the i*" entry of the vector x; in the above
discussion. As in the preceding section, the algorithm’s validity is unaffected by the fact that the
vector (z.)ecp is a scalar multiple of the vector z; in the above discussion, because the outcome
of the min-cost path computation with respect to edge cost vector x is unaffected by rescaling
the costs.

Algorithm 3 Max-throughput multicommodity flow algorithm, general case.

1: Given: Parameter ¢ > 0.

2: Initialize: 6 =&?/(Inm), z =1, fi=---=f1, =0, 2 = 0.
3: while z < 1 do

4: for:=1,...,k do

5: P; <= minimum cost path from s; to t;, with respect to edge costs z./c(e).
6: end for

7 i < argmin, ;. {cost(P;)}.

8: Update flow f; by sending dcpin(p;) units of flow on P;.

9: for all e € P; do

10: 4 —CC(SD 1),

11: Te < (1 +¢)z..

12: Ze 4 ZeF+OT.

13: end for

14: end while

3.4 Maximum concurrent flow

The maximum concurrent flow problem can be solved using almost exactly the same technique.
While the packing formulation of maximum-throughput multicommodity flow involves packing
individual paths, each of which connects one source-sink pair, the natural packing formulation
of maximum concurrent multicommodity flow involves packing k-tuples of paths, one for each
source-sink pair. In the following LP, @) is an index that ranges over all such k-tuples. (As
before, this means that there are exponentially many variables yq. Likewise, as before, this will
not inhibit our ability to design an efficient algorithm for approximately solving the LP, because
the algorithm need not explicitly represent all of the entries of the constraint matrix A or the
vector Y.) The notation ng(e) refers to the number of paths in the k-tuple () that contain edge e;

thus, its value is always an integer between 0 and k. The notation ¢y, (Q) refers to the minimum
capacity of an edge e such that ng(e) > 0.

max) o Cmin(Q)Yq
nQ(e)emin(Q)
s.t. ZQ:nQ(e)>O QkTyQ S 1 Ve (11)
yQ Z 0 VQ

For a path-tuple @, the “Q-saturating flow” is a multicommodity flow that sends cyin(Q)/k
units of flow on each of the k paths in Q. (The scaling by 1/k is necessary, to ensure that the
@-saturating flow doesn’t exceed the capacity of any edge, even if the minimum-capacity edge
of @ belongs to all k of the paths in @).) A primal-feasible vector for the linear program 11 can
be interpreted as a weighted sum of)-saturating flows, weighted by yg. The coefficients in the
capacity constraint for each e are justified by the observation that a ()-saturating flow sends a
total of ng(e)cmn(Q)/k units of flow on edge e.

The value of v for this linear program is 1/k, so after at most kmIn(m)/e? we obtain a
(1 — 2¢)-approximation to the maximum concurrent multicommodity flow. The minimization

problem arg min{(x] Ay)/(pTy)} has the following interpretation: when y is the indicator vector
h nQ (el) cmin(Q)

of a path-tuple @, then pTy = cpuin(Q), while Ay is the vector whose i* Ten)

Thus, letting Q1, ..., Q) denote the k paths that make up), we have

2T _ Ty nQ(ei) Cmin(Q) _ Cmin(Q) T4 (e = Cmin(@) - Tt
t4y Z kc(e;) k Z c(e;) ale:) k ;egj c(e;)

component is

. (2
3

T
z{Ay 1 Lt
pTy k Z egj C(ei) .

k
j=1

z] Ay
pTy

cost path from s; to t;, for each j = 1,..., k, with respect to the edge costs

Hence, the ratio

is minimized by choosing () to be the k-tuple consisting of the minimum-
Lt 4

c(ei)”

Algorithm 4 Maximum concurrent multicommodity flow algorithm

1: Given: Parameter ¢ > 0.

2: Initialize: 6 =&?/(Inm), z =1, fi=---=f1, =0, 2 = 0.
3: while z < 1 do

4: fori=1,... kdo

5: (Q); < minimum cost path from s; to ¢;, with respect to edge costs x./c(e).
6: Update flow f; by sending d cmin(p;)/k units of flow on Q.
7: end for

8: for all edges e do
9: ng(e) < the number of i such that e € Q);.
10: r ¢ in@nold
11: Te < (1 + &) z..
12: Ze 4 Ze+OT.

13: end for
14: end while

4 The sparsest cut problem

Given the importance of the max-flow min-cut theorem in discrete mathematics and optimization,
it is natural to wonder if there is an analogue of this theorem for multicommodity flows.

If one adopts the interpretation that “a minimum cut is an edge set whose capacity certifies
an upper bound on the maximum flow,” then the next question is: what upper bounds on
throughput or concurrent multicommodity can be certified by an edge set?

Definition 1. Let G be a graph with edge capacities c¢(e) > 0 and source-sink pairs {(s;, ;) }*_;.
An edge set A is said to separate a source-sink pair (s;,t;) if every path from s; to ¢; contains
an edge of A. A cut is an edge set that separates at least one source-sink pair. A multicut is an
edge set that separates every source-sink pair. The sparsity of a cut is its capacity divided by
the number of source-sink pairs it separates.

If G contains a multicut A of capacity ¢, then the throughput of any multicommodity flow
cannot exceed ¢, since each unit of flow must consume at least one unit of capacity on one of
the edges in A. A similar argument shows that if G' contains a cut A with sparsity ¢, then the
maximum concurrent flow rate cannot exceed c.

Unlike in the case of single-commodity flows, it is not the case that the maximum throughput
is equal to the minimum capacity of a multicut, not is it the case that the maximum concurrent
flow rate is equal to the sparsest cut value. In both cases, the relevant cut-defined quantity
may exceed the flow-defined quantity, by only by a factor of O(log k) in undirected graphs. This
bound is known to be tight up to constant factors. In directed graphs the situation is worse:
the minimum multicut may exceed the maximum throughput by ©(k) and this is again tight in
terms of k, but the way this gap depends on n (the number of vertices) in the worst case remains
an open question.

In this section we will present a randomized algorithm to construct a cut whose (expected)
sparsity is within a O(log k) factor of the maximum concurrent flow rate, in undirected graphs.
Thus, we will be giving an algorithmic proof of the O(log k)-approximate max-flow min-cut
theorem for concurrent multicommodity flows.

4.1 Fractional cuts

To start designing the algorithm, let us recall the sparsest cut LP and its dual. (In the following
linear programs, the index () ranges over k-tuples of paths joining each source to its sink.)

max > ,YQ min > c(e)x,
s.t. Ve > onqele)yq < cle) s.t. VQ Y. ngle)ze >1
VQ yo >0 Ve x>0

If one interprets z = (z.)ecp as a vector of edge lengths, then the expression) | ng(e)z. in the
dual LP represents the sum of the lengths of all paths in). Thus, a feasible solution of the dual
LP is an assignment of a length to each edge of GG, such that the sum of shortest-path lengths
between all source-sink pairs is at least 1. For example, if there is a cut A whose sparsity is
C'/p because it separates p source-sink pairs and has capacity C, then we obtain a dual-feasible
vector by setting z. = 1/p if e belongs to A and z. = 0 otherwise. For each of the p source-sink
pairs separated by A, their distance in the graph with edge lengths defined by x is at least

1/p, and therefore the combined distance of all source-sink pairs is at least 1 as required by the
dual feasibility condition. For this particular dual-feasible vector x, the dual objective function
is > .cacle)/p = C/p, which matches the sparsity of A. Thus, we have confirmed that the
optimum of the dual LP is a lower bound on the sparsest cut value. (Which we knew anyhow,
because the optimum of the dual LP coincides with the maximum concurrent multicommodity
flow rate, and we already knew that was a lower bound on the sparsest cut value.)

Owing to these considerations, a dual-feasible vector x is often called a fractional cut and
Y. cle)x, is called the sparsity of the fractional cut. Our randomized algorithm for the sparsest
cut problem starts by computing an optimal (or approximately optimal) solution x to the dual
LP — for example, using the multiplicative weights algorithm developed in the preceding section
— and then “rounding” z to produce a cut whose sparsity exceeds the sparsity of x by a factor
of at most O(log k), in expectation.

4.2 Dependent rounding

One natural idea for transforming a fractional cut into a genuine cut is to sample a random edge
set by selecting each edge e independently with probability x.. This turns out to be a terrible
idea. For example, consider that case that k£ = 1 (a single-commodity flow problem) and G is the
complete bipartite graph K ,,; the two nodes on the left side of the bipartition are the source and
sink, s and ¢. In this graph there is a fractional cut defined by setting x. = 1/2 for every edge e.
However, if we construct a random edge by sampling every edge independently with probability
1/2, the probability of separating s from ¢ is exponentially small in n.

Rather than independent randomized rounding, a better plan is to do some sort of dependent
rounding. Once again, the case of single-commodity flows is a fertile source of intuition. Suppose
x is a fractional cut for a single-commodity flow problem with source s and sink ¢. Using z, we
will construct a random cut based on a sort of “breadth-first search” starting from s. For every
vertex u let d(s,u) denote the length of the shortest path from s to u when edge lengths are
defined by z. Choose a uniformly random number r € [0, 1], and cut all edges (u,v) such that
d(s,u) < r < d(s,v). This random cut always separates s from ¢: on every path from s to ¢
there is an earliest vertex whose distance from s exceeds r, and the edge leading into this vertex
belongs to the cut. The expected capacity of the cut can be computed by linearity of expectation:
for any edge e = (u,v), the probability that the random cut contains e is |d(s,u) —d(s,v)|, which
is bounded above by z.. Hence the expected capacity of the random cut is bounded above
by >, c(e)z.. We have thus shown that in the special case of single-commodity flow, for any
fractional cut of capacity C, there is a simple randomized algorithm to compute a cut whose
expected capacity is at most C.

The randomized sparsest cut algorithm that we will develop uses a similar dependent rounding
scheme based on breadth-first search, but this time starting from a set of sources rather than
just one source. The precise sampling procedure looks a little bit strange at first sight. Here it
is:

1. Sample ¢ uniformly at random from the set {0, 1,..., [log(2k)]}.

2. Sample a random set W by selecting each element of the set {sy,t1, 59,19, ..., Sk, tx} inde-
pendently with probability 277,

3. Sample a uniformly random r in [0, 1].

4. Cut all edges (u,v) such that d(u, W) < r < d(v, W), where the expression d(u, W) refers
to the minimum of d(u,w) over all w € W.

Why does this work? We have to estimate two things: the expected capacity of the cut, and the
expected number of source-sink pairs that it separates.

Expected capacity. Estimating the expected capacity is surprisingly easy. It closely parallels
the argument in the single-commodity case. For an edge e = (u,v), no matter what set W is
chosen, we have

Pr(d(u, W) <r <d(v,W)) = |d(u, W) —d(v, W)| < z.

so the expected combined capacity of the edges in the cut, by linearity of expectation, is at most
Y. c(e)xe, the value of the fractional cut z. Recall that this is equal to the maximum concurrent
flow rate, if x is an optimal solution to the dual of the maximum concurrent flow LP.

Expected number of separated pairs. For a source-sink pair (s;,;), the probability that
the cut separates s; from t; is

/ Pr(d(s W) < r < d(t,, W) + Pr(d(t,. W) < < d(s,, V)] dr

To prove a lower bound on this integral, we will show that for 0 < r < %d(si, t;), the integrand
is bounded below by €(1/log(2k)). This will imply that the integral is bounded below by
Q(1/log(2k))d(s;,t;). Recall that dual-feasibility of = implies that Zle d(s;,t;) = 1. Thus, the
expected number of source-sink pairs separated by our random cut is (1/log(2k)).

For 0 < r < %d(si,ti) let S and T denote the subsets of {s1,t1,..., sk, tx} consisting of all
terminals within distance r of s; and t;, respectively. Note that S and T are non-empty (they
contain s; and t;, respectively) and they are disjoint, because r < d(s;,t;). The event that
d(s;, W) < r < d(t;, W) is the same as the event that S N W is nonempty but 7N W is not,
and similarly for the event d(t;, W) < r < d(s;,W). Hence the integrand Pr(d(s;, W) < r <
d(t;, W)) + Pr(d(t;, W) < r < d(s;,W)) is equal to the probability that precisely one of the
sets SN W, T NW is non-empty. Note that whenever |(SUT)NW| = 1, it is always the case
that precisely one of the sets S N W, T NW is non-empty. Let h = |S UT| There is a unique
t € {0,1,..., [log(2k)]|} such that 2! < h < 2/*!. Assuming this value of ¢ is sampled in the first
step of our sampling algorithm, the probability that W contains exactly one element of SUT is
precisely

—t i1 B 1 e —(h—=1)/(2t-1) -3
h-27"- (1 =27 =5 1+2t_1 > e >e ",

So the integrand is bounded below by e=3 - m when 0 < r < %d(si, t;), which completes the
proof.

4.3 Rejection sampling

You may notice that we promised a sampling algorithm that produces a random cut whose
expected sparsity is O(log k) times the maximum concurrent flow rate) _c(e)x.. Instead we
have given a sampling algorithm that produces a random cut A such that

Elcap(A)] _ 5
Efep(A)] < e log(2k) Zc(e)xe. (12)

e

which is not quite the same thing. (Here, cap(A) denotes the capacity of A and sep(A) denotes
the number of source-sink pairs that it separates.) To fix this problem, we rewrite (12) as follows,
using the formula cap(A) = sep(A) - sparsity(A) along with the definition of the expected value
of a random variable:

- > 4 Pr(A) cap(A) _ > 4 Pr(A) sep(A) - sparsity(A) |

e® log(2k) ZC(e)xe = S, Pr(A) sep(A) >, Pr(A) sep(A)

e

So, if we adjust our sampling rule so that the probability of sampling a given cut A is scaled up
by sep(A) (and then renormalized so that probabilities sum up to 1) we get a random cut whose
expected sparsity is at most e log(2k) >, c(e)z., as desired. One way to adjust the probabilities
in this way is to use rejection sampling, which leads to the following algorithm.

Algorithm 5 Rounding a fractional cut to a sparse cut.

1: Given: fractional cut x defining shortest-path distances d(-,).

2: repeat
3: Sample ¢ uniformly at random from the set {0, 1,..., |log(2k)|}.
4: Sample a random set W by selecting each element of the set {si,t1,s9,t,..., Sk, tx}

independently with probability 2.
Sample a uniformly random r in [0, 1].
A= {(u,v) | du, W) <r <d(v,IW)}.
Sample a uniformly random j € {1,..., k}.
until j < sep(A)

Why does this work? Let Pr(A) denote the probability of sampling A under the previous
algorithm. Imagine that we modified the algorithm to run a single iteration of the repeat loop
and either output A if it passes the test j < sep(A) at the end of the loop, or else the algorithm
simply fails and outputs nothing. For any cut A, the probability that this modified algorithm
outputs A would be Pr(A) - %. In other words, conditional on succeeding, the modified
algorithm samples a cut from exactly the rescaled distribution that we wanted to sample from.
By repeating the loop until it succeeds, we guarantee that the algorithm draws one sample from
this conditional distribution.

Design and Analysis of Algorithms Lecture Notes on Convex Optimization
CS 6820, Fall 2016 21 Nov — 2 Dec 2016

Let D be a convex subset of R”. A function f: D — R is convex if it satisfies

flz+ (A —t)y) < tf(z) + 1 -1)f(y)

for all z,y € R™ and 0 < t < 1. An equivalent (but not obviously equivalent) definition is that f is
convex if and only if for every x in the relative interior of D there is a lower bounding linear function of
the form

e(y) = f(2) + (Vo f)T(y —)
such that f(y) > £x(y) for all y € D. The vector V,f € R" is called a subgradient of f at x. It need
not be unique, but it is unique almost everywhere, and it equals the gradient of f at points where the

gradient is well-defined. The lower bounding linear function ¢, can be interpreted as the function whose
graph constitutes the tangent hyperplane to the graph of f at the point (z, f(x)).

The constrained convex optimization problem is to find a point x € D at which f(z) is minimized
(or approximately minimized). Unconstrained convexr optimization is the case when D = R™. The
coordinates of the optimal point x need not, in general, be rational numbers, so it is unclear what it means
to output an exactly optimal point z. Instead, we will focus on algorithms for e-approximate convex
optimization, meaning that the algorithm must output a point Z such that f(z) < & 4+ mingep{f(z)}.
We will assume that we are given an oracle for evaluating f(x) and V,f at any x € D, and we will
express the running times of algorithms in terms of the number of calls to these oracles.

The following definition spells out some properties of convex functions that govern the efficiency of
algorithms for minimizing them.

Definition 0.1. Let f : D — R be a convex function.

1. f is L-Lipschitz if
fy) = f@)|<L-lly—zf Vz,yeD.

2. f is a-strongly convex if
fy) = la(y) + zelly —z|* Vaz,y € D.
Equivalently, f is a-strongly convex if f(z) — 1a|z||? is a convex function of .
3. f is B-smooth if
fy) < oly) + 3By —«|> Va,y€D.
Equivalently, f is S-smooth if its gradient is S-Lipschitz, i.e. if
IVaf = Vyfl < Blle =yl Va,y €D.

4. f has condition number & if it is a-strongly convex and S-smooth where 5/a < k.

The quintessential example of an a-strongly convex function is f(z) = 2TAx when A is a symmetric
positive definite matrix whose eigenvalues are all greater than or equal to %a. (Ezercise: prove that
any such function is a-strongly convexr.) When f(x) = xT Az, the condition number of f is also equal
to the condition number of A, i.e. the ratio between the maximum and minimum eigenvalues of A. In
geometric terms, when k is close to 1, it means that the level sets of f are nearly round, while if & is
large it means that the level sets of f may be quite elongated.

The quintessential example of a function that is convex, but is neither strongly convex nor linear, is
f(z) = (aTz)" = max{aTz,0}, where a is any nonzero vector in R™. This function satisfies V,f = 0
when aTx < 0 and V, f = a when aTx > 0.

1 Gradient descent for Lipschitz convex functions

If we make no assumption about f other than that it is L-Lipschitz, there is a simple but slow algorithm
for unconstrained convex minimization that computes a sequence of points, each obtained from the
preceding one by subtracting a fixed scalar multiple of the gradient.

Algorithm 1 Gradient descent with fixed step size
Parameters: Starting point xg € R™, step size v > 0, number of iterations T' € N.

:fort=0,...,T—1do

Tt41 = Tt — ’vatf
end for

: Output = argmin{ f(zo),..., f(zr)}.

=W

Let z* denote a point in R™ at which f is minimized. The analysis of the algorithm will show that if
|z* — z0|| < D then gradient descent (Algorithm 3) with v = £/L? succeeds in T = L2D?/e? iterations.
The key parameter in the analysis is the squared distance ||z; — 2*||?. The following lemma does most
of the work, by showing that this parameter must decrease if f(x;) is sufficiently far from f(z*).

Lemma 1.1. ||z4y1 — o*||? < |Jzp — 2*]|? — 2v(f (2¢) — f(2¥)) + 2 L2
Proof. Letting x = x; we have

21 — ¥ = |lz — 2% — 4V f|?

2 ? = 29(Va)T (@ — &%) + (Vo f?
o*)? = 29 [lo(2) — Lo(a®)] + V2| Vo fI?
<z —2*|? = 29(f(2) — f(2") + VIV I

I
=X
|

I
=3
|

The proof concludes by observing that the L-Lipschitz property of f implies ||V, f|| < L. O

Let ®(¢) = ||2* — 2*||?>. When v = ¢/L?, the lemma implies that whenever f(z;) > f(z*) + ¢, we have
B(t) — ®(t +1) > 2ve — 2L = 2/L2 (1)

Since ®(0) < D and ®(t) > 0 for all ¢, the equation (1) cannot be satisfied for all 0 < t < L2D?/e2.
Hence, if we run gradient descent for T = L?D?/e? iterations, it succeeds in finding a point such that

f(@) < fla®) +e

2 Gradient descent for smooth convex functions

If f is B-smooth, then we can obtain an improved convergence bound for gradient descent with step
size v = 1/. The analysis of the algorithm will show that O(1/¢) iterations suffice to find a point Z
where f(Z) < f(x*) + &, improving the O(1/¢2) iteration bound for convex functions that are Lipschitz
but not necessarily smooth. The material in this section is drawn from Bubeck, Convexr Optimization:
Algorithms and Complexity, in Foundations and Trends in Machine Learning, Vol. 8 (2015).

A first observation which justifies the choice of step size v = 1/ is that with this step size, under the
constraint that f is S-smooth, gradient descent is guaranteed to make progress.

Lemma 2.1. If f is convex and [3-smooth and y = x — %(fo) then

1
fly) < fz) - %\vafllz (2)
Proof. Using the definition of S-smoothness and the formula for vy,
1 1 |1 2 1)
1) < 1)+ (Va7 (=5t) + 38| 50020 = @) = 59112 ®)
as claimed. O

The next lemma shows that if f is 8-smooth and V, and V, are sufficiently different, the lower bound
f(y) > £:(y) can be significantly strengthened.

Lemma 2.2. If f is convex and B-smooth, then for any x,y € R™ we have

F0) = £:l) + 551 = V% (@

Proof. Let z =y — % (Vyf — V. f). Then
F(2) > () = F(@) + (Vo f)T (=~ 2) o)
£(2) < () + Blly — 2l = F(w) + (T)T(z — 9) + g Blly =1 (6

and, combining (5) with (6), we have

F() 2 F@)+ (Val)T(z = 2) + (V) Ty — 2) = 3 Blly — I (7
= f(&) + (Val)(y —) + (Vyf = V)T~ 2) — 5Blly — I 8
= 6ly) + 55193 f = Va1, ©
where the last line follows from the equation y — z = L(V,f — V.f). O

Remark 2.3. Lemma 2.2 furnishes a proof that when f is convex and -smooth, its gradient satisfies
the B-Lipschitz inequality
IVof =Vyfll <Blle =yl Vz,yeD, (10)

as claimed in Definition 0.1. The converse, i.e. the fact that S-smoothness follows from property (10),
is an easy consequence of the mean value theorem and is left as an exercise.

Lemma 2.2 implies the following corollary, which says that an iteration of gradient descent with step

size 7 = 1/ cannot increase the distance from the optimum point, z*, when the objective function is
convex and S-smooth.

Lemma 2.4. Ify=z— %(sz) then ||y — z*|| < ||l — x*||.
Proof. Applying Lemma 2.2 twice and expanding the formulae for ¢,(y) and ¢,(z), we obtain
1
() 2 f(@) + (Va) Ty = @) + gl Vaf = Vi

(@) > F) + (V)@ —y) + 215|!sz V1|2

Summing and rearranging terms, we derive
1
(Vof = Vyf)T(z —y) = waf = VufI?. (11)
Now expand the expression for the squared distance from y to xz*.

Iy = 2*1 = [}o = 2 = 57ap)||

2 1
= |lz —2*|* ~ B(fo)T(l‘ — %)+ @\lvmfll2

2 1
= |z —2*|* - 5(Vef = Ve)@ —2") + @IIVIfH2

. P 1
<z —a"|* - Vel = Vo fI? + @HVIJ”H2
N 1
= |lz —2*|* ~ @llVIfIIQ,
which confirms that ||y — 2*|| < ||z — 2. O
To analyze gradient descent using the preceding lemmas, define 6; = f(z;) — f(«*). Lemma 2.1 implies
1 2
41 < 0 — ﬁHthfll - (12)

Convexity of f also implies

6 < (Va, f) (@ — 2¥)
< |Ve £l - llwe — =]
<V, fII- D
% < |IVa (13)

where D > ||z1 — z*||, and the third line follows from Lemma 2.4. Combining (12) with (13) yields

Opr1 < 6 — Wiﬁ
l < 1 B Ot 1
8 = 041 Oy 2BD2

0t 1 < 1 1
5t+1 2ﬁD2 o 5t+1 51&
1 1 1

< - _
26D% = 0pp1 O

where the last line used the inequality d; 1 < d; (Lemma 2.1).

We may conclude that

1 S 1 n T S T

or — do Z,BDQ - Q,BDQ
from which it follows that d7 < 28D?/T, hence T = 23D?c~! iterations suffice to ensure that oy < ¢,
as claimed.

3 Gradient descent for smooth, strongly convex functions

The material in this section is drawn from Boyd and Vandenberghe, Convexr Optimization, published
by Cambridge University Press and available for free download (with the publisher’s permission) at
http://www.stanford.edu/ boyd/cvxbook/.

We will assume that f is a-strongly convex and S-smooth, with condition number x = [3/a. Rather
than assuming an upper bound on the distance between the starting point x¢ and z*, as in the preceding
section, we will merely assume that f(xz¢) — f(z*) < B for some upper bound B.

We will analyze an algorithm which, in each iteration, moves in the direction of —V f(z) until it reaches
the point on the ray {x —tV f(z) | t > 0} where the function f is (exactly or approximately) minimized.
This one-dimensional minimization problem is called line search and can be efficiently accomplished by
binary search on the parameter ¢t. The advantage of gradient descent combined with line search is that
it is able to take large steps when the value of f is far from its minimum, and we will see that this is a
tremendous advantage in terms of the number of iterations.

Algorithm 2 Gradient descent with line search
1: repeat
2: Ax = -V, f.
3: Choose t > 0 so as to minimize f(x + tAx).
4 x4 o+ tAx.
5. until |V, f]| < 2ea

To see why the stopping condition makes sense, observe that strong convexity implies

la(z®) = f(") < =5l — 2"
f@) = f@*) < (Ve)T (@ = 2") = Gl = 2"
< max {|[Vaf]t - §1°}
|

Vol (14)

The last line follows from basic calculus. The stopping condition |V, f||? < 2ca thus ensures that
f(z) — f(z*) < e as desired.

To bound the number of iterations, we show that f(x) — f(z*) decreases by a prescribed multiplicative
factor in each iteration. First observe that for any t,

Flo+t0) — Lo+ tA2) < 5 eaal? = 2|V 1) P2
Flo+t0) — F(a°) < Lol + 1) — (@) + DIV F() P2
= J@) — f*) + V@A) + 5 V1) P
= J@) ~ £~ IV @)%+ D19) P

The right side can be made as small as f(z) — f(z*) — w by setting t = ”vf‘%. Our algorithm
sets t to minimize the left side, hence

IV ()]?

flz+tAr) — f(a") < f(x) = f(2") - BT (15)

Recalling from inequality (14) that ||V f(2)||? > 2a(f(x) — f(z*)), we see that inequality (15) implies

ot t80) - 1) < f0) - £a) = Gl ~)] = (1= 1) @) - 5@ (9
This inequality shows that the difference f(x) — f(z*) shrinks by a factor of 1 — 1, or better, in each
iteration. Thus, after no more than log;_; /. (¢/B) iterations, we reach a point where f(z) — f(2*) <e,
as was our goal. The expression log;_; . (¢/B) is somewhat hard to parse, but we can bound it from
above by a simpler expression, by using the inequality In(1 — x) < —z.

~ In(e/B) In(BJe) B
logy_1/4(e/B) = (1 —a/f) (1 —a/d) <kln <8> .

The key things to notice about this upper bound are that it is logarithmic in 1/e—as opposed to the
algorithm from the previous lecture whose number of iterations was quadratic in 1/e—and that the
number of iterations depends linearly on the condition number. Thus, the method is very fast when the

Hessian of the convex function is not too ill-conditioned; for example when « is a constant the number
of iterations is merely logarithmic in 1/e.

Another thing to point out is that our bound on the number of iterations has no dependence on the
dimension, n. Thus, the method is suitable even for very high-dimensional problems, as long as the high
dimensionality doesn’t lead to an excessively large condition number.

4 Constrained convex optimization

In this section we analyze algorithms for constrained convex optimization, when D C R™. This introduces
a new issue that gradient-descent algorithms must deal with: if an iteration starts at a point x; which is
close to the boundary of D, one step in the direction of the gradient might lead to a point y; outside of
D, in which case the algorithm must somehow find its way back inside. The most obvious way of doing
this is to move back to the closest point of D. We will analyze this algorithm in §?7 below. The other
way to avoid this problem is to avoid stepping outside D in the first place. This idea is put to use in
the conditional gradient descent algorithm, also known as the Franke-Wolfe algorithm. We analyze this
algorithm in §?7 below.

4.1 Projected gradient descent

Define the projection of a point y € R™ onto a closed, convex set D C R™ to be the point of D closest
to v,
IIp(y) = argmin{||x — y|| : = € D}.

Note that this point is always unique: if x # 2’ both belong to D, then their midpoint %(ZL‘ + 2') is
strictly closer to y than at least one of x,z’. A useful lemma is the following, which says that moving
from y to IIp(y) entails simultaneously moving closer to every point of D.

Lemma 4.1. For ally € R" and x € D,
Mp(y) — ol < fly — |-
Proof. Let z = lIp(y). We have

ly = zl* = (y = 2) + (z = 2)|” = [ly = 21 + 2(y = 2)T(2 —2) + ||z = 2[I* > 2(y — 2)T(z — 2) + || — 2]*.

The lemma asserts that ||y — x||? > ||z — x||?, so it suffices to prove that (y — 2)T(z — z) > 0. Assume
to the contrary that (y — z)T(x — z) > 0. This means that the triangle formed by z,y, z has an acute
angle at z. Consequently, the point on line segment xz nearest to y cannot be z. This contradicts the
fact that the entire line segment is contained in D, and z is the point of D nearest to y. O

We are now ready to define and analyze the project gradient descent algorithm. It is the same as the
fixed-step-size gradient descent algorithm (Algorithm 3) with the sole modification that after taking a
gradient step, it applies the operator IIp to get back inside D if necessary.

Algorithm 3 Projected gradient descent
Parameters: Starting point xg € D, step size v > 0, number of iterations T € N.

:fort=0,...,T—1do

Ti41 = HD(iL"t - ’vatf)
end for

: Output = argmin{ f(zo),..., f(zr)}.

There are two issues with this approach.

1. Computing the operator IIp may be a challenging problem in itself. It involves minimizing the
convex quadratic function ||z — y¢||? over D. There are various reasons why this may be easier than
minimizing f. For example, the function ||z — y;||* is smooth and strongly convex with condition
number k = 1, which is about as well-behaved as a convex objective function could possibly be.
Also, the domain D might have a shape which permits the operation IIp to be computed by a
greedy algorithm or something even simpler. This happens, for example, when D is a sphere
or a rectangular box. However, in many applications of projected gradient descent the step of
computing Ilp is actually the most computationally burdensome step.

2. Even ignoring the cost of applying IIp, we need to be sure that it doesn’t counteract the progress
made in moving from x; to ¥y — YV, f. Lemma 4.1 works in our favor here, as long as we are
using ||z; — z*|| as our measure of progress, as we did in §1.

For the sake of completeness, we include here the analysis of projected gradient descent, although it is a
repeat of the analysis from §1 with one additional step inserted in which we apply Lemma 4.1 to assert
that the projection step doesn’t increase the distance from x*.

Lemma 4.2. a1 — o < [log — %2 = 29(f (w1) — F(2*)) + T2

Proof. Letting x = x; we have
241 — 2*)* = |Mp(z — Ve f) — 2*|?
<||(x = yVef) — z*||*(By Lemma 4.1)
= ||z —a* =4V f|?
= ||z — 2*|1? = 29(Va /)T (z — 2*) + 92| Vo f|I?
= |l = 2*|* = 27 [la(2) — La(@)] + 2|V |
<l = 2*|? = 2y(f(x) = f(@) + 2|V
The proof concludes by observing that the L-Lipschitz property of f implies ||V, f|| < L. O

The rest of the analysis of projected gradient descent is exactly the same as th analysis of gradient
descent in §1; it shows that when f is L-Lipschitz, if we set v = ¢/L? and run T' > L?D?¢~? iterations,
the algorithm finds a point # such that f(z) < f(z) + ¢.

4.2 Conditional gradient descent

In the conditional gradient descent algorithm, introduced by Franke and Wolfe in 1956, rather than
taking a step in the direction of —V, f, we globally minimize the linear function (V. f)Ty over D, then
take a small step in the direction of the minimizer. This has a number of advantages relative to projected
gradient descent.

1. Since we are taking a step from one point of D towards another point of D, we never leave D.

2. Minimizing a linear function over D is typically easier (computationally) than minimizing a
quadratic function of D, which is what we need to do when computing the operation IIp in
projected gradient descent.

3. When moving towards the global minimizer of (V, f)Ty, rather than moving parallel to —V, f, we
can take a longer step without hitting the boundary of D. The longer steps will tend to reduce
the number of iterations required for finding a near-optimal point.

Algorithm 4 Conditional gradient descent
Parameters: Starting point xg € D, step size sequence 71,79, ..., number of iterations T" € N.

fort=0,...,7—1do
yr = arg minyep{(Vy, f)Ty}
Ter1 = Yy + (1 —)2t
end for
Output Z = arg min{ f(zo),..., f(z1)}.

We will analyze the algorithm when f is 3-smooth and ~; = ;35 for all ¢.

Theorem 4.3. If D is an upper bound on the distance between any two points of D, and f is B-smooth,
then the sequence of points computed by conditional gradient descent satisfies

26 R?

fla) = St < 25

for allt > 2.

Proof. We have

)T (441 — 2¢) + 38||Te41 — z4]|* B-smoothness
<Y (Vo)T (e — @) + 557 PR*defn of x141
< (Vg)T (@7 = 2¢) + 25% FR*def n of y
< Y (f(@*) = f(4)) + 387 R? conveuity.

f(@ee1) =) < (Vo f

Letting 0; = f(x¢) — f(2*), we can rearrange this inequality to
Oer1 < (1 =)0 + 5677 R?

When t = 1 we have v = 1, hence this inequality specializes to d9 < % BR?. Solving the recurrence for

t > 1 with initial condition dy < gRQ, we obtain §; < f+R1 as claimed. O

Cornell University, Fall 2012 CS 6820: Algorithms
Lecture notes on spectral methods in algorithm design

Studying the eigenvalues and eigenvectors of matrices has powerful consequences for at
least three areas of algorithm design: graph partitioning, analysis of high-dimensional data,
and analysis of Markov chains. Collectively, these techniques are known as spectral methods
in algorithm design. These lecture notes present the fundamentals of spectral methods.

1 Review: symmetric matrices, their eigenvalues and
eigenvectors

This section reviews some basic facts about real symmetric matrices. If A = (a;;) is an
n— X —n square symmetric matrix, then R™ has a basis consisting of eigenvectors of A, these
vectors are mutually orthogonal, and all of the eigenvalues are real numbers. Furthermore,
the eigenvectors and eigenvalues can be characterized as solutions of natural maximization
or minimization problems involving Rayleigh quotients.

Definition 1.1. If z is a nonzero vector in R™ and A is an n — X — n matrix, then the
Rayleigh quotient of x with respect to A is the ratio

xT Ax

xTx

RQA(LE) =

Definition 1.2. If A is an n — X — n matrix, then a linear subspace V' C R" is called an
invariant subspace of A if it satisfies Ax € V for all z € V.

Lemma 1.3. If A is a real symmetric matrix and V 1is an invariant subspace of A, then
there is some x € V' such that RQa(x) = inf{RQa(y) |y € V}. Any x € V that minimizes
RQa(z) is an eigenvector of A, and the value RQa(x) is the corresponding eigenvalue.

Proof. If x is a vector and 7 is a nonzero scalar, then RQ(x) = RQa(rz), hence every value
attained in V by the function RQ 4 is attained on the unit sphere S(V) ={z € V | 2Tz = 1}.
The function RQ, is a continuous function on S(V), and S(V) is compact (closed and
bounded) so by basic real analysis we know that RQ 4 attains its minimum value at some
unit vector z € S(V'). Using the quotient rule we can compute the gradient
2Ax — 2(2" Ax)x

At the vector x € S(V) where RQ 4 attains its minimum value in V', this gradient vector
must be orthogonal to V'; otherwise, the value of RQ) 4 would decrease as we move away from
x in the direction of any y € V' that has negative dot product with VRQ 4(x). On the other
hand, our assumption that V' is an invariant subspace of A implies that the right side of (1)
belongs to V. The only way that VRQ a(x) could be orthogonal to V' while also belonging
to V is if it is the zero vector, hence Az = A\x where A = 2T Az = RQa(z). O

1

Lemma 1.4. If A is a real symmetric matriz and V' is an invariant subspace of A, then
VE={z|2Ty=0Vy eV} is also an invariant subspace of A.

Proof. If V is an invariant subspace of A and x € V*, then for all y € V we have
(Az)Ty =2TATy = 2T Ay = 0,
hence Az € V+. O

Combining these two lemmas, we obtain a recipe for extracting all of the eigenvectors of
A, with their eigenvalues arranged in increasing order.

Theorem 1.5. Let A be an n — X — n real symmetric matriz and let us inductively define
sequences
T1,..., T, € R"
Ay A €ER
(0} =1hCWVC---CV, =R"
R*"=Wo2W,2.-- 2 W, ={0}
by specifying that

x; = argmin {RQa(x) | x € W;_1}

A = RQA(%’)
V; = span(xy, ..., x;)
Wi = Vit
Then x1,...,x, are mutually orthogonal eigenvectors of A, and A\ < Ay < -+ < A\, are the

corresponding eigenvalues.

Proof. The proof is by induction on i. The induction hypothesis is that {z1,...,2;} is a set
of mutually orthogonal eigenvectors of A constituting a basis of V;, and A\; < --- < \; are the
corresponding eigenvectors. Given this induction hypothesis, and the preceding lemmas, the
proof almost writes itself. Fach time we select a new x;, it is guaranteed to be orthogonal
to the preceding ones because x; € W, | = Vifl. The linear subspace V;_; is A-invariant
because it is spanned by eigenvectors of A; by Lemma 1.4 its orthogonal complement W;_,
is also A-invariant and this implies, by Lemma 1.3 that x; is an eigenvector of A and \; is
its corresponding eigenvalue. Finally, A\; > \;_; because \;_; = min{RQa(x) | x € W;_5},
while)\z = RQA(ILL) € {RQA(I’) ’ x € Wi,Q}.]

An easy corollary of Theorem 1.5 is the Courant-Fischer Theorem.

Theorem 1.6 (Courant-Fischer). The eigenvalues Ay < Ag < --- <\, of ann — X —n real
symmetric matriz satisfy:

Vk Ay = min (max RQA(:L‘)) = max (min RQA(m)> .

dim(V)=k \ z€V dim(W)=n—k+1 \zeW

Proof. The vector space Wj,_; constructed in the proof of Theorem 1.5 has dimension n—k+1,
and by construction it satisfies min,ew, , RQa(x) = Agz. Therefore

max (min RQA(x)> > A

dim(W)=n—k+1 \zeW

If W C R" is any linear subspace of dimension n — k + 1 then W NV}, contains a

nonzero vector x, because dim(W') + dim(Vj) > n. Since Vi, = span(zy, ..., z;) we can write
T = ay1x1+ - -+ apx. Rescaling xq, ...,z if necessary, we can assume that they are all unit
vectors. Then, using the fact that x, ..., x; are mutually orthogonal eigenvectors of A, we
obtain

/\1@1 + -+)\kak
RQaW@) == .,

Therefore maxqimw)=n—k+1 (Mingew RQa(x)) < Ap. Combining this with the inequality

derived in the preceding paragraph, we obtain maxXgimw)=n—k+1 Mingew RQa(x) = Ap. Re-

placing A with —A, and k with n —k+ 1, we obtain mingimvy=r (maxzey RQa(x)) = Ap. O

< Ak

2 The Graph Laplacian

Two symmetric matrices play a vital role in the theory of graph partitioning. These are the
Laplacian and normalized Laplacian matrix of a graph G.

Definition 2.1. If G is an undirected graph with non-negative edge weights w(u,v) > 0,
the weighted degree of a vertex w, denoted by d(u), is the sum of the weights of all edges
incident to u. The Laplacian matrix of G is the matrix Lg with entries

d(u) ifu=v
(Le)uww = —w(u,v) ifu#vand (u,v) € F
0 if u# v and (u,v) € E.

If D¢ is the diagonal matrix whose (u,u)-entry is d(u), and if G has no vertex of weighted
degree 0, then the normalized Laplacian matrix of G is

Lo = D'’ LaDG.

The eigenvalues of L and Lg will be denoted in these notes by A\ (G) < --- < \,(G) and
1 (G) < -+ < v,(G). When the graph G is clear from context, we will simply write these
as A,..., Ay OF U1, ..., Up.

The “meaning” of the Laplacian matrix is best explained by the following observation.

Observation 2.2. The Laplacian matrix L is the unique symmetric matrix satisfying the
following relation for all vectors x € RY.

' Lox = Z w(u,v)(z, — 2,)> (2)

(u,v)EE

The following lemma follows easily from Observation 2.2.

Lemma 2.3. The Laplacian matrixz of a graph G is a positive semidefinite matrix. Its
minimum eigenvalue is 0. The multiplicity of this eigenvalue equals the number of connected
components of G.

Proof. The right side of (2) is always non-negative, hence Lg is positive semidefinite. The
right side is zero if and only if x is constant on each connected component of G (i.e., it
satisfies x, = x, whenever u, v belong to the same component), hence the multiplicity of the
eigenvalue 0 equals the number of connected components of G. n

The normalized Laplacian matrix has a more obscure graph-theoretic meaning than the
Laplacian, but its eigenvalues and eigenvectors are actually more tightly connected to the
structure of GG. Accordingly, we will focus on normalized Laplacian eigenvalues and eigen-
vectors in these notes. The cost of doing so is that the matrix L¢ is a bit more cumbersome
to work with. For example, when G is connected the 0-eigenspace of L¢ is spanned by the
all-ones vector 1 whereas the 0-eigenspace of L is spanned by the vector d'/? = Dé/ °1.

3 Conductance and expansion

We will relate the eigenvalue v5(G) to two graph parameters called the conductance and
expansion of G. Both of them measure the value of the “sparsest” cut, with respect to
subtly differing notions of sparsity. For any set of vertices .S, define

d(S) =7 d(u)

u€esS

and define the edge boundary

0S = {e = (u,v) | exactly one of u,v belongs to S}.

. ~ w(995)
?(C) = min {‘W) 4(5)d(9) }

The conductance of G is

and the expansion of G is

= min w(d5)
H(C) =i {min{dw), d<§>}} ’

where the minimum in both cases is over all vertex sets S #), V. Note that for any such S,

d(V) d(V) B 1 d(V)

d(S)d(S) ~ min{d(S),d(S)} - max{d(S),d(S)} min{d(S),d(S)} max{d(S),d(S)}

The second factor on the right side is between 1 and 2, and it easily follows that

h(G) < ¢(G) < 2h(G).

Thus, each of the parameters h(G), ¢(G) is a 2-approximation to the other one. Unfortu-
nately, it is not known how to compute a O(1)-approximation to either of these parameters in
polynomial time. In fact, assuming the Unique Games Conjecture, it is NP-hard to compute
an O(1)-approximation to either of them.

4 Cheeger’s Inequality: Lower Bound on Conductance

There is a sense, however, in which v5(G) constitutes an approximation to ¢(G). To see
why, let us begin with the following characterization of v5(G) that comes directly from
Courant-Fischer.

Z‘TZGJJ

xTx

-
L
x # 0, TD1/21—O}—mn{y ¢y

v5(G) = min { Doy

y # 0, yTDgl:O}.

The latter equality is obtained by setting x = Dé/ 2y

The following lemma allows us to rewrite the Rayleigh quotient 3152‘12 in a useful form,
when y"Dgl = 0.

Lemma 4.1. For any vector y we have

y GZ/ - Z - y('U))27
uv
with equality if and only if y" Dgl = 0.

Proof.

5 S () (y() — y(0))? = 5 S dwd)ly(w? + y(Y] ~ 3 du)d()y(wy()

uFv uFv u7v
= Z d(w)d(v)y(u)? — Z d(u)d(v)y(u)y(v)
utv uFv

= d(u)d(v)y(u)® = d(u)d(v)y(w)y(v)

— (V)Y d(w)y(u)? - (Z d<u>y<u>)

— d(V)y"Dey — (y"Da1)”.

A corollary of the lemma is the formula

Z(u,v)eE(G) w(u,v)(y(u) —y(v))?
>y A)d()(y(u) — y(v))?

where the summation over u < v in the denominator is meant to indicate that each unordered
pair {u,v} of distinct vertices contributes exactly one term to the sum. The corollary is
obtained by noticing that the numerator and denominator on the right side are invariant
under adding a scalar multiple of 1 to y, and hence one of the vectors attaining the infimum
is orthogonal to Dg1.

Let us evaluate the quotient on the right side of (3) when y is the characteristic vector

of a cut (S, 5), defined by
1 ifuesS
y(u) = {

0 ifues.

vs(G) = inf {d(V)

denominator is nonzero} . (3)

In that case,

Y wluwo)yw) —y@)P = Y wluv)=w(dS)

(u,v)€E(G) (u,v)€0S
while
> dw)d(v)(y(u) = y(v))* = Z d(u)d(v) = d(S)d(S).
Hence,
w(0S)

1a(G) < d(V)m,

and taking the minimum over all (S,S) we obtain

n(G) < o(G).

5 Cheeger’s Inequality: Upper Bound on Conductance

The inequality v2(G) < ¢(G) is the easy half of Cheeger’s Inequality; the more difficult half
asserts that there is also an upper bound on ¢(G) of the form

H(G) < /8ra(G).
Owing to the inequality ¢(G) < 2h(G), it suffices to prove that

and that is, in fact, the next thing we will prove.

For any vector y that is not a scalar multiple of 1, define

D wwyen@) W, v)(y(w) — y(v))?

2y Au)d(v)(y(u) —y(v))?

. . sl w(0S) .
Given any such y, we will find a cut (S,.5) such that Td(S) A < /2Q(y); the upper
bound h(G) < +/21,(G) follows immediately by choosing y to be a vector minimizing Q(y).
In fact, if we number the vertices of G' as vy, vs, ..., v, such that y; <y < --- <y, we will
show that it suffices to take S to be one of the sets {y1,...,yx} for 1 <k <n.

Note that Q(y) is unchanged when we add a scalar multiple of 1 to y. Accordingly, we

can assume without loss of generality that

D dw) < d(vy)

Qy) =4d(V)

yi<0 yi>0
D d(v) = d(v)
¥ <0 y; >0

For d-regular graphs, this essentially means that we're setting the median of the components
of y to be zero. For irregular graphs, it essentially says that we’re balancing the total degree
of the vertices with positive y(u) and those with negative y(u).

Now here comes the most unmotivated part of the proof. Define a vector z by

2y =
y; ifyi >0,

Note also that Q(y) is unchanged when we multiply y by a nonzero scalar. Accordingly, we
can assume that z, — z; = 1. Now choose a threshold value ¢ uniformly at random from the

interval [z1, z,] and let
S:{U2|Zz<t}

We will prove that
Elw(95)]

— <
E[min{d(S),d(S)}] —

from which it follows that
E[w(9S)] < v/2Q(y) - Emin{d(s), d(S)}]
and consequently that there is at least one S in the support of our distribution such that
w(95) < /2Q(y) - min{d(S), d(S)}.

It is surprisingly easy to evaluate E[min{d(S),d(S)}]. Each vertex v; contributes d(v;)
to the expression inside the expectation operator when it belongs to the smaller side of the

cut, which happens if and only if ¢ lands between 0 and z;, an event with probability |z].
Consequently,

Efmin{d(5), d(S)}] =) d(u)|=(u)| =) d(u)y(u)® = y" Day.

Meanwhile, to bound the numerator E[w(95)], observe that an edge (u,v) contributes
w(u,v) to the numerator if and only if it is cut, an event having probability |z(u) — z(v)|. A
bit of case analysis reveals that

Vu,v [2(u) = 2(v)] < ly(uw) = y(v)] - (jy(w)] + [y(v)]),

since the left and right sides are equal when y(u),y(v) have the same sign, and otherwise
the left side equals y(u)* + y(v)? while the right side equals (|y(u)| + |y(v)|)?. Combining
this estimate of the numerator with Cauchy-Schwartz, we find that

Ew@S)]< Y wlu,v)y(w) = y@)(Jy(w)] + ly()])

(u,w)EE(QG)
1/2 1/2
< > wuw)(yw) —yv)) > wuv)(ly(u)] + [y(v)])?
(u,v)EE(G) (u,v)EE(Q)

1/2

1/2
- (%Zdwwy(u) —y@)f) > wlu) @yw? + 29(0)?)
(u0)€E(G)

u<v

1/2
< (Qy)y Day)"” (2 > d(U)y(U)2>

= (2Q(y))"*y" Dgy.

6 Laplacian eigenvalues and spectral partitioning

We’ve seen a connection between sparse cuts and eigenvectors of the normalized Laplacian
matrix. However, in some contexts it is easier to work with eigenvalues and eigenvectors of
the unnormalized Laplacian, Lg. One can use eigenvectors of Lg for spectral partitioning,
provided one is willing to tolerate weaker bounds for graphs with unbalanced degree se-
quences. For example, if y is an eigenvector of L¢ satisfying Loy = Aoy then we can express
Q(y) as follows:

v Loy B AallylPd(V)
> v dl)d(0) (y () — 40~ ey d(w)d(0) () — y(0))*

Qy) = d(V)

To estimate the denominator, let dpi, and days denote the minimum and the average degree
of G, respectively. We have

> d(w)d(w)(y(u) = y(v)* = % > d(w)d(w)(y(u) = y(v))?

u<v uFv

> Sl () — y(0)?

uFv
3 (V)
= nd?nin ’y(U)2 = d dfmnHyH2
avg

u

Hence

day)\2||y||2d(V)_ day
O R ‘(dzg)”

7 Spectral sparsification of graphs

For a dense graph G with n vertices and m > n edges, it is often desirable to compute a
sparse approximation H, i.e. an edge-weighted graph with the same vertex set but with O(n)
or O(nlogn) edges, such that

(1—¢)Lg = Ly =< (1 +¢)Le. (4)

Such a graph is called a spectral sparsification of G. It is useful because it preserves some of
the essential features of G. For example, we have seen that for any vertex set S, if = denotes

the vector
1 ifues
Ty =
0 ifugs

then the capacity of the cut (S,.5), with edge set 0, is given by
c(0S) = 2" Lgx.
In light of equation (4) we know that a spectral sparsifier H satisfies
(1—e)z'Lex <a'Lyr < (14 &)z Lax

hence a spectral sparsifier preserves the capacity of every cut in GG, up to a factor of 1 + €.

Random sampling furnishes a simple method for computing a spectral sparsifier of G. We
will be designing and analyzing an algorithm that samples edges eq, ..., e, independently,
each drawn from a probability distribution that will be denoted by {7 (e) | e € E'}. Designing
an appropriate sampling distribution will be the subtlest part of the algorithm, and we will
defer discussion of how to choose 7 for now. The number of sampled edges, k, will turn out
to be O(nlogn), but for now we’ll also leave k as a parameter of the algorithm whose precise
value will be specified later.

For any edge e = (u,v) let . denote the vector whose components are defined by

-1 ifw=u
(56)111: 1 fw=v

0 otherwise.

The vector J, is only well-defined up to sign. In other words, the undirected edge e = (u, v) is
equally well represented as e = (v, u), but these two representations lead to the vectors . and
—0de, respectively. The sign ambiguity will not matter, because we won’t be dealing directly
with the vector &, but instead with the rank-one matrix 6.6]. The equation (—6,) (=d]) =
5.0] assures that we get the same matrix no matter which choice we make for d,.

Recall that the Laplacian of a graph G with edge capacities c(e) is given by the weighted

sum
Lg = Z c(e)6.0] . (5)
ecE
Similarly, for our random graph H, if we choose a “rescaled capacity” for each edge e, and set
the capacity of e in H to ¢é(e) times the number of times e occurs in the multi-set {e;, ..., ey}
of randomly sampled edges, then the Laplacian of H will be given by

k
LH = Zé<el)5615; (6)

and its expected value will be

E[Lg]l =Fk- Y n(e)é(e)ded,.

To equate E[Ly] with Lg the simplest thing to do is to equate the coefficient of 8.9 for each
edge e, which necessitates setting

Thus, the capacities ¢(e) of the sampled edges will be uniquely determined by the number
of sampled edges, k, and the sampling distribution, .

To analyze the quality of the spectral approximation achieved by the sampling algo-
rithm, we need to estimate the extent to which the random matrix Ly may differ from
its expectation, E[Ly|. Since Ly is a sum of independent, identically distributed random
matrices—namely, the summands on the right side of (6)—it is natural to use the Ahlswede-
Winter Inequality. In our application of the inequality, the average of the k£ summands has
expected value %E[LH] = %Lg. Thus, to apply the inequality, we need to find a constant
R > 1 such that for each edge e,

3 <R
5 < Rr(e) - Lg. (7)

The Ahlswede-Winter Inequality will then ensure that with probability at least 1—2n exp(—%),
we have (1 —e)Lg =X Ly = (1 + ¢)Lg, as desired. If we want this event to happen with
probability at least %, we set k = 4Re ?In(4n). Thus, the number of edges we need to
sample when constructing H is linearly related to the constant R appearing on the right
side of (7), and designing a good graph sparsification algorithms boils down to constructing

a distribution {m(e)} that allows R to be as small as possible.

As a naive first attempt, we could take 7 to be the uniform distribution, 7(e) = % for all
e. Then, noting that the formula (5) justifies the relation c(e)d.0] < Lg for all e, we see that
we just need to make R large enough that Rm(e) > 1 for all e. Since we are using 7(e) = +
this means setting R = m. Our naive idea of setting 7 to be the uniform distribution has
not worked out well: instead of sparsifying G, we have increasing the number of edges from
m to k = 4me?In(4n).

One might hope that the uniform sampling technique performs better than the above
analysis would suggest. After all, our analysis made use of the relation c(e)d.8] =< Lg,
which typically has a large amount of “slack” because L¢ is a sum of m positive semidefinite
matrices, only one of which is ¢(e)d.d]. However, on closer inspection, the whose idea of
uniform edge sampling is doomed to require sampling (2(m) edges in the worst case. To see
why, consider the case that G is made up of two cliques Ky, K7, each of size n/2, joined by a
single edge, e. Let x denote the vector defined by setting z, = 1 if u € Ky, x, = 0if u € K.
If we fail to sample edge e when constructing the sparsifier, H, then 2" Lyz = 0 whereas
2" Lgx > 0, which rules out the possibility that H is a spectral sparsifier of G. Thus, if we
sample o(m) edges from the uniform distribution, with probability 1 — o(1) we will fail to
obtain a spectral sparsifier. Our only hope is to use a non-uniform distribution over edges
that assigns higher probability to edges, such as the edge e in the foregoing example, that
are “spectrally irreplaceable”, meaning that they must be included in any spectral sparsifier
of G.

Since our goal is to minimize R, a more principled way of designing the distribution
consists of solving the following semidefinite program whose variables are R and {7(e) | e €

minimize R

subject to ¢(€)d.8] X Rr(e)-Lg Ve€FE
Yeple) = 1
m(e) >0 Vee &

The first constraint can be rewritten as

c(e) (6Tx)?

Ve = (u,v) € ER > —= - e

e = (u,v) Z o max{ﬁTLGZE

and it will be helpful to solve the maximization problem on the right side. Since 9, is
T..\2

orthogonal to the nullspace of L¢, the quotient % is unchanged if we add any vector in

the nullspace of Lg to . For this reason, among the set of vectors x that attain the maximum

v 4 0} 9)

11

on the right side of (9) there is one that is orthogonal to the nullspace of Lg and we may
assume henceforth that z is such a vector. In particular, this means L{ Lz = LgLbr = x.
Let y = Lng and . Then

(072)® _ (0L(LE)'Py)?

2" Lgx yTy

. T 2
For any vector w, the maximum of (U;le//) over nonzero vectors y is attained when y is a unit

vector in the direction of w, in which case (IZTTZ)Q = wlw. Substituting w = (L)%, we find

that
(0 x)°
max
2" Lax

s 0} = ((L&)"28,) " (L) V20, = 6T L.
Substituting this into (9) and multiplying both sides by 7(e) we find that
Rr(e) > c(e)s, L.

Summing over e,

R=R (Z ﬂ(@)) > e(e)d] Lo (10)
= tr (Z c(e)aeaTQ:) (11)

e

=tr (LeLf) =n—c, (12)

where ¢ denotes the number of connected components of G, and the last inequality follows
from the fact that Lg L is the projection on R™ onto the nullspace of Lg.

Our objective of minimizing R will be served if we make the inequality in line (10) tight,
which means setting R = n — ¢ and 7(e) = —c(e)d] L6, for each edge. This choice of R
and {7(e)} is the optimal solution of the semidefinite program (8) and leads to a spectral
sparsifier H with k < 4ne~%1n(4n) edges.

Incidentally, the quantity c(e)d] LEd. is called the effective resistance of edge e. It can
be interpreted as the resistance between the endpoints of edge e, if one were to build an
electrical network in the shape of the graph G, with each edge €’ represented by a resistor
of resistance c(e’). This connection between electrical networks and graph sparsification is
just one of many beautiful connections between electrical networks, spectral graph theory,
graph algorithms, and random walks. For more on this topic, see Doyle and Snell’s short
book, “Random Walks and Electric Networks”.

A Additional tools for working with symmetric matri-
ces

This appendix contains some additional tools that are useful in the design and analysis of
algorithms involving symmetric matrices.

12

A.1 Standard matrix functions

There is a standard way of extending any function that maps R to R into a function mapping
Sym,,(R) to Sym,(R). In this section we define these “standard matrices functions” and
present some basic examples and properties.

Definition A.1. If f : R — R is any function, the matrix extension of f is the unique
function from Sym,,(R) to Sym,,(R) satisfying f(diag(A1,...,\,)) = diag(f(A1), ..., f(An))
and f(QDQ™') = Qf(D)Q ™! for every orthogonal matrix Q and diagonal matrix D.

The only subtlety in the definition of the matrix extension of f is that any given A €
Sym,,(R) can be written as QDQ~! in more than one way, and one needs to verify that the
definition of f(A) does not depend on the choice of representation A = QDQ~'. We leave
this verification to the reader.

Some immediate consequences of the definition are the following.

1. If A € Sym,,(R) has eigenvalues A, ..., A, and corresponding eigenvectors 1, ..., T,
then f(A) has eigenvalues f(\1),..., f(\,) and corresponding eigenvectors xy, ..., Tp.

2. If A is symmetric and @ is orthogonal, then f(QAQ™') = Qf(A)Q".

3. If f and g are two functions from R to R and fog, f+g, f-g are the functions defined
by

(fog)N) = flgN), (F+9)N) =F(N)+9(N), (F-9)A) =F(N)g(N)

then for all a € Sym,,(R),
(fog)(A)=f(g(A), (f+9)(A)=f(A)+g(A), (f-9)(A)=Ff(A)g(A).

The following are some useful properties and examples.

1. For any two functions f, g and any matrix A € Sym,,(R), the matrices f(A) and g(A)
commute with one another. This is due to the identity f-g=g¢g- f.

2. If f is a polynomial function f(\) = > 7" ¢\, then f(A) = Y1, ¢; A", where A° is
interpreted as the identity matrix.

3. If f is represented by a power series f(A) = Y ., ;A" that converges on the open
interval (=R, R), then f(A) =Y 2, ¢;A" for every matrix A whose eigenvalues are all
contained in the interval (—R, R).

4. An important special case of the preceding example is the matrix exponential function,

defined by

oo
1 .
€A = ,—AZ.
]
=0

13

5. If f is the function
AN £
A pu—
f) {O iftA=0

then f(A) is denoted by A* and is called the Moore-Pensore pseudoinverse (or, simply,
pseudoinverse) of A. When A is invertible, A" is the inverse of A. More generally,
AT A = AA" is the matrix that represents the orthogonal projection of R" onto the
column space of A.

A.2 The Golden-Thompson Inequality

Theorem A.2 (Golden-Thompson Inequality). For any matrices A, B € Sym, (R),
tr (eAeB) > tr (€A+B) .

A.3 The PSD ordering on symmetric matrices

Let Sym, (R) denote the vector space of n-by-n symmetric matrices over R. If A — B is
positive semidefinite we write A = B or B < A. This relation is a partial order: it is
reflexive (the zero matrix is PSD), antisymmetric (if a matrix and its negation are PSD, it
is the zero matrix), and transitive (the sum of two PSD matrices is PSD).

A.4 The Ahlswede-Winter Inequality

The Ahlswede-Winter Inequality is a counterpart of the Chernoff bound, for sums of inde-
pendent random symmetric PSD matrices rather than sums of independent random scalars.
Theorem A.3 (Ahlswede-Winter Inequality). Suppose X1, X, ..., Xy are mutually inde-
pendent random, symmetric, positive semidefinite n xn matrices, and let U = & [% Zle Xi]

If R > 1 is a scalar such that for all i, X; 2 R-U with probability 1, then for all € € (0,1),

Pr 1—5U<kZX =< (14U

> 1-2n- exp(5’“). (13)

The proof is similar to the proof of the Chernoff bound. Letting X denote the random sum
Zle X;, the standard proof of the Chernoff bound uses the exponential generating function
®(t) = E[e'X]. Here, the expression e'X is matrix-valued. To make ® scalar-valued we instead
use ®(t) = E[tr(e'*)]. This accounts for the extra factor of n in the failure probability on
the right side of (13). (The trace of the identity matrix is n, not 1.) The main difficulty
that arises in the proof of Ahlswede-Winter, relative to the proof of Chernoff, is that the
exponentials of non-commuting matrices do not commute, so the identity e = [, '~
does not hold. However, the Golden-Thompson Inequality justifies the inequality

< tr (ﬁ etXi>
i=1

14

which is good enough to complete the proof.

Proof. The proof begins by reducing to the case where U is the identity matrix. Since U is
symmetric positive semidefinite, it can be written as Q DQ~!, where () is orthogonal and D
is a diagonal matrix with non-negative entries arranging in non-increasing order. Replacing
each X; with QX;Q~!, we can assume henceforth that U = D. If the nullspace of D has
dimension d > 0, then the entries in the final d rows and columns of D are all equal to
zero. The relation X; < R - D implies that any vector in the nullspace of D must also
belong to the nullspace of X; for each 7. Thus, for each i, the entries in the final d rows
and columns of X; are all equal to zero. To prove a lower bound on the probability of the
event (1 —e)D < %Zle X; 2 (1 +¢)D, it suffices to confine our attention to the square
submatrices occupying the first n — d rows and columns of each matrix involved.

Having thus reduced to the case that U is a non-singular diagonal matrix D, we may
replace each X, with D~'/2X;D~"/? to finally reduce to the case when E[L 3% X,] is the
identity matrix, k.

Now let X = % Zle X; and consider the function

O(t) =E [tr (¢)].

15

	Matchings
	Flows and Cuts
	Linear Programming
	Simplex Method
	approximation algorithms
	The multiplicative weights update method
	Convex Optimization
	spectral methods

