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A B S T R A C T

Reconstructing the anatomical pathways of the brain to study the human connectome has become an important endeavour for understanding brain function and
dynamics. Reconstruction of the cortico-cortical connectivity matrix in vivo often relies on noninvasive diffusion-weighted imaging (DWI) techniques but the extent to
which they can accurately represent the topological characteristics of structural connectomes remains unknown. We addressed this question by constructing con-
nectomes using DWI data collected from macaque monkeys in vivo and with data from published invasive tracer studies. We found the strength of fiber tracts was well
estimated from DWI and topological properties like degree and modularity were captured by tractography-based connectomes. Rich-club/core-periphery type ar-
chitecture could also be detected but the classification of hubs using betweenness centrality, participation coefficient and core-periphery identification techniques was
inaccurate. Our findings indicate that certain aspects of cortical topology can be faithfully represented in noninvasively-obtained connectomes while other network
analytic measures warrant cautionary interpretations.
1. Introduction

Network structure is thought to play a prominent role in supporting
healthy brain function (Fornito et al., 2015; Griffa et al., 2013). A large
body of work has been devoted to the analysis of the brain's structural
topology in order to characterize and infer how functional networks
emerge from large-scale structural connectivity, or the “connectome”
(Park and Friston, 2013; Sporns, 2014; Zuo et al., 2016). In humans, the
characterization of network structure relies mainly on noninvasive
techniques such as tractography using diffusion-weighted magnetic
resonance imaging (DWI). A number of influential observations about
brain organization in both health and disease have been made based on
DWI data (Baum et al., 2017; Crossley et al., 2014; Perry et al., 2015; van
den Heuvel et al., 2010; van den Heuvel and Sporns, 2011; Zalesky et al.,
2011). Recent validation studies in the macaque have demonstrated how
a general correspondence exists between DWI-based estimates of struc-
tural connectivity, specifically “connection strength” (usually taken as
some derivative of the number of streamlines between two regions), and
those derived from the gold standard invasive technique of using tract
tracers to map axonal projections. DWI-based tractography has been
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shown to correctly detect the presence of a large proportion of connec-
tions across the visual system (Azadbakht et al., 2015) and DWI-based
estimates of connection strengths are correlated to those obtained from
tracer studies (Donahue et al., 2016; van den Heuvel et al., 2015).
However, even with extremely high-resolution DWI, probabilistic trac-
tography suffers from a steep trade-off between sensitivity and specificity
whereby obtaining a large proportion of true positive connections is
accompanied by a large number of false positives and the optimal
parameter settings for tractography (e.g., curvature thresholds) can vary
widely depending on the location of the seed (Thomas et al., 2014; also
see Maier-Hein et al., 2017). The ability of tractography to properly
reconstruct the connectivity of the human brain and, in particular, the
interpretation of detected streamlines (Jones et al., 2013), remains a
matter of debate.

Existing validation studies in the macaque have only examined the
accuracy of DWI-based tractography at the level of the individual
connection. However, a major use of tractography has been to study the
human brain at the level of large-scale whole-brain networks. The extent
to which tractography can accurately capture the brain's structural to-
pology remains unknown. While some studies have shown that
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connectomes generated from tracer studies exhibit similar network or-
ganization principles as those reported using DWI data (e.g., de Reus and
van den Heuvel, 2013a; Harriger et al., 2012), it is still unclear whether
the topologies of networks obtained from the two different modalities
actually coincide. Most previous studies have also been limited to trac-
tography within a single hemisphere and usually using only a few ex vivo
specimens, where DWI scans are of optimal quality and are not affected
by artifacts such as motion or physiological noise. In this study, we used
DWI data obtained from 10 macaque monkeys in combination with
macaque connectivity described by published tracer studies to determine
whether probabilistic tractography can accurately represent whole-brain
structural topology in vivo. Given that tractography's accuracy varies
greatly as a function of its parameter settings (Dauguet et al., 2007; Jones
et al., 2013; Thomas et al., 2014), we first systematically varied trac-
tography parameters to determine the optimal settings for constructing
whole-brain connectomes in the macaque. Using these optimized con-
nectomes in conjunction with network analytic tools, we then deter-
mined the extent to which connectomes derived from DWI accurately
captured the structural network characteristics of the macaque brain. We
replicate previous findings that tractography can detect the presence
and/or absence of connections above chance levels and can also provide
reasonable estimates of connection strengths. In the macaque, more ac-
curate connectomes were obtained by lowering the curvature threshold
and discarding a small percentage of the weakest connections. However,
owing to the high false positive rates in tractography-based connectomes,
their ability to accurately capture critical aspects of structural topology
was dependent on the robustness of the network analytic measure in
question to misidentified connections.

2. Results

Probabilistic tractography was performed using an FSL-based pipeline
on diffusion-weighted magnetic resonance imaging data collected from
10 macaque monkeys at 7T. Two different parcellations, a single-
hemisphere one (“Markov-Kennedy” (Markov et al., 2014)) and a
whole-cortex parcellation (“RM-CoCo” (Bezgin et al., 2012; K€otter and
Wanke, 2005)) were used and tractography parameters (angular
threshold and distance correction) were systematically varied (see Ma-
terials and Methods). Tractography-derived connectivity matrices for
various parameter combinations for an example subject are shown
alongside the tracer-derived matrices in Fig. 1. For the purposes of this
paper, we use the term connection “strength” to refer to the number or
proportion of axons running between two regions in the case of tract
tracing data and the number or proportion of streamlines running be-
tween two regions for DWI-based tractography.
Fig. 1. (A) Tracer-derived connectivity matrices from Markov et al. (2014) (to
Tractography-derived matrices (upper triangle) for an example subject for each par
parameters. Accuracy of each connection, as compared to tracer-derived matrices, de
FP: false positive). For the RM-CoCo parcellation, left hemisphere ROIs are ordered to
are the upper right and lower left of each matrix.
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The tracer networks were symmetrized to enable comparison to the
undirected tractography networks. The density of the Markov-Kennedy
tracer network was 79.3% while that of the RM-CoCo tracer was
55.9% (intrahemispheric: 79.2%; interhemispheric: 35.8%).

2.1. Effects of varying tractography parameters on accuracy

On the assumption that the tracer-derived networks serve as a
“ground truth” for the large-scale anatomical connectivity of the ma-
caque brain, we computed a number of accuracy measures to determine
the ability for diffusion-weighted tractography to reconstruct anatomical
connectivity from data collected in vivo. These included the percentage of
connections correctly represented, the area under the ROC curve (AUC),
and corresponding measures of sensitivity, specificity and precision.
Since these measures could be affected by the high density of the net-
works being compared (i.e., the chances of correctly detecting a
connection using DWI are high simply due to the large number of existing
connections in the tracer networks), we compared the observed accuracy
values to those computed from 1000 randomly connected networks of
the same size and density as the observed networks.

We first consider intrahemispheric tractography using the Markov-
Kennedy parcellation. With the “default” tractography parameter com-
bination (curvature threshold: 0.2; distance correction: off), the per-
centage of connections correctly represented in the tractography-derived
connectivity matrices was on average 79.21% (SD: 0.32) before any
thresholding was performed. This, however, was not significantly greater
than the null distribution estimated by 1000 randomly connected net-
works of the same size and density. The mean AUC was 0.68 (SD: 0.02),
which was significantly greater than the null and corresponded to a very
high sensitivity (M: 0.99, SD: 0.01) but very low specificity (M: 0.01, SD:
0.01). These results are in line with previous macaque studies using ex
vivo specimens that suggested that probabilistic tractography is accurate
at correctly detecting connections (Azadbakht et al., 2015) but trades off
specificity for sensitivity (Thomas et al., 2014). Precision was, on
average, 0.79 (SD: 0.002) for the default parameter settings and signifi-
cantly greater than the null, indicating a high positive predictive value in
DWI tractrography (i.e., the great majority of positive results are true
positives) despite the high density of the networks.

Curvature thresholds in tractography algorithms constrain the extent
to which estimated streamlines can turn as they propogate. By default,
FSL's algorithm uses a threshold of 0.2, corresponding to ~78�. We sys-
tematically lowered this threshold (0.4, 0.6, 0.8 or ~66, ~53�, ~37�) to
examine its effect on the accuracy of tractography. There was an effect of
curvature threshold on the percentage of correctly detected connections
of the unthresholded matrices (i.e., where the x-axis¼ 0, Fig. 2A;
p) and CoCoMac (Shen et al., 2012; Stephan et al., 2001) (bottom). (B)
cellation (Markov-Kennedy, top; RM-CoCo, bottom) using various tractography
picted in lower triangles (TP: true positive; TN: true negative; FN: false negative;
gether followed by right hemisphere ROIs, such that interhemispheric quadrants



Fig. 2. Accuracy of DWI tractography. (A–D) Accuracy measures for tractography using the Markov-Kennedy parcellation. (E–H) Accuracy measures for inter-
hemispheric tractography using the RM-CoCo parcellation. Curves shown correspond to accuracy using different tractography curvature thresholds as a function of
thresholding the tractography-derived connectivity matrices (i.e., discarding connections having the lowest proportion of streamline counts). Points along the curves
that are >95% confidence interval derived from the distributions of accuracy measures computed using 1000 randomly generated networks of the same size and
densities are denoted with *.
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repeated measures one-way ANOVA, F(3, 9)¼ 525.85, p< 0.001).
Notably, post hoc comparisons indicated that % correct was not signifi-
cantly different between matrices derived using curvature thresholds of
0.2 and 0.4 (M: 79.14%, SD: 0.12) but was significantly lower for
thresholds of 0.6 (M: 76.21%, SD: 0.63) and 0.8 (M: 51.31, SD: 1.02)
(Tukey-Kramer tests, p< 0.05). For all curvature thresholds, however, %
correct was not significantly greater than the null for unthresholded
matrices, indicating that these levels of correctly detected connections
are as expected for networks of corresponding density. The effect of
curvature threshold on the AUC of unthresholded matrices was limited to
differences between the lowest threshold (0.8) and all other thresholds
(repeated measures one-way ANOVA, F(3,9)¼ 39.83, p< 0.001; post
hoc Tukey-Kramer tests) (Fig. 2B). AUCwas significantly greater than the
same-density null for all curvature thresholds. Lowering the curvature
threshold to 0.6 and below resulted in a significant drop in sensitivity
(repeated measures one-way ANOVA, F(3,9)¼ 676.26, p< 0.001; post
hoc Tukey-Kramer tests) with no differences for curvature thresholds of
0.2 and 0.4 (Fig. 2C, top). This was accompanied by a significant increase
in specificity across all curvature thresholds (Fig. 2C, bottom; repeated
measures one-way ANOVA, F(3,9)¼ 530.79, p< 0.001; post hoc Tukey-
Kramer tests). Precision also significantly increased when the curvature
threshold was lowered to 0.6 and below (repeated measures one-way
ANOVA, F(3,9)¼ 81.26, p< 0.001; post-hoc Tukey-Kramer tests), with
no pairwise differences between 0.2 and 0.4 (Fig. 2D). Notably, precision
was significantly better than that of the same-density null networks
across all curvature thresholds. Intrahemispheric tractography using the
RM-CoCo parcellation produced similar results (Fig. S1).

We also explored the accuracy of interhemispheric tractography using
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the RM-CoCo parcellation. For the ‘default’ tractography parameter set-
tings, interhemispheric tracking resulted in significantly lower % correct
(paired t-test, t(9)¼ -1873.4, p< 0.0001) and precision (t(9)¼ -5636.7,
p< 0.0001) while AUC was not different (t(9)¼ 1.74, p¼ 0.12)
(Fig. 2E–H vs. Fig. S1). For these unthresholded matrices, all observed
accuracy measures were significantly greater than those for the same-
density null networks. Note that since available tracer data for inter-
hemispheric connections are limited, many of the “absent” interhemi-
spheric connections in the tracer matrix are due to a lack of anatomical
data. We therefore performed the same analysis on the subset of inter-
hemispheric connections for which the CoCoMac database indicates an
explicitly present (n¼ 479) or absent (n¼ 125) connection. While ac-
curacy of tractography was remarkably better for this subset of inter-
hemispheric connections, it was still slightly lower than that of
intrahemispheric tractography (Fig. S2). Interestingly, precision for the
subset analysis was considerably higher in the analysis of explicit con-
nections (Fig. S2D) than that for all interhemispheric connections
(Fig. 2H), suggesting that the numerous false positives contributing to
low precision in interhemispheric tracking may in part be due to the
absence of evidence in the tracer dataset.

Just as in intrahemispheric tracking, there were no pairwise differ-
ences in% correct, AUC or precision values between curvature thresholds
of 0.2 or 0.4 for interhemispheric tracking (repeated measures one-way
ANOVAs, all p< 0.001; post-hoc Tukey-Kramer tests) (Fig. 2E–H).
Observed accuracy measures were all significantly greater than for the
same-density null networks. Together with the intrahemispheric tracking
results, these findings suggest that using a high curvature threshold for
macaque data does not result in a notable effect on the accuracy of DWI-



K. Shen et al. NeuroImage 191 (2019) 81–92
based tractography and instead may lower the specificity when recon-
structing anatomical connections across the macaque brain.

The ability of probabilistic tractography to reconstruct white matter
fiber tracts is thought to be limited by the distance between ROIs. Factors
such as noise, artifacts and actual fiber trajectory increase the uncertainty
of tracking with increasing distance (Li et al., 2012). To test whether this
was the case for our data, we binned connections by distance and found
that % correct dropped as a function of distance for intrahemispheric
tracking (Fig. S3A), consistent with previous findings for intrahemi-
spheric tractography (Donahue et al., 2016). There was no consistent
effect of distance on % correct for interhemispheric tracking (Fig. S3B).
Employing distance correction did little, if anything, to change accuracy
measures (data not shown), since our accuracy measures are computed
using binarized data and distance correction as implemented in FSL is
simply a reweighting scheme that biases the number of streamlines
detected for long-distance tracts rather than whether streamlines are
detectable.

Distance is also a determining factor in actual connectivity proba-
bilities as observed in tracer-based networks (Beul et al., 2017; Markov
et al., 2013), suggesting that the distance between ROIs could be used to
estimate the existence of a connection between them. To test this, we
used a simple geodesic distance-based logistic regression model to
generate connectivity matrices in the Markov-Kennedy parcellation.
Remarkably, geodesic distance-based estimates of connectivity led to
better correspondence with the tracer data (median AUC: 0.75) than
DWI-based reconstructions (Fig. S4).

2.2. Effects of discarding “weakest” connections on accuracy

For the purposes of connectome creation, the outputs of probabilistic
tractography algorithms are often thresholded by discarding connections
whose streamline counts do not meet a minimum requirement (Roberts
et al., 2017; Zalesky et al., 2016). To determine whether such a thresh-
olding technique improves the accuracy of probabilistic tractography, we
systematically thresholded our tractography-derived connectivity
matrices by discarding between 5 and 90% of the “weakest” connections
(i.e., those with lowest weights) in increments of 5%. Accuracy, as
measured by % connections correctly detected and AUC, dropped as a
function of thresholding the intrahemispheric connectivity matrix
(Fig. 2A–B and S1A-B), with a significant drop occurring once 20% or
more of the weakest connections were discarded, depending on the ac-
curacy metric, parcellation and curvature threshold used (Table S1).
However, the densest networks (i.e., those with the lowest thresholds)
were also those whose % correct values were not significantly greater
than the same-density null networks (Fig. 2A). AUC (Fig. 2B) and pre-
cision (Fig. 2D) was significantly greater than the null at all threshold
levels. For interhemispheric tractography, only AUC dropped as a func-
tion of discarding the weakest weights, corresponding to a drop in
sensitivity (Fig. 2F and G, but see Fig. S2), with a significant drop
occurring once a 35% threshold or more was reached (Table S2).
Thresholding the tractography-derived connectivity matrices using a
consistency-based thresholding scheme (Roberts et al., 2017) instead
resulted in similar effects on accuracy (Fig. S5).

2.3. Variability across individuals

Neuroanatomical differences exist between cynomolgous and rhesus
macaques (e.g., Amaral et al., 2003) and could contribute to differences
in our DWI connectomes. However, the differences in tractography re-
sults across animals were relatively small, as evidenced by the narrow
range of standard errors in the accuracy figures (e.g., Fig. 2) and the
results from the cynomolgous monkey were within the range of the
rhesus monkeys (see Fig. S6A for an example). The cross-correlation
between individual DWI connectomes was high and the cynomolgous
monkey's correlation values were often within the range of the rhesus
macaques' (see Figs. S6B–C for examples).
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2.4. Do DWI-based connectomes accurately depict network characteristics?

To determine whether network characteristics were accurately
captured in DWI-based connectomes, we first constructed an average
DWI-based connectome for each parcellation using the set of “optimal”
tractography parameters and thresholds that maximized AUC for each
animal (see Methods, Fig. S7 and Table S2). We also included for analysis
a DWI-based structural network in the RM-CoCo parcellation derived
from control animals recently described by Grayson et al. (2017). This
independent average network was constructed using different imaging
sequences, image preprocessing and probabilistic tractography proced-
ures from those described in the present paper. For replication purposes
and to examine the dependence of our results on our specific sample and
DWI sequences, we present analyses on this additional DWI-based
network in the supplementary materials (see Fig. S8, S10-S11).

The edge weights of the average DWI-based network were correlated
with those from the tract-tracing one for the Markov-Kennedy parcella-
tion (Fig. 3A; Pearson correlation coefficient (r)¼ 0.71, p< 0.0001) and
also for the RM-CoCo parcellation (Fig. 3B; Spearman rank correlation
coefficient (rs)¼ 0.45, p< 0.0001; also see Fig. S8B). This correlation is
in line with (Donahue et al., 2016) or better than (van den Heuvel et al.,
2015) previous studies, and suggests that the strength of a white matter
fiber tract can be reasonably estimated using tractography-based
methods. As distance correction biases the number of streamlines
detected for long tracks, and therefore biases the weights of our
DWI-based connectomes, we additionally constructed distance-corrected
versions of the average DWI-based network for comparison with the
tracer networks. The correlation between the tractography-based and the
tract-tracing-based edge weights was worse than the correlation obtained
without distance correction for both the Markov-Kennedy (Pearson cor-
relation; r¼ 0.51, p< 0.0001; Fig. S9A) and RM-CoCo parcellation
(Spearman rank correlation; rs¼ 0.40, p< 0.0001; Fig. S9B). Finally,
because connection strength varies as a function of distance in both tracer
and tractography data (e.g., Donahue et al., 2016) we also computed the
partial correlation between tracer and tractography weights while con-
trolling for distance between ROIs. The correlation between the weights
was reduced by nearly half for the Markov-Kennedy parcellation
(r¼ 0.37, p< 0.0001) but only marginally for the RM-CoCo parcellation
(rs¼ 0.43, p< 0.0001).

We next computed a number of graph metrics that capture different
levels of description of topology for both tracer- and DWI-based networks
to determine the extent to which tractography-derived networks can
accurately estimate network topology.

2.5. Centrality

Centrality measures are commonly used to provide estimates of the
extent to which each node is embedded within a network, describing its
potential contribution to network communication (van den Heuvel and
Sporns, 2013a). Fig. 3 shows how the nodal degree for DWI- and
tract-tracing-based networks was positively correlated for the
Markov-Kennedy intrahemispheric parcellation (Fig. 3C; rs¼ 0.45,
p< 0.01) as well as the RM-CoCo whole brain parcellation (Fig. 3D;
rs¼ 0.24, p¼ 0.01). Betweenness centrality, however, was not correlated
for either parcellation (Markov-Kennedy: rs¼ 0.14, p¼ 0.23; RM-CoCo:
rs¼ 0.14, p¼ 0.11) (but see Fig. S8C). Network “hubs” are often
singled out for investigation because of the special topological role they
are thought to play in network communication and are identified as those
nodes with high centrality. To determine whether hubs in the
tractography-based networks coincide with those in the tracer-based
networks, we identified hub nodes as those having centrality values
greater than the 80th percentile for each centrality measure. Although
some overlap exists in the identified hubs from tractography- and
tracer-based networks (Fig. 3C–F; red data points), a number of hubs in
the tracer-based networks were not considered hubs in the
tractography-based networks (Fig. 3C–F; black data points) and vice



Fig. 3. Correspondence of network topology metrics of in vivo tractography and tract-tracing connectomes. (A–B) Connectome weight estimates from DWI
tractography were well correlated with those from tracer studies. (C–F) Centrality estimates from DWI-based networks are correlated with those from tracer studies for
degree but not betweenness centrality estimates. Only some hubs, identified as those with centrality >80th percentile, in the DWI-based networks correspond with
hubs in tracer-based networks (red data points). These included cortical areas 7a, 8 m, 9/46d, V4 in the Markov-Kennedy parcellation (C,E), and anterior and posterior
cingulate cortex (CCa and CCp) and centrolateral and ventrolateral prefrontal cortex (PFCcl and PFCvl) in the RM-CoCo parcellation (D, F). Hubs in tracer-based
networks not identified as hubs in DWI-based networks denoted in black; misidentified hubs in DWI-based networks that are not hubs in tracer-based networks
denoted in grey. Correctly identified hubs denoted in red. r: Pearson correlation coefficient; rs: Spearman correlation coefficient.
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versa (grey data points). Hypergeometric tests indicated no significant
overlap between tracer and DWI hubs for either centrality measure
(Markov-Kennedy: degree, p¼ 0.07; betweenness, p¼ 0.21; RM-CoCo:
degree, p¼ 0.63; betweenness: p¼ 0.42; but see Figs. S8C–D). These
findings suggest that tractography-based estimates of node centrality
may not accurately reflect actual topologically central cortical regions.
2.6. Network architecture

2.6.1. Modularity
One common way to describe brain network architecture has been to

decompose brain networks into smaller communities or modules that are
responsible for more specialized functions, and the connections between
communities as serving the potential to integrate across these functions
(Meunier et al., 2010; Sporns and Betzel, 2016). We examined whether
the modular organization of tractography-based networks accurately
reflected those obtained from tract tracing. Tractography-based networks
showed a remarkably similar organization of subnetworks as compared
to the tracer-based networks (Fig. 4A). For the Markov-Kennedy parcel-
lation, the modular organization differed only in its assignment of three
nodes (F2, F5, ProM) to the prefrontal module in the tractography-based
network (Fig. 4A top right, dark blue) rather than a more fronto-parietal
one in the tracer-based network (Fig. 4A top left, light green). However,
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even in the tracer-based network, these three nodes exhibit extensive and
strong connectivity with the prefrontal module (Fig. 4A top left, grey
edges). For the RM-CoCo parcellation, the decomposition of the
tractography-based network resulted in a fourth module (Fig. 4A, bottom
right, dark blue) and the assignment of some prefrontal areas (PFCdl,
FEF, PMCm, PFCvl, PMCvl) to a more prefrontal module (light blue)
rather than a more fronto-parietal one as in the tracer-based network
(Fig. 4A, bottom left, light green). We determined the distance between
the two sets of modules by computing the variation of information (VI)
between them (Meilǎ, 2007). For both parcellations, the VI was signifi-
cantly lower between the tractography-based partitions and the
tracer-based ones as compared to the tracer-based null networks (Mar-
kov-Kennedy: 0.13 vs 0.70� 4.2� 10�15; RM-CoCo: 0.27 vs
0.35� 3.0� 10�15), suggesting that the tractography- and tracer-based
partitions were more similar to each other than expected by chance.

We also assessed the accuracy of the tractography-based networks
community assignments by first imposing the community structure of the
tracer-based networks on the tractography-based ones and then
computing the participation coefficients for each of the nodes in the
tractography-based networks. The participation coefficient describes the
extent to which each node is connected to nodes in other modules. If the
“true” community assignments and, in particular, the between-module
distribution of connections from the tracer-based networks were well



Fig. 4. Modularity partitions of tractography-based networks are well matched with those from tracer-based networks. (A) Connectogram depictions of
modular structure of each network type for the Markov-Kennedy (top) and the RM-CoCo (bottom) parcellations. Community assignments are denoted by node color.
Within-module edges are denoted with the same color as the module while between-module edges are denoted in gray. Edges were thresholded for ease of visual-
ization. For the Markov-Kennedy parcellation, the visualization threshold was set to 33% for both network types. For RM-Coco, the visualization threshold was set to
keep connections in the strongest weight category (i.e., 3) in the tracer-based network and the tractography-based network was matched for the number of edges. (B)
Correlation between tractography- and tracer-based network participation coefficients for the Markov-Kennedy (top) and RM-CoCo (bottom) parcellations. The
community assignment of tracer-based networks were imposed on the tractography-based networks to determine participation coefficients.
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estimated by the topology of the tractography-based networks, then the
participation coefficients of the tractography-based network nodes
computed in this manner should match those from the tracer-based
networks. There was a moderate match for the Markov-Kennedy par-
cellation (Fig. 4B; rs¼ 0.39, p¼ 0.02, Spearman rank correlation) but not
for the RM-CoCo parcellation (Fig. 4B; rs¼ 0.03, p¼ 0.42; also see
Fig. S10). Together with the observed low VI between partition lists,
these results suggest that nodal community assignments are well repre-
sented by DWI-based connectomes and the distribution of connections
between and within modules can, to some extent, be estimated as well.

2.6.2. Rich club architecture
Brain networks have also been described as having a so-called “rich

club” architecture, whereby a subset of high degree nodes exhibit dense
connectivity with each other, often poised to mediate intermodular
communication and forming a strong anatomical core (van den Heuvel
and Sporns, 2013b). We examined whether a rich club architecture could
be detected in the tracer-based networks, and the extent to which the
tractography-based networks were able to replicate such findings. In the
case of the Markov-Kennedy tracer network, it has been shown how its
density restricts the detection of a rich club when using a binarized
network for detection (Knoblauch et al., 2016). To determine whether
this was also the case for the symmetrized version of the tracer network
and whether considering the weights of the network would change rich
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club detectability, we computed the normalized rich club coefficient by
including network weights in addition to topology when generating the
null models (Alstott et al., 2014). Similar to previous findings (Knoblauch
et al., 2016), the Markov-Kennedy tracer network approached a rich club
architecture at a degree of 24 (p¼ 0.08 for weighted networks, p¼ 0.06
for mixed networks) but rich club architecture was not consistently
detected across a range of degrees and by and large not significant for any
of the types of network considered even when weights were considered
(Fig. 5A, left). Although the DWI-based Markov-Kennedy network
showed an increase in the normalized rich club coefficient at high degree
levels, none were significantly greater than 1 following FDR correction
(Fig. 5A, right). The DWI network, like the tracer one, was unable to
capture a rich club architecture for this parcellation.

As we have previously reported (Shen et al., 2015), the RM-CoCo
tracer network exhibits a rich club architecture at multiple degree
levels (Fig. 5B, left). The DWI-based RM-CoCo network also exhibits a
rich club architecture at multiple degree levels for all three types of
models considered (Fig. 5B, right). A hypergeometric test of significant
rich club levels detected in this network when a mixed model was
considered showed significant overlap with the tracer network in 3 of 14
levels (at k¼ 55, p< 0.01; at k¼ 54, p¼ 0.01; and at k¼ 53, p¼ 0.03;
also see Fig. S11). For level k¼ 55, 10 rich club hubs that included re-
gions of the prefrontal and cingulate cortex were identified in both the
tracer- and DWI-based networks (Fig. 5C; red). Some additional regions



Fig. 5. Rich club (RC) architecture in tracer- and DWI-based networks. Normalized rich club coefficient for tracer- (left) and DWI-based (right) networks for the
Markov-Kennedy (A) and RM-CoCo (B) parcellations. RC levels (i.e., normalized rich club coefficients significantly >1) denoted by circles. (C) RCs at degree level 55
for RM-CoCo parcellation. Red nodes and edges depict those that are common to both tracer- and DWI-based networks. RC nodes and edges incorrectly detected by
DWI are depicted in grey, and those in tracer-based networks but missed by DWI are depicted in black.
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of the temporal cortex along with dorso-medial prefrontal cortex were RC
hubs in the DWI-based network but not the tracer-based one (Fig. 5C;
grey), while a number of parietal and prefrontal RC hubs of the
tracer-based network were notably missing from the DWI-based network
(Fig. 5C; black).

2.6.3. Core-periphery architecture
For denser networks, such as the Markov-Kennedy tract-tracer one, a
Fig. 6. Core-Periphery architecture in tracer- and DWI-based networks. (A) Core
nodes and edges depicted in red, peripheral nodes depicted in coral. (B) Core-periphe
core nodes and edges in red, peripheral nodes in coral. Incorrectly identified core n
in black.

87
core-periphery architecture has been described (Ercsey-Ravasz et al.,
2013). Here, we first determined whether the core-periphery architec-
ture previously reported in the Markov-Kennedy tracer network is
detectable in the symmetrized version of the network and whether this
could then be reconstructed by tractography-based connectomes. For the
symmetrized tracer-based network, we detected a set of 18 nodes that
contributed to the high-density core, with the 11 remaining nodes
considered to be in the periphery (Fig. 6A). For the tractography-based
-periphery architecture detected in Markov-Kennedy tract tracing network. Core
ry architecture detected in the tractography-based network. Correctly identified
odes and edges depicted in grey, while core nodes that were missed depicted
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network, a core-periphery architecture was also detected, with the core
consisting of 21 nodes, of which 16 were correctly identified (Fig. 6B). A
hypergeometric test showed significant overlap in the core memberships
of the tracer and tractography networks (p< 0.05).

3. Discussion

We have tested the performance of in vivo diffusion and tractography-
based connectomes by comparing them to the gold standard con-
nectomes from tracer data in macaque monkeys. We found that the
reconstruction of individual connections to be moderately accurate, with
a steep tradeoff between sensitivity and specificity that replicates pre-
vious ex vivo reports. We also found the proportion of streamlines
detected between any two given regions can serve as a robust estimate of
the number of axons that run between them, and that this relationship
was dependent on the distance between regions. We then performed a
series of validation studies on network topology metrics and demon-
strated how the assignment of nodes into communities in tractography-
based connectomes is fairly accurate and that a high-density rich club
or core-periphery organization can be detected, just as they can be in the
corresponding tracer-based networks. However, the proper identification
of hubs within modules, and membership in rich club or core-periphery
type architectures was less accurate, likely owing to the great number of
false positive connections generated by probabilistic tractography. As
network analysis has quickly become a popular approach for analyzing
cortical connectomes, leading to the influential and expanding fields of
connectomics and network neuroscience (Bassett and Sporns, 2017;
Sporns, 2013), our findings are critical for the interpretation of network
topology results based on in vivomeasurements of structural connectivity.

3.1. Reconstruction of interareal cortico-cortical connections in vivo

Mapping the cortical connectome and uncovering its topological
layout is a major ongoing research endeavour, involving many large-
scale efforts like the Human Connectome Project (Van Essen et al.,
2013). Structural connectomes in vivo can only be constructed with
diffusion weighted imaging and tractography at present. The majority of
such approaches aim to reconstruct the large-scale cortico-cortical con-
nectivity matrix and subsequently analyze it using network metrics
(Bassett et al., 2008; Gong et al., 2009; Hagmann et al., 2008). Here, we
found the reconstruction of connections between the cortical areas to be
above chance, but not highly accurate. Our obtained quantitative mea-
sures, such as AUC, are comparable to recent reports investigating
intrahemispheric connections (Azadbakht et al., 2015; Donahue et al.,
2016; Thomas et al., 2014; van den Heuvel et al., 2015). Our results
provide additional quantitative evidence on the feasibility to correctly
uncover the correct pairs of interconnected areas with diffusion imaging
and tractography, by using two different benchmark datasets obtained by
tract tracing. Despite large differences in how these two benchmark
datasets were derived, how their connectivity was expressed and how
they have differing network topologies, intrahemispheric tractography
results for these two parcellations were remarkably similar. We add to
the current understanding of connectome reconstruction accuracy by also
examining interhemispheric tractography and show that it exhibits worse
reconstruction quality than intrahemispheric tractography. This is
consistent with our observation that tractography accuracy decreases
with increasing distance between regions (Donahue et al., 2016; also see
Li et al., 2012), which is only compounded when tracking across hemi-
spheres. However, when we limited our analysis to only those inter-
hemispheric connections that were explicitly defined in CoCoMac, the
accuracy of DWI tractography approached that of intrahemispheric
tracking. Precision, in particular, was considerably higher for this subset
analysis, suggesting that the false positive rate decreased dramatically
when we only considered explicitly defined connections. This suggests
that, to some degree, missing information in CoCoMac about inter-
hemispheric connections may be lowering our estimates of DWI
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tractography accuracy.
We must note that the DWI and tracer datasets reported here were

obtained from different subjects and, within each dataset, different ratios
of macaque species (Macaca mulatta vs. Macaca fascicularis). The inac-
curacies in tracking that we report may be attributed to the variability
across different subjects and samples. A comparison of the results be-
tween the DWI tractography obtained from rhesus monkeys and the
single cynomolgous yielded no qualitative differences but it is difficult to
draw any substantive conclusions from such a small sample. Moreover,
both cortical parcellations were defined on the F99 template (Van Essen,
2002), which is from a single rhesus macaque and adds yet another
source of variability to our data. The extent to which each of these
sources of variability affects connectome accuracy requires further ex-
amination in future studies. Of note, we found cross-subject correlations
of DWI matrices to be relatively high. Together with a recent study of
multiple large datasets in humans that reported relatively low variability
across individual connectomes (Zimmermann et al., 2018), this suggests
that individual differences in neuroanatomical pathways may not be well
captured in large-scale DWI connectomes.

Tracer data has often been considered the “gold standard” for
studying neuroanatomical pathways but, as with any experimental
technique, suffers from its own limitations. These include variability
across individual injections, the uptake of tracers by passing axonal fi-
bers, as well as the distance travelled by particular tracers (for discussion,
see K€obbert et al., 2000; Lanciego and Wouterlood, 2011). Some con-
nections in the tracer matrices may be derived from only a few injections
in a few animals or, in some cases, a single injection in a single animal.
This is less likely for data from the CoCoMac database where multiple
studies/injections may contribute to a single connection but it is still the
case that certain regions, like those of the limbic system, are underrep-
resented (Bezgin et al., 2012). False negatives are also possible in tracer
studies, especially for weak connections or injection sites with many
connections to other areas (Markov et al., 2014). Combined with the fact
that some areas can show widely variable connectivity depending on the
subregion at the injection site (e.g., area F5: Gerbella et al., 2011; area F2:
Markov et al., 2014), variability within the tracer data exists and has not
been accounted for here.

Earlier validation studies have highlighted the inability of tractog-
raphy to resolve long-range connections. Both probabilistic (Li et al.,
2012) and deterministic (Dauguet et al., 2007; Zalesky and Fornito,
2009) tractography algorithms suffer from false negatives associated
with long-range fibers due to the increasing uncertainty of tractography
with distance (Jbabdi et al., 2015). Simply biasing connection weights
towards long-distance connections using the distance correction option
did little to resolve this problem as accuracy measures relied on the bi-
nary classification of the existence or non-existence of connections (but
see Azadbakht et al., 2015). Instead, implementing the distance correc-
tion option affected the ability of tractography to estimate the strength of
connections, decreasing it substantially when distance was estimated
with the more realistic measure of geodesic distance rather than
Euclidean distance.

Connectomes constructed using deterministic tractography are
generally more sparse than those constructed using probabilistic trac-
tography (Zalesky et al., 2016), and can suffer from a large number
of false negative connections (Bastiani et al., 2012; Gong et al., 2009).
Recent reports of probabilistic tractography, including the results
presented here, have additionally indicated that while the majority
of ‘true connections' are successfully reconstructed, they instead come
at the price of a large number of false positive connections (e.g.,
Thomas et al., 2014). The choice between deterministic and
probabilistic tractography then, can be considered as a choice between
constructing low-sensitivity/high-specificity connectomes versus
high-sensitivity/low-specificity ones. Relevant for the probabilistic
tractography results presented here, excessive false positive connections
have been reported as a major drawback of diffusion imaging and trac-
tography in a validation study with simulated human brain data
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(Maier-Hein et al., 2017). These findings, along with the observation that
false positives have a much larger impact on estimates of network to-
pology as compared to false negatives (Bastiani et al., 2012; Zalesky
et al., 2016), should be explicitly taken into account as important limi-
tations when interpreting results from diffusion imaging tractography.
Our results indicate that thresholding the weakest weights in the
tractography-based networks on the order of 20–30% did not affect the
percentage of correctly detected connections. Moreover, thresholding on
the order of 55–85% did not affect AUC as it decreased sensitivity while
dramatically increasing specificity. This is consistent with previous es-
timates for optimizing the tradeoff between sensitivity and specificity (de
Reus and van den Heuvel, 2013b; Donahue et al., 2016). Choosing to
threshold by discarding the weakest weights, however, may result in also
discarding weak true positives. Weak connections are known to be
important in determining the brain's functional organization (Gallos
et al., 2012; Goulas et al., 2015) and may be better represented in net-
works that have been constructed using methods that take the consis-
tency of edge reconstruction across subjects into account (Roberts et al.,
2017). When we used this consistency-based thresholding method, we
found qualitatively similar accuracy results to our weight-based thresh-
olding technique.

We also found that lower curvature thresholds, at least for macaque
data, result in fewer false positives and greater specificity without greatly
affecting other accuracy measures (Azadbakht et al., 2015; also see
Dauguet et al., 2007). Whether this is a result of less cortical folding and,
therefore, less convoluted white matter pathways in the macaque brain
(Herculano-Houzel et al., 2010; Zilles et al., 2013) or whether it consti-
tutes an indicative guide for human tractography remains to be seen.

Using the streamline count as a proxy of fiber density has been pre-
viously criticized because it is susceptible to differences in tract lengths,
curvature and branching (Jones, 2010; Jones et al., 2013). However, we
showed how the probability values obtained with tractography were
significantly correlated with an explained variance in line with Donahue
et al. (2016), and nearly twice that of van den Heuvel et al. (2015). Since
it is clear from tracer studies that physical distance plays a large role in
the existence and strength of connections (Beul et al., 2017; Markov
et al., 2013), a cautionary note is needed when interpreting such vali-
dation results. We have shown that for predicting the presence/absence
of connections, a model based on physical distance alone was able to
achieve comparable and even higher AUC than the diffusion and
tractography-based reconstructions. Moreover, the correlation between
the strength of connections and the tractography probabilities was
diminished when physical distance was taken into account. Physical
distance-based models (e.g., Bezgin et al., 2017; Ercsey-Ravasz et al.,
2013) may therefore offer a more stringent baseline than using tractog-
raphy alone while advancements in both imaging and tractography
methods are still needed for the accurate reconstruction of cortical con-
nectomes in vivo.

3.2. Investigating network topology of the cortex in vivo

The success of some network metrics but not others in the
tractography-based connectomes was dependent on their resilience to
rewirings. We found the partitioning of the cortico-cortical network into
modules to be highly similar between the invasive and non-invasive
connectivity datasets. These results bestow some confidence in module
partitioning results obtained in vivo. This is in line with recent work that
showed how false negatives, and even false positives, in connectomes
affect modularity partitioning minimally (Zalesky et al., 2016). Parti-
tioning brain networks into modules can result in variable communities
across iterations (Sporns and Betzel, 2016). To minimize the effects of
unstable partitionings, we chose to use the most consistent community
structure detected from multiple iterations of partitioning. Additional
work is still needed to fully assess how the accuracy of partitioning affects
comparisons of modularity between different networks.
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The participation coefficient, a higher-order network metric
commonly used to identify intra-modular “provincial” and inter-modular
“connector” hubs based on their cross-modular edges, was not consistent
across the datasets. Our results suggested that for the Markov-Kennedy
parcellation, inaccuracies mostly arose from the reconstruction of inter-
and intra-modular connections as the participation coefficients were
correlated even when we controlled for differences in community
structure by keeping the partitioning scheme fixed when computing
participation coefficients. For the RM-CoCo parcellation, however, there
was an additional cost from the slightly inaccurate classification of nodes
into their respective communities. Indeed, two networks can have
extremely similar modularity partitions but their underlying connections
could be statistically independent.

The susceptibility of centrality measures to rewirings resulted in
discrepancies between the results obtained from tracer and tractography
data. While we found a significant positive correlation for degree cen-
trality, we found no significant correlations for betweenness centrality in
our dataset and only moderate correlations in a second dataset (see
Supplemental Material). The top most connected nodes or “hubs” be-
tween the two modalities also did not fully overlap when using either
centrality metric. Our results indicate that more confidence can be
assigned to degree as compared to betweenness centrality when
tractography-derived connectomes are used. Along similar lines, global
descriptions of structural organization like rich-club or core-periphery
architectures, if they existed in the tracer networks, could be obtained
from the tractography-based networks. However, the particular identi-
fication of nodes as hubs within these architectures was less accurate,
owing again to the susceptibility of the identification to rewirings. Taken
together, these results suggest that caution must be taken when using
DWI-based tractography for identifying hubs, as identification is
extremely susceptible to false connections.

4. Materials and Methods

4.1. Data acquisition

Data were collected from 10 male adult macaque monkeys (9Macaca
mulatta, 1 Macaca fascicularis, age 5.8� 1.9 years). A subset of these
animals (N¼ 3) had MRI-compatible dental acrylic implants anchored to
the skull with ceramic bone screws. All surgical and experimental pro-
cedures were approved by the Animal Use Subcommittee of the Uni-
versity of Western Ontario Council on Animal Care and were in
accordance with the Canadian Council of Animal Care guidelines.

Surgical preparation and anaesthesia protocols have been previously
described (Hutchison et al., 2011). Briefly, animals were anaesthetized
before their scanning session and anaesthesia was maintained using
1.0–1.5% isoflurane during image acquisition. Images were acquired
using a 7-T Siemens MAGNETOM head scanner with a high performance
gradient (Siemens AC84 II; Gmax¼ 80mT/m; SlewRate¼ 400 T/m/s
and an in-house designed and manufactured 8-channel transmit,
24-channel receive coil optimized for the primate head. For each mon-
key, two diffusion weighted scans were acquired with opposite phase
encoding in the superior-inferior direction at 1mm isotropic resolution.
For seven animals, 2D EPI diffusion data were acquired (Siemens
Advanced Diffusion WIP 511) with TE/TR¼ 48.8ms/7500ms,
b¼ 1000 s/mm2, 64 directions, 104� 104 matrix, 24 slices, iPat¼ 3
and bandwidth of 1923Hz/px. For the remaining 3 animals, a multiband
EPI diffusion sequence (Feinberg et al., 2010; Moeller et al., 2010) was
used; TE/TR¼ 47ms/6000ms, multiband¼ 2, b¼ 1000 s/mm2, 64 di-
rections, 128� 128 matrix, 24 slices, iPat¼ 2, Partial fourier¼ 5/8
and bandwidth of 1502 Hz/px. A 3D T1w structural reference was
collected for all animals using an MP2RAGE (Marques et al., 2010)
acquisition at 500 μm isotropic resolution; TE/TR¼ 3.15ms/6500ms,
TI1/TI2¼ 800ms/2700ms, flip1/flip2¼ 4/5, 256� 256 matrix, 128
slices, iPat¼ 2 and 240 Hz/px bandwidth.
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4.2. Image preprocessing

Diffusion-weighted image preprocessing was implemented using
the FMRIB Software Library toolbox (FSL v5). This consisted of
susceptibility-induced distortion correction using FSL's ‘topup’ (similar to
Andersson et al., 2003) and ‘eddy’ (Andersson and Sotiropoulos, 2016)
functions, and modeling of multiple fiber directions using FSL's ‘bed-
postx’ function (Behrens et al., 2007). ROI parcellations specified in F99
macaque template space were registered using the Advanced Normali-
zation Tools (ANTS) software package (Avants et al., 2011) to each an-
imal's T1w anatomical image using a nonlinear registration and then
linearly registered to diffusion space. Seed and target ROI masks were
defined as the white matter (WM) voxels adjacent to each gray matter
(GM) ROI, referred to as the GM-WM interface. An exclusion mask for
each seed mask was also created using the GM voxels adjacent to the seed
mask. For intrahemispheric tracking, exclusion masks of the opposite
hemisphere were also used.

4.3. Tractography procedures

Two distinct parcellation schemes were chosen to match available
tract-tracing data. The first (‘Markov-Kennedy’) was an intrahemispheric
parcellation of 29 ROIs that matched those contributing to the edge-
complete connectivity matrix described in Markov et al. (2014) (Fig
1A, top). This parcellation as defined on the F99 atlas was downloaded
from the SumsDB database [http://brainvis.wustl.edu/wiki/index.php/
Sums:About]. The second (“CoCo-RM”) was a whole-cortex parcellation
of 82 ROIs matching the connectivity matrix described in Shen et al.
(2012) (also see K€otter and Wanke, 2005) (Fig. 1A, bottom). This par-
cellation was first drawn on the F99 surface (Bezgin et al., 2008) and
converted to a labeled volume with a 2mm extrusion (Shen et al., 2012)
using the Caret software package (Van Essen and Dierker, 2007) [http://
brainvis.wustl.edu/wiki/index.php/Caret:About].

Tractography was performed between all ROIs using both parcella-
tion schemes with FSL's ‘probtrackx2’ function. Parameters used for
tracking were: 5000 seeds, 2000 steps, 0.5 mm step length, termination
of paths that loop back on themselves and rejection of paths that pass
through an exclusionmask. Curvature threshold was varied (0.2, 0.4, 0.6,
0.8) and distance correction was toggled on and off. The distance
correction option produces a connectivity distribution that is the ex-
pected length of the streamlines that cross the voxel multiplied by the
number of samples that cross it. In effect, the distance correction option
serves to increase the weights of long-distance connections. The “default”
parameter combination was considered as that commonly used in human
studies (curvature threshold: 0.2; distance correction: off).

A structural connectivity matrix for each parameter set in each par-
cellation in each animal was generated by taking the number of
streamlines detected between each ROI pair and dividing it by the total
number of streamlines that were successfully sent from the seed mask
(i.e., those that were not rejected or excluded). Each connectivity matrix
was subsequently symmetrized.

For distance-based analyses, the distance between ROIs in the
Markov-Kennedy parcellation was determined as the geodesic distance of
their barycenters, that is, the shortest distance passing through the white
matter that connects the barycenters of a pair of areas (as available from
the Core-Nets database: core-nets.org). The distance between ROIs in the
RM-CoCO parcellation was computed as the Euclidean distance between
the centers of all ROIs. For both parcellations, connections were binned
according to eight distance quantiles for analysis.

4.4. Data analysis

4.4.1. Assessment of interareal connection accuracy
For determining the accuracy of each subject's DWI-based structural

connectivity matrices (i.e., analyses illustrated in Fig. 2), the corre-
sponding tracer matrices were symmetrized (Fig. 1A) and all matrices
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were binarized. Accuracy measures were computed for each subject's
connectivity matrix corresponding to each combination of tractography
parameters and thresholding and are reported as group means�SD. %
correct was computed as: TPþTN

TPþFPþTNþFN , where TP are true positives, TN
are true negatives, FP are false positives, and FN are false negatives (after
Azadbakht et al., 2015). We additionally computed the area under the
ROC curve (AUC), sensitivity, specificity, and precision of the
DWI-derived matrices. Comparisons were only performed on the upper
triangles of matrices. Repeated measures one-way ANOVAs were per-
formed to assess the effect of curvature threshold on accuracy, treating
the curvature thresholds as four manipulations on the same group of
subjects.

To account for the effects of density on the accuracy measures, we
generated a null distribution for each tractography parameter and
threshold combination by averaging the observed DWI-derived networks
across subjects and then producing a set of 1000 randomly connected
undirected networks of the same size and density using the Brain Con-
nectivity Toolbox (BCT; https://sites.google.com/site/bctnet) function
‘makerandCIJ_und.m’. Accuracy measures were then computed for each
set of 1000 networks and the 95% confidence interval of the null accu-
racy distributions was determined. Statistically significant accuracy
measures were considered as those greater than the null mean þ 95% CI.

To quantify the extent to which physical distance alone can predict
the existence of connections between cortical areas, a logistic regression
model was used in combination with the Markov-Kennedy tracer dataset.
The existence of connections served as the binary dependent variable
while the physical geodesic distance between the barycenters of cortical
areas served as the independent variable. The model parameters were
estimated in a training set consisting of 70% of the total number of area
pairs and the rest of the pairs were used to estimate the ROC curve. The
procedure was repeated 1000 times and each time the training set was
assembled by sampling with replacement. The reported ROC curves and
AUC values correspond to these 1000 iterations.

4.4.2. Assessment of reconstructed structural topology
For network analyses, average DWI-based structural connectivity

matrices for both the Markov-Kennedy and RM-CoCo parcellations were
generated by selecting, for each subject, the matrix having maximum
AUC when compared to the tract-tracing data. The combination of trac-
tography parameters and thresholding that yielded the maximum AUC
for each subject in each parcellation is provided in Table S2. In an
alternative approach, a fixed combination of tractography parameter
settings and thresholds was applied to all animals based on the averaged
AUC values. This alternative method for constructing the DWI matrix did
not lead to substantive differences in results (data not shown). To enable
direct comparison of tracer- and tractography-based networks, tracer
matrices were symmetrized. Consequently, network analytic results
presented here on the tracer matrices differ slightly from previous studies
(e.g., Ercsey-Ravasz et al., 2013; Knoblauch et al., 2016; Shen et al.,
2015, 2012). Tractography-based networks were then thresholded to
match the density of the corresponding tracer-derived networks. In the
case of the RM-CoCo parcellation, intra- and interhemispheric quadrants
of the tractography-based network were treated with different thresholds
due to their vast differences in density in the tract-tracing network.

The edge weights of the averaged tractography networks were
correlated with those from the tracer networks to determine the extent to
which tractography could capture the strength of a white matter fiber
tract. For the Markov-Kennedy parcellation, the tractography edge
weights followed a lognormal distribution, consistent with a previous
report for the corresponding tracer weights (Markov et al., 2014). As
such, a Pearson correlation was used for the normally-distributed loga-
rithmized weights from the Markov-Kennedy parcellation. This also
allowed for direct comparison with previous studies that have used
Pearson correlations to report the relationship between tracer and trac-
tography derived weights. The tracer weights for the RM-CoCo

http://brainvis.wustl.edu/wiki/index.php/Sums:About
http://brainvis.wustl.edu/wiki/index.php/Sums:About
http://brainvis.wustl.edu/wiki/index.php/Caret:About
http://brainvis.wustl.edu/wiki/index.php/Caret:About
http://core-nets.org
https://sites.google.com/site/bctnet
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parcellation, however, are categorical and a Spearman rank correlation
was instead used for relating the two sets of edge weights for the
RM-CoCo parcellation. Statistical significance of all correlations was
assessed using permutation tests by resampling data pairs without
replacement 10,000 times.

For the remaining network analyses, the Markov-Kennedy parcel-
lation edges in both tracer- and tractography-based networks were
treated as weighted. For the RM-CoCo parcellation, because of the
categorical nature of the weighted information in the CoCoMac data-
base, edges were binarized for both tracer and tractography networks
when centrality measures (degree and betweenness) were computed.
Measures of centrality, modularity partitioning and participation co-
efficients were obtained using functions from the BCT. For weighted
graphs, the degree of each node was computed as the sum of its edge
weights while for binarized graphs, node degree was taken as the total
number of its edges. For the calculation of betweenness centrality, the
edge weights were inverted so that larger weights corresponded with
shorter paths. Community detection was performed using the Louvain
algorithm (Blondel et al., 2008). As we did not know how the small
network of 29 nodes from the Markov-Kennedy parcellation should be
partitioned, we first varied the resolution parameter (gamma) between
0 and 2 in increments of 0.05 and determined the most commonly
detected number of partitions >1 in that range. The minimum value of
gamma that produced that number of partitions was selected. For the
RM-CoCo parcellation, we similarly varied the resolution parameter but
selected a gamma value that gave a reasonable number of partitions
based on previous studies of whole-brain modularity in the macaque
(Goulas et al., 2015; Harriger et al., 2012). Partitioning for both par-
cellations was then repeated 100 times using the selected gamma value,
and the most consistent partitioning was chosen for analysis. This was
done independently for both tracer- and tractography-based networks.
For the Markov-Kennedy parcellation partitions, both tracer
(gamma¼ 0.65) and tractography (gamma¼ 0.65) networks were
consistently partitioned 100/100 times. For the RM-CoCo parcellation,
the most common partition of the tracer network (gamma¼ 1) occurred
17/100 times while that of the tractography network (gamma¼ 0.95)
occurred 44/100 times. Spearman rank correlation coefficients were
computed to assess the correspondence of network measures between
the two modalities.

Rich club detection was performed following the procedures
described by Alstott et al. (2014) for computing null networks that are
topological, weighted, and of mixed topo-weighted form. Core-periphery
detection was performed as described in Ercszey-Ravasz et al. (2013).
Briefly, the cortico-cortical network was subject to a modified
Bron-Kerbosch algorithm with both pivoting and degeneracy ordering
(Eppstein et al., 2010). The algorithm detects all cliques up to the
maximum size. A clique is a subset of the nodes of the network among
which the maximum possible amount of connections exists. The core was
defined as the union of all the nodes participating in the cliques of
maximum size.
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