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Abstract

We give an introduction of kernel methods and describe the use of Fisher kernel in the
context of HMM. We also give derivation of the HMM variational gradients with respect to the
parameters.

1 Kernel Methods

In kernel methods, instead of using the original features x ∈ X , where X is the space of data,
for regression or classification tasks, we consider using the transformed features Φ(x), where
Φ : X → H is called the feature map and H is a usually high-dimensional if not infinte-
dimensional Hilbert space. In kernel methods, such as kernel ridge regression and kernel SVM,
we can avoid the evaluation of Φ(x), and only focus on the kernel function k : X × X → R

defined by
k(xi,xj) = ⟨Φ(xi),Φ(xj)⟩H (1)

where ⟨·, ·⟩H is the inner product on H.

2 Fisher Kernel

We want to choose a kernel function that respect our prior knowledge of the data and is able to
take into account the generative model. Fisher kernel is a reasonable choice and it is defined as

k(xi,xj) = Uxi
TI−1Uxj , (2)

where Ux is the Fisher score function defined by

Ux = ∇w log p(x|w), (3)

and I is the Fisher information defined by

I = Ex

[
−∇2

w log p(x|w)
]

(4)

Here p(x|w) is the likelihood of the data specified by the generative model and w is the pa-
rameters of the model. However, the Fisher information is either intractable or expensive to
compute, the practical Fisher kernel is often used but assuming I = I, the identity and the
resulting kernel becomes

k(xi,xj) = Uxi
TUxj . (5)

Notice now the feature map is Φ : x 7→ Ux ∈ l2.
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3 Fisher Kernel for Hidden Markov Models

In osl-dynamics, the generative model of HMM is given by (for more details, see the write up
hmm-cost-function)

p(x1:T , s1:T |w) = p(x1|s1, w)p(s1)
T∏
t=2

p(xt|st, w)p(st|st−1), (6)

where w = (θobs,A,π1) are the parameters including

• the observation model parameters θobs = {mk,Ck}Kk=1 where {mk}Kk=1 and {Ck}Kk=1 are
the state means and covariances respectively,

• the transition probability matrix A,

• the initial state probabilities π1.

However, we cannot calculate the Fisher score since the likelihood of the data p(x1:T |w) under
this generative model is intractable and has no analytic solution. Hence we instead use the
gradients of the variational free energy with respect to the parameters w. The variational free
energy of our HMM has analytic form as

F(x1:T , w) = −LL+ E + P

= −
T∑
t=1

K∑
k=1

γk(t) log [N (xt|mk,Ck)]

+
T−1∑
t=1

K∑
i,j=1

ξij(t) log ξij(t)−
T−1∑
t=2

K∑
i=1

γi(t) log γi(t)

+
K∑
i=1

γi(1) log π1,i +
T−1∑
t=1

K∑
i,j=1

ξij(t) logAij .

(7)

4 Derivative of the Variational Free Energy

To use the Fisher Kernel, we need to compute the derivative of the variational free energy with
respect to the parameters θobs,π1,A.

4.1 Derivative with respect to π1

The posterior expected prior probability P is the only term in the free energy that depends on
π1,

∇π1F = ∇π1

K∑
i=1

γi(1) log π1,i = ∇π1γ(1)
T logπ1

=
γ(1)

π1
.

(8)

4.2 Derivative with respect to A

The posterior expected prior probability P is also the only term that depends on A,

∇AF = ∇A

T−1∑
t=1

K∑
i,j=1

ξij(t) logAij

=
T−1∑
t=1

ξ(t)

A
=

∑T−1
t=1 ξ(t)

A
.

(9)
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4.3 Derivative with respect to the Observation Model Parame-
ters

The only term depending on the observation model parameters {ml, Cl}Kl=1 is the posterior
expected log likelihood. In osl-dynamics, we are already using gradient-based methods to train
the observation model parameters and hence it is straight forward to compute the gradients with
respect to the means and covariances (using tensorflow gradient tape).
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