
SLIP-39 Wallet "Seed" Generation & Backup

Perry Kundert

2021-12-20 10:55:00

Creating Ethereum, Bitcoin and other accounts is complex and fraught with potential
for loss of funds.

A 12- or 24-word BIP-39 seed recovery Mmnemonic Phrase helps, but a single lapse
in security dooms the account (and all derived accounts, in fact). If someone finds your
recovery phrase (or you lose it), the accounts derived from that seed are gone.

The SLIP-39 standard allows you to split the seed between 1, 2, or more groups of
several mnemonic recovery phrases. This is better, but creating such accounts is diffi-
cult; presently, only the Trezor supports these directly, and they can only be created
"manually". Writing down 5 or more sets of 20 words is difficult, error-prone and time
consuming.

Contents

1 Hardware Wallet "Seed" Configuration 2

2 Security with Availability 4
2.1 Shamir’s Secret Sharing System (SSSS) . . . . . . . . . . . . . . . . . . . . 4

3 SLIP-39 Account Creation, Recovery and Generation 5
3.1 Creating New SLIP-39 Recoverable Seeds . . . . . . . . . . . . . . . . . . 5

3.1.1 Paper Wallets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Supported Cryptocurrencies . . . . . . . . . . . . . . . . . . . . . . 7

3.2 The macOS/win32 SLIP-39.app GUI App . . . . . . . . . . . . . . . . . . 8
3.3 The Python slip39 CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 slip39 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Recovery & Re-Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.1 slip39.recovery Synopsis . . . . . . . . . . . . . . . . . . . . . . 10
3.4.2 Pipelining slip39.recovery | slip39 --secret - . . . . . . . . 11
3.4.3 Pipelining Backup of a BIP-39 Mnemonic Phrase . . . . . . . . . . 12

3.5 Generation of Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.1 slip39-generator Synopsis . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Producing Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3 X Public Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.4 Serial Port Connected Secure Seed Enclave . . . . . . . . . . . . . 16

1



3.6 The slip39 module API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 slip39.create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 slip39.produce_pdf . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.3 slip39.write_pdfs . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6.4 slip39.recover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6.5 slip39.recover_bip39 . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.6 slip39.produce_bip39 . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Conversion from BIP-39 to SLIP-39 20
4.1 BIP-39 vs. SLIP-39 Incompatibility . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 BIP-39 Entropy to Mnemonic . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 BIP-39 Mnemonic to Seed . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 BIP-39 Seed to Address . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 SLIP-39 Entropy to Mnemonic . . . . . . . . . . . . . . . . . . . . 23
4.1.5 SLIP-39 Mnemonic to Seed . . . . . . . . . . . . . . . . . . . . . . 24
4.1.6 SLIP-39 Seed to Address . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 BIP-39 vs SLIP-39 Key Derivation Summary . . . . . . . . . . . . . . . . 25
4.3 BIP-39 Backup via SLIP-39 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Emergency Recovery: Using Recovered Paper Wallets . . . . . . . 25
4.3.2 Best Recovery: Using Recovered BIP-39 Mnemonic Phrase . . . . . 26

5 Building & Installing 29
5.1 The slip39 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 The slip39 GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 The macOS/win32 SLIP-39.app GUI . . . . . . . . . . . . . . . . 29
5.2.2 The Windows 10 SLIP-39 GUI . . . . . . . . . . . . . . . . . . . . 30

6 Licensing 30
6.1 Create an Ed25519 "Agent" Key . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Validating an Advanced Feature License . . . . . . . . . . . . . . . . . . . 31

6.2.1 Get a sub-license From Your "master" License . . . . . . . . . . . 31
6.2.2 Obtaining an Advanced Feature "master" License . . . . . . . . . . 31

7 Dependencies 32
7.1 The python-shamir-mnemonic API . . . . . . . . . . . . . . . . . . . . . . 32

1 Hardware Wallet "Seed" Configuration

Your keys, your Bitcoin. Not your keys, not your Bitcoin.

—Andreas Antonopoulos

The python-slip39 project (and the SLIP-39 macOS/win32 App) exists to assist in
the safe creation, backup and documentation of Hierarchical Deterministic (HD) Wallet
seeds and derived accounts, with various SLIP-39 sharing parameters. It generates the

2

https://github.com/pjkundert/python-slip39.git
https://slip39.com/app
https://wolovim.medium.com/ethereum-201-hd-wallets-11d0c93c87


new random wallet seed, and generates the expected standard Ethereum account(s) (at
derivation path m/44’/60’/0’/0/0 by default) and Bitcoin accounts (at Bech32 deriva-
tion path m/84’/0’/0’/0/0 by default), with wallet address and QR code (compatible
with Trezor and Ledger derivations). It produces the required SLIP-39 phrases, and out-
puts a single PDF containing all the required printable cards to document the seed (and
the specified derived accounts).

On an secure (ideally air-gapped) computer, new seeds can safely be generated (without
trusting this program) and the PDF saved to a USB drive for printing (or directly
printed without the file being saved to disk.). Presently, slip39 can output example
ETH, BTC, LTC, DOGE, BNB, CRO and XRP addresses derived from the seed, to il-
lustrate what accounts are associated with the backed-up seed. Recovery of the seed to a
Trezor "Model T" is simple, by entering the mnemonics right on the device.

We also support the backup of existing insecure and unreliable 12- or 24-word BIP-
39 Mnemonic Phrases as SLIP-39 Mnemonic cards, for existing BIP-39 hardware wallets
like the Ledger Nano, etc.! Recover from your existing BIP-39 Seed Phrase Mnemonic,
select "Using BIP-39" (and enter your BIP-39 passphrase), and generate a set of SLIP-39
Mnemonic cards. Later, use the SLIP-39 App to recover from your SLIP-39 Mnemonic
cards, click "Using BIP-39" to get your BIP-39 Mnemonic back, and use it (and your
passphrase) to recover your accounts to your Ledger (or other) hardware wallet.

Output of BIP-38 or JSON encrypted Paper Wallets is also supported, for import into
standard software cryptocurrency wallets.

Figure 1: SLIP-39 App GUI

3

https://medium.com/myetherwallet/hd-wallets-and-derivation-paths-explained-865a643c7bf2
https://trezor.go2cloud.org/SH1Y
https://shop.ledger.com/pages/ledger-nano-x?r=2cd1cb6ae51f


2 Security with Availability

For both BIP-39 and SLIP-39, a 128- or 256-bit random "seed" is the source of an unlim-
ited sequence of Ethereum and Bitcoin Heirarchical Deterministic (HD) derived Wallet
accounts. Anyone who can obtain this seed gains control of all Ethereum, Bitcoin (and
other) accounts derived from it, so it must be securely stored.

Losing this seed means that all of the HD Wallet accounts are permanently lost. It
must be both backed up securely, and be readily accessible.

Therefore, we must:

• Ensure that nobody untrustworthy can recover the seed, but

• Store the seed in many places, probably with several (some perhaps untrustworthy)
people.

How can we address these conflicting requirements?

2.1 Shamir’s Secret Sharing System (SSSS)

Satoshi Lab’s (Trezor) SLIP-39 uses SSSS to distribute the ability to recover the key to 1
or more "groups". Collecting the mnemonics from the required number of groups allows
recovery of the seed.

For BIP-39, the number of groups is always 1, and the number of mnemonics required
for that group is always 1. This selection is both insecure (easy to accidentally disclose)
and unreliable (easy to accidentally lose), but since most hardware wallets only accept
BIP-39 phrases, we also provide a way to backup your BIP-39 phrase using SLIP-39!

For SLIP-39, you specify a "group_threshold" of how many of your groups must be
successfully collected, to recover the seed; this seed is (conceptually) split between 1 or
more groups (though not in reality – each group’s data alone gives away no information
about the seed).

For example, you might have First, Second, Fam and Frens groups, and decide that
any 2 groups can be combined to recover the seed. Each group has members with varying
levels of trust and persistence, so have different number of Members, and differing numbers
Required to recover that group’s data:

Group Required Members Description
First 1 / 1 Stored at home
Second 1 / 1 Stored in office safe
Fam 2 / 4 Distributed to family members
Frens 3 / 6 Distributed to friends and associates

The account owner might store their First and Second group data in their home and
office safes. These are 1/1 groups (1 required, and only 1 member, so each of these are
1-card groups.)

If the Seed needs to be recovered, collecting the First and Second cards from the
home and office safe is sufficient to recover the Seed, and re-generate all of the HD Wallet
accounts.

Only 2 Fam group member’s cards must be collected to recover the Fam group’s data.
So, if the HD Wallet owner loses their home (and the one and only First group card) in a

4

https://github.com/satoshilabs/slips/blob/master/slip-0039.md


fire, they could get the one Second group card from the office safe, and also 2 cards from
Fam group members, and recover the Seed and all of their wallets.

If catastrophe strikes and the wallet owner dies, and the heirs don’t have access to
either the First (at home) or Second (at the office) cards, they can collect 2 Fam cards
and 3 Frens cards (at the funeral, for example), completing the Fam and Frens groups’
data, and recover the Seed, and all derived HD Wallet accounts.

Since Frens are less likely to persist long term, we’ll produce more (6) of these cards.
Depending on how trustworthy the group is, adjust the Fren group’s Required number
higher (less trustworthy, more likely to know each-other, need to collect more to recover
the group), or lower (more trustworthy, less likely to collude, need less to recover).

3 SLIP-39 Account Creation, Recovery and Generation

Generating a new SLIP-39 encoded Seed is easy, with results available as PDF and text.
Any number of derived HD wallet account addresses can be generated from this Seed,
and the Seed (and all derived HD wallets, for all cryptocurrencies) can be recovered by
collecting the desired groups of recover card phrases. The default recovery groups are as
described above.

3.1 Creating New SLIP-39 Recoverable Seeds

This is what the first page of the output SLIP-39 mnemonic cards PDF looks like:

Figure 2: SLIP-39 Cards PDF (from --secret ffff...)

Run the following to obtain a PDF file containing business cards with the default
SLIP-39 groups for a new account Seed named "Personal"; insert a USB drive to collect
the output, and run:

5



$ python3 -m pip install slip39 # Install slip39 in Python3
$ cd /Volumes/USBDRIVE/ # Change current directory to USB
$ python3 -m slip39 Personal # Or just run "slip39 Personal"
2021-12-25 11:10:38 slip39 ETH m/44’/60’/0’/0/0 : 0xb44A2011A99596671d5952CdC22816089f142FB3
2021-12-25 11:10:38 slip39 Wrote SLIP-39-encoded wallet for ’Personal’ to:\

Personal-2021-12-22+15.45.36-0xb44A2011A99596671d5952CdC22816089f142FB3.pdf

The resultant PDF will be output into the designated file.
This PDF file contains business card sized SLIP-39 Mnemonic cards, and will print

on a single page of 8-1/2"x11" paper or card stock, and the cards can be cut out (--card
index, credit, half (page), third and quarter are also available, as well as 4x6 photo
and custom "(<h>,<w>),<margin>").

To get the data printed on the terminal as in this example (so you could write it down
on cards instead), add a -v (to see it logged in a tabular format), or --text to have it
printed to stdout in full lines (ie. for pipelining to other programs).

3.1.1 Paper Wallets

The Trezor hardware wallet natively supports the input of SLIP-39 Mnemonics. However,
most software wallets do not (yet) support SLIP-39. So, how do we load the Crypto wallets
produced from our Seed into software wallets such as the Metamask plugin or the Brave
browser, for example?

The slip39.gui (and the macOS/win32 SLIP-39.App) support output of standard
BIP-38 encrypted wallets for Bitcoin-like cryptocurrencies such as BTC, LTC and DOGE.
It also outputs encrypted Ethereum JSON wallets for ETH. Here is how to produce them
(from a test secret Seed; exclude --secret ffff... for yours!):

slip39 -c ETH -c BTC -c DOGE -c LTC --secret ffffffffffffffffffffffffffffffff \
--no-card --wallet password --wallet-hint ’bad:pass...’ 2>&1

2022-11-11 08:05:53 slip39 It is recommended to not use ’-s|--secret <hex>’; specify ’-’ to read from input
2022-11-11 08:05:53 slip39 It is recommended to not use ’-w|--wallet <password>’; specify ’-’ to read from input
2022-11-11 08:05:53 slip39.layout ETH m/44’/60’/0’/0/0 : 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
2022-11-11 08:05:53 slip39.layout BTC m/84’/0’/0’/0/0 : bc1q9yscq3l2yfxlvnlk3cszpqefparrv7tk24u6pl
2022-11-11 08:05:53 slip39.layout DOGE m/44’/3’/0’/0/0 : DN8PNN3dipSJpLmyxtGe4EJH38EhqF8Sfy
2022-11-11 08:05:53 slip39.layout LTC m/84’/2’/0’/0/0 : ltc1qe5m2mst9kjcqtfpapaanaty40qe8xtusmq4ake
2022-11-11 08:05:56 slip39.layout Writing SLIP39-encoded wallet for ’SLIP39’ to: SLIP39-2022-11-11+08.05.54-ETH-0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1.pdf

And what they look like:
To recover your real SLIP-39 Seed Entropy and print wallets, use the SLIP-39 App’s

"Recover" Controls, or to do so on the command-line, use slip39-recover:

slip39-recovery -v \
--mnemonic "material leaf acrobat romp charity capital omit skunk change firm eclipse crush fancy best tracks flip grownup plastic chew peanut" \
--mnemonic "material leaf beard romp disaster duke flame uncover group slice guest blue gums duckling total suitable trust guitar payment platform" \

2>&1

2022-11-11 08:05:57 slip39.recovery Recovered 128-bit SLIP-39 Seed Entropy with 2 (all) of 2 supplied mnemonics; Seed decoded from SLIP-39 Mnemonics w/ no passphrase
2022-11-11 08:05:57 slip39.recovery Recovered SLIP-39 secret; To re-generate SLIP-39 wallet, send it to: python3 -m slip39 --secret -
ffffffffffffffffffffffffffffffff

You can run this as a command-line pipeline. Here, we use some SLIP-39 Mnemonics
that encode the ffff... Seed Entropy; note that the wallets match those output above:

6



Figure 3: Paper Wallets (from --secret ffff...)

slip39-recovery \
--mnemonic "material leaf acrobat romp charity capital omit skunk change firm eclipse crush fancy best tracks flip grownup plastic chew peanut" \
--mnemonic "material leaf beard romp disaster duke flame uncover group slice guest blue gums duckling total suitable trust guitar payment platform" \

| slip39 -c ETH -c BTC -c DOGE -c LTC --secret - \
--no-card --wallet password --wallet-hint ’bad:pass...’ \

2>&1

2022-11-11 08:05:58 slip39 It is recommended to not use ’-w|--wallet <password>’; specify ’-’ to read from input
2022-11-11 08:05:58 slip39.layout ETH m/44’/60’/0’/0/0 : 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
2022-11-11 08:05:58 slip39.layout BTC m/84’/0’/0’/0/0 : bc1q9yscq3l2yfxlvnlk3cszpqefparrv7tk24u6pl
2022-11-11 08:05:58 slip39.layout DOGE m/44’/3’/0’/0/0 : DN8PNN3dipSJpLmyxtGe4EJH38EhqF8Sfy
2022-11-11 08:05:58 slip39.layout LTC m/84’/2’/0’/0/0 : ltc1qe5m2mst9kjcqtfpapaanaty40qe8xtusmq4ake
2022-11-11 08:06:02 slip39.layout Writing SLIP39-encoded wallet for ’SLIP39’ to: SLIP39-2022-11-11+08.05.59-ETH-0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1.pdf

3.1.2 Supported Cryptocurrencies

While the SLIP-39 Seed is not cryptocurrency-specific (any wallet for any cryptocurrency
can be derived from it), each type of cryptocurrency has its own standard derivation path
(eg. m/44’/3’/0’/0/0 for DOGE), and its own address representation (eg. Bech32 at
m/84’/0’/0’/0/0 for BTC eg. bc1qcupw7k8enymvvsa7w35j5hq4ergtvus3zk8a8s).

When you import your SLIP-39 Seed into a Trezor, you gain access to all derived HD
cryptocurrency wallets supported directly by that hardware wallet, and indirectly, to
any coin and/or blockchain network supported by any wallet software (eg. Metamask).

7



Crypto Semantic Path Address Support
ETH Legacy m/44’/60’/0’/0/0 0x. . .
BNB Legacy m/44’/60’/0’/0/0 0x. . . Beta
CRO Bech32 m/44’/60’/0’/0/0 crc1. . . Beta
BTC Legacy m/44’/ 0’/0’/0/0 1. . .

SegWit m/44’/ 0’/0’/0/0 3. . .
Bech32 m/84’/ 0’/0’/0/0 bc1. . .

LTC Legacy m/44’/ 2’/0’/0/0 L. . .
SegWit m/44’/ 2’/0’/0/0 M. . .
Bech32 m/84’/ 2’/0’/0/0 ltc1. . .

DOGE Legacy m/44’/ 3’/0’/0/0 D. . .

1. ETH, BTC, LTC, DOGE

These coins are natively supported both directly by the Trezor hardware wallet, and
by most software wallets and "web3" platforms that interact with the Trezor, or can
import the BIP-38 or Ethereum JSON Paper Wallets produced by python-slip39.

2. BNB on the Binance Smart Chain (BSC): binance.com

The Binance Smart Chain uses standard Ethereum addresses; support for the BSC
is added directly to the wallet software; here are the instructions for adding BSC
support for the Trezor hardware wallet, using the Metamask software wallet. In
python-slip39, BNB is simply an alias for ETH, since the wallet addresses and
Ethereum JSON Paper Wallets are identical.

3. CRO on Cronos: crypto.com

The Cronos chain (formerly known as the Crypto.org chain). It is the native chain
of the crypto.com CRO coin.

Cronos also uses Ethereum addresses on the m/44’/60’/0’/0/0 derivation path, but
represents them as Bech32 addresses with a "crc" prefix, eg. crc19a6r74dvfxjyvjzf3pg9y3y5rhk6rds2c9265n.
As with BNB, the wallet must support the Cronos blockchain; instructions exist for
adding CRO support for the Trezor hardware wallet, using the Metamask software
wallet.

3.2 The macOS/win32 SLIP-39.app GUI App

If you prefer a graphical user-interface, try the macOS/win32 SLIP-39.App. You can run
it directly if you install Python 3.9+ from python.org/downloads or using homebrew brew
install python-tk@3.10. Then, start the GUI in a variety of ways:

slip39-gui
python3 -m slip39.gui

Alternatively, download and install the macOS/win32 GUI App .zip, .pkg or .dmg
installer from github.com/pjkundert/python-slip-39/releases.

8

https://docs.binance.org/smart-chain/wallet/trezor.html
https://crypto.com
https://cronos.org/docs/getting-started/metamask.html
https://cronos.org/docs/getting-started/metamask.html
https://python.org/downloads
https://github.com/pjkundert/python-slip39/releases/latest


3.3 The Python slip39 CLI

From the command line, you can create SLIP-39 Seed Mnemonic card PDFs.

3.3.1 slip39 Synopsis

The full command-line argument synopsis for slip39 is:

slip39 --help 2>&1 | sed ’s/^/: /’ # (just for output formatting)

: usage: slip39 [-h] [-v] [-q] [-o OUTPUT] [-t THRESHOLD] [-g GROUP] [-f FORMAT]
: [-c CRYPTOCURRENCY] [-p PATH] [-j JSON] [-w WALLET]
: [--wallet-hint WALLET_HINT] [--wallet-format WALLET_FORMAT]
: [-s SECRET] [--bits BITS] [--using-bip39]
: [--passphrase PASSPHRASE] [-C CARD] [--no-card] [--paper PAPER]
: [--cover] [--no-cover] [--text] [--watermark WATERMARK]
: [names ...]
:
: Create and output SLIP-39 encoded Seeds and Paper Wallets to a PDF file.
:
: positional arguments:
: names Account names to produce; if --secret Entropy is
: supplied, only one is allowed.
:
: options:
: -h, --help show this help message and exit
: -v, --verbose Display logging information.
: -q, --quiet Reduce logging output.
: -o OUTPUT, --output OUTPUT
: Output PDF to file or ’-’ (stdout); formatting w/
: name, date, time, crypto, path, address allowed
: -t THRESHOLD, --threshold THRESHOLD
: Number of groups required for recovery (default: half
: of groups, rounded up)
: -g GROUP, --group GROUP
: A group name[[<require>/]<size>] (default: <size> = 1,
: <require> = half of <size>, rounded up, eg.
: ’Frens(3/5)’ ).
: -f FORMAT, --format FORMAT
: Specify crypto address formats: legacy, segwit,
: bech32; default: ETH:legacy, BTC:bech32, LTC:bech32,
: DOGE:legacy, CRO:bech32, BNB:legacy, XRP:legacy
: -c CRYPTOCURRENCY, --cryptocurrency CRYPTOCURRENCY
: A crypto name and optional derivation path (eg.
: ’../<range>/<range>’); defaults: ETH:m/44’/60’/0’/0/0,
: BTC:m/84’/0’/0’/0/0, LTC:m/84’/2’/0’/0/0,
: DOGE:m/44’/3’/0’/0/0, CRO:m/44’/60’/0’/0/0,
: BNB:m/44’/60’/0’/0/0, XRP:m/44’/144’/0’/0/0
: -p PATH, --path PATH Modify all derivation paths by replacing the final
: segment(s) w/ the supplied range(s), eg. ’.../1/-’
: means .../1/[0,...)
: -j JSON, --json JSON Save an encrypted JSON wallet for each Ethereum
: address w/ this password, ’-’ reads it from stdin
: (default: None)
: -w WALLET, --wallet WALLET
: Produce paper wallets in output PDF; each wallet
: private key is encrypted this password
: --wallet-hint WALLET_HINT
: Paper wallets password hint
: --wallet-format WALLET_FORMAT
: Paper wallet size; half, third, quarter or

9



: ’(<h>,<w>),<margin>’ (default: quarter)
: -s SECRET, --secret SECRET
: Use the supplied 128-, 256- or 512-bit hex value as
: the secret seed; ’-’ reads it from stdin (eg. output
: from slip39.recover)
: --bits BITS Ensure that the seed is of the specified bit length;
: 128, 256, 512 supported.
: --using-bip39 Generate Seed from secret Entropy using BIP-39
: generation algorithm (encode as BIP-39 Mnemonics,
: encrypted using --passphrase)
: --passphrase PASSPHRASE
: Encrypt the master secret w/ this passphrase, ’-’
: reads it from stdin (default: None/’’)
: -C CARD, --card CARD Card size; business, credit, index, half, third,
: quarter, photo or ’(<h>,<w>),<margin>’ (default:
: business)
: --no-card Disable PDF SLIP-39 mnemonic card output
: --paper PAPER Paper size (default: Letter)
: --cover Produce PDF SLIP-39 cover page
: --no-cover Disable PDF SLIP-39 cover page
: --text Enable textual SLIP-39 mnemonic output to stdout
: --watermark WATERMARK
: Include a watermark on the output SLIP-39 mnemonic
: cards

3.4 Recovery & Re-Creation

Later, if you need to recover the wallet seed, keep entering SLIP-39 mnemonics into
slip39-recovery until the secret is recovered (invalid/duplicate mnemonics will be ig-
nored):

$ python3 -m slip39.recovery # (or just "slip39-recovery")
Enter 1st SLIP-39 mnemonic: ab c
Enter 2nd SLIP-39 mnemonic: veteran guilt acrobat romp burden campus purple webcam uncover ...
Enter 3rd SLIP-39 mnemonic: veteran guilt acrobat romp burden campus purple webcam uncover ...
Enter 4th SLIP-39 mnemonic: veteran guilt beard romp dragon island merit burden aluminum worthy ...
2021-12-25 11:03:33 slip39.recovery Recovered SLIP-39 secret; Use: python3 -m slip39 --secret ...
383597fd63547e7c9525575decd413f7

Finally, re-create the wallet seed, perhaps including an encrypted JSON Paper Wal-
let for import of some accounts into a software wallet (use --json password to output
encrypted Ethereum JSON wallet files):

slip39 --secret 383597fd63547e7c9525575decd413f7 --wallet password --wallet-hint bad:pass... 2>&1

2022-11-11 08:06:03 slip39 It is recommended to not use ’-s|--secret <hex>’; specify ’-’ to read from input
2022-11-11 08:06:03 slip39 It is recommended to not use ’-w|--wallet <password>’; specify ’-’ to read from input
2022-11-11 08:06:03 slip39.layout ETH m/44’/60’/0’/0/0 : 0xb44A2011A99596671d5952CdC22816089f142FB3
2022-11-11 08:06:03 slip39.layout BTC m/84’/0’/0’/0/0 : bc1qcupw7k8enymvvsa7w35j5hq4ergtvus3zk8a8s
2022-11-11 08:06:07 slip39.layout Writing SLIP39-encoded wallet for ’SLIP39’ to: SLIP39-2022-11-11+08.06.05-ETH-0xb44A2011A99596671d5952CdC22816089f142FB3.pdf

3.4.1 slip39.recovery Synopsis
slip39-recovery --help 2>&1 | sed ’s/^/: /’ # (just for output formatting)

: usage: slip39-recovery [-h] [-v] [-q] [-m MNEMONIC] [-e] [-b] [-u] [--binary]
: [-p PASSPHRASE]
:

10



: Recover and output secret Seed from SLIP-39 or BIP-39 Mnemonics
:
: options:
: -h, --help show this help message and exit
: -v, --verbose Display logging information.
: -q, --quiet Reduce logging output.
: -m MNEMONIC, --mnemonic MNEMONIC
: Supply another SLIP-39 (or a BIP-39) mnemonic phrase
: -e, --entropy Return the BIP-39 Mnemonic Seed Entropy instead of the
: generated Seed (default: False)
: -b, --bip39 Recover Entropy and generate 512-bit secret Seed from
: BIP-39 Mnemonic + passphrase
: -u, --using-bip39 Recover Entropy from SLIP-39, generate 512-bit secret
: Seed using BIP-39 Mnemonic + passphrase
: --binary Output seed in binary instead of hex
: -p PASSPHRASE, --passphrase PASSPHRASE
: Decrypt the SLIP-39 or BIP-39 master secret w/ this
: passphrase, ’-’ reads it from stdin (default: None/’’)
:
: If you obtain a threshold number of SLIP-39 mnemonics, you can recover the original
: secret Seed Entropy, and then re-generate one or more wallets from it.
:
: Enter the mnemonics when prompted and/or via the command line with -m |--mnemonic "...".
:
: The secret Seed Entropy can then be used to generate a new SLIP-39 encoded wallet:
:
: python3 -m slip39 --secret = "ab04...7f"
:
: SLIP-39 Mnemonics may be encrypted with a passphrase; this is *not* Ledger-compatible, so it rarely
: recommended! Typically, on a Trezor "Model T", you recover using your SLIP-39 Mnemonics, and then
: use the "Hidden wallet" feature (passwords entered on the device) to produce alternative sets of
: accounts.
:
: BIP-39 Mnemonics can be backed up as SLIP-39 Mnemonics, in two ways:
:
: 1) The actual BIP-39 standard 512-bit Seed can be generated by supplying --passphrase, but only at
: the cost of 59-word SLIP-39 mnemonics. This is because the *output* 512-bit BIP-39 Seed must be
: stored in SLIP-39 -- not the *input* 128-, 160-, 192-, 224-, or 256-bit entropy used to create the
: original BIP-39 mnemonic phrase.
:
: 2) The original BIP-39 12- or 24-word, 128- to 256-bit Seed Entropy can be recovered by supplying
: --entropy. This modifies the BIP-39 recovery to return the original BIP-39 Mnemonic Entropy, before
: decryption and seed generation. It has no effect for SLIP-39 recovery.

3.4.2 Pipelining slip39.recovery | slip39 --secret -

The tools can be used in a pipeline to avoid printing the secret. Here we generate some
mnemonics, sorting them in reverse order so we need more than just the first couple to
recover. Observe the Ethereum wallet address generated.

Then, we recover the master secret seed in hex with slip39-recovery, and finally
send it to slip39 --secret - to re-generate the same wallet as we originally created.

( python3 -m slip39 --text --no-card \
| ( sort -r ; echo "...later..." 1>&2 ) \
| python3 -m slip39.recovery \
| python3 -m slip39 --secret - --no-card \

) 2>&1

2022-11-11 08:06:08 slip39.layout ETH m/44’/60’/0’/0/0 : 0x80655b4884EE750FE424ec99D767141FaA47a737
2022-11-11 08:06:08 slip39.layout BTC m/84’/0’/0’/0/0 : bc1q758gwdw2amuvysf7l7awthu4mszj5nt2kaue04

11



...later...
2022-11-11 08:06:09 slip39.layout ETH m/44’/60’/0’/0/0 : 0x80655b4884EE750FE424ec99D767141FaA47a737
2022-11-11 08:06:09 slip39.layout BTC m/84’/0’/0’/0/0 : bc1q758gwdw2amuvysf7l7awthu4mszj5nt2kaue04

3.4.3 Pipelining Backup of a BIP-39 Mnemonic Phrase

A primary use case for python-slip39 will be to backup an existing BIP-39 Mnemonic
Phrase to SLIP-39 cards, so here it is:

python3 -m slip39.recovery --bip39 --entropy \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong" \

| python3 -m slip39 --using-bip39 --secret -

3.5 Generation of Addresses

For systems that require a stream of groups of wallet Addresses (eg. for preparing in-
voices for clients, with a choice of cryptocurrency payment options), slip-generator can
produce a stream of groups of addresses.

3.5.1 slip39-generator Synopsis
slip39-generator --help --version | sed ’s/^/: /’ # (just for output formatting)

: usage: slip39-generator [-h] [-v] [-q] [-s SECRET] [-f FORMAT] [--xpub]
: [--no-xpub] [-c CRYPTOCURRENCY] [--path PATH]
: [-d DEVICE] [--baudrate BAUDRATE] [-e ENCRYPT]
: [--decrypt ENCRYPT] [--enumerated] [--no-enumerate]
: [--receive] [--corrupt CORRUPT]
:
: Generate public wallet address(es) from a secret seed
:
: options:
: -h, --help show this help message and exit
: -v, --verbose Display logging information.
: -q, --quiet Reduce logging output.
: -s SECRET, --secret SECRET
: Use the supplied 128-, 256- or 512-bit hex value as
: the secret seed; ’-’ (default) reads it from stdin
: (eg. output from slip39.recover)
: -f FORMAT, --format FORMAT
: Specify crypto address formats: legacy, segwit,
: bech32; default: ETH:legacy, BTC:bech32, LTC:bech32,
: DOGE:legacy, CRO:bech32, BNB:legacy, XRP:legacy
: --xpub Output xpub... instead of cryptocurrency wallet
: address (and trim non-hardened default path segments)
: --no-xpub Inhibit output of xpub (compatible w/ pre-v10.0.0)
: -c CRYPTOCURRENCY, --cryptocurrency CRYPTOCURRENCY
: A crypto name and optional derivation path (default:
: "ETH:{Account.path_default(’ETH’)}"), optionally w/
: ranges, eg: ETH:../0/-
: --path PATH Modify all derivation paths by replacing the final
: segment(s) w/ the supplied range(s), eg. ’.../1/-’
: means .../1/[0,...)
: -d DEVICE, --device DEVICE
: Use this serial device to transmit (or --receive)
: records
: --baudrate BAUDRATE Set the baud rate of the serial device (default:

12



: 115200)
: -e ENCRYPT, --encrypt ENCRYPT
: Secure the channel from errors and/or prying eyes with
: ChaCha20Poly1305 encryption w/ this password; ’-’
: reads from stdin
: --decrypt ENCRYPT
: --enumerated Include an enumeration in each record output (required
: for --encrypt)
: --no-enumerate Disable enumeration of output records
: --receive Receive a stream of slip.generator output
: --corrupt CORRUPT Corrupt a percentage of output symbols
:
: Once you have a secret seed (eg. from slip39.recovery), you can generate a sequence
: of HD wallet addresses from it. Emits rows in the form:
:
: <enumeration> [<address group(s)>]
:
: If the output is to be transmitted by an insecure channel (eg. a serial port), which may insert
: errors or allow leakage, it is recommended that the records be encrypted with a cryptographic
: function that includes a message authentication code. We use ChaCha20Poly1305 with a password and a
: random nonce generated at program start time. This nonce is incremented for each record output.
:
: Since the receiver requires the nonce to decrypt, and we do not want to separately transmit the
: nonce and supply it to the receiver, the first record emitted when --encrypt is specified is the
: random nonce, encrypted with the password, itself with a known nonce of all 0 bytes. The plaintext
: data is random, while the nonce is not, but since this construction is only used once, it should be
: satisfactory. This first nonce record is transmitted with an enumeration prefix of "nonce".

3.5.2 Producing Addresses

Addresses can be produced in plaintext or encrypted, and output to stdout or to a serial
port.

echo ffffffffffffffffffffffffffffffff | slip39-generator --secret - --path ’../-3’ 2>&1

0: [["ETH", "m/44’/60’/0’/0/0", "0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1"], ["BTC", "m/84’/0’/0’/0/0", "bc1q9yscq3l2yfxlvnlk3cszpqefparrv7tk24u6pl"]]
1: [["ETH", "m/44’/60’/0’/0/1", "0x8D342083549C635C0494d3c77567860ee7456963"], ["BTC", "m/84’/0’/0’/0/1", "bc1qnec684yvuhfrmy3q856gydllsc54p2tx9w955c"]]
2: [["ETH", "m/44’/60’/0’/0/2", "0x52787E24965E1aBd691df77827A3CfA90f0166AA"], ["BTC", "m/84’/0’/0’/0/2", "bc1q2snj0zcg23dvjpw7m9lxtu0ap0hfl5tlddq07j"]]
3: [["ETH", "m/44’/60’/0’/0/3", "0xc2442382Ae70c77d6B6840EC6637dB2422E1D44e"], ["BTC", "m/84’/0’/0’/0/3", "bc1qxwekjd46aa5n0s3dtsynvtsjwsne7c5f5w5dsd"]]

To produce accounts from a BIP-39 or SLIP-39 seed, recover it using slip39-recovery.
Here’s an example of recovering a test BIP-39 seed; note that it yields the well-

known ETH 0xfc20...1B5E and BTC bc1qk0...gnn2 accounts associated with this test
Mnemonic:

( python3 -m slip39.recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| python3 -m slip39.generator --secret - --path ’../-3’ --format ’BTC:segwit’ --crypto ’DOGE’ ) 2>&1

0: [["DOGE", "m/44’/3’/0’/0/0", "DTMaJd8wqye1fymnjxZ5Cc5QkN1w4pMgXT"], ["BTC", "m/44’/0’/0’/0/0", "3KcPbsc9NYWwoi9ykJ3KPmmh41L2fZezJe"]]
1: [["DOGE", "m/44’/3’/0’/0/1", "DGkL2LD5FfccAaKtx8G7TST5iZwrNkecTY"], ["BTC", "m/44’/0’/0’/0/1", "3GZ22fkDYPY3AhpZE2MbtyxbJJE1ZrWcQS"]]
2: [["DOGE", "m/44’/3’/0’/0/2", "DQa3SpFZH3fFpEFAJHTXZjam4hWiv9muJX"], ["BTC", "m/44’/0’/0’/0/2", "3DCaNJnndHE7Vqv5hgLiiLwDAFCgWDMaK7"]]
3: [["DOGE", "m/44’/3’/0’/0/3", "DTW5tqLwspMY3NpW3RrgMfjWs5gnpXtfwe"], ["BTC", "m/44’/0’/0’/0/3", "3PYjoq3gT8qNQ8g3HVP9sHZdGMT5qAhW4v"]]

We can encrypt the output, to secure the sequence (and due to integrated MACs,
ensures no errors occur over an insecure channel like a serial cable):

( slip39-recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| slip39-generator --secret - --path ’../-3’ --encrypt ’password’ ) 2>&1 \

| sed -E ’s/^(.{100})(.{1,})$/\1.../’ # (shorten output)

13



nonce: 2edf314aaefd483eae7ad94a372efb07132a3a1e70eb8df5b76838bb
0: af42e9b4c4d12209e2b4c995bc4771fbb2379221964f9f2fceae885f1a4c8c0cc21b2e5ec55e72135c2af6c8e79fa...
1: a7c96198e4223f933acf415596418e3005a94d41d20783a7063bf6e34a15fc0834549fa7acb8b7e5bf2c729ab0cdb...
2: a7aafe4b928e2c18329904a80b0f6a7fd6c7442de51f6996fc5f7af2c34fd1f6c5f38661c3965e3c0c877595df9e7...
3: 99e3a082d91cd41381dd810fe60a55cc6bcf3d6bc6dca6e319d324aad5881956f0faa312e6891d52d3bffdcfedff6...

On the receiving computer, we can decrypt and recover the stream of accounts from
the wallet seed; any rows with errors are ignored:

( slip39-recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| slip39-generator --secret - --path ’../-3’ --encrypt ’password’ \
| slip39-generator --receive --decrypt ’password’ ) 2>&1

0: [["ETH", "m/44’/60’/0’/0/0", "0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E"], ["BTC", "m/84’/0’/0’/0/0", "bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2"]]
1: [["ETH", "m/44’/60’/0’/0/1", "0xd1a7451beB6FE0326b4B78e3909310880B781d66"], ["BTC", "m/84’/0’/0’/0/1", "bc1qkd33yck74lg0kaq4tdcmu3hk4yruhjayxpe9ug"]]
2: [["ETH", "m/44’/60’/0’/0/2", "0x578270B5E5B53336baC354756b763b309eCA90Ef"], ["BTC", "m/84’/0’/0’/0/2", "bc1qvr7e5aytd0hpmtaz2d443k364hprvqpm3lxr8w"]]
3: [["ETH", "m/44’/60’/0’/0/3", "0x909f59835A5a120EafE1c60742485b7ff0e305da"], ["BTC", "m/84’/0’/0’/0/3", "bc1q6t9vhestkcfgw4nutnm8y2z49n30uhc0kyjl0d"]]

3.5.3 X Public Keys

If you prefer, you can output "xpub. . . " format public keys, instead of account addresses.
By default, this will elide the non-hardened portion of the default addresses – use the
"xpub. . . " keys to produce the remaining non-hardened portion of the HD wallet paths
locally.

For example, assume you must produce a sequence of accounts for each client client of
your company to deposit into. Your highly secure serial-connected "key enclave" system
(which must know your HD wallet seed) emits a sequence of xpubkeys for each new client
over a serial cable, to your accounting system:

( python3 -m slip39.recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| python3 -m slip39.generator --secret - --xpub --path "../-2’" --encrypt ’password’ \
| python3 -m slip39.generator -v --receive --decrypt ’password’ ) 2>&1

2022-11-11 08:06:14 slip39.generator Decrypting accountgroups with nonce: 66ab7187b0009310d298beab
0: [["ETH", "m/44’/60’/0’", "xpub6C2y6te3rtGg9SspDDFbjGEgn7yxc5ZzzkBk62yz3GRKvuqdaMDS7NUbesTJ44FprxAE7hvm5ZQjDMbYWehdJQsyBCP3mL87nnB4cB47HGS"], ["BTC", "m/84’/0’/0’", "zpub6rD5AGSXPTDMSnpmczjENMT3NvVF7q5MySww6uxitUsBYgkZLeBywrcwUWhW5YkeY2aS7xc45APPgfA6s6wWfG2gnfABq6TDz9zqeMu2JCY"]]
1: [["ETH", "m/44’/60’/1’", "xpub6C2y6te3rtGgCPb4Gi89Qin7Da2dvnnHSuR9rLQV6bWQKiyfKyjtVzr2n9mKmTEHzr4rzK78LmdSXLSzvpZqVs4ussUU8NyXpt9nWWbKG3C"], ["BTC", "m/84’/0’/1’", "zpub6rD5AGSXPTDMUaSe3aGDqWk4uMTwcrFwytkKuDGmi3ofUkJ4dQxXHZwiXWbHHrELJAor8xGs61F8sbKS2JdQkLZRnu5PGktmr6F32nEBUBb"]]
2: [["ETH", "m/44’/60’/2’", "xpub6C2y6te3rtGgENnaK62SyPawqKvbde17wc2ndMGFWi2yAkk3piwEY9QK8egtE9ye9uoqiqs5WV3MTNCCP2qjUNDb8cmSg4ZsVnwQnkziXVh"], ["BTC", "m/84’/0’/2’", "zpub6rD5AGSXPTDMYx2sQPuZgceniniRXDK5tELiREjxfSGJENNxuQD3u2yfpRqnNE1JeH14Pa7MVGrofDJtyXw252ws9HgRcd82X2M4KzkUfpZ"]]

As required (throttled by hardward the serial cable RTS/CTS signals) your accounting
system receives these "xpub. . . " addresses:

( python3 -m slip39.recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| python3 -m slip39.generator --secret - --xpub --path "../-2’" --encrypt ’password’ \
| python3 -m slip39.generator -v --receive --decrypt ’password’ \
| while IFS=’:’ read num json; do \

echo "--- $(( num ))"; \
echo "$json" | jq -c ’.[]’; \

done \
) 2>&1

2022-11-11 08:06:15 slip39.generator Decrypting accountgroups with nonce: 9650d1369bc8534969f31cf6
--- 0
["ETH","m/44’/60’/0’","xpub6C2y6te3rtGg9SspDDFbjGEgn7yxc5ZzzkBk62yz3GRKvuqdaMDS7NUbesTJ44FprxAE7hvm5ZQjDMbYWehdJQsyBCP3mL87nnB4cB47HGS"]
["BTC","m/84’/0’/0’","zpub6rD5AGSXPTDMSnpmczjENMT3NvVF7q5MySww6uxitUsBYgkZLeBywrcwUWhW5YkeY2aS7xc45APPgfA6s6wWfG2gnfABq6TDz9zqeMu2JCY"]
--- 1

14



["ETH","m/44’/60’/1’","xpub6C2y6te3rtGgCPb4Gi89Qin7Da2dvnnHSuR9rLQV6bWQKiyfKyjtVzr2n9mKmTEHzr4rzK78LmdSXLSzvpZqVs4ussUU8NyXpt9nWWbKG3C"]
["BTC","m/84’/0’/1’","zpub6rD5AGSXPTDMUaSe3aGDqWk4uMTwcrFwytkKuDGmi3ofUkJ4dQxXHZwiXWbHHrELJAor8xGs61F8sbKS2JdQkLZRnu5PGktmr6F32nEBUBb"]
--- 2
["ETH","m/44’/60’/2’","xpub6C2y6te3rtGgENnaK62SyPawqKvbde17wc2ndMGFWi2yAkk3piwEY9QK8egtE9ye9uoqiqs5WV3MTNCCP2qjUNDb8cmSg4ZsVnwQnkziXVh"]
["BTC","m/84’/0’/2’","zpub6rD5AGSXPTDMYx2sQPuZgceniniRXDK5tELiREjxfSGJENNxuQD3u2yfpRqnNE1JeH14Pa7MVGrofDJtyXw252ws9HgRcd82X2M4KzkUfpZ"]

Then, it generates each client’s sequence of addresses locally: you are creating HD
wallet accounts from each "xpub. . . " key, and adding the remaining non-hardened HD
wallet path segments:

( python3 -m slip39.recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| python3 -m slip39.generator --secret - --xpub --path "../-2’" --encrypt ’password’ \
| python3 -m slip39.generator -v --receive --decrypt ’password’ \
| while IFS=’:’ read num json; do \

echo "--- $(( num ))"; \
echo "$json" | jq -cr ’.[]|"--crypto " + .[0] + " --secret " + .[2]’ | while read command; do \

python3 -m slip39.cli -v --no-json addresses $command --paths m/0/-2; \
done; \

done \
) 2>&1

2022-11-11 08:06:17 slip39.generator Decrypting accountgroups with nonce: 1238ffe0d06e383ad5990a46
--- 0
ETH m/0/0 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E
ETH m/0/1 0xd1a7451beB6FE0326b4B78e3909310880B781d66
ETH m/0/2 0x578270B5E5B53336baC354756b763b309eCA90Ef
BTC m/0/0 bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2
BTC m/0/1 bc1qkd33yck74lg0kaq4tdcmu3hk4yruhjayxpe9ug
BTC m/0/2 bc1qvr7e5aytd0hpmtaz2d443k364hprvqpm3lxr8w
--- 1
ETH m/0/0 0x9176A747BA67C1d7F80AaDC930180b4183AfB5c4
ETH m/0/1 0xa1409B655aC3e09eF261de00BAa4e85bD2820AA4
ETH m/0/2 0xae22C13Ef5891Ed835C24Ed5090542DFa748c21F
BTC m/0/0 bc1q8pqnqs573vx3qdp0xp6qdqzvnvy8px24rxh9lp
BTC m/0/1 bc1qwtc58u4mmnxa29u8j07e6lmqpnrs38vefy3y24
BTC m/0/2 bc1qg9s8qzm0lcetfv6umhlm3evtca5zsqv7elqd5s
--- 2
ETH m/0/0 0x32A8b066c5dbD37147766491A32A612d313fda25
ETH m/0/1 0xff8b88b975f9C296531C1E93d5e4f28757b4571A
ETH m/0/2 0xc95Bdf50CA542E1B689f5C06e2D8bAd0625Dfa23
BTC m/0/0 bc1q09zpchmkcnny90ghkg76gd69dvaf57qwcsrhes
BTC m/0/1 bc1qjytdyw6zramwt4nvvpte93hfry2d4xhhqn0xg4
BTC m/0/2 bc1qcummre0pxv5xj4gvyut0t84vfwjd6eu7r387v4

You’ll notice that, after this elaborate exercise of generating xpubkeys, encrypted
transmission and recovery, generating accounts from the xpubkeys, and producing multi-
ples addresses using the remainder of the original HD wallet paths: the output addresses
are identical to those generated directly from the BIP-39 Mnemonic Phrase:

secret=$( python3 -m slip39.recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ );
for crypto in BTC ETH; do

python3 -m slip39.cli -v --no-json addresses --secret $secret --crypto $crypto --paths "../-2"
done

BTC m/84’/0’/0’/0/0 bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2
BTC m/84’/0’/0’/0/1 bc1qkd33yck74lg0kaq4tdcmu3hk4yruhjayxpe9ug
BTC m/84’/0’/0’/0/2 bc1qvr7e5aytd0hpmtaz2d443k364hprvqpm3lxr8w
ETH m/44’/60’/0’/0/0 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E
ETH m/44’/60’/0’/0/1 0xd1a7451beB6FE0326b4B78e3909310880B781d66
ETH m/44’/60’/0’/0/2 0x578270B5E5B53336baC354756b763b309eCA90Ef

15



3.5.4 Serial Port Connected Secure Seed Enclave

What if you or your company wants to accept Crypto payments, and needs to generate
a sequence of wallets unique to each client? You can use an xpubkey and then generate
a sequence of unique addresses from that, which doesn’t disclose any of your private key
material:

( python3 -m slip39.recovery --bip39 --mnemonic ’zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong’ \
| python3 -m slip39.generator --secret - --xpub --path "../-2’" --crypto BTC

) 2>&1

0: [["BTC", "m/84’/0’/0’", "zpub6rD5AGSXPTDMSnpmczjENMT3NvVF7q5MySww6uxitUsBYgkZLeBywrcwUWhW5YkeY2aS7xc45APPgfA6s6wWfG2gnfABq6TDz9zqeMu2JCY"]]
1: [["BTC", "m/84’/0’/1’", "zpub6rD5AGSXPTDMUaSe3aGDqWk4uMTwcrFwytkKuDGmi3ofUkJ4dQxXHZwiXWbHHrELJAor8xGs61F8sbKS2JdQkLZRnu5PGktmr6F32nEBUBb"]]
2: [["BTC", "m/84’/0’/2’", "zpub6rD5AGSXPTDMYx2sQPuZgceniniRXDK5tELiREjxfSGJENNxuQD3u2yfpRqnNE1JeH14Pa7MVGrofDJtyXw252ws9HgRcd82X2M4KzkUfpZ"]]

Since you have to generate such an xpubkey from a "hardened" path, such as with
slip39.generate --xpub ..., you still need to run that tool chain on some secure "air
gapped" computer. So, how do you do that safely, knowing that you need to input your
SLIP-39 or BIP-39 Mnemonics on that computer? Especially, if you want to do this
under any kind of automation, and deliver the output xpubkey to your insecure business
computer systems?

One solution is to have the computer hosting your Seed or Mnemonic private key mate-
rial only connected to your business computer systems with a guaranteed safe mechanism.
Definitely not with any kind of general purpose network system!

The solution: The RS-232 Serial Port
With USB to DB-9 female to DB-9 male serial adapters, any small computer with

USB ports (such as the Raspberry Pi 400) can be connected serially and serve as your
"secure" computer, storing your Seed Mnemonic.

Remember to disable all other wired and wireless networking!
The RS-232 port on the "secure" computer can be protected from all incoming data

transmissions, make an exploit effectively impossible, while still allowing outgoing data
(the generated xpubkeys).

A DB-9 serial breakout board or custom serial adapter be easily constructed that
disconnects pin 3 (TXD) on the "business" side from pin 2 (RXD) on the "secure" side,
eliminating any chance of data being sent to the "secure" side. The only electronic
connection that transmits data to the "secure" side is the hardware flow control pin 7
(RTS) to pin 8 (CTS). An exploit using this single-bit approach vector is . . . unlikely. :)

3.6 The slip39 module API

Provide SLIP-39 Mnemonic set creation from a 128-bit master secret, and recovery of the
secret from a subset of the provided Mnemonic set.

3.6.1 slip39.create

Creates a set of SLIP-39 groups and their mnemonics.

16

https://amzn.to/3DXSYol
https://amzn.to/3toukby
https://amzn.to/3A6Gwlb
https://amzn.to/3EnLEEd


Key Description
name Who/what the account is for
group_threshold How many groups’ data is required to recover the account(s)
groups Each group’s description, as {"<group>":(<required>, <members>), . . . }
master_secret 128-bit secret (default: from secrets.token_bytes)
passphrase An optional additional passphrase required to recover secret (default: "")
using_bip39 Produce wallet Seed from master_secret Entropy using BIP-39 generation
iteration_exponent For encrypted secret, exponentially increase PBKDF2 rounds (default: 1)
cryptopaths A number of crypto names, and their derivation paths ]
strength Desired master_secret strength, in bits (default: 128)

Outputs a slip39.Details namedtuple containing:
Key Description
name (same)
group_threshold (same)
groups Like groups, w/ <members> = ["<mnemonics>", . . . ]
accounts Resultant list of groups of accounts
using_bip39 Seed produced from entropy using BIP-39 generation

This is immediately usable to pass to slip39.output.

import codecs
import random
from tabulate import tabulate

#
# NOTE:
#
# We turn off randomness here during SLIP-39 generation to get deterministic phrases;
# during normal operation, secure entropy is used during mnemonic generation, yielding
# random phrases, even when the same seed is used multiple times.
#
import shamir_mnemonic
shamir_mnemonic.shamir.RANDOM_BYTES = lambda n: b’\00’ * n

import slip39

cryptopaths = [("ETH","m/44’/60’/0’/0/-2"), ("BTC","m/44’/0’/0’/0/-2")]
master_secret = b’\xFF’ * 16
passphrase = b""
create_details = slip39.create(

"Test", 2, { "Mine": (1,1), "Fam": (2,3) },
master_secret=master_secret, passphrase=passphrase, cryptopaths=cryptopaths )

print( tabulate( [
[

f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" if l_n == 0 else ""
] + words
for g_name,(g_of,g_mnems) in create_details.groups.items()
for g_n,mnem in enumerate( g_mnems )
for l_n,(line,words) in enumerate(slip39.organize_mnemonic(

mnem, label=f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" ))
], tablefmt=’orgtbl’ ))

17



Mine(1/1) #1: 1 academic 8 safari 15 standard
2 acid 9 drug 16 angry
3 acrobat 10 browser 17 similar
4 easy 11 trash 18 aspect
5 change 12 fridge 19 smug
6 injury 13 busy 20 violence
7 painting 14 finger

Fam(2/3) #1: 1 academic 8 prevent 15 dwarf
2 acid 9 mouse 16 dream
3 beard 10 daughter 17 flavor
4 echo 11 ancient 18 oral
5 crystal 12 fortune 19 chest
6 machine 13 ruin 20 marathon
7 bolt 14 warmth

Fam(2/3) #2: 1 academic 8 prune 15 briefing
2 acid 9 pickup 16 often
3 beard 10 device 17 escape
4 email 11 device 18 sprinkle
5 dive 12 peanut 19 segment
6 warn 13 enemy 20 devote
7 ranked 14 graduate

Fam(2/3) #3: 1 academic 8 dining 15 intimate
2 acid 9 invasion 16 satoshi
3 beard 10 bumpy 17 hobo
4 entrance 11 identify 18 ounce
5 alarm 12 anxiety 19 both
6 health 13 august 20 award
7 discuss 14 sunlight

Add the resultant HD Wallet addresses:

print( tabulate( [
[ account.path, account.address ]
for group in create_details.accounts
for account in group

], tablefmt=’orgtbl’ ))

m/44’/60’/0’/0/0 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
m/44’/0’/0’/0/0 bc1qm5ua96hx30snwrwsfnv97q96h53l86ded7wmjl
m/44’/60’/0’/0/1 0x8D342083549C635C0494d3c77567860ee7456963
m/44’/0’/0’/0/1 bc1qwz6v9z49z8mk5ughj7r78hjsp45jsxgzh29lnh
m/44’/60’/0’/0/2 0x52787E24965E1aBd691df77827A3CfA90f0166AA
m/44’/0’/0’/0/2 bc1q690m430qu29auyefarwfrvfumncunvyw6v53n9

3.6.2 slip39.produce_pdf

Key Description
name (same as slip39.create)
group_threshold (same as slip39.create)
groups Like groups, w/ <members> = ["<mnemonics>", . . . ]
accounts Resultant { "path": Account, . . . }
using_bip39 Generate Seed from Entropy via BIP-39 generation algorithm
card_format ’index’, ’(<h>,<w>),<margin>’, . . .
paper_format ’Letter’, . . .
orientation Force an orientation (default: portrait, landscape)
cover_text Produce a cover page w/ the text (and BIP-39 Phrase if using_bip39)

Layout and produce a PDF containing all the SLIP-39 details on cards for the crypto
accounts, on the paper_format provided. Returns the paper (orientation,format) used,
the FPDF, and passes through the supplied cryptocurrency accounts derived.

(paper_format,orientation),pdf,accounts = slip39.produce_pdf( *create_details )
pdf_binary = pdf.output()

18



print( tabulate( [
[ "Orientation:",orientation ],
[ "Paper:",paper_format ],
[ "PDF Pages:",pdf.pages_count ],
[ "PDF Size:",len( pdf_binary )],

], tablefmt=’orgtbl’ ))

Orientation: landscape
Paper: Letter
PDF Pages: 1
PDF Size: 19063

3.6.3 slip39.write_pdfs

Key Description
names A sequence of Seed names, or a dict of { name: <details> } (from slip39.create)
master_secret A Seed secret (only appropriate if exactly one name supplied)
passphrase A SLIP-39 passphrase (not Trezor compatible; use "hidden wallet" phrase on device instead)
using_bip39 Generate Seed from Entropy via BIP-39 generation algorithm
group A dict of {"<group>":(<required>, <members>), . . . }
group_threshold How many groups are required to recover the Seed
cryptocurrency A sequence of [ "<crypto>", "<crypto>:<derivation>", . . . ] w/ optional ranges
edit Derivation range(s) for each cryptocurrency, eg. "../0-4/-9" is 9 accounts first 5 change addresses
card_format Card size (eg. "credit"); False specifies no SLIP-39 cards (ie. only BIP-39 or JSON paper wallets)
paper_format Paper size (eg. "letter")
filename A filename; may contain ". . . {name}. . . " formatting, for name, date, time, crypto path and address
filepath A file path, if PDF output to file is desired; empty implies current dir.
printer A printer name (or True for default), if output to printer is desired
json_pwd If password supplied, encrypted Ethereum JSON wallet files will be saved, and produced into PDF
text If True, outputs SLIP-39 phrases to stdout
wallet_pwd If password supplied, produces encrypted BIP-38 or JSON Paper Wallets to PDF (preferred vs. json_pwd)
wallet_pwd_hint An optional passphrase hint, printed on paper wallet
wallet_format Paper wallet size, (eg. "third"); the default is 1/3 letter size
wallet_paper Other paper format (default: Letter)
cover_page A bool indicating whether to produce a cover page (default: True)

For each of the names provided, produces a separate PDF containing all the SLIP-39
details and optionally encrypted BIP-38 paper wallets and Ethereum JSON wallets for
the specified cryptocurrency accounts derived from the seed, and writes the PDF and
JSON wallets to the specified file name(s).

slip39.write_pdfs( ... )

3.6.4 slip39.recover

Takes a number of SLIP-39 mnemonics, and if sufficient group_threshold groups’ mnemon-
ics are present (and the options passphrase is supplied), the master_secret is recovered.
This can be used with slip39.accounts to directly obtain any Account data.

Note that the SLIP-39 passphrase is not checked; entering a different passphrase for
the same set of mnemonics will recover a different wallet! This is by design; it allows
the holder of the SLIP-39 mnemonic phrases to recover a "decoy" wallet by supplying a
specific passphrase, while protecting the "primary" wallet.

Therefore, it is essential to remember any non-default (non-empty) passphrase used,
separately and securely. Take great care in deciding if you wish to use a passphrase with
your SLIP-39 wallet!

19



Key Description
mnemonics ["<mnemonics>", . . . ]
passphrase Optional passphrase to decrypt secret Seed Entropy
using_bip39 Use BIP-39 Seed generation from recover Entropy

# Recover with the wrong password (on purpose, as a decoy wallet w/ a small amount)
recoverydecoy = slip39.recover(

create_details.groups[’Mine’][1][:] + create_details.groups[’Fam’][1][:2],
passphrase=b"wrong!"

)
recoverydecoy_hex = codecs.encode( recoverydecoy, ’hex_codec’ ).decode( ’ascii’ )

# But, recovering w/ correct passphrase yields our original Seed Entropy
recoveryvalid = slip39.recover(

create_details.groups[’Mine’][1][:] + create_details.groups[’Fam’][1][:2],
passphrase=passphrase

)
recoveryvalid_hex = codecs.encode( recoveryvalid, ’hex_codec’ ).decode( ’ascii’ )

print( tabulate( [
[ f"{len(recoverydecoy)*8}-bit secret (decoy):", f"{recoverydecoy_hex}" ],
[ f"{len(recoveryvalid)*8}-bit secret recovered:", f"{recoveryvalid_hex}" ]

], tablefmt=’orgtbl’ ))

128-bit secret (decoy): 2e522cea2b566840495c220cf79c756e
128-bit secret recovered: ffffffffffffffffffffffffffffffff

3.6.5 slip39.recover_bip39

Generate the 512-bit Seed from a BIP-39 Mnemonic + passphrase. Or, return the original
128- to 256-bit Seed Entropy, if as_entropy is specified.

Key Description
mnemonic "<mnemonic>"
passphrase Optional passphrase to decrypt secret Seed Entropy
as_entropy Return the BIP-39 Seed Entropy, not the generated Seed

3.6.6 slip39.produce_bip39

Produce a BIP-39 Mnemonic from the supplied 128- to 256-bit Seed Entropy.
Key Description
entropy The bytes of Seed Entropy
strength Or, the number of bits of Entropy to produce (Default: 128)
language Default is "english"

4 Conversion from BIP-39 to SLIP-39

If we already have a BIP-39 wallet, it would certainly be nice to be able to create nice,
safe SLIP-39 mnemonics for it, and discard the unsafe BIP-39 mnemonics we have lying
around, just waiting to be accidentally discovered and the account compromised!

Fortunately, we can do this! It takes a bit of practice to become comfortable with
the process, but once you do – you can confidently discard your original insecure and
unreliable BIP-39 Mnemonic backups.

20



4.1 BIP-39 vs. SLIP-39 Incompatibility

Unfortunately, it is not possible to cleanly convert a BIP-39 generated wallet Seed into
a SLIP-39 wallet. Both BIP-39 and SLIP-39 preserve the original 128- to 256-bit Seed
Entropy (random) bits, but these bits are used very differently – and incompatibly –
to generate the resultant wallet Seed.

In native SLIP-39, the original, recovered Seed Entropy (128- or 256-bits) is used
directly by the BIP-44 wallet derivation. In BIP-39, the Seed entropy is not directly used
at all ! It is only indirectly used; the BIP-39 Seed Phrase (which contains the exact,
original entropy) is used, as normalized text, as input to a hashing function, along with
some other fixed text, to produce a 512-bit Seed, which is then fed into the BIP-44 wallet
derivation process.

The least desirable method is to preserve the 512-bit output of the BIP-39 mnemonic
phrase as a set of 512-bit (59-word) SLIP-39 Mnemonics. But first, lets review how BIP-39
works.

4.1.1 BIP-39 Entropy to Mnemonic

BIP-39 uses a single set of 12, 15, 18, 21 or 24 BIP-39 words to carefully preserve a
specific 128 to 256 bits of initial Seed Entropy. Here’s a 128-bit (12-word) example using
some fixed "entropy" 0xFFFF..FFFF. You’ll note that, from the BIP-39 Mnemonic, we
can either recover the original 128-bit Seed Entropy, or we can generate the resultant
512-bit Seed w/ the correct passphrase:

from mnemonic import Mnemonic
bip39_english = Mnemonic("english")
entropy = b’\xFF’ * 16
entropy_hex = codecs.encode( entropy, ’hex_codec’ ).decode( ’ascii’ )
entropy_mnemonic = bip39_english.to_mnemonic( entropy )

recovered = slip39.recover_bip39( entropy_mnemonic, as_entropy=True )
recovered_hex = codecs.encode( recovered, ’hex_codec’ ).decode( ’ascii’ )

recovered_seed = slip39.recover_bip39( entropy_mnemonic, passphrase=passphrase )
recovered_seed_hex = codecs.encode( recovered_seed, ’hex_codec’ ).decode( ’ascii’ )

print( tabulate( [
[ "Original Entropy", entropy_hex ],
[ "BIP-39 Mnemonic", entropy_mnemonic ],
[ "Recovered Entropy", recovered_hex ],
[ "Recovered Seed", f"{recovered_seed_hex:.50}..." ],

], tablefmt=’orgtbl’))

Original Entropy ffffffffffffffffffffffffffffffff
BIP-39 Mnemonic zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong
Recovered Entropy ffffffffffffffffffffffffffffffff
Recovered Seed b6a6d8921942dd9806607ebc2750416b289adea669198769f2. . .

Each word is one of a corpus of 2048 words; therefore, each word encodes 11 bits (2048
= 2**11) of entropy. So, we provided 128 bits, but 12*11 = 132. So where does the extra
4 bits of data come from?

It comes from the first few bits of a SHA256 hash of the entropy, which is added to
the end of the supplied 128 bits, to reach the required 132 bits: 132 / 11 = 12 words.

21



This last 4 bits (up to 8 bits, for a 256-bit 24-word BIP-39) is checked, when validating
the BIP-39 mnemonic. Therefore, making up a random BIP-39 mnemonic will succeed
only 1 / 16 times on average, due to an incorrect checksum 4-bit (16 = 2**4) . Lets check:

def random_words( n, count=100 ):
for _ in range( count ):

yield ’ ’.join( random.choice( bip39_english.wordlist ) for _ in range( n ))

successes = sum(
bip39_english.check( m )
for i,m in enumerate( random_words( 12, 10000 ))) / 100

print( tabulate( [
[ "Valid random 12-word mnemonics:", f"{successes}%" ],
[ "Or, about: ", f"1 / {100/successes:.3}" ],

], tablefmt=’orgtbl’ ))

Valid random 12-word mnemonics: 5.99%
Or, about: 1 / 16.7

Sure enough, about 1/16 random 12-word phrases are valid BIP-39 mnemonics. OK,
we’ve got the contents of the BIP-39 phrase dialed in. How is it used to generate accounts?

4.1.2 BIP-39 Mnemonic to Seed

Unfortunately, BIP-39 does not use the carefully preserved 128-bit entropy to generate
the wallet! Nope, it is stretched to a 512-bit seed using PBKDF2 HMAC SHA512. The
normalized text (not the Entropy bytes) of the 12-word mnemonic is then used (with a
salt of "mnemonic" plus an optional passphrase, "" by default), to obtain the 512-bit
seed:

seed = bip39_english.to_seed( entropy_mnemonic )
seed_hex = codecs.encode( seed, ’hex_codec’ ).decode( ’ascii’ )
print( tabulate( [
[ f"{len(seed)*8}-bit seed:", f"{seed_hex:.50}..." ]

], tablefmt=’orgtbl’ ))

512-bit seed: b6a6d8921942dd9806607ebc2750416b289adea669198769f2. . .

4.1.3 BIP-39 Seed to Address

Finally, this 512-bit seed is used to derive HD wallet(s). The HD Wallet key derivation
process consumes whatever seed entropy is provided (512 bits in the case of BIP-39),
and uses HMAC SHA512 with a prefix of b"Bitcoin seed" to stretch the supplied seed
entropy to 64 bytes (512 bits). Then, the HD Wallet path segments are iterated through,
permuting the first 32 bytes of this material as the key with the second 32 bytes of
material as the chain node, until finally the 32-byte (256-bit) Ethereum account private
key is produced. We then use this private key to compute the rest of the Ethereum
account details, such as its public address.

path = "m/44’/60’/0’/0/0"
bip39_eth_hd = slip39.account( seed, ’ETH’, path )
print( tabulate( [
[ f"{len(bip39_eth_hd.key)*4}-bit derived key path:", f"{path}" ],

22



[ "Produces private key: ", f"{bip39_eth_hd.key}" ],
[ "Yields Ethereum address:", f"{bip39_eth_hd.address}" ],

], tablefmt=’orgtbl’ ))

256-bit derived key path: m/44’/60’/0’/0/0
Produces private key: 7af65ba4dd53f23495dcb04995e96f47c243217fc279f10795871b725cd009ae
Yields Ethereum address: 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E

Thus, we see that while the 12-word BIP-39 mnemonic careful preserves the original
128-bit entropy, this data is not directly used to derive the wallet private key and address.
Also, since an irreversible hash is used to derive the Seed from the Mnemonic, we can’t
reverse the process on the seed to arrive back at the BIP-39 mnemonic phrase.

4.1.4 SLIP-39 Entropy to Mnemonic

Just like BIP-39 carefully preserves the original 128-bit Seed Entropy bytes in a single
12-word mnemonic phrase, SLIP-39 preserves the original 128- or 256-bit Seed Entropy
in a set of 20- or 33-word Mnemonic phrases.

name,thrs,grps,acct,ub39 = slip39.create(
"Test", 2, { "Mine": (1,1), "Fam": (2,3) }, entropy )

print( tabulate( [
[ f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" if l_n == 0 else "" ] + words
for g_name,(g_of,g_mnems) in grps.items()
for g_n,mnem in enumerate( g_mnems )
for l_n,(line,words) in enumerate(slip39.organize_mnemonic(

mnem, rows=7, cols=3, label=f"{g_name}({g_of}/{len(g_mnems)}) #{g_n+1}:" ))
], tablefmt=’orgtbl’ ))

Mine(1/1) #1: 1 academic 8 safari 15 standard
2 acid 9 drug 16 angry
3 acrobat 10 browser 17 similar
4 easy 11 trash 18 aspect
5 change 12 fridge 19 smug
6 injury 13 busy 20 violence
7 painting 14 finger

Fam(2/3) #1: 1 academic 8 prevent 15 dwarf
2 acid 9 mouse 16 dream
3 beard 10 daughter 17 flavor
4 echo 11 ancient 18 oral
5 crystal 12 fortune 19 chest
6 machine 13 ruin 20 marathon
7 bolt 14 warmth

Fam(2/3) #2: 1 academic 8 prune 15 briefing
2 acid 9 pickup 16 often
3 beard 10 device 17 escape
4 email 11 device 18 sprinkle
5 dive 12 peanut 19 segment
6 warn 13 enemy 20 devote
7 ranked 14 graduate

Fam(2/3) #3: 1 academic 8 dining 15 intimate
2 acid 9 invasion 16 satoshi
3 beard 10 bumpy 17 hobo
4 entrance 11 identify 18 ounce
5 alarm 12 anxiety 19 both
6 health 13 august 20 award
7 discuss 14 sunlight

Since there is some randomness used in the SLIP-39 mnemonics generation process,
we would get a different set of words each time for the fixed "entropy" 0xFFFF..FF used

23



in this example (if we hadn’t manually disabled entropy for shamir_mnemonic, above),
but we will always derive the same Ethereum account 0x824b..19a1 at the specified HD
Wallet derivation path.

print( tabulate( [
[ account.crypto, account.path, account.address ]
for group in create_details.accounts
for account in group

], tablefmt=’orgtbl’, headers=[ "Crypto", "HD Wallet Path:", "Ethereum Address:" ] ))

Crypto HD Wallet Path: Ethereum Address:
ETH m/44’/60’/0’/0/0 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
BTC m/44’/0’/0’/0/0 bc1qm5ua96hx30snwrwsfnv97q96h53l86ded7wmjl
ETH m/44’/60’/0’/0/1 0x8D342083549C635C0494d3c77567860ee7456963
BTC m/44’/0’/0’/0/1 bc1qwz6v9z49z8mk5ughj7r78hjsp45jsxgzh29lnh
ETH m/44’/60’/0’/0/2 0x52787E24965E1aBd691df77827A3CfA90f0166AA
BTC m/44’/0’/0’/0/2 bc1q690m430qu29auyefarwfrvfumncunvyw6v53n9

4.1.5 SLIP-39 Mnemonic to Seed

Lets prove that we can actually recover the original Seed Entropy from the SLIP-39
recovery Mnemonics; in this case, we’ve specified a SLIP-39 group_threshold of 2 groups,
so we’ll use 1 Mnemonic from Mine, and 2 from the Fam group:

_,mnem_mine = grps[’Mine’]
_,mnem_fam = grps[’Fam’]
recseed = slip39.recover( mnem_mine + mnem_fam[:2] )
recseed_hex = codecs.encode( recseed, ’hex_codec’ ).decode( ’ascii’ )
print( tabulate( [

[ f"{len(recseed)*8}-bit Seed:", f"{recseed_hex}" ]
], tablefmt=’orgtbl’ ))

128-bit Seed: ffffffffffffffffffffffffffffffff

4.1.6 SLIP-39 Seed to Address

And we’ll use the same style of code as for the BIP-39 example above, to derive the
Ethereum address directly from this recovered 128-bit seed:

slip39_eth_hd = slip39.account( recseed, ’ETH’, path )
print( tabulate( [

[ f"{len(slip39_eth_hd.key)*4}-bit derived key path:", f"{path}" ],
[ "Produces private key: ", f"{slip39_eth_hd.key}" ],
[ "Yields Ethereum address:", f"{slip39_eth_hd.address}" ],

], tablefmt=’orgtbl’ ))

256-bit derived key path: m/44’/60’/0’/0/0
Produces private key: 6a2ec39aab88ec0937b79c8af6aaf2fd3c909e9a56c3ddd32ab5354a06a21a2b
Yields Ethereum address: 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1

And we see that we obtain the same Ethereum address 0x824b..1a2b as we origi-
nally got from slip39.create above. However, this is not the same Ethereum wallet
address obtained from BIP-39 with exactly the same 0xFFFF...FF Seed Entropy, which
was 0xfc20..1B5E!

This is due to the fact that BIP-39 does not use the recovered Seed Entropy to produce
the seed like SLIP-39 does, but applies additional one-way hashing of the Mnemonic to
produce a 512-bit Seed.

24



4.2 BIP-39 vs SLIP-39 Key Derivation Summary

At no time in BIP-39 account derivation is the original 128-bit Seed Entropy used (di-
rectly) in the derivation of the wallet key. This differs from SLIP-39, which directly uses
the 128-bit Seed Entropy recovered from the SLIP-39 Shamir’s Secret Sharing System
recovery process to generate each HD Wallet account’s private key.

Furthermore, there is no point in the BIP-39 Seed Entropy to account generation
where we could introduce a known 128-bit seed and produce a known Ethereum wallet
from it, other than at the very beginning.

Therefore, our BIP-39 Backup via SLIP-39 strategy must focus on backing up the
original 128- to 256-bit Seed Entropy, not the output Seed data!

4.3 BIP-39 Backup via SLIP-39

Here are the two available methods for backing up insecure and unreliable BIP-39 Mnemonic
phrases, using SLIP-39.

The first "Emergency Recovery" method allows you to recover your BIP-39 generated
wallets without the passphrase, but does not support recovery using hardware wallets;
you must output "Paper Wallets" and use them to recover the Cryptocurrency funds.

The second "Best Recovery: Using Recovered BIP-39 Mnemonic Phrase" allows us
to recover the accounts to any standard BIP-39 hardware wallet! However, the SLIP-39
Mnemonics are not compatible with standard SLIP-39 wallets like the Trezor "Model T"
– you have to use the recovered BIP-39 Mnemonic phrase to recover the hardware wallet.

4.3.1 Emergency Recovery: Using Recovered Paper Wallets

There is one approach which can preserve an original BIP-39 generated wallet addresses,
using SLIP-39 mnemonics.

It is clumsy, as it preserves the BIP-39 output 512-bit stretched seed, and the resul-
tant 59-word SLIP-39 mnemonics cannot be used (at present) with the Trezor hardware
wallet. They can, however, be used to recover the HD wallet private keys without access
to the original BIP-39 Mnemonic phrase or passphrase – you could generate and distribute
a set of more secure SLIP-39 Mnemonic phrases, instead of trying to secure the original
BIP-39 mnemonic + passphrase – without abandoning your existing BIP-39 wallets.

We’ll use slip39.recovery --bip39 ... to recover the 512-bit stretched seed from
BIP-39:

( python3 -m slip39.recovery --bip39 -v \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong"

) 2>&1

2022-11-11 08:06:38 slip39.recovery Recovered 512-bit BIP-39 secret from english mnemonic
2022-11-11 08:06:38 slip39.recovery Recovered BIP-39 secret; To re-generate SLIP-39 wallet, send it to: python3 -m slip39 --secret -
b6a6d8921942dd9806607ebc2750416b289adea669198769f2e15ed926c3aa92bf88ece232317b4ea463e84b0fcd3b53577812ee449ccc448eb45e6f544e25b6

Then we can generate a 59-word SLIP-39 mnemonic set from the 512-bit secret:

25



( python3 -m slip39.recovery --bip39 \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong" \

| python3 -m slip39 --secret - --no-card -v
) 2>&1 | tail -20

2022-11-11 08:06:38 slip39 7 family 19 intend 31 shaped 43 patent 55 type
2022-11-11 08:06:38 slip39 8 bike 20 elegant 32 fitness 44 argue 56 justice
2022-11-11 08:06:38 slip39 9 timber 21 snapshot 33 floral 45 finance 57 retreat
2022-11-11 08:06:38 slip39 10 health 22 much 34 pants 46 holiday 58 therapy
2022-11-11 08:06:38 slip39 11 email 23 easel 35 enjoy 47 endless 59 pitch
2022-11-11 08:06:38 slip39 12 always 24 diagnose 36 avoid 48 round
2022-11-11 08:06:38 slip39 6th 1 exact 13 entrance 25 task 37 legal 49 cleanup
2022-11-11 08:06:38 slip39 2 negative 14 voice 26 blanket 38 fangs 50 math
2022-11-11 08:06:38 slip39 3 decision 15 relate 27 device 39 viral 51 maiden
2022-11-11 08:06:38 slip39 4 spider 16 decision 28 source 40 aluminum 52 year
2022-11-11 08:06:38 slip39 5 academic 17 walnut 29 duckling 41 thorn 53 pregnant
2022-11-11 08:06:38 slip39 6 cradle 18 grin 30 dominant 42 prevent 54 credit
2022-11-11 08:06:38 slip39 7 criminal 19 avoid 31 grumpy 43 huge 55 belong
2022-11-11 08:06:38 slip39 8 genre 20 grumpy 32 animal 44 froth 56 cluster
2022-11-11 08:06:38 slip39 9 liquid 21 process 33 sidewalk 45 mild 57 careful
2022-11-11 08:06:38 slip39 10 webcam 22 frequent 34 orange 46 early 58 grocery
2022-11-11 08:06:38 slip39 11 biology 23 debut 35 mailman 47 eclipse 59 impact
2022-11-11 08:06:38 slip39 12 blimp 24 mouse 36 industry 48 grief
2022-11-11 08:06:38 slip39.layout ETH m/44’/60’/0’/0/0 : 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E
2022-11-11 08:06:38 slip39.layout BTC m/84’/0’/0’/0/0 : bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2

This 0xfc20..1B5E address is the same Ethereum address as is recovered on a Trezor
using this BIP-39 mnemonic phrase. Thus, we can generate "Paper Wallets" for the
desired Cryptocurrency accounts, and recover the funds.

So, this does the job:

• Uses our original BIP-39 Mnemonic

• Does not require remembering the BIP-39 passphrase

• Preserves all of the original wallets

But:

• The 59-word SLIP-39 Mnemonics cannot (yet) be imported into the Trezor "Model
T"

• The original BIP-39 Mnemonic phrase cannot be recovered, for any hardware wallet

• Must use the SLIP-39 App to generate "Paper Wallets", to recover the funds

So, this is a good "emergency backup" solution; you or your heirs would be able to
recover the funds with a very high level of security and reliability.

4.3.2 Best Recovery: Using Recovered BIP-39 Mnemonic Phrase

The best solution is to use SLIP-39 to back up the original BIP-39 Seed Entropy (not the
generated Seed), and then later recover that Seed Entropy and re-generate the BIP-39
Mnemonic phrase. You will continue to need to remember and use your original BIP-39
passphrase:

26



First, observe that we can recover the 128-bit Seed Entropy from the BIP-39 Mnemonic
phrase (not the 512-bit generated Seed): 3

( python3 -m slip39.recovery --bip39 --entropy -v \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong"

) 2>&1

2022-11-11 08:06:40 slip39.recovery Recovered 128-bit BIP-39 secret from english mnemonic
2022-11-11 08:06:40 slip39.recovery Recovered BIP-39 secret; To re-generate SLIP-39 wallet, send it to: python3 -m slip39 --secret -
ffffffffffffffffffffffffffffffff

Now we generate SLIP-39 Mnemonics to recover the 128-bit Seed Entropy. Note that
these are 20-word Mnemonics. However, these are NOT the wallets we expected! These
are the well-known native SLIP-39 wallets from the 0xFFFF...FF Seed Entropy; not the
well-known native BIP-39 wallets from that Seed Entropy, which generate the Ethereum
wallet address 0xfc20..1B5E! Why not?

3

( python3 -m slip39.recovery --bip39 --entropy \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong" \

| python3 -m slip39 --secret - --no-card -v
) 2>&1 | tail -20

2022-11-11 08:06:41 slip39 4 skin 11 debut 18 superior
2022-11-11 08:06:41 slip39 5 black 12 smug 19 leaves
2022-11-11 08:06:41 slip39 6 hazard 13 listen 20 view
2022-11-11 08:06:41 slip39 7 endorse 14 single
2022-11-11 08:06:41 slip39 5th 1 artist 8 idea 15 texture
2022-11-11 08:06:41 slip39 2 leaf 9 penalty 16 group
2022-11-11 08:06:41 slip39 3 decision 10 medal 17 diet
2022-11-11 08:06:41 slip39 4 snake 11 adequate 18 symbolic
2022-11-11 08:06:41 slip39 5 activity 12 news 19 branch
2022-11-11 08:06:41 slip39 6 mother 13 founder 20 humidity
2022-11-11 08:06:41 slip39 7 stadium 14 clay
2022-11-11 08:06:41 slip39 6th 1 artist 8 detailed 15 strategy
2022-11-11 08:06:41 slip39 2 leaf 9 amazing 16 walnut
2022-11-11 08:06:41 slip39 3 decision 10 divorce 17 browser
2022-11-11 08:06:41 slip39 4 spider 11 plastic 18 subject
2022-11-11 08:06:41 slip39 5 academic 12 premium 19 testify
2022-11-11 08:06:41 slip39 6 knit 13 juice 20 paces
2022-11-11 08:06:41 slip39 7 rumor 14 prune
2022-11-11 08:06:41 slip39.layout ETH m/44’/60’/0’/0/0 : 0x824b174803e688dE39aF5B3D7Cd39bE6515A19a1
2022-11-11 08:06:41 slip39.layout BTC m/84’/0’/0’/0/0 : bc1q9yscq3l2yfxlvnlk3cszpqefparrv7tk24u6pl

Because we must tell slip39 to that we’re using the BIP-39 Mnemonic and Seed
generation process to derived the wallet addresses from the Seed Entropy (not the SLIP-
39 standard). So, we add the -using-bip39 option:

3

27



( python3 -m slip39.recovery --bip39 --entropy \
--mnemonic "zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo zoo wrong" \

| python3 -m slip39 --secret - --no-card -v --using-bip39
) 2>&1 | tail -20

2022-11-11 08:06:41 slip39 4 skin 11 satoshi 18 inmate
2022-11-11 08:06:41 slip39 5 budget 12 hospital 19 injury
2022-11-11 08:06:41 slip39 6 frozen 13 grant 20 task
2022-11-11 08:06:41 slip39 7 game 14 herald
2022-11-11 08:06:41 slip39 5th 1 erode 8 estate 15 maximum
2022-11-11 08:06:41 slip39 2 pajamas 9 behavior 16 theater
2022-11-11 08:06:41 slip39 3 decision 10 general 17 grin
2022-11-11 08:06:41 slip39 4 snake 11 spend 18 news
2022-11-11 08:06:41 slip39 5 capture 12 adequate 19 ocean
2022-11-11 08:06:41 slip39 6 crisis 13 knife 20 shadow
2022-11-11 08:06:41 slip39 7 stadium 14 segment
2022-11-11 08:06:41 slip39 6th 1 erode 8 hairy 15 wrap
2022-11-11 08:06:41 slip39 2 pajamas 9 class 16 remind
2022-11-11 08:06:41 slip39 3 decision 10 race 17 racism
2022-11-11 08:06:41 slip39 4 spider 11 facility 18 inmate
2022-11-11 08:06:41 slip39 5 cricket 12 pipeline 19 likely
2022-11-11 08:06:41 slip39 6 level 13 burden 20 uncover
2022-11-11 08:06:41 slip39 7 prisoner 14 moment
2022-11-11 08:06:41 slip39.layout ETH m/44’/60’/0’/0/0 : 0xfc2077CA7F403cBECA41B1B0F62D91B5EA631B5E
2022-11-11 08:06:41 slip39.layout BTC m/84’/0’/0’/0/0 : bc1qk0a9hr7wjfxeenz9nwenw9flhq0tmsf6vsgnn2

And, there we have it – we’ve recovered exactly the same Ethereum and Bitcoin wallets
as would a native BIP-39 hardware wallet like a Ledger Nano.

1. Using SLIP-39 App "Backup" Controls

In the SLIP-39 App, the default Controls presented are to "Backup" a BIP-39
recovery phrase.

In "Seed Source", enter your existing BIP-39 recovery phrase. In "Seed Secret",
make sure "Using BIP-39" is selected, and enter your BIP-39 passphrase. This
allows us to display the proper wallet addresses – we do not store your password,
or save it as part of the SLIP-39 cards! You will need to remember and use your
passphrase whenever you use your BIP-39 phrase to initialize a hardware wallet.

Check that the Recovery needs . . . Mnemonic Card Groups are correct for your
application, and hit Save!

Later, use the "Recover" Controls to get your BIP-39 recovery phrase back, from
your SLIP-39 cards, whenever you need it.

Practice this a few times (using the "zoo zoo . . . wrong" 12-word or "zoo zoo
. . . vote" 24-word phrase) until you’re confident. Then, back up your real BIP-39
recovery phrase.

Once you’re convinced you can securely and reliably recover your BIP-39 phrase
any time you need it, we recommend that you destroy your original BIP-39 recovery
phrase backup(s). They are dangerous and unreliable, and only serve to make your
Cryptocurrency accounts less secure!

28



5 Building & Installing

The python-slip39 project is tested under both homebrew:

$ brew install python-tk@3.9

and using the official python.org/downloads installer.
Either of these methods will get you a python3 executable running version 3.9+,

usable for running the slip39 module, and the slip39.gui GUI.

5.1 The slip39 Module

To build the wheel and install slip39 manually:

$ git clone git@github.com:pjkundert/python-slip39.git
$ make -C python-slip39 install

To install from Pypi, including the optional requirements to run the PySimpleGUI/tkinter
GUI, support serial I/O, and to support creating encrypted BIP-38 and Ethereum JSON
Paper Wallets:

$ python3 -m pip install slip39[gui,wallet,serial]

5.2 The slip39 GUI

To install from Pypi, including the optional requirements to run the PySimpleGUI/tkinter
GUI:

$ python3 -m pip install slip39[gui]

Then, there are several ways to run the GUI:

$ python3 -m slip39.gui # Execute the python slip39.gui module main method
$ slip39-gui # Run the main function provided by the slip39.gui module

5.2.1 The macOS/win32 SLIP-39.app GUI

You can build the native macOS and win32 SLIP-39.app App.
This requires the official python.org/downloads installer; the homebrew python-tk@3.9

will not work for building the native app using either PyInstaller. (The py2app approach
doesn’t work in either version of Python).

$ git clone git@github.com:pjkundert/python-slip39.git
$ make -C python-slip39 app

29

https://www.python.org/downloads/
https://python.org/downloads


5.2.2 The Windows 10 SLIP-39 GUI

Install Python from https://python.org/downloads, and the Microsoft C++ Build
Tools via the Visual Studio Installer (required for installing some slip39 package de-
pendencies).

To run the GUI, just install slip39 package from Pypi using pip, including the gui
and wallet options. Building the Windows SLIP-39 executable GUI application requires
the dev option.

PS C:\Users\IEUser> pip install slip39[gui,wallet,dev]

To work with the python-slip39 Git repo on Github, you’ll also need to install Git
from git-scm.com. Once installed, run "Git bash", and

$ ssh-keygen.exe -t ed25519

to create an id_ed25519.pub SSH identity, and import it into your Git Settings SSH
keys. Then,

$ mkdir src
$ cd src
$ git clone git@github.com:pjkundert/python-slip39.git

1. Code Signing

The MMC (Microsoft Management Console) is used to store your code-signing cer-
tificates. See stackoverflow.com for how to enable its Certificate management.

6 Licensing

Each installation of the SLIP-39 App requires an Ed25519 "Agent" identity, and cryp-
tographically signed license(s) to activate various python-slip39 features. No license is
required to use basic features; advanced features require a license.

6.1 Create an Ed25519 "Agent" Key

The Ed25519 signing "Agent" identity is loaded at start-up, and (if necessary) is cre-
ated automatically on first execution. This is similar to the ssh-keygen -t ed25519
procedure.

Each separate installation must have a ~/.crypto-licensing/python-slip39.crypto-keypair.
This contains the licensing "Agent" credentials: a passphrase-encrypted Ed25519 private
key, and a self-signed public key. This shows that we actually had access to the private key
and used it to create a signature for the claimed public key and the supplied encrypted
private key – proving that the public key is valid, and associated with the encrypted
private key.

30

https://python.org/downloads
https://visualstudio.microsoft.com/visual-cpp-build-tools
https://visualstudio.microsoft.com/visual-cpp-build-tools
https://github.com/pjkundert/python-slip39.git
https://git-scm.com/download/win
https://git-scm.com/download/win
https://stackoverflow.com/questions/19879812/signing-exe-with-cer-file-what-is-my-certificates-name-that-signtool-exe-is


6.2 Validating an Advanced Feature License

When an advanced feature is used, all available python-slip39.crypto-license files are
loaded. They are examined, and if a license is found that is:

• Assigned to this Agent and Machine-ID

• Contains the required license authorizations

then the functionality is allowed to proceed.
If no license is found, instructions on how to obtain a license for this Agent on this

Machine-ID will be displayed.
If you’ve already obtained a "master" license on your primary machine’s SLIP-39

installation, you can use it to issue a sub-license to this installation (eg. for your air-
gapped cryptocurrency management machine).

Otherwise, a URL is displayed at which the required "master" license can be issued.

6.2.1 Get a sub-license From Your "master" License

Typically, you’ll be using python-slip39’s advanced features on an air-gapped computer.
You do not want to visit websites from this computer. So, you obtain a sub-license from
your primary computer’s python-slip39 installation, and place it on your secure air-gapped
computer (eg. using a USB stick).

Take note of the secondary machine’s Agent ID (pubkey) and Machine ID. On your
primary computer (with the "master" license), run:

python3 -m slip39.sublicense <agent-pubkey> <machine-id>

Take the output, and place it in the file ~/.crypto-licensing/python-slip39.crypto-license
on your air-gapped computer.

6.2.2 Obtaining an Advanced Feature "master" License

On your primary computer, open the provided URL in a browser. The URL contains the
details of the advanced feature desired.

This URL’s web page will request an Ed25519 "Agent" public key to issue your "mas-
ter" license to. This should be your primary user account’s Ed25519 "Agent" public key –
this master "Agent" will be issuing sub-licenses to any of your other SLIP-39 installations.
You will be redirected to a URL that is unique to the advanced feature plus your Agent
ID.

An invoice will be generated with unique Bitcoin, Ethereum and perhaps other cryp-
tocurrency addresses. Pay the required amount of cryptocurrency to one of the provided
wallet addresses. Within a few seconds, the cryptocurrency transfer will be confirmed.

Once the payment for the advanced feature is confirmed, the URL including your
agent ID will always allow you to re-download the license. It is only usable by your Agent
ID to issue sub-licenses to your python-slip39 installations on your machines.

31



7 Dependencies

Internally, python-slip39 project uses Trezor’s python-shamir-mnemonic to encode the
seed data to SLIP-39 phrases, python-hdwallet to convert seeds to ETH, BTC, LTC
and DOGE wallets, and the Ethereum project’s eth-account to produce encrypted JSON
wallets for specified Ethereum accounts.

7.1 The python-shamir-mnemonic API

To use it directly, obtain , and install it, or run python3 -m pip install shamir-mnemonic.

$ shamir create custom --group-threshold 2 --group 1 1 --group 1 1 --group 2 5 --group 3 6
Using master secret: 87e39270d1d1976e9ade9cc15a084c62
Group 1 of 4 - 1 of 1 shares required:
merit aluminum acrobat romp capacity leader gray dining thank rhyme escape genre havoc furl breathe class pitch location render beard
Group 2 of 4 - 1 of 1 shares required:
merit aluminum beard romp briefing email member flavor disaster exercise cinema subject perfect facility genius bike include says ugly package
Group 3 of 4 - 2 of 5 shares required:
merit aluminum ceramic roster already cinema knit cultural agency intimate result ivory makeup lobe jerky theory garlic ending symbolic endorse
merit aluminum ceramic scared beam findings expand broken smear cleanup enlarge coding says destroy agency emperor hairy device rhythm reunion
merit aluminum ceramic shadow cover smith idle vintage mixture source dish squeeze stay wireless likely privacy impulse toxic mountain medal
merit aluminum ceramic sister duke relate elite ruler focus leader skin machine mild envelope wrote amazing justice morning vocal injury
merit aluminum ceramic smug buyer taxi amazing marathon treat clinic rainbow destroy unusual keyboard thumb story literary weapon away move
Group 4 of 4 - 3 of 6 shares required:
merit aluminum decision round bishop wrote belong anatomy spew hour index fishing lecture disease cage thank fantasy extra often nail
merit aluminum decision scatter carpet spine ruin location forward priest cage security careful emerald screw adult jerky flame blanket plot
merit aluminum decision shaft arcade infant argue elevator imply obesity oral venture afraid slice raisin born nervous universe usual racism
merit aluminum decision skin already fused tactics skunk work floral very gesture organize puny hunting voice python trial lawsuit machine
merit aluminum decision snake cage premium aide wealthy viral chemical pharmacy smoking inform work cubic ancestor clay genius forward exotic
merit aluminum decision spider boundary lunar staff inside junior tendency sharp editor trouble legal visual tricycle auction grin spit index

32

https://gihub.com/trezor/python-shamir-mnemonic.git
https://github.com/meherett/python-hdwallet.git
https://github.com/ethereum/eth-account

	Hardware Wallet "Seed" Configuration
	Security with Availability
	Shamir's Secret Sharing System (SSSS)

	SLIP-39 Account Creation, Recovery and Generation
	Creating New SLIP-39 Recoverable Seeds
	Paper Wallets
	Supported Cryptocurrencies

	The macOS/win32 SLIP-39.app GUI App
	The Python slip39 CLI
	slip39 Synopsis

	Recovery & Re-Creation
	slip39.recovery Synopsis
	Pipelining slip39.recovery | slip39 --secret -
	Pipelining Backup of a BIP-39 Mnemonic Phrase

	Generation of Addresses
	slip39-generator Synopsis
	Producing Addresses
	X Public Keys
	Serial Port Connected Secure Seed Enclave

	The slip39 module API
	slip39.create
	slip39.produce_pdf
	slip39.write_pdfs
	slip39.recover
	slip39.recover_bip39
	slip39.produce_bip39


	Conversion from BIP-39 to SLIP-39
	BIP-39 vs. SLIP-39 Incompatibility
	BIP-39 Entropy to Mnemonic
	BIP-39 Mnemonic to Seed
	BIP-39 Seed to Address
	SLIP-39 Entropy to Mnemonic
	SLIP-39 Mnemonic to Seed
	SLIP-39 Seed to Address

	BIP-39 vs SLIP-39 Key Derivation Summary
	BIP-39 Backup via SLIP-39
	Emergency Recovery: Using Recovered Paper Wallets
	Best Recovery: Using Recovered BIP-39 Mnemonic Phrase


	Building & Installing
	The slip39 Module
	The slip39 GUI
	The macOS/win32 SLIP-39.app GUI
	The Windows 10 SLIP-39 GUI


	Licensing
	Create an Ed25519 "Agent" Key
	Validating an Advanced Feature License
	Get a sub-license From Your "master" License
	Obtaining an Advanced Feature "master" License


	Dependencies
	The python-shamir-mnemonic API


