--- title: xDeepFM keywords: fastai sidebar: home_sidebar summary: "A pytorch implementation of Extreme Deep Factorization Machines (xDeepFM)." description: "A pytorch implementation of Extreme Deep Factorization Machines (xDeepFM)." nb_path: "nbs/models/models.xdeepfm.ipynb" ---
{% raw %}
{% endraw %} {% raw %}
{% endraw %} {% raw %}

class CompressedInteractionNetwork[source]

CompressedInteractionNetwork(input_dim, cross_layer_sizes, split_half=True) :: Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

{% endraw %} {% raw %}

class xDeepFM[source]

xDeepFM(field_dims, embed_dim, mlp_dims, dropout, cross_layer_sizes, split_half=True) :: Module

A pytorch implementation of xDeepFM. Reference: J Lian, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems, 2018.

{% endraw %} {% raw %}
{% endraw %}

References:-- J Lian, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems, 2018.