
Error in estimated kurtosis as a function of number of
datapoints. 'Additive quasirandom' gives the maximum error
when c = (√5 − 1)/2. 'Random' gives the average error over
six runs of random numbers, where the average is taken to
reduce the magnitude of the wild fluctuations

Low-discrepancy sequence
In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of , its subsequence  has a low
discrepancy.

Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set B is close to
proportional to the measure of B, as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific
definitions of discrepancy differ regarding the choice of B (hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually
normalized) and combined (usually by taking the worst value).

Low-discrepancy sequences are also called quasirandom sequences, due to their common use as a replacement of uniformly distributed random
numbers. The "quasi" modifier is used to denote more clearly that the values of a low-discrepancy sequence are neither random nor pseudorandom,
but such sequences share some properties of random variables and in certain applications such as the quasi-Monte Carlo method their lower
discrepancy is an important advantage.

Quasirandom numbers have an advantage over pure random numbers in that they cover
the domain of interest quickly and evenly.

Two useful applications are in finding the characteristic function of a probability
density function, and in finding the derivative function of a deterministic function with
a small amount of noise. Quasirandom numbers allow higher-order moments to be
calculated to high accuracy very quickly.

Applications that don't involve sorting would be in finding the mean, standard
deviation, skewness and kurtosis of a statistical distribution, and in finding the integral
and global maxima and minima of difficult deterministic functions. Quasirandom
numbers can also be used for providing starting points for deterministic algorithms that
only work locally, such as Newton–Raphson iteration.

Quasirandom numbers can also be combined with search algorithms. With a search
algorithm, quasirandom numbers can be used to find the mode, median, confidence
intervals and cumulative distribution of a statistical distribution, and all local minima
and all solutions of deterministic functions.

Various methods of numerical integration can be phrased as approximating the integral of a function  in some interval, e.g. [0,1], as the average of
the function evaluated at a set  in that interval:

If the points are chosen as , this is the rectangle rule. If the points are chosen to be randomly (or pseudorandomly) distributed, this is the
Monte Carlo method. If the points are chosen as elements of a low-discrepancy sequence, this is the quasi-Monte Carlo method. A remarkable result,
the Koksma–Hlawka inequality (stated below), shows that the error of such a method can be bounded by the product of two terms, one of which
depends only on , and the other one is the discrepancy of the set .

It is convenient to construct the set  in such a way that if a set with  elements is constructed, the previous  elements need not
be recomputed. The rectangle rule uses points set which have low discrepancy, but in general the elements must be recomputed if  is increased.
Elements need not be recomputed in the random Monte Carlo method if  is increased, but the point sets do not have minimal discrepancy. By using
low-discrepancy sequences we aim for low discrepancy and no need for recomputations, but actually low-discrepancy sequences can only be
incrementally good on discrepancy if we allow no recomputation.

The discrepancy of a set  is defined, using Niederreiter's notation, as

Applications

Low-discrepancy sequences in numerical integration

Definition of discrepancy
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where  is the -dimensional Lebesgue measure,  is the number of points in  that fall into , and  is the set of -dimensional intervals
or boxes of the form

where .

The star-discrepancy  is defined similarly, except that the supremum is taken over the set  of rectangular boxes of the form

where  is in the half-open interval [0, 1).

The two are related by

Note: With these definitions, discrepancy represents the worst-case or maximum point density deviation of a uniform set. However, also other error
measures are meaningful, leading to other definitions and variation measures. For instance, -discrepancy or modified centered -discrepancy are
also used intensively to compare the quality of uniform point sets. Both are much easier to calculate for large  and .

Let  be the -dimensional unit cube, . Let  have bounded variation  on  in the sense of Hardy and Krause. Then
for any  in ,

The Koksma–Hlawka inequality is sharp in the following sense: For any point set  in  and any , there is a function  with
bounded variation and  such that

Therefore, the quality of a numerical integration rule depends only on the discrepancy .

Let . For  we write

and denote by  the point obtained from x by replacing the coordinates not in u by . Then

where  is the discrepancy function.

Applying the Cauchy–Schwarz inequality for integrals and sums to the Hlawka–Zaremba identity, we obtain an  version of the Koksma–Hlawka
inequality:

where

The Koksma–Hlawka inequality

The formula of Hlawka–Zaremba

The L2 version of the Koksma–Hlawka inequality
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and

 discrepancy has a high practical importance because fast explicit calculations are possible for a given point set. This way it is easy to create point
set optimizers using  discrepancy as criteria.

It is computationally hard to find the exact value of the discrepancy of large point sets. The Erdős–Turán–Koksma inequality provides an upper
bound.

Let  be points in  and  be an arbitrary positive integer. Then

where

Conjecture 1. There is a constant  depending only on the dimension , such that

for any finite point set .

Conjecture 2. There is a constant  depending only on : , such that:

for infinite number of  for any infinite sequence .

These conjectures are equivalent. They have been proved for  by W. M. Schmidt. In higher dimensions, the corresponding problem is still open.
The best-known lower bounds are due to Michael Lacey and collaborators.

Let . Then

for any finite point set .

Let . W. M. Schmidt proved that for any finite point set ,

where

For arbitrary dimensions , K. F. Roth proved that

The Erdős–Turán–Koksma inequality

The main conjectures

Lower bounds
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for any finite point set . Jozef Beck [1] established a double log improvement of this result in three dimensions. This was improved by
D. Bilyk and M. T. Lacey to a power of a single logarithm. The best known bound for s > 2 is due D. Bilyk and M. T. Lacey and A. Vagharshakyan.[2]

For  there is a  so that

for any finite point set .

Because any distribution of random numbers can be mapped onto a uniform distribution, and quasirandom numbers are mapped in the same way, this
article only concerns generation of quasirandom numbers on a multidimensional uniform distribution.

There are constructions of sequences known such that

where  is a certain constant, depending on the sequence. After Conjecture 2, these sequences are believed to have the best possible order of
convergence. Examples below are the van der Corput sequence, the Halton sequences, and the Sobol’ sequences. One general limitation is that
construction methods can usually only guarantee the order of convergence. Practically, low discrepancy can be only achieved if  is large enough,
and for large given s this minimum  can be very large. This means running a Monte-Carlo analysis with e.g.  variables and 
points from a low-discrepancy sequence generator may offer only a very minor accuracy improvement .

Sequences of quasirandom numbers can be generated from random numbers by imposing a negative correlation on those random numbers. One way
to do this is to start with a set of random numbers  on  and construct quasirandom numbers  which are uniform on  using:

 for  odd and  for  even.

A second way to do it with the starting random numbers is to construct a random walk with offset 0.5 as in:

That is, take the previous quasirandom number, add 0.5 and the random number, and take the result modulo 1.

For more than one dimension, Latin squares of the appropriate dimension can be used to provide offsets to ensure that the whole domain is covered
evenly.

For any irrational , the sequence

has discrepancy tending to . Note that the sequence can be defined recursively by

A good value of  gives lower discrepancy than a sequence of independent uniform random numbers.

The discrepancy can be bounded by the approximation exponent of . If the approximation exponent is , then for any , the following bound
holds:[3]

By the Thue–Siegel–Roth theorem, the approximation exponent of any irrational algebraic number is 2, giving a bound of  above.

The recurrence relation above is similar to the recurrence relation used by a linear congruential generator, a poor-quality pseudorandom number
generator:[4]

Construction of low-discrepancy sequences

Random numbers

Additive recurrence
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Coverage of the unit square. Left for additive
quasirandom numbers with
c = 0.5545497..., 0.308517... Right for
random numbers. From top to bottom. 10,
100, 1000, 10000 points.

First 256 points of the (2,3) Halton
sequence

For the low discrepancy additive recurrence above, a and m are chosen to be 1. Note, however, that
this will not generate independent random numbers, so should not be used for purposes requiring
independence.

The value of  with lowest discrepancy is the fractional part of the golden ratio:[5]

Another value that is nearly as good is the fractional part of the silver ratio, which is the fractional part
of the square root of 2:

In more than one dimension, separate quasirandom numbers are needed for each dimension. A
convenient set of values that are used, is the square roots of primes from two up, all taken modulo 1:

However, a set of values based on the generalised golden ratio has been shown to produce more evenly
distributed points. [6]

The list of pseudorandom number generators lists methods for generating independent pseudorandom
numbers. Note: In few dimensions, recursive recurrence leads to uniform sets of good quality, but for
larger  (like ) other point set generators can offer much lower discrepancies.

Let

be the -ary representation of the positive integer , i.e. . Set

Then there is a constant  depending only on  such that  satisfies

where  is the star discrepancy.

The Halton sequence is a natural generalization of the van der Corput sequence to higher dimensions. Let s be
an arbitrary dimension and b1, ..., bs be arbitrary coprime integers greater than 1. Define

Then there is a constant C depending only on b1, ..., bs, such that sequence {x(n)}n≥1 is a s-dimensional
sequence with

Let  be coprime positive integers greater than 1. For given  and , the -dimensional
Hammersley set of size  is defined by[7]

for . Then

van der Corput sequence

Halton sequence

Hammersley set
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2D Hammersley set of size 256

where  is a constant depending only on .

Note: The formulas show that the Hammersley set is actually the Halton sequence, but we get one more
dimension for free by adding a linear sweep. This is only possible if  is known upfront. A linear set is also
the set with lowest possible one-dimensional discrepancy in general. Unfortunately, for higher dimensions, no
such "discrepancy record sets" are known. For , most low-discrepancy point set generators deliver at
least near-optimum discrepancies.

The Antonov–Saleev variant of the Sobol’ sequence generates numbers between zero and one directly as
binary fractions of length  from a set of  special binary fractions,  called direction
numbers. The bits of the Gray code of , , are used to select direction numbers. To get the Sobol’ sequence
value  take the exclusive or of the binary value of the Gray code of  with the appropriate direction number.
The number of dimensions required affects the choice of .

Poisson disk sampling is popular in video games to rapidly place objects in a way that appears random-looking but guarantees that every two points
are separated by at least the specified minimum distance.[8] This does not guarantee low discrepancy (as e. g. Sobol’), but at least a significantly
lower discrepancy than pure random sampling. The goal of these sampling patterns is based on frequency analysis rather than discrepancy, a type of
so-called "blue noise" patterns.

The points plotted below are the first 100, 1000, and 10000 elements in a sequence of the Sobol' type. For comparison, 10000 elements of a sequence
of pseudorandom points are also shown. The low-discrepancy sequence was generated by TOMS algorithm 659.[9] An implementation of the
algorithm in Fortran is available from Netlib.

The first 100 points in a low-discrepancy sequence of the Sobol'
type.

The first 1000 points in the same sequence. These 1000 comprise
the first 100, with 900 more points.

Sobol sequence

Poisson disk sampling

Graphical examples
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The first 10000 points in the same sequence. These 10000
comprise the first 1000, with 9000 more points.

For comparison, here are the first 10000 points in a sequence of
uniformly distributed pseudorandom numbers. Regions of higher

and lower density are evident.

Discrepancy theory
Markov chain Monte Carlo
Quasi-Monte Carlo method
Sparse grid
Systematic sampling
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