
influx_si Documentation
Release 5.0

Serguei SOKOL

Mar 05, 2020

CONTENTS

1 Introduction 1

2 Change Log for influx_si 5

3 Installation 19

4 Quick Start 23

5 User’s manual 25

6 Programmer’s documentation for influx_s 51

7 How to . . . 63

8 Troubleshooting 65

9 Consulting and more 67

10 License for influx_s software 69

11 Indices and tables 77

Python Module Index 79

Index 81

i

ii

CHAPTER

ONE

INTRODUCTION

influx_s and influx_i are programs designed for flux and metabolite concentration estimation based on labeling
data using stable isotopes (essentially 13C but combination of multiple isotopes like 2H, 13C, 15N, . . . is also possible).
influx_s works with stationary data while the influx_i is able to simulate instationary labeling (hence the _i
in the name). Both work in metabolically stationary context. The whole project is referred as influx_si. Note also
that the term influx_si is used in contexts where influx_s and influx_i are interchangeable.

1.1 influx_si

Flux and metabolite concentration values are obtained as a result of a fitting between simulated labeling data and
the data measured by MS or NMR techniques. In this documentation the terms fitting and optimization are used as
synonyms.

1.2 influx_s

For the theory behind flux calculations in stationary labeling context see the following papers:

Wiechert, W., Möllney, M., Isermann, N., Wurzel, M., and de Graaf, A. A. (1999). Bidirectional reaction steps in
metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng, 66(2),
69-85.

Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G. (2007). Elementary metabolite units (EMU): a novel
framework for modeling isotopic distributions. Metab Eng, 9(1), 68-86.

Sokol, S., Millard, P., and Portais, J-C. (2012). influx_s: increasing numerical stability and precision for metabolic
flux analysis in isotope labeling experiment. Bioinformatics, 2012, 28, 687-693

The main additional value to flux calculation of influx_si compared to other publicly available software (13CFlux,
OpenFlux, INCA, . . .) is the usage of NLSIC algorithm for fitting purposes. This algorithm provides:

• more reliable convergence which results in better numerical precision, i.e. even started from random initial
points, it converges to the same solution if no local minima are present. So the spread of final solutions is close
to zero.

• better accuracy, i.e. the found numerical solution lies closer to the theoretical solution than solutions provided
by concurrent minimization algorithms. Thus, influx_s provides better numerical accuracy.

For more details, see the paper on influx_s cited above.

Moreover, influx_s provides:

• both cumomer and EMU frameworks for describing label distribution in the metabolites;

• parallel experiment treatment;

1

https://www.13cflux.net
http://openflux.sourceforge.net/
http://mfa.vueinnovations.com

influx_si Documentation, Release 5.0

• metabolite concentration estimation in particular stationary contexts (since v2.0. A methodology behind metabo-
lite concentration evaluation is not yet published at the moment of this writing.);

• a possibility to deal with metabolite pool confusion appearing either in compartmentation or in coelution;

• taking into account non carbon carrying fluxes like the balances of ADP/ATP, H2O, energy, electrons and so on;

• an optional automatic choice of free fluxes;

• optional equality and inequality constraint on fluxes and metabolite concentrations;

• short time execution and design for many core computers. So it facilitates high throughput flux calculations in
parallel way;

• a ‘least norm’ option that, in presence of structurally non identifiable fluxes, still allows to estimate some of
fluxes (those remained identifiable);

• a khi2 statistical test ‘goodness of fit’

• an optional automatic elimination of outliers;

• a command line interface letting an easy integration in automatic processing chains as well as many others
features and options;

• a possible scripting of post-treatment or graphic generating tasks;

• multi-platform support. It runs everywhere R and Python run, i.e. on Linux, Windows, MacOS and other Unix
variants.

1.3 influx_i

Instationary labeling (hence the final ‘i’ in the name) is the domain of influx_i. The theory of instationary labeling
was developed for example in

Katharina Nöh, Wolfgang Wiechert (2006) Experimental Design Principles for Isotopically Instationary 13C Labeling
Experiments Biotechnology and Bioengineering, 94(2), 234-251

Sokol S, Portais J-C (2015) Theoretical Basis for Dynamic Label Propagation in Stationary Metabolic Networks under
Step and Periodic Inputs. PLoS ONE 10(12): e0144652. doi:10.1371/journal.pone.0144652

As influx_i capitalizes on influx_s development and shares a big part of code, influx_i presents the same
advantages as listed in the previous section. It uses the same FTBL file format for network and measurements defi-
nitions and includes all options available for influx_s. Instationary labeling data can be supplied by an additional
tab formatted ASCII file making a shift from stationary to instationary calculations as simple as possible. Some of the
advantages of influx_i over the concurrent software coping with instationary labeling data are:

• fast calculations (e.g. on our Intel Xeon 2.50GHz workstation, e_coli_i case runs in 17s while the most
important part devoted to optimization takes as low as 10s);

• parallel experiment treatment;

• available choice between first and second order time schemes for ODE (ordinary differential equations) resolu-
tion;

• unconditional stability during ODE solving.

1.4 Documentation organization

Changes brought to every new version and bug fixes are resumed at the beginning of the next chapter Change Log
which is also distributed as a stand alone PDF file.

2 Chapter 1. Introduction

influx_si Documentation, Release 5.0

The rest of the documentation is organized as follows. Installation chapter provides brief instructions for software
installation. Quick start chapter gives an opportunity to a user to quickly start and evaluate the software and to see if it
corresponds to what he is looking for. A more detailed but still short User’s manual precedes a Programmer’s docu-
mentation. The latter chapter can be safely skipped by a user not interested in developing new features or fixing some
problems in influx_si. A small collection of How to. . . and Troubleshooting notice conclude the documentation.

1.5 Licensing

The original version of influx_si software was developed in the MetaSys team in the LISBP, Toulouse, FRANCE.

The software is licensed under the GNU Public License, Version 2.0 or higher at your conveniece (the “License”); you
may not use this software and documentation except in compliance with the License.

If you publish results obtained with influx_s you have to cite the original paper in Bioinformatics 2012 (cf. above).
A paper describing influx_i is yet to publish.

If you re-distribute influx_si alone or included in other software packages, you have to ensure that the end user
abide to the terms of this license.

You may obtain a copy of the License here or at

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Software and documentation author:

Serguei SOKOL, INRA, France <sokol [at] insa-toulouse.fr>

Copyright 2011-2019, INRA, France

1.5. Licensing 3

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

influx_si Documentation, Release 5.0

4 Chapter 1. Introduction

CHAPTER

TWO

CHANGE LOG FOR INFLUX_SI

2.1 2020-03-05 version 5.0.3

New feature:

• all Python scripts are doubled with executable files without ‘.py’ extension (suggested by Pierre Millard,
INRAE, and Matthieu Guionnet, CNRS, Toulouse, France)

Bug fix:

• fixed few typos in documentation

2.2 2020-02-26 version 5.0.2

Bug fix:

• fixed parallel execution of multiple FTBL on windows

• fixed influx_si hanging on in-existing directory in FTBL name

• fixed dimnames()[[1]]<- failure when nrow==1 (reported by Younes Dellero, INRAE, Rennes, France)

• fixed –ffguess silently failing when redundant reaction was present (idem)

• fixed use of influx_s.py –install_rdep (reported by Loic Le Gregam, INSA, Toulouse, France)

• updated user manual for trouble-shooting and consulting services

2.3 2020-01-10 version 5.0.1

Bug fix:

• fixed fatal error on windows platform

• fixed startup message about Rcpp_Rmumps module on some platforms

• fixed dependency on libsbml

2.4 2019-10-25 version 5.0

New features:

• converted to Python 3

5

influx_si Documentation, Release 5.0

• packaged with python distutils and Conda package management system. Now installation can be made
as simple as pip install influx_si or conda install influx_si. Internet connection is
required for both methods.

• auxiliary C++ routines are placed in multbxxc R packages. So, no more compilation is needed at first
execution of influx_si.

Bug fix (all bugs in this release are reported by Baudoin Delépine, INSA, Toulouse, France):

• fixed doc about R version (now 3.4.0 or higher) and rmumps (now 5.2.1-3 or higher)

• fixed use of –sln option

• added explicit error message if tmax is Inf (can happen if time grid could not be read from file indicated
in file_labcin ftbl field)

2.5 2017-07-04 version 4.4.3

New features:

• added 95% quantile in monte-carlo/cost/ci field in _res.kvh file. It makes possible to do a mono-tail chi2
test for goodness of fit

• added possibility for FTBL files to be encoded in UTF16 and UTF32 (based on case reported by Lucille
Stuani, INSERM, Toulouse, France)

• added an explicit error message if no label information could be found in parallel experiment FTBL (re-
ported idem)

Bug fix:

• fixed a warning in Monte-Carlo iteration about multiple values in if() close (reported idem)

2.6 2017-06-15 version 4.4.2

New features:

• added a new field “constrained net-xch01 fluxes” to the result kvh file

• ff2ftbl.py: instead of only free fluxes, all fluxes are read in kvh file. Thus in a modified FTBL, a partition
on free/dependent/constrained fluxes can differ from those used in the kvh file.

• ff2ftbl.py: if kvh and ftbl files have the same prefix, only this prefix can be given as a unique command
line argument

Bug fix:

• ff2ftbl.py: fixed “end of line” bug on Windows platform

• plot_smeas.R: fixed metabolite names retrieving in parallel experiments

• plot_smeas.R: fixed disgraceful exit if simulation in influx_s failed

2.7 2017-05-24 version 4.4.1

New features:

• in plot_smeas.R and plot_imass.R few cosmetic improvements in plot titles and legends

6 Chapter 2. Change Log for influx_si

influx_si Documentation, Release 5.0

Bug fix:

• fixed non varying free pools in influx_s

• fixed cases where some cumomer (or EMU) weights can have no cumomers (EMU)

• fixed libs.R by including some files (impacted preamble.R)

2.8 2017-05-22 version 4.4

New features:

• added plot_smeas.R file to be included in posttreat_R field in FTBL/OPTIONS. It plots all stationary
measurements vs their simulated counterparts in a pdf file.

• added preamble.R, an example of starting session when working with mynetwork.RData issued from
save_all.R or save_minenv.R

• R can be again of version 3.3+ (not necessarily 3.4+)

• minor speedup in instationary simulations

Bug fix:

• fixed names in dev vector of pool measurements

2.9 2017-04-28 version 4.3

New features:

• speed up of about 30-40% is achieved for instationary simulations with 2nd order time scheme (need
upgrade R at least to 3.4.0).

• in plot_imass.R, each measured mass fragment is presented in a separate plot instead of regrouping all
fragments for a given metabolite on the same plot.

• in plot_imass.R, non measured metabolites are plotted too now

Bug fix:

• fixed Monte-Carlo iterations with –np=1

• added a mention of python-libsbml in installation procedure

2.10 2017-03-30 version 4.2

New features:

• added a script ftbl2metxml.py converting an ftbl to an xml file suitable for visualization on http:
//metexplore.toulouse.inra.fr . Additionally, it reads flux values from corresponding . . . _res.kvh file (if
available) and put them in files . . . _net.txt, . . . _fwd.txt and . . . _rev.txt for later copy/pasting on the Met-
Explore site (suggested by Tony Palama, INSA, Toulouse, France)

• added comment tags ‘###’ to txt network format (recognized by txt2ftbl.py and respectively ‘//##’ tag
in FTBL format recognized by all programs using FTBL format) to mark a new pathway. It allows
ftbl2metxml.py to assign reactions to pathways and thus make a network graph more readable.

Bug fix:

2.8. 2017-05-22 version 4.4 7

http://metexplore.toulouse.inra.fr
http://metexplore.toulouse.inra.fr

influx_si Documentation, Release 5.0

• a duly error message is added to signal a network without any label entry in a reduced cumomer network.

2.11 2017-03-03 version 4.1

New features:

• added explicit error message when label transitions are missing for any reaction in NETWORK section

• improved speed of labeling simulation in influx_i

• added parameter –tblimit[=0] for trace back limit in errors generated by python (for developers only).

Bug fix:

• fixed error appearing in influx_i during parallel experiments in situation where time intervals are different
in different experiments (reported by Maria Fatarova, INSA, Toulouse, France)

• fixed file creation in plot_imass.R (it created pdf in the current directory instead of the working one)

2.12 2016-12-20 version 4.0.1

Bug fix:

• file txt2ftbl.py was lacking in the previous version (reported by Tony Palama, INSA, Toulouse, France)

2.13 2016-12-19 version 4.0

New features:

• parallel experiments (i.e. same metabolic state but different label entries) can now be processed both in
stationary (influx_s) and instationary (influx_i) labeling

• reaction having more than 2 metabolites on ever side can now be entered in FTBL as a series of reactions
with the same name

• metabolites with no carbon transitions (like ATP, NADP etc. when they are just co-factors) can now be
entered in NETWORK section. They can have stoechiometric coefficients different from 1

• the same metabolite can now appear on both sides of a reaction. It can be helpful for some special carbon
shuffles

• reactions without carbon transitions can now be entered in a new FTBL section NOTRACER_NETWORK.
It is a good place to enter for example biomass reaction. Stoechiometric coefficients different from one are
allowed at this place

• new utility txt2ftbl.py translates an easier readable/writable format for chemical reactions to an FTBL file

• added –addnoise option to facilitate creation of realistic simulated measurements

Bug fixes:

• fixed a bug preventing Monte-Carlo simulations with influx_i (reported by Maria Fatarova, INSA,
Toulouse, France)

8 Chapter 2. Change Log for influx_si

influx_si Documentation, Release 5.0

2.14 2016-07-29 version 3.2

New features:

• added controls for coherence of label transitions

• added detection of incoherent fragments in MASS_MEASUREMENTS (e.g. longer one than a whole
molecule)

• in LABEL_INPUT section, if incomplete labeled forms don’t sum up to 1, and several labeled forms are
absent, the lacking label fraction is assigned to the fully unlabeled form

• R package ‘snow’ is no more needed on windows platform to run Monte-Carlo simulations in parallel
mode

• on all platforms, Monte-Carlo simulations are now run on a PSOCK cluster and no more on a FORK
cluster (Linux) or SOCK (Windows)

• inequalities involving only constrained fluxes or depending solely on such fluxes are now simply ignored
with a warning

• fixed Jacobian calculation when no free flux exists

Bug fixes:

• fixed building a library mult_bxxc.dll on Windows platform (reported by Tony Palama, INSA/MetaToul
Toulouse, France)

• fixed building mult_bxxc.so in parallel context (multiple ftbls)

• fixed formulas in equalities and inequalities with flux names having parenthesis, brackets, spaces and alike

• cluster workers are parsimoniously created in case of multiple starting points

2.15 2016-06-13 version 3.1

New features:

• added controls and explicit error messages for DEVIATION=0 in FTBL file

• added column “p-value” to residual values in _res.kvh file (may help for outlier choice)

• added check-points for infinite values that can appear in residual and Jacobian

Bug fixes:

• fixed EMU mode in instationary case

• fixed renewal of mult_bxxc.so library in case of source update

• fixed cost value calculation in case of outlier exclusion

2.16 2016-04-18 version 3.0.1

Bug fixes:

• fixed including mult_bxxc.so file in zip archive which prevented from proper compiling of this dynamic
library

• fixed an absence of C++11 flag on platforms where it is not a standard by default.

2.14. 2016-07-29 version 3.2 9

influx_si Documentation, Release 5.0

2.17 2016-04-15 version 3.0

New features:

• influx_i.py is introduced for instationary label modeling

• some critical calculations are written in C++ so some compilation is needed at first execution.

• new optional package limSolve is used and need to be installed (as well as its dependencies) if --lim
option is used

• more TIMEIT points introduced for finer time control

Bug fixes:

• fixed performance issue in slam package for ‘-‘ and ‘+’ operations

• fixed sparse matrix preparation when there is only one non zero entry

2.18 2016-02-18 version 2.15

New features:

• calculation speed was improved due to the use of packages slam and rmumps instead of Matrix;

• added “cpu” field when timing is requested

Bug fixes:

• fixed a bug preventing a use of a flux added in EQALITIES in measured fluxes (reported by Edern Ca-
horeau, INSA, Toulouse, France)

• fixed minor problems in MC iterations (parameter distribution was not significantly affected)

2.19 2015-01-19 version 2.14

New features:

• commandArgs field in FTBL file can have comments in it and occur more than once somewhere in the
OPTIONS section

• --DEBUG option is removed as obsolete

• R package bitops is not required anymore to be installed (valid for R-3.0.0 or higher)

Bug fixes:

• fixed a bug in delivering an error message when commandArgs had a comment in it

• fixed the precedence of command line options over commandArgs given in FTBL

• fixed a bug in parsing FTBL file having a BOM (invisible utf8 encoding mark) in it (reported by Yanfen
Fu, University of Washington, USA)

• fixed representation of growth fluxes by ftbl2xgmml.py utility

10 Chapter 2. Change Log for influx_si

influx_si Documentation, Release 5.0

2.20 2014-09-17 version 2.13

New features:

• posttreat_R field can have several file names separated by '; '

• added explicit error message if a valid float value is missing for free or constrained flux

• added explicit error message if no dependent flux is included in the balance on any metabolite (suggested
by a case submitted by Marc O. Warmoes, Cornell University, USA)

• in the documentation, added a paragraph about consulting offer

• result .kvh file is greatly shortened, keeping only essential information. Custom additional information
can be stored in some file via posttreat_R option

• now, influx_s returns a non zero code to shell if an error occurred during execution;

• added a parameter monotone to the control list of NLSIC.

Bug fixes:

• fixed a bug in generating EMU systems (manifested in some special cases)

• fixed an error preventing from producing a message suggesting a new partition among dependent, free and
constrained fluxes (reported by Stéphane Mottelet, University of Compiegne, France)

• fixed metabolite pooling weights (manifested in some special cases)

• Windows platform: fixed passing command line options to R code

• Windows platform: precompiled nnls R package (version 32 bits) can produce wrong results. Recompile
it by hand or use 64 bits version.

2.21 2014-07-02 version 2.12

New features:

• parsing badly formatted ftbl files is made more robust

Bug fixes:

• fixed a bug in --emu option (was introduced in v.2.11)

2.22 2014-06-12 version 2.11.1

Bug fix:

• an option --noopt broken in 2.11 is repaired (reported by Pierre Millard, Manchester Institute of
Biotechnology, UK)

2.23 2014-06-11 version 2.11

New features:

• a joint use of the options --fseries and --irand gives a possibility to mix fixed and random values
in starting points

2.20. 2014-09-17 version 2.13 11

influx_si Documentation, Release 5.0

• post treatment option posttreat_R is introduced in FTBL file. A user script written in R can be used
to chain flux estimation and customized data treatment, e.g. graph plotting in a pdf file or simply saving of
all the environment for later use and exploring in an R interactive session

• added optional INEQUALITIES/METAB section in FTBL file. It can be helpful to limit variations of
estimated metabolite concentrations (suggested by Marc Carnicer, INSA of Toulouse, France)

• added optional EQUALITIES/METAB section in FTBL file. It can be helpful to fix a ratio between
varying metabolite concentrations (suggested by Marc Carnicer, idem)

• the default value of btdesc parameter in NLSIC algorithm is lowered from 0.75 to 0.1. In some cases, it
can accelerate the optimization convergence.

Bug fixes:

• fixed EMU list of participants in measurements

• fixed measurement matrix when only one measurement is available

• fixed a fatal error when no free flux is available but at least one metabolite quantity must be estimated

• fixed a bug in pooled measurements. This bug was harmful only if the metabolite pooling was used in
more than one type of measurements, e.g. mass and labeling. If only one type of measurements used
pooling (e.g. mass), the bug was without effect

• where appropriate, a word “labeling” was replaced by “label” in the field names of the _res.kvh file

• fixed superfluous backtracking iterations present for some particular residual functions

• if a flux or a metabolite is present more than once in formulas of (IN)EQUALITIES sections, its coefficients
are summed up instead of taking only the last one

• fixed a fatal error in generating inequality matrix for net fluxes

2.24 2014-04-08 version 2.10

New features:

• added an option --tikhreg which is an alternative for --ln option. In case of rank deficient Jaco-
bian, it calculates an increment step of the smallest norm in approximative way. It is done by Tikhonov
regularization

• added an option --ffguess which makes to ignore the partition between free and dependent fluxes
defined in FTBL file(s) and automatically guess a new free/dependent flux partition (suggested by Roland
Nilsson, Karolinska Institutet, Sweden)

• added utility ftbl2kvh.py which is useful for debugging purposes only

• utilities ftbl2xgmml.py, ftbl2cumoAb.py, ftbl2netan.py and ftbl2kvh.py are rewritten
in such a way that if no output redirection (with operands ‘>’ or ‘|’) occurs on the command line, the name
of the output file is automatically derived from the input one. The suffix .ftbl is simply replaced with
.xgmml, .sys, .netan or .kvh respectively. Thus a plain drug-and-drop can work with these utilities

• option --TIMEIT reports times with subsecond precision. The actual precision depends on the platform
but typically a 0.01 s precision should be available. On Windows, the precision is usually 1/60 of a second

Bug fixes:

• fixed include_growth_flux option for ftbl2cumoAb.py utility (reported by Marc Carnicer,
INSA of Toulouse, France)

12 Chapter 2. Change Log for influx_si

influx_si Documentation, Release 5.0

• fixed a bug preventing from checking for a linear dependence between rows of stoechiometric matrix if no
constrained net flux is defined in the FTBL file (reported by Roland Nilsson, idem)

2.25 2014-02-05 version 2.9

New features:

• utility ftbl2xgmml.py replaces ftbl2rsif.py. Now, a standalone XGMML file describes both a
network and its graphical properties instead of a collection of files where this information was spread. New
graphical conventions are now used.

• an obsolete utility ftbl2cytoscape.bat is removed form the distribution.

• added utility res2ftbl_meas.py generating measurement section from a result file _res.kvh

• added utility expa2ftbl.R transforming stoechiometric information in EXPA format (http://gcrg.ucsd.
edu/Downloads/ExtremePathwayAnalysis) to various sections of FTBL file, namely to EQUALITY section
where non carbon carrying fluxes can appear

• files generated by influx_s and collecting values for graphical representation (like edge.netflux.
mynetwork and others) are renamed by adding a suffix .attrs to make them compatible with Cy-
toscape v3.0

• utilities ffres2ftbl.sh and ff2ftbl.py distributed for a long time ago, are now mentioned in the
documentation

Bug fixes:

• fixed --fullsys option broken in the previous release.

2.26 2014-01-27 version 2.8

New features:

• EQUALITY section in FTBL file may include fluxes absent in NETWORK section, e.g. fluxes involved in
non carbon carrying reactions (suggested by Roland Nilsson, Karolinska Institutet, Sweden)

• when a meaningful partition between free and dependent fluxes cannot be made, a proposition is made as
to stoechiometric equations to be eliminated by hand (suggested by Roland Nilsson, idem)

• when --clownr option is used, reduced size of cumomer system is more efficient than without this
option (replace a fix in 2.6 version)

Bug fixes:

• fixed useless memory consumption during ftbl parsing when --emu option is used and very long
molecules (say >20 carbons) are present (reported by Roland Nilsson, idem)

• some error messages are made more explicit during FTBL parsing

• fixed Jacobian calculation for condensing input reaction

• fixed matrix constructions when no free flux is defined

• fixed b term for full cumomer system

• fixed inequality enforcement when adaptive backtracking is used in NLSIC

• fixed inequality precedence, now specific inequalities from FTBL file prevail on --cupn=CUPN option

2.25. 2014-02-05 version 2.9 13

http://gcrg.ucsd.edu/Downloads/ExtremePathwayAnalysis
http://gcrg.ucsd.edu/Downloads/ExtremePathwayAnalysis

influx_si Documentation, Release 5.0

2.27 2013-10-22 version 2.7

New features:

• Monte-Carlo simulations are done in parallel on Windows platform too (needs R package snow)

• if the option --seed=SEED is used, Monte-Carlo simulations are now reproducible even if run in parallel
on multiple cores

• for rank deficient Jacobian, the inequalities are now better enforced

• starting value for maxstep parameter is set to 10||𝑝|| instead of ||𝑝|| where p is a vector of starting values
for free parameters to fit.

Bug fixes:

• fixed a bug preventing to report partial Monte-Carlo results if some simulations failed and some not

• fixed a bug making to use all available cores instead of only one when NP was set to 1

• fixed a fatal error when inequality enforcement fails

• error and log messages during zero cross passes are made more explicit

• fixed sending some error messages on standard output instead of .err file

• when cumomer matrix is singular, fixed an error message about zero fluxes

2.28 2013-10-02 version 2.6

New features:

• added option --sln (solution least norm) which applies ‘least norm’ to the whole solution vector of free
parameters, not just to the increment vector (like --ln does)

• a parallel calculation of multiple FTBLs is moved from python to R code. In such a way, some economies
of repeated R starting up and library loading are made

• when zero crossing is used (--zc=ZC) a third pass is added without any zc constraint.

• added an option maxstep to control list of nlsic(). In some situations, it can make the convergence more
stable at early iterations.

Bug fixes:

• fixed a fatal error preventing from using BFGS optimization method

• fixed an error in calculating reduced size of cumomer or EMU systems. It did not impact the results (at
least for well defined network) but made calculations a little bit longer (reported by Stephane Mottelet,
University of Compiegne, France).

• a more explicit error message is generated when a given choice of free fluxes leads to a square but singular
flux (stoechiometric) matrix.

• some error messages were printed on standard output instead of .err file.

2.29 2013-06-28 version 2.5

New features:

14 Chapter 2. Change Log for influx_si

influx_si Documentation, Release 5.0

• an argument of the option --np=NP (number of processes) can be fractional, between 0 and 1 in which
case the number of requested cores is calculated as NP*number_of_available_cores

• in documentation, added a section describing some problematic cases and measures which could be un-
dertaken to solve or to work around them. Few more field names in the output file are described (based on
discussions with Yanfen Fu, University of Washington, USA)

• missing values in measurements (NA as Non Available) are allowed in FTBL files.

Bug fixes:

• fixed a fatal error if the rights of generated R file cannot be changed

• fixed a bug for --ln (least norm) option when without inequalities, increments were not of least norm
(reported by Stephane Massou, INSA of Toulouse, France)

• fixed an algorithm used in --ln. Now for all inequality systems, both least residual norm and least
solution norm are achieved (before, for some systems it was not the case). Due to this fix, we highly
recommend to update to this version if you use --ln option

• fixed a bug in “zero crossing” inequalities. Now, inequalities involving only constrained fluxes are can-
celed.

2.30 2013-04-11 version 2.4

New features:

• number of parallel processes (in case of multiple FTBL files) is limited to a number of cores or to an
argument of the --np option

• some consistency controls were added on flux names in various FTBL sections.

Bug fixes:

• fixed a bug in formatting some error messages during FTBL parsing;

• fixed an accidental removing of kvh.py file from the previous release;

• fixed non signaling to check .err file while some parsing errors did produce;

2.31 2013-03-28 version 2.3

New features:

• external multicore R package is replaced by native parallel package;

• convergence information of Monte-Carlo simulations is reported in the result file;

• relative SD (rsd) in Monte-Carlo statistics is calculated as SD/abs(mean) and no more as SD/abs(estimated
parameter);

• if the number of really calculated samples in Monte-Carlo is less than 2, statistics are not calculated;

• R code is self sufficient to be executed via source() function, even in parallel way;

• with a new option --nocalc, R code is generated but not executed.

Bug fixes:

• fixed concurrent access to a global variable in Monte-Carlo parallel execution;

• fixed scope issue in Monte-Carlo simulations preventing from update of the current solution;

2.30. 2013-04-11 version 2.4 15

influx_si Documentation, Release 5.0

• fixed some redundant warning messages;

• fixed placement of .err and .log files if FTBL(s) is (are) given with subdirectories in their names.

2.32 2013-03-15 version 2.2.1

Bug fixes:

• fixed a fatal error in Jacobian matrix construction when no measured fluxes are provided in FTBL file
(reported by Yanfen Fu, University of Washington, USA);

• in the User’s manual, added a naming convention for variable growth fluxes.

2.33 2013-03-13 version 2.2

New features:

• if more than one FTBL file is given in argument to influx_s, all files are proceeded simultaneously in
independent processes;

• outliers in measurements can be automatically detected and excluded from parameter fitting.

Bug fixes:

• fixed an error preventing Monte-Carlo results to be written if multicore package is not installed;

• fixed a documentation error about ln(𝑀) in mynetwork.pres.csv file;

• fixed warning resuming if there are many of them;

• fixed some error message generation on FTBL parsing.

2.34 2013-02-15 version 2.1

New features:

• in nlsic() a new field ‘retres’ is added to the list of returned values. It transfers “as is” the list returned by
a last call to residual calculation function;

• added a writing of generalized inverse of Jacobian to the result file;

Bug fix:

• fixed a typo preventing Monte-Carlo statistics on forward-reverse fluxes to be written in the result file.

2.35 2013-02-05 version 2.0

New features:

• metabolite pooling is modeled. Such pooling can appear due to compartmentation phenomenon or due to
isomer coelution in chromatography. Starting from this version, metabolite concentrations can be part of
fitted parameters;

• adaptive backtracking algorithm is introduced to NLSIC algorithm;

• history of convergence during minimization can be retrieved;

16 Chapter 2. Change Log for influx_si

influx_si Documentation, Release 5.0

• symbolic equations for dependent fluxes expressed as functions of free and constrained fluxes are generated
by ftbl2cumoAb.py script;

• METAB_MEASUREMENTS section is added to FTBL format;

• added 𝜒2 test for evaluating the goodness of fit;

• removed metab_scale field from OPTIONS section in FTBL format;

• “dead end” internal metabolites are allowed in a network without being an output metabolite. As conse-
quence, input-output fluxes must be explicitly declared as non reversible in the FTBL;

• added optional EMU framework (--emu);

• added optional series of starting points, fixed or randomly generated (--fseries, --iseries);

• matrix construction is reworked and fortran code is removed. Now, no more Rtool installation is required
for running influx_s;

• some error messages are made more explicit and more precise;

• outdated R package fUtilities is no more required;

Bug fixes:

• fixed stoechiometric matrix construction when for a given metabolite; all fluxes are free or constrained;

• fixed candidate propositions for free fluxes;

• fixed standard deviation value for a DD/T field in PEAK_MEASUREMENTS section.

2.36 2011-10-11 version 1.0

Initial release. Main features:

• NLSIC algorithm;

• FTBL input format from 13CFlux project;

• reduced cumomer set for cumomer balance equations;

• sparse matrices;

• usage of multicore R package for Monte-Carlo simulations on Unix platform;

• usable on platforms having Python+numpy and R+some modules;

• command line interface;

• brief user’s and programmer’s documentation;

• OpenSource (ECL) license.

2.36. 2011-10-11 version 1.0 17

influx_si Documentation, Release 5.0

18 Chapter 2. Change Log for influx_si

CHAPTER

THREE

INSTALLATION

The software was developed on Linux but can be used both on Linux (or other UNIX, MacOS included) and Windows
platforms.

Note: The code examples here after are given for Unix shell environment. On windows, in DOS environment the
syntax is often similar and in cygwin or Ubuntu environment (Unix tools on Windows) the syntax is identical to the
Unix’s one.

Note: In command examples to run, we use script names with extension .py. However, starting from version 5.0.3,
this extension can be omitted as all Python scripts are doubled with executable files without ‘.py’. For example,
commands:

$ influx_s.py e_coli

and

$ influx_s e_coli

are now equivalent. Even if it works on all platforms, it can be particularly useful for Windows where supplementary
effort can be required to associate .py file with Python interpreter. Using executable programs (i.e. without .py
extension) makes this extra configuration step no more mandatory.

3.1 Installation with conda

If you have Anaconda or Miniconda installed on your system, installation of influx_si resumes to:

$ conda install influx_si -c conda-forge -c bioconda

It installs influx_si itself as well as all needed dependencies both in Python and in R.

3.2 Installation with pip

If you don’t have any version of conda (neither miniconda nor Anaconda) but do have a Python and R installed
on your system, you can install influx_si with the following procedure.

19

influx_si Documentation, Release 5.0

Your need a python tool called pip which manages pure python packages. If it is not present on your sustem, you’ll
have to install it first to continue with this method. If you have multiple Pyhton versions installed on your system (e.g.
Python2 and Python3) you’ll have to use pip3 to install the software in the Python3 univers.

The first step will install only Python part of influx_si:

$ pip3 install influx_si

or

$ pip3 install --user influx_si

if you wish to install influx_si not system-wide but only in your own userspace.

To use the software influx_si, you’ll need some R dependencies listed bellow. You can try to install them by:

$ influx_s.py --install_rdep

If this procedure fails, you’ll have to solve the underlying problem identified from its error messages and rerun the
command again.

3.3 R dependencies

As of influx_si version 5.0, user has not to install R dependencies manually from an R session. So they are listed here
just for information.

• R-3.4.0 or higher (cf http://www.r-project.org/ or your system packaging solution) + the following packages.

– nnls

– rmumps (5.2.1-6 or higher)

– arrApply

– slam

– limSolve (optional, needed only for --lim option)

– multbxxc

Warning: As of this writing (September 17, 2014), an R package nnls distributed in precompiled form on
Windows platform, can produce wrong results if a 32 bits version is used on Windows 64 bits. To avoid this, use
64 bit version of R on Windows 64 bits or recompile it by hand. To be sure to use 64 bits version of R, check that
the Path system variable has the R path ending by \bin\x64 and not just by \bin.

3.4 Python dependencies

As of influx_si version 5.0, user has not to install Python dependencies manually. So they are listed here just for
information.

• python 3.0 (or higher) and modules

– scipy

– libsbml (optional, needed for ftbl2metxml.py)

20 Chapter 3. Installation

https://pip.pypa.io/en/stable/installing/
http://www.r-project.org/

influx_si Documentation, Release 5.0

3.4.1 Test of installation

Open a shell window and get to your working directory. Copy distributed test directory to the current directory by
running

$ influx_s.py --copy_test

then you can get in the newly created directory test and run some tests

$ cd test
$ influx_s.py e_coli.ftbl

If everything was correctly installed, you should see in your shell window an output looking like:

"/home/sokol/.local/bin/influx_s.py" "e_coli.ftbl"
code gen: 2019-12-11 16:12:17
calcul : 2019-12-11 16:12:17
end : 2019-12-11 16:12:22

The meaning of this output is quit simple. First, an R code is generated from FTBL file then it is executed till it ends.
Time moments at which these three events occur are reported.

The calculation result will be written in e_coli_res.kvh. It should be almost identical to the same file in ok/
subdirectory. On Unix you can do

$ diff e_coli_res.kvh ok/e_coli_res.kvh

to see if there is any difference. Some small differences in numerical values can be ok. They might come from
variations in versions of R and underlying numerical libraries (BLAS, LAPACK and so on).

If something went wrong, check the error messages in e_coli.err, interpret them, try to figure out why the errors
occurred and correct them.

In high throughput context, you can find useful to run influx_si in parallel on many FTBL files. It can be done
just by providing more than one FTBL file in argument. For example, with two of FTBLs provided with the package
you can run:

$ influx_s.py e_coli.ftbl e_coli_growth.ftbl

In this case, the output looks sightly different than in one by one run:

"/home/sokol/.local/bin/influx_s.py" "e_coli" "e_coli_growth"
e_coli: code gen: 2019-12-11 16:22:27
e_coli_growth: code gen: 2019-12-11 16:22:27
//calcul: 2019-12-11 16:22:28
//end : 2019-12-11 16:22:31

The time moments for code generation is preceded by a short version of FTBL file names. The symbol // means
parallel proceeding. Parallel calculations are launched after all files are proceeded for the code generation.

It is the operating system that dispatches and equilibrates the charge among available CPUs and cores, not
influx_si who simply launches these processes.

For a quick test of influx_i, you can run in the same directory:

$ influx_i.py e_coli_i

Normal output looks like

3.4. Python dependencies 21

influx_si Documentation, Release 5.0

"/home/sokol/.local/bin/influx_i.py" "e_coli_i"
code gen: 2019-12-11 16:25:38
calcul : 2019-12-11 16:25:38
end : 2019-12-11 16:25:54

Calculation results are written in e_coli_i_res.kvh and they can be compared with the same file in the ok/ sub-
directory. You can also visually check a generated graphic file e_coli_i.pdf to see if all simulated label kinetics
based on estimated fluxes and metabolite concentrations are close to experimental data.

3.4.2 Installation of documentation

influx_si is distributed with its documentation. To get it easily accessible from your personnal disk space you can
run somewhere in your directory tree:

$ influx_s.py --copy_doc

It will create a sub-directory doc in the current directory. This sub-directory contains influx_si.pdf, all-in-one
documentation file but also an html subdirectory with the documentation browsable in your prefered navigator.

The both documentation versions are also available on-line: pdf and html.

For a quick reminder of available options, launch

$ influx_s.py --help

or

$ influx_i.py --help

depending on what context you want to treat: stationary or instationary labeling.

For more detailed documentation read User’s manual.

22 Chapter 3. Installation

https://metasys.insa-toulouse.fr/software/influx/influx_si.pdf
https://metasys.insa-toulouse.fr/software/influx/doc/

CHAPTER

FOUR

QUICK START

A basic work-flow with influx_si is composed of the following steps:

1. Create a FTBL file describing your metabolic reactions, carbon transitions, experimental data and some options.
Let call an example file mynetwork.ftbl. The FTBL file must follow syntax rules elaborated for 13CFlux
software. The FTBL file is a plain text file. The syntax rules will be more or less obvious for someone working
on metabolism biochemistry. So, to go quickly, you can inspire from an example file test/e_coli.ftbl
distributed with the influx_si software.

Note: Staring from the version 2.5, NA values (as “Non Available”) are admitted as measurements values
where appropriate. The difference with FTBL where they are simply omitted is that NA measurements
are simulated and are present in the vectors simulated unscaled labeling measurements
and simulated scaled labeling measurements in the result kvh file.

Note: In case of influx_i, label kinetics can be provided in a separate plain text file with values sepa-
rated by tabulations. First column in this file gives measurement names, and all other columns correspond
to a particular time point each. Time points are given on the first line of the file. In this file, there can be
more time points than were used in a real experiment for sample harvesting. In this case, the labeling is
simulated and reported for these fictitious time points but the least squares fitting is obviously done only
at points where real data are reported.

Empty cells in this file are equivalent to NA. Note also that is _not_ necessary to introduce empty columns
at regular intervals just to increase the time resolution precision. There is a parameter nsubdiv_dt that
is designed for this purpose. If it is greater than 1, each time interval defined in the text file is divided in
nsubdiv_dt sub-intervals.

2. Set your current directory to the directory of mynetwork.ftbl and run

$ influx_s.py mynetwork

or:

$ influx_i.py mynetwork

Depending on stationary or instationary labeling context. Note that the suffix .ftbl is optional and influx_si
installation directory is supposed to be on the PATH.

The influx_si run will produce the following files in the same directory that mynetwok.ftbl

mynetwork.log containing the run-time output from various scripts, in particular, it contains a report
on convergence history during the fitting process. It can be helpful for identifying potential problems
but if everything is going well, the user does not have to examine the content of this file;

23

https://www.13cflux.net/

influx_si Documentation, Release 5.0

mynetwork.err containing the warning and error messages. Normally, this file should be empty (0
byte size);

mynetwork_res.kvh containing all of the results. KVH format is a lightweight plain text format
for hierarchically structured data. It can be seen in a text editor or in a spreadsheet software as its
fields are tab separated. It can also be processed by user’s custom software for post-processing,
graphics output and alike. If influx_si is run on a series of starting points there will be gen-
erated a common result file mynetwork_res.kvh containing common information to all start-
ing points but also a series of kvh files, one by starting point, e.g. mynetwork_res.V1.kvh,
mynetwork_res.V2.kvh and so on;

mynetwork.pres.txt containing a matrix of fitted parameters and final cost values. Each column
corresponds to a particular starting point if run with --fseries and /or --iseries options. If
influx_si was run without these options, the file will contain only one column corresponding to
the starting point defined in the mynetwork.ftbl file.

edge.netflux.mynetwok, edge.xchflux.mynetwok, node.log2pool.mynetwork as
the middle name of this files suggest, they can be used to map the corresponding values on the
network graph in the cytoscape software.

Note: All these files are silently overwritten if already exist. So take care to copy your results
elsewhere if you want to protect them from overwriting.

custom files (e.g. mynetwork.pdf) These files can be produced by user supplied scripts that are
executed at the end of influx_si simulations. For example, we provide a script plot_imass.
R which can be used to plot label kinetics obtained by influx_i. One or many of such custom
scripts can be given in FTBL file, section OPTIONS, field posttreat_R (cf. e_coli_i.ftbl for
example)

Note: It can be helpful to do some “dry runs” by executing

$ influx_s.py --noopt mynetwork

before collecting actual measurement data to see if intended measurements will be sufficient to well define
all fluxes or at least the fluxes of interest. It is possible to do because the measurement values in the FTBL
file does not matter for flux SD calculation when --noopt option is used. So it can be used any values
even NA at this moment. In the contrary, dev values set in measurement sections of the FTBL file, must
be realistic. It is generally not a problem as they express measurements errors and are more or less known
for a given measurement chain.

It is worthwhile to stress that a “dry run” is done for some presumed free fluxe values and if they reveal
to be very different from actual flux values, it can happen that a network considered as well defined at
moment of “dry run” turned into a badly defined network with actual measurement data and corresponding
estimated fluxes. So it is important to do his best to guess the most realistic free fluxes for “dry runs”.

3. See warning and error messages in mynetwork.err if any. Correct what has to be corrected and retry p. 2

4. Extract and use the numerical results from the mynetwork_res.kvh file.

5. Optionally, visualize net fluxes (or exchange fluxes or logarithm of metabolite concentrations log2(𝑀)) in
cytoscape using edge.netflux.mynetwok.attrs, edge.xchflux.mynetwok.attrs or node.
log2pool.mynetwork.attrs.

24 Chapter 4. Quick Start

http://serguei.sokol.free.fr/kvh-format/
http://www.cytoscape.org

CHAPTER

FIVE

USER’S MANUAL

Before diving in influx_si features let us present FTBL format evolution that was necessary to support
influx_si innovations.

5.1 FTBL format evolution

FTBL format was conceived by authors of 13CFlux software in late 1990’s (cf. https://www.13cflux.net/). At the
beginning of 2000’s, 13CFlux became well spread in scientific community working on metabolism and isotope la-
beling. When we published the first version of influx_s in 2011, we adopted FTBL format to avoid cumbersome
rewriting of networks and data already in use by the community. Second version of 13CFlux, published in 2012, aban-
doned FTBL format which was replaced by FluxML (XML) and was accompanied by a tool for automatic conversion
of FTBL to FluxML.

On our side, we decided to continue to use FTBL by extending and evolving some of its features. These extensions
and evolution are presented hereafter. Version number in titles indicates when presented feature was first introduced
to influx_s(i).

5.1.1 METABOLITE_POOLS and METAB_MEASUREMENTS (v2.0)

Sections METABOLITE_POOLS and METAB_MEASUREMENTS concerning metabolite pools were added. These
sections can be useful for stationary labeling when growth fluxes are modeled with 𝜇𝑀 terms (cf. Growth flux option)
or when some metabolites are confounded in measurements due to cell compartmentation of co-elution during HPLC
step or whatever reason. These sections become mandatory for influx_i usage for instationary labeling as not only
fluxes but also metabolite concentrations impact label propagation dynamics.

METABOLITE_POOLS is structured in two columns named META_NAME and META_SIZE and as ussual for FTBL
indented and separated by tabulations, e.g.

METABOLITE_POOLS
META_NAME META_SIZE
AKG -0.5
...

Note: The value -0.5 is not aligned with its column name META_SIZE because by default, tab characters are
expanded to 8 spaces. As META_NAME occupies 9 spaces, META_SIZE is just shifted to the next tab position. User
has to use only one tab character to separate columns even if they don’t look aligned on his screen.

For influx_i, every internal metabolite (i.e. metabolites present in NETWORK section and not being input or
output metabolites) and participating in carbon exchange must be referenced in this section. The value given in the

25

https://www.13cflux.net/

influx_si Documentation, Release 5.0

column META_SIZE is a metabolite concentration. The unit used for these values must be in accordance with the
units used for fluxes. For example, if metabolite concentrations are measured in mM/g then fluxes are supposed to
be measured in mM/(g*[time_unit]). If the value is positive then corresponding metabolite is considered as having
constant concentration which does not vary during fitting iterations. If the value is negative, then this metabolite
concentration will be part of fitted variables and its absolute value is used as a starting value for these iterations. A
final fitted value will be expressed as a positive number.

For influx_s, this section is optional and only few (not all) internal metabolites can be present in this section.

METAB_MEASUREMENTS section regroups measurements of internal metabolite concentrations. Input and output
metabolites may have concentrations varying during an experiment as they are consumed or produced. So they cannot
appear in this section. METAB_MEASUREMENTS section has 3 columns: META_NAME, VALUE and DEVIATION,
e.g.

METAB_MEASUREMENTS
META_NAME VALUE DEVIATION
Fru6P 0.43 0.01
...

Column names are self explanatory.

In case of confounded measurements, confounded metabolites can be given as a sum, e.g.

METAB_MEASUREMENTS
META_NAME VALUE DEVIATION
R5P_c+R5P_m 0.32 0.01
...

In this case, the value 0.32 will be fitted by a sum of simulated metabolite concentrations.

5.1.2 Long reactions (v4.0)

Initially, FTBL admitted no more than 2 metabolites on each side of reactions put in NETWORK section. We had to
overcome this limit to facilitate FTBL creation for studies including reactions much longer than that. Now, chemical
reaction having more than two metabolites on any side can be split in several sub-reactions, each of which has no more
then 2 metabolites on every side. It is important that all sub-reactions be put together one after another and that they
have the same name. Based on this name, influx_si will assemble all parts in one reaction. E.g. a reaction named
Val_syn

Val_syn: Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH -> Val (abcef) + CO2 (d) + AKG
→˓(ghijk)

can be translated into FTBL format as

NETWORK
FLUX_NAME EDUCT_1 EDUCT_2 PRODUCT_1 PRODUCT_2
Val_syn Pyr Pyr Val CO2

#abc #def #abcef #d
Val_syn Glu NADPH AKG

#ghijk # #ghijk

If some reactions have the same name but not placed sequentially one after another, it will be signaled as an error.

26 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

5.1.3 Cofactors (v4.0)

Here, we call cofactors metabolites that does not participate in carbon transfer from one or several molecules to
another. The main interest of entering cofactors in carbon transferring reactions is additional balance equations that
we can put in stoechiometric system. Thus the number of free fluxes is diminished and fluxes are constrained to more
realistic values, not violating cofactor balances.

To indicate that a metabolite is a cofactor, user can simply put an empty carbon string in the corresponding carbon
transferring line. For example, a reaction

v8: PEP (abc) -> Pyr (abc) + ATP

can be translated into FTBL as

NETWORK
FLUX_NAME EDUCT_1 EDUCT_2 PRODUCT_1 PRODUCT_2
v8 PEP Pyr ATP

#abc #abc #

Note an empty carbon string # at the place corresponding to ATP. An important difference between cofactors and
other metabolites that the former are allowed to have stoechiometric coefficients different from 1. These coefficients
must be separated from cofactors by * sign, e.g. a reaction

v41: Asp (abcd) + 2 ATP + NH3 -> Asn (abcd)

can be translated into FTBL as

NETWORK
FLUX_NAME EDUCT_1 EDUCT_2 PRODUCT_1 PRODUCT_2
v41 Asp 2*ATP Asn

#abcd # #abcd
v41 NH3

#

Note the presence of 2*ATP term.

5.1.4 Same metabolite on both sides of reaction (v4.0)

In some particular cases, it can be necessary to have a same metabolite on both sides of reaction. Let us illustrate this
situation with the following example:

v71: CO2.unlabeled (a) + CO2 (b) -> CO2 (a) + CO2.out (b)

Metabolite CO2 is present on both sides of reaction but its carbon atom is not the same. This is the main reason for
introducing this feature, to allow tracer rearrangement. In FTBL, it gives

NETWORK
FLUX_NAME EDUCT_1 EDUCT_2 PRODUCT_1 PRODUCT_2
v71 CO2.unlabeled CO2 CO2 CO2.out

#a #b #a #b

5.1.5 Section NOTRACER_NETWORK (v4.0)

In addition to reactions with carbon rearrangements, it can be useful to add reactions with no carbon transfer. The most
known reaction of such type is biomass composition but it can there be others, e.g. involving exclusively cofactors:

5.1. FTBL format evolution 27

influx_si Documentation, Release 5.0

v61: NADH + 0.5 O2 -> 2 ATP

This optional section is structured in 2 columns: FLUX_NAME and EQUATION:

NOTRACER_NETWORK
FLUX_NAME EQUATION
v61 NADH+0.5*O2 = 2*ATP

You can see that the reaction is written in a manner very different form NETWORK section. Its sides are separated by
= sign, metabolites are separated by + and they can have stoechiometric coefficients separated by * symbol. It is not
visible in this example, but there can be as many metabolites as desired on each side of reaction. The limit “no more
than 2 metabolites by side” proper to NETWORK section does not apply here.

5.1.6 Sub-sections EQUALITY/METAB and INEQUALITY/METAB (v2.11)

In the same manner as for fluxes, user can have to constrain variable metabolite concentrations. Constraints can be
by equalities and inequalities. These subsections are organized in the same way as for fluxes. In EQUALITY/METAB
there are 2 columns VALUE and FORMULA while in INEQUALITY/METAB there are 3 of them: VALUE, COMP and
FORMULA. For example,

EQUALITIES
METAB

VALUE FORMULA
0 R5P - 1.5*X5P
...

INEQUALITIES
METAB

VALUE COMP FORMULA
0.001 <= PEP
10 >= PEP
...

5.1.7 NA in measurements (v2.5)

Missing values marked as NA are admitted in measurement sections, in columns designated to values. In contrast,
they are not admitted in columns designated to standard deviations. The main difference between a measurement just
omitted and those marked as NA is that the latter will be simulated and reported in corresponding simulation sections
of the result file. This feature can be useful for preliminary simulations when there is no yet data available but user
want to know e.g. if fluxes of interest will be well determined or not based on a supposed set of measurements. In this
case, all presumed data can be set to NA (but not their SD).

5.1.8 Convention evolution

Not only FTBL format evolved but also some conventions between its parts and content did so. Here is a complete list of them:

• user must explicitly declare input-output fluxes as non reversible (set them as C with a value 0 in the
section FLUX/XCH) to make a distinction between input-output metabolites and “dead-end” metabolites
(the latter are allowed since the version 2.0 and have net flux equal to 0 while exchange flux non zero).

• starting from the version 2.8, new fluxes (i.e. absent in the NETWORK section) may appear in EQUALITY
section. They can come, for example, from stoechiometry on cofactors involving non carbon carrying
fluxes. These new fluxes have still to be declared in FLUX/{NET,XCH} sections (even if this feature is

28 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

maintained in v4.0 its interest has diminished since cofactors can now be directly introduced in NETWORK
and NOTRACER_NETWORK sections);

• in LABEL_INPUT section following conventions apply since v3.2:

– “the rest is unlabeled”: if many labeling forms are lacking in the file (including fully unlabeled
metabolite) and the present forms does not sum up to 1, then the fully unlabeled form is considered
as completing the set to 1;

– “guess the lacking one”: if only one form is lacking in the file (no matter which one), then its
fractions is considered as completing the present set to 1.

• starting from v4.2, a particular comment tag //## is used to introduce a pathway name. The information
on pathways can be useful for visualization on a partner web site MetExplore (cf. ftbl2metxml in
Additional tools section).

5.2 Basic influx_si usage

influx_si can be run without any option on most common cases. So its usage can be as simple as

$ influx_s.py mynetwork

or

$ influx_i.py mynetwork

we suppose here that a valid FTBL file mynetwork.ftbl was created. Moreover, we supposed influx_s.py
and influx_i.py is in the PATH variable.

In the rest of this manual, we’ll use just influx_s.py as example if the example is valid for both stationary and
instationary contexts. If some usage is valid exclusively for influx_i.py, it will be duly signaled.

In a high throughput context, it can be useful to proceed many FTBL files in parallel. This can be done by giving all
the FTBL names in a command line, e.g.

$ influx_s.py mynetwork1 mynetwork2

and so on. All files are then proceeded in separate independent processes launched almost simultaneously by a bunch
of size equal to the number of available or requested cores (if an option --np=NP is used). It is an operating system
who is in charge to make a distribution of all these processes among all available CPUs and cores.

Sometimes, particular cases need usage of special options of influx_si. The list of available options can be seen
by running:

$ influx_s.py --help

If used with options, influx_si can be run like

$ influx_s.py [options] mynetwork

where [options] is an option list separated by a white character. Each option starts with a double dash -- and
can be followed by its argument if applicable. For example, to use BFGS optimization method instead of the default
NLSIC algorithm, a user can run:

$ influx_s.py --meth BFGS mynetwork

or

5.2. Basic influx_si usage 29

http://metexplore.toulouse.inra.fr/
https://www.13cflux.net/

influx_si Documentation, Release 5.0

$ influx_s.py --meth=BFGS mynetwork

The option names can be shortened till a non ambiguous interpretation is possible, e.g in the previous example, the
option could be shortened as --m BFGS or --m=BFGS because there is no other option name starting by a letter
m. But an option --no could not be distinguished between --noopt and --noscale. So at least --nos (for
--noscale) or --noo (for --noopt) should be provided. There is only one option that does not admit a usage of
an equal sign to provide an argument, it is --excl_outliers. Use only a space character to provide an argument
to this option when required.

Here after the available options with their full names are enumerated and detailed.

5.3 influx_si command line options

--version show program’s version number and exit

-h, --help show the help message and exit

--noopt no optimization, just use free fluxes as is (after a projection on fea-
sibility domain), to calculate dependent fluxes, cumomers, stats and
so on

--noscale no scaling factors to optimize => all scaling factors are assumed to
be 1

This option can be useful if your measurements are already scaled
to sum up to 1 which is often the case of MS data. Then, user saves
some free parameters corresponding to scaling factors. This option
can become mandatory if user wants to prevent scaling factors to be
adjusted by optimization process.

--meth=METH method for optimization, one of nlsic|BFGS|Nelder-Mead. Default:
nlsic

--fullsys calculate all cumomer set (not just the reduced one necessary to sim-
ulate measurements)

This option influences only post-optimization treatment. The fitting
itself is still done with the reduced cumomer set or EMU variables if
requested so. See the original paper on influx_s for more infor-
mation on the reduced cumomer set.

--emu simulate labeling in EMU approach

This option should not produce a different result in parameter fitting.
It is implemented and provided in a hope that on some network the
results can be obtained in a shorter time

--irand ignore initial approximation for free parameters (free fluxes and
metabolite concentrations) from the FTBL file or from a dedicated
file (cf –fseries and –iseries option) and use random values drawn
uniformly from [0,1]

It is recommended to use this option in conjunction with “–zc 0”
option.

--sens=SENS sensitivity method: SENS can be ‘mc[=N]’, mc stands for Monte-
Carlo. N is the number of Monte-Carlo simulations. Default for N:
10

30 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

The sensitivity information (i.e. the influence of the noise in the data
on the estimated parameter variation) based on linearized statistics is
always provided. So the user has to use this option only if he wants to
compare this linearized information to the Monte-Carlo simulations.
Note that the default value 10 for the number of simulations is far
from to be sufficient to get reliable statistical estimations. This de-
fault option allows only to quickly check that this option is working
as expected.

--cupx=CUPX upper limit for reverse fluxes. Must be in interval [0, 1]. Default:
0.999

--cupn=CUPN upper limit for net fluxes. Default: 1.e3

--cupp=CUPP upper limit for metabolite pool. Default: 1.e5

--clownr=CLOWNR lower limit for not reversible free and dependent fluxes. Zero value
(default) means no lower limit

A byproduct of this option is that it can drastically reduce cumomer
system sizes. As it ensures that non reversible fluxes cannot change
the sign, revers fluxes can be eliminated from pathways leading to
observable cumomers.

--cinout=CINOUT lower limit for input/output free and dependent fluxes. Must be non
negative. Default: 0

--clowp=CLOWP lower limit for free metabolite pools. Must be positive. Default 1.e-8

--np=NP When integer >= 1, it is a number of parallel threads (on Unix) or
subprocesses (on Windows) used in Monte-Carlo (M-C) simulations
or for multiple FTBL inputs. When NP is a float number between
0 and 1, it gives a fraction of available cores (rounded to closest
integer) to be used. Without this option or for NP=0, all available
cores in a given node are used for M-C simulations.

--ln Least norm solution is used for increments during the non-linear it-
erations when Jacobian is rank deficient

Jacobian can become rank deficient if provided data are not sufficient
to resolve all free fluxes. It can be useful to determine fluxes that can
still be resolved by the available measurements. If the Jacobian does
not become rank deficient, this option has no influence on the found
solution neither on the optimization process. But if the Jacobian does
become rank deficient, a warning message is printed in the error file
even if the optimization process could go to the end.

Note: Use this option with caution, in particular, when used in
conjunction with Monte-Carlo simulations. As undetermined fluxes
will be given some particular value, this value can be more or less
stable from one Monte-Carlo simulation to another. This can create
an illusion that a flux is well determined. See the linearized statistics
in the result file to decide which fluxes are badly resolved.

A correct way to deal with badly defined metabolic network is to
provide additional data that can help to resolve all the fluxes and/or to
optimize input label, not just put --ln option and cross the fingers.

5.3. influx_si command line options 31

influx_si Documentation, Release 5.0

Warning: In this option, the notion of “least norm” is applied
to increments during the optimization, not to the final solution.
So undetermined fluxes could vary from one run to another if the
optimization process is started from different points while well
determined fluxes should keep stable values.

--sln Least norm of the solution of linearized problem (and not just of
increments) is used when Jacobian is rank deficient

--tikhreg Approximate least norm solution is used for increments during the
non-linear iterations when Jacobian is rank deficient

To obtain an approximate solution a Tikhonov regularization is used
when solving an LSI problem. Only one of the options --ln and
--tikhreg can be activated in a given run.

--lim The same as –ln but with a function limSolve::lsei()

--zc=ZC Apply zero crossing strategy with non negative threshold for net
fluxes

This option can accelerate convergence in situations when a net flux
has to change its sign during the optimization iterations. Once such
flux is identified, it is better to write the corresponding reaction in
an opposite sens in the FTBL file or to give a starting value with a
correct sign to avoid such zero crossing situation.

--ffguess Don’t use free/dependent flux definitions from FTBL file(s). Make
an automatic guess.

The fact that free fluxes are chosen automatically does not allow to
specify a starting point for optimization iterations so a random start-
ing point is used (drawn uniformly in [0; 1] interval). An option
--seed can be useful to make the results reproducible.

--fseries=FSERIES File name with free parameter values for multiple starting points.
Default: ‘’ (empty, i.e. only one starting point from the FTBL file is
used)

The file must be formatted as plain text file with tab separator. There
must be as many columns as starting points and at least as many rows
as free parameters assigned in this file. A subset of free parameters
can be used in this file. In this case, the rest of parameters take their
unique starting values from the FTBL file. The first column must
contain the names of free parameters used in this file. If there are ex-
tra rows whose names are not in the set of free parameter names, they
are simply ignored. The first row must contain the names of starting
points. These names can be just numbers from 1 to the number of
starting points.

--iseries=ISERIES Indexes of starting points to use. Format: ‘1:10’ – use only first
ten starting points; ‘1,3’ – use the first and third starting points;
‘1:10,15,91:100’ – a mix of both formats is allowed. Default ‘’
(empty, i.e. all provided starting points are used)

When used with conjunction with --fseries, this option indicates
the starting points to use from FSERIES file. But this option can
also be used in conjunction with --irand to generate a required

32 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

number of random starting points, e.g. influx_s.py --irand
--iseries 1:10 mynetwork will generate and use 10 ran-
dom starting points.

For both --fseries and --iseries, one result file is gen-
erated per starting point, e.g. mynetwork_res.V1.kvh,
mynetwork_res.V2.kvh and so on. If starting points comes
from a --fseries then the suffixes V1, V2, . . . are replaced by
the column names from this file. In addition, a file mynetwork.
pres.csv resuming all estimated parameters and final cost values
is written.

--seed=SEED Integer (preferably a prime integer) used for reproducible random
number generating. It makes reproducible random starting points
(–irand) but also Monte-Carlo simulations for sensitivity analysis.
Default: none, i.e. current system value is used, so random drawing
will be varying at each run.

--excl_outliers This option takes an optional argument, a p-value between 0 and
1 which is used to filter out measurement outliers. The filtering is
based on Z statistics calculated on reduced residual distribution. De-
fault: 0.01.

Excluded outliers (if any) and their residual values are reported in the
mytework.log file. Non available (NA) measurements are con-
sidered as outliers for any p-value. An optional p-value used here
does not give a proportion of residuals that will be excluded from
optimization process but rather a degree of beeing a valuable mea-
surements. So, closer to zero is the p-value, the less data is filtered
out. If in contary, you want to filter out more outliers than with the
default p-value, use a value grater than the default value of 0.01, e.g.:

influx_s.py --excl_outliers 0.02 mynetwork.ftbl

Note: Don’t use an equal sign “=” to give a p-value to this option.
Here, only a white space can be used as a separator (see the example
above).

--nocalc generate an R code but not execute it.

This option can be useful for parallel execution of the generated R
files via source() function in cluster environment

--addnoise Add centered gaussian noise to simulated measurements written to
_res.kvh file. SD of this noise is taken from FTBL file

This option can be helpful for generating synthetic FTBL files with
realistic simulated measurements (cf. How to make FTBL file with
synthetic data?).

--copy_doc copy documentation directory in the current directory and exit. If
./doc exists, its content is silently owerriten.

--copy_test copy test directory in the current directory and exit. If ./test exists,
its content is silently owerriten.

--install_rdep install R dependencies and exit.

5.3. influx_si command line options 33

influx_si Documentation, Release 5.0

--TIMEIT developer option

Some portions of code are timed and the results is printed in the log-
file. A curious user can use this option without any harm.

--prof developer option

This option provides much more detailed profiling of the execution
than --TIMEIT option. Only developers can be interested in using
such information.

All command line options can be also provided in the FTBL file. A user can put them in the field commandArgs in
the OPTIONS section. The corresponding portion of the FTBL file could look like

OPTIONS
OPT_NAME OPT_VALUE
commandArgs --meth BFGS --sens mc=100 --np 1

In such a way, a user can just drag-and-drop an FTBL file icon on the icon of the influx_s.py and the calculations
will be done with the necessary options, assuming that the system was configured in appropriate way during the
installation process.

If an option is provided both on the command line and in the FTBL file, it is the command line that has the priority.
In such a way, a user is given an opportunity to overwrite any option at the run time. Nevertheless, there is no way to
cancel a flag option (an option without argument) on a command line if it is already set in the FTBL file. For example,
if --fullsys flag is set in the FTBL file, the full system information will be produced whatever command line
options are.

5.4 Parallel experiments

Staring from v4.0, influx_si offers possibility to treat labeling data from parallel experiments. Parallel experiments
for stationary labeling were described in the literature (e.g. cf. “Parallel labeling experiments and metabolic flux
analysis: Past, present and future methodologies.”, Crown SB, Antoniewicz MR., Metab Eng. 2013 Mar;16:21-32.
doi: 10.1016/j.ymben.2012.11.010). But for instationary labeling, at the best of our knowledge, influx_si is the
first software offering parallel experiments treatment.

The main interest of parallel experiments is increased precision of flux estimations. This comes at price of additional
work for experiments and data gathering but the result is often worth the effort. As usual, before doing a real “wet”
experiment, it can be useful to run few “dry” simulations to see if planned experiments will deliver desired precision.

To deal with parallel experiments, a user have to prepare a series of FTBL files, one per experiment. One of them will
be referred to as a main file. It has to provide the following sections common to all experiments: NETWORK, FLUXES,
EQUALITIES (if any), INEQUALITIES (if any), FLUX_MEASUREMENTS (if any), METABOLITE_POOLS (if any),
METAB_MEASUREMENTS (if any) and some entries in OPTIONS.

The secondary FTBL files as well as the main one are to provide experimental labeling data corresponding to each
experiment. These data have to be presented in the following sections: LABEL_INPUT, LABEL_MEASUREMENTS
(if any), PEAK_MEASUREMENTS (if any), MASS_SPECTROMETRY (if any). In instationary context, text files with
labeling kinetics have to be provided, one per experiment. Their names have to be placed in the field OPTION/
file_labcin of a corresponding FTBL. Finally, the names of secondary FTBL files have to be put in the field
OPTIONS/prl_exp of the main file as plain list separated by semicolon ; and optionally by one or more spaces.

This file architecture ensures that a network topology, flux and metabolite values are common to all experiments while
entry label and measurements on labeled metabolites are proper to each experiment.

Secondary FTBL files can also contain NETWORK and other sections found in the main file but are simply ignored at
processing step. When FTBL files are ready, you can run influx_si on them by providing the name of main FTBL
on the command line (and only it, don’t list secondary files), e.g. in installation directory run:

34 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

$./influx_s.py test/prl_exp/e_coli_glc1-6n

You can find an example of parallel experiment data in the directory test/prl_exp in files e_coli_glc1-6n.ftbl
(main file), e_coli_glc2n.ftbl, e_coli_glc3n.ftbl, e_coli_glc4n.ftbl, e_coli_glc5n.ftbl, e_coli_glc6n.ftbl. These files
correspond to stationary labeling experiments described in “Complete-MFA: Complementary parallel labeling exper-
iments technique for metabolic flux analysis”, Robert W. Leighty, Maciek R. Antoniewicz, Metabolic Engineering 20
(2013) 49–55 (with only difference that we use simulated and noised data instead of measured ones).

We also provide an example of simulated instationary parallel experiments in the files e_coli_GX_prl.ftbl
(main file) and e_coli_GX_X.ftbl (secondary file) corresponding to simultaneous consumption of glucose and
xylose. The network for this simulations was borrowed from “13C metabolic flux analysis of microbial and mam-
malian systems is enhanced with GC-MS measurements of glycogen and RNA labeling”, Christopher P. Long, Jen-
nifer Au, Jacqueline E. Gonzalez, Maciek R. Antoniewicz, Metabolic Engineering 38 (2016) 65–72. The experiment
consisted in dynamic labeling by uniformly labeled glucose (main experiment) and by uniformly labeled xylose (sec-
ondary one). Labeling kinetics MS data are given in e_coli_GX_MS.txt and e_coli_GX_X_MS.txt files
respectively. To play with this example, you can run (still in installation directory):

$./influx_i.py test/prl_exp/e_coli_GX_prl

The secondary files in all examples contain also the full information about the network, fluxes and so on, so they can
be used as classical mono-experimental files to see how much the precision of flux estimation increased due to parallel
experiment methodology.

Note that set of measured metabolite fragments as well as sampling time points for instationary labeling are not
necessary the same for all parallel experiments. They do can differ.

5.5 Optimization options

These options can help to tune the convergence process of the NLSIC (or any other chosen algorithm). They can be
given only in an FTBL file, in the section OPTIONS. These options are prefixed with optctrl_ which is followed
by a particular option name. For example, optctrl_errx corresponds to the stopping criterion hereafter and the
corresponding FTBL portion could look like

OPTIONS
OPT_NAME OPT_VALUE
optctrl_errx 1.e-3

All possible options and their default values for NLSIC algorithm follow:

errx=1.e-5 stopping criterion. When the L2 norm of the increment vector of free parameters is below
this value, the iterations are stopped.

maxit=50 maximal number for non-linear iterations.

btstart=1. backtracking starting coefficient

btfrac=0.25 backtracking fraction parameter. It corresponds to the alpha parameter in the paper on
influx_s

btdesc=0.1 backtracking descending parameter. It corresponds to the beta parameter in the paper on
influx_s

btmaxit=15 maximal number of backtracking iterations

trace=1 report (=1) or not (=0) minimal convergence information

rcond=1.e10 condition number over which a matrix is considered as rank deficient

5.5. Optimization options 35

influx_si Documentation, Release 5.0

ci=list(p=0.95, report=F) confidence interval reporting. This option is own to nlsic() function. It has
no impact on the reporting of linear stats information in the result kvh file after the post-optimization
treatment. This latter is always done.

history=FALSE return or not (default) the matrices with optimization steps and residual vectors dur-
ing optimization. These matrices can then be found as part of optimization process
information/history field in mynetwork_res.kvh file. Use it with caution, big size
matrices can be generated requiring much of memory and disk space.

adaptbt=TRUE use (default) or not an adaptive backtracking algorithm.

monotone=FALSE should or not the cost decrease be monotone. If TRUE, then at first non decrease of
the cost, the iterations are stopped with a warning message.

Names and default values for BFGS and Nelder-Mead algorithms can be found in the R help on optim() function.

5.6 Growth flux option

If present, this option makes influx_si take into account growth fluxes −𝜇𝑀 in the flux balance, where 𝜇 is a
growth rate and 𝑀 is a concentration of an internal metabolite M by a unit of biomass. Only metabolites for which
this concentration is provided in an FTBL section METABOLITE_POOLS, contribute to flux balance with a flux
−𝜇𝑀 . This flux can be varying or constant during optimization process depending on whether the metabolite M is
part of free parameters to fit or not. Usually, taking into account of this kind of flux does not influence very much on
the estimated flux values. So, this option is provided to allow a user to be sure that it is true in his own case.

The option is activated by a field include_growth_flux in the OPTIONS section:

OPTIONS
OPT_NAME OPT_VALUE
include_growth_flux 1

Value 0 cancels the contribution of the growth fluxes to the general flux balance.

Another necessary option is mu giving the value of µ:

OPTIONS
OPT_NAME OPT_VALUE
mu 0.12

Finally, the metabolite concentrations by a unit of biomass are reported in a section METABOLITE_POOLS as:

METABOLITE_POOLS
META_NAME META_SIZE
Fum 2.47158569399681
Suc -15.8893144279264
Mal -6.47828321758155
... ...

Metabolite names used in this section must be identical to those used in the NETWORK section and others. Negative
value is used as indicator of a variable metabolite pool. Such varying metabolites are part of fitted parameters. Absolute
values from this section are used as their starting values in the optimization process.

One of valuable originality of influx_s, it is a possibility to couple fluxomics and metabolomics in stationary
experiments. It can be done because metabolite pools can influence labeling in two ways:

• through metabolite pooling (due to compartmentation and/or coelution during chromatography)

• through growth fluxes.

36 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

This last influence is often of low intensity compared to metabolite transformation fluxes. In literature, it is often
neglected.

Note: METABOLITE_POOLS section was not present in the original FTBL format. It is added ad hoc and it is
possible that its presence makes fail other software using such FTBL.

Another section that was added “ad hoc” to FTBL file is METAB_MEASUREMENTS:

METAB_MEASUREMENTS
META_NAME VALUE DEVIATION
Suc 15.8893144279264*1.e-3/10.7 1.e-2
Mal 6.47828321758155*1.e-3/10.7 1.e-2
Rub5P+Rib5P+Xul5P 1.66034545348219*1.e-3/10.7 1.e-2

Like for other measurements, user has to provide a name, a value and a standard deviation for each entry in this
section. Metabolites listed in this section must be defined in the NETWORK section and must have a negative value in
the METABOLITE_POOLS section. Numerical values can be simple arithmetic expressions (as in the example above)
which are evaluated during file parsing.

When a metabolite name is given as a sum of metabolites (e.g. Rub5P+Rib5P+Xul5P) it is interpreted as a list of
metabolites to be pooled. It is done proportionally to their concentrations. No numerical factor can appear in this sum.
At least one of the metabolites from the list must have negative value in the METABOLITE_POOLS section. Otherwise,
all metabolites from the list would be considered as having a fixed concentration and providing a measurement for such
metabolites would be meaningless.

Note: There is no a specific option activating simulation of metabolite concentrations and taking them into account
to the fitting process. Their simple presence in the METABOLITE_POOLS and METAB_MEASUREMENTS sections
make concerned metabolites fittable parameters.

An example of an FTBL file having metabolite sections and involving growth fluxes can be found in test/
e_coli_growth.ftbl.

5.7 Post treatment option

User can specify a name of one or several R scripts that will be automatically executed after non aborted influx_si
run. This option can be useful, for example, for plain saving of calculation environment in a file for later exploring in
an interactive R session or for plotting results in a pdf file and so on. A very basic example of such script is provided
in the file test/save_all.R and its use can be found in the options of test/e_coli.ftbl file.

To activate this option, the script names must be provided in the OPTIONS section, in the field posttreat_R and
separated by '; ', e.g.

OPTIONS
OPT_NAME OPT_VALUE
posttreat_R save_all.R; plot_something.pdf

The script name is interpreted as a relative path to the directory where the original FTBL file is located. After execution
of save_all.R, a file e_coli.RData is created. This particular example can be used to restore a calculation R
environment by launching R and executing:

> load("e_coli.RData")

5.7. Post treatment option 37

influx_si Documentation, Release 5.0

After that, all variables defined in influx_si at the end of the calculations will be available in the current interactive
session. To be able to launch custom calculations on these variables, user has to do some preliminary actions. An
example of such actions can be found in a file preamble.R which can be adapted for users’s case.

To write his own scripts for post treatments or explore the calculated values in an interactive session, a user have to
know some basics about existent variables where all the calculation results and auxiliary information are stored. Here
are few of them:

dirw is a working directory (where the original FTBL file is)

dirx is an executable directory (where influx_s.py is)

baseshort is a short name of the input FTBL file (without the suffix .ftbl neither the directory part of the path)

param is the vector of the estimated parameters composed of free fluxes, scaling parameters (if any) and metabolite
concentrations (if any)

jx_f is a environment regrouping calculated quantities. Here are some of its fields:

fallnx a vector of all net and exchange fluxes (here, exchange fluxes are mapped on [0; 1[interval)

fwrv a vector of forward and reverse fluxes (reverse fluxes are “as is”, i.e. not mapped)

x is an internal state label vector

simlab, simfmn and simpool are vectors of simulated measurements for label, net flux and metabolite pools
respectively (fitting at the best of influx_s’ capacity the provided measurements in the FTBL file)

res is the reduced residual vector, i.e. (simulated-measured)/SD

ures is the unreduced residual vector, i.e. (simulated-measured)

jacobian as its names indicates, is the Jacobian matrix (d res/d param)

udr_dp is the jacobian matrix for the unreduced residual vector (d ures/d param)

measurements is a list regrouping various measurements and their SD

nb_f is a list of various counts, like number of fluxes, parameters to fit, system sizes and so on

nm_list is a list of names for various vectors like fluxes, metabolites, label vectors, measurements, inequalities and
so on

ui, ci are inequality matrix and right hand side respectively

A full list of all available variable and functions can be obtained in an R session by executing:

> ls()

This list of more than 400 items is too long to be fully described here. We hope that few items succinctly described in
this section will be sufficient for basic custom treatments.

An inspirations for your own custom treatments and/or plotting can be found in files plot_imass.R and
plot_smeas.R that plot instationary and stationary data respectively in pdf files.

5.8 Exclusive influx_i options

There is only one exclusive option that can be given on a command line:

--time_order=TIME_ORDER Time order for ODE solving (1 (default), 2 or 1,2). Order
2 is more precise but more time consuming. The value ‘1,2’ makes
to start solving the ODE with the first order scheme then continues
with the order 2.

38 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

The scheme order can be important for the precision of flux and
concentration estimations. The impact is not direct but can be
very important. Please note that it can happen that order 1 fits the
data with lower cost value function but it does not mean that the
fluxes/concentrations are better estimated.

Other options occur as fields in the section OPTIONS of the FTBL file.

file_labcin gives the name of the text file with label kinetics. If the file name starts with a “/”, it is
considered as

The values must be organized in a matrix where each row corresponds to a measured
isotopomer/cumomer/mass-isotopologue while each column corresponds to a given time point. First
column gives the names of labeled measured species and the first row contains time points.

Matrix must be written one row per line and its entries (cells) must be separated by tabulations.
Missing data can be signaled as NA or just an empty cell. Comments are allowed and must start
with # sign. The rest of the line after # is simply ignored. Empty lines are ignored. In such a way,
comments can help to annotate the data and empty lines can help to format the file for better human
readability. All lines (a part from blank lines and comments) must have the same number of cells.

The specie names must fit the names used in corresponding measurement sections of FTBL file.
For example, a name m:Rib5P:1,2,3,4,5:0:693 is composed of several fields separated by
a column :

m indicates that data are of MASS_SPECTROMETRY type. Other possible values are l for
LABEL_MEASUREMENTS and p for PEAK_MEASUREMENTS

Rib5P metabolite name

1,2,3,4,5 carbon numbers present in the measured fragment

0 mass shift relative to fully unlabeled mass isotopologue: 0 corresponds to a fraction of unlabeled
fragment, 1 to a fraction of fragments with only one labeled carbon atom and so on

693 line number in FTBL file corresponding to this measurement. If previous fields are sufficient
to unambiguously identify the measurement, this field can be omitted.

Cf. test/e_coli_msne.txt (and corresponding test/e_coli_i.ftbl) for more exam-
ples.

The measurement precision (SD) is considered as constant during time and its values (one per mea-
sured specie) is given in the FTBL file, in the corresponding measurement section.

All time points must be positive and put in increasing order. The time point 0 must be absent and is
considered as labeling start. At that point all species are supposed to be fully unlabeled. This means
also that all label measurements must be provided with a correction for natural 13C labeling. To
prepare MS data with such correction, a software IsoCor can help.

There can be fictitious time points without any data in them. This feature can be used to increase
the time resolution at some time intervals. The simulation of label propagation will be done and
reported at these fictitious time points but the fitting will be obviously done only at time points
having real data in them. For a regular time interval sub-division, it is more practical to use a
parameter nsubdiv_dt (cf. hereafter) instead of fictitious time point in this file.

If this field is empty or absent in the FTBL file then no fit can be done and a simple label simulation
is calculated as if --noopt option were activated. Such simulation can be done only if a time grid
is defined with the help of two other parameters: dt and tmax (cf. hereafter).

nsubdiv_dt integer number of sub-intervals by which every time interval is divided to increase the
precision of time resolution.

5.8. Exclusive influx_i options 39

https://metatoul.insa-toulouse.fr/metasys/software/isocor

influx_si Documentation, Release 5.0

It can happen that the value 1 (default) is sufficient for a satisfactory flux/concentration estimation.
User can gradually increase this value (2, 3, . . .) in successive influx_i runs to be sure that better
time resolution does not impact parameter estimation. This property is called grid convergence.
A grid convergence is necessary to overcome the result dependency on the choice of a numerical
discretization scheme. A grid convergence can be considered as achieved when changes in estimated
parameters provoked by a grid refinement are significantly lower than estimated confidence intervals
for these parameters.

dt a real positive number, defines a time step in a regular grid in absence of a file in file_labcin
field. If a file with label kinetics is well present then this parameter has no effect.

A regular time grid for label simulations can be useful on preliminary stage when user only elab-
orates FTBL file and wants to see if label simulation are plausible. It can also help to produce
simulated measurements (which can be extracted from the _res.kvh file) for further numerical
experiments like studying convergence speed, parameter identifiability, noise impact and so on.

tmax a real positive number, defines the end of a regular time grid if the field file_labcin is empty
or absent. Parameters dt and tmax must be defined in such a way that there will be at least 2 time
points greater then 0 in the time grid.

If a file with label kinetics is well present then this parameter can be used to limit time grid on which
simulations are done. If the value in tmax is greater then the maximal time value defined in the
kinetics file then this parameter has no effect.

Note: It is very important that the values for time, flux and metabolite concentrations be expressed in concordant
units. It would be meaningless to give time in minutes, fluxes in mM/h/g and concentrations in mM. This will lead to
wrong results.

For example, if the time is expressed in seconds and concentrations in mM/g then fluxes must be expressed in mM/s/g.

Note: Option --noscale must be always activated for instationary calculations. So that for example, MS measure-
ments must be always composed of fully measured fragments (i.e. with all isotopologues present) and normalized to
sum up to 1.

5.9 Result file fields

Generally speaking, the names of the fields in the result KVH file are chosen to be self explanatory. So there is no so
much to say about them. Here, we provide only some key fields and name conventions used in the result file.

At the beginning of the mynetwork_res.kvh file, some system information is provided. Here “system”
should be taken in two sens: informatics and biological. The information is reported in the fields influx and
system sizes. These fields are followed by starting point information regrouping starting free
parameters, starting cost value, flux system (Afl) and flux system (bfl). Name conven-
tions used in these and other fields are following:

net and exchange fluxes are prefixed by n. or x. respectively

free, dependent, constrained and variable growth fluxes are prefixed by f., d., c. and g. respec-
tively. So, a complete flux name could look like f.n.zwf which means free net ZWF flux. Growth
fluxes which depend on constant metabolite concentrations can be found in constrained fluxes. Con-
stant or variable growth fluxes are postfixed with _gr (as growth) string. For example, a flux g.n.
Cit_gr corresponds to a net growth flux of Citrate metabolite. The growth fluxes are all set as non
reversible, so all exchange fluxes like g.x.M_gr or c.x.M_gr are set to 0.

40 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

scaling factors names are formed according to a pattern similar to label;Ala;1 which corresponds
to the first group of measurements on Alanine molecule in labeling experiments. Other possible
types of experiments are peak and mass.

MID vector names are looking like METAB+N where METAB is metabolite name and N goes from 0 to
the number of carbon atoms in the considered molecule.

cumomer names follow classical convention METAB#pattern_of_x_and_1, e.g. Ala#x1x

forward and reverse fluxes are prefixed by fwd. and rev. respectively, e.g. fwd.zwf or rev.zwf

measurement names have several fields separated by a colon :. For example, l:Asp:#xx1x:694
deciphers like:

• l stands for labeling experiment (others possibilities are p for peak, m for mass and pm for
metabolite pool)

• Asp is a metabolite name

• #xx1x is a measurement identification

• 694 is a line number in the FTBL file corresponding to this measurement.

The field optimization process information is the key field presenting the results of an optimization
process. The fitted parameters are in the subfield par. Other subfields provide some additional information.

The final cost value is in the field final cost.

The values of vectors derived from free fluxes like dependent fluxes, cumomers, MID and so on are in the correspond-
ing fields whose names can be easily recognized.

Linear stats and Monte-Carlo statistics are presented in their respective fields. The latter field is present only if
explicitly requested by user with --sens mc=MC option. In this kvh section, a term rsd means “relative standard
deviation” (in literature, it is often encountered a synonym CV as Coefficient of Variation), it is calculated as SD/Mean
and if expressed in percentage then the formula becomes 100%*SD/Mean.

The field jacobian dr_dp (without 1/sd_exp) report a Jacobian matrix which is defined as a matrix of
partial derivatives 𝜕𝑟/𝜕𝑝 where r is residual vector (Simulated–Measured) and p is a free parameter vector including
free fluxes, scaling factors (if any) and free metabolite pools (if any). Note that in this definition the residual vector is
not yet scaled by standard deviation of measurements. Sometimes, Jacobian is called sensitivity matrix in which case
a special care should be brought to the sens of derivation. Often, by sensitivity matrix, we intend a matrix expressing
how estimated fluxes are sensible to variations in the measurement data. Such definition corresponds to generalized
inverse of Jacobian and it is reported in the field generalized inverse of jacobian dr_dp (without
1/sd_exp)

5.9.1 Network values for Cytoscape

Several network values formatted for cytoscape are written by influx_si to their respective files. It can facilitate
their visualizing and presentation in graphical mode. All these values can be mapped on various graphical attributes
like edge width, node size or color scale of any of them. All these files are written at the end of calculations so if an
error has interrupted this process, no such file will be produced. Take care to don’t use an outdated copy of these files.

A file named edge.netflux.mynetwork.attrs can help to map net flux values on edges of a studied network.
A file edge.xchflux.mynetwork.attrs do the same with exchange fluxes. And finally, node.log2pool.
mynetwork.attrs provides logarithm (base 2) of pool concentrations. They can be mapped on some graphical
attribute of network nodes.

See Additional tools section, ftbl2xgmml: cytoscape view paragraph to know how to produce files importable in
Cytoscape from a given FTBL file. User’s manual of Cytoscape has necessary information about using visual mapper
for teaching how some values like net flux values can be mapped on graphical elements like edge width and so on.

5.9. Result file fields 41

influx_si Documentation, Release 5.0

5.10 Warning and error messages

The warning and error messages are logged in the .err suffixed file. For example, after running:

$ influx_s mynetwok

the warnings and errors will be written in the mynetwork.err file. This kind of messages are important for user
not only to be aware that during calculations something went wrong but also to understand what exactly went wrong
and to have an insight on how to fix it.

Problems can appear in all stages of a software run:

• parsing FTBL files

• R code writing

• R code execution

– vector-matrix initialization

– optimization

– post-optimization treatment

Most of the error messages are automatically generated by underlying languages Python and R. These messages can
appear somewhat cryptic for a user unfamiliar with these languages. But the most important error messages are edited
to be as explicit as possible. For example, a message telling that free fluxes are badly chosen could look like:

Error : Flux matrix is not square or singular: (56eq x 57unk)
You have to change your choice of free fluxes in the 'mynetwork.ftbl' file.
Candidate(s) for free flux(es):
d.n.Xylupt_U

a message about badly structurally defined network could be similar to

Error : Provided measurements (isotopomers and fluxes) are not
sufficient to resolve all free fluxes.

Unsolvable fluxes may be:
f.x.tk2, f.n.Xylupt_1, f.x.maldh, f.x.pfk, f.x.ta, f.x.tk1

Jacobian dr_dff is dumped in dbg_dr_dff_singular.txt

a message about singular cumomer balance matrix could resemble to

lab_sim: Cumomer matrix is singular. Try '--clownr N' or/and '--zc N' options with
→˓small N, say 1.e-3 or constrain some of the fluxes listed below to be non zero Zero
→˓rows in cumomer matrix A at weight 1:
cit_c:16
ac_c:2
...
Zero fluxes are:
fwd.ACITL
...

Note: In this error message, we report cumomers whose balance gave a zero row in the cumomer matrix (here
cit_c:<N> cumomers, where <N> is an integer, its binary mask indicates the “1”s in the cumomer definition) as
well as a list of fluxes having 0 value. This information could help a user to get insight about a flux whose zero
value led to a singular matrix. A workaround for such situation could be setting in the FTBL file an inequality
constraining a faulty flux to keep a small non zero value. A more radical workaround could be restricting some flux

42 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

classes (input-output fluxes with the option --cinout=CINOUT or even all non reversible ones with the option
--clownr=CLOWNR) to stay out of 0, e.g.:

$ influx_s.py --clownr 0.0001 mynetwork

Adding such inequalities does not guaranty that cumomer matrix will become invertible but often it does help. It’s up
to user to check that an addition of such inequalities does not contradict biological sens of his network.

a message about badly statistically defined network could appear like

Inverse of covariance matrix is numerically singular.
Statistically undefined parameter(s) seems to be:
f.x.pyk
For more complete list, see sd columns in '/linear stats'
in the result file.

and so on.

A user should examine carefully any warning/error message and start to fix the problems by the first one in the list (if
there are many) and not by the easiest or the most obvious to resolve. After fixing the first problem, rerun influx_si
to see if other problems are still here. Sometimes, a problem can induce several others. So, fixing the first problem
could eliminate some others. Repeat this process, till all the troubles are eliminated.

5.11 Problematic cases

Obviously, everyone would like be able just run a flux estimation software and simply get results but unfortunately it
does not work in this way every time. In this section we review some problematic cases which can be encountered in
practice.

5.11.1 Structurally non identifiable fluxes

It can happen that collected data are not sufficient to resolve some fluxes in your network. Due to non linear nature of
the problem, this situation can appear for some set of free flux values and disappear for others or be persistent for any
free flux values. An error is reported to signal such situation, e.g.

lsi: Rank deficient matrix in least squares
1 unsolvable variable(s):
f.n.PPDK 7

and execution is stopped.

Several options are then available for a user facing such situation.

1. Collect more data to resolve lacking fluxes. As a rule of thumb, data must be collected on metabolites which
are node of convergence of badly defined fluxes or on metabolites situated downhill of convergence point and
preserving labeling pattern. Nature of collected data can be also important. Examples can be constructed where
mass data are not sufficient to determine a flux but RMN data can do the job.

Before using real data collection, you can make a “dry run” with --noopt option and with fictitious
values for intended metabolite in the FTBL file to see if with these new data, the network becomes well
resolved. If the error message disappear and SD values in the section linear stats are not very high
then chances are that additionally collected data can help to resolve the fluxes.

2. Optimize input label. It can happen that you do collect data on a metabolite situated in convergence point for un-
defined fluxes but incoming fluxes are bringing the same labeling pattern which prevents flux(es) to be resolved.

5.11. Problematic cases 43

influx_si Documentation, Release 5.0

May be changing substrate label can help in this situation. For label optimization you can use a software called
IsoDesign, distributed under OpenSource licence and available here http:://metatoul.insa-toulouse.fr/metasys/
software/isodes/ (may be you have received influx_si as part of IsoDesign package, in which case you have
it already).

Naturally, this label optimization should be done before doing actual experiments. See IsoDesing tutorial
for more details on how to prepare and make such optimization.

If you don’t want or don’t have a possibility to use a software for label optimization or you think to have
an insight on what should be changed in substrate labeling to better define the fluxes, you can still make
a try with influx_s.py --noopt new_labeling.ftbl option to see if a new labeling will do
the job (here new_labeling.ftbl is an example name for a FTBL file that you will prepare with a
new LABEL_INPUT section.)

3. Use --ln option. It wont make you fluxes well defined, it will just continue calculation trying to resolve what
can be solved and assigning some particular values (issued from so called least norm solution for rank deficient
matrices) to undefined fluxes. You will still have a warning similar to

lsi_ln: Rank deficient matrix in least squares
1 free variable(s):
f.n.PPDK 7
Least L2-norm solution is provided.

informing you that some flux(es) in the network is(are) still undefined. This option can be helpful if
undefined fluxes are without particular interest for biological question in hand and their actual values can
be safely ignored.

4. You can give an arbitrary fixed value to an undefined flux by declaring it as constrained in the FTBL file (letter
C in the column FCD in the FLUXES section).

5.11.2 Badly defined fluxes

Also known as statistically undefined fluxes, these fluxes have big or even huge SD values. The difference between
these fluxes and structurally undefined fluxes is that the badly defined fluxes can become well defined if the noise
is reduced or hypothetically eliminated while the latter will still be undetermined even in the absence of the noise.
Despite this difference, all options presented in the previous section are applicable here (all but --ln which would be
without effect here).

An additional measure can be taken which consist in experimental noise reduction. Generally, it can be done by using
better protocols, better instruments or simply by increasing the measurement repetition number.

Once again, a use of --nooptwith new hoped DEV values in the FTBL file can help to see if these new measurements
with better noise characteristics will resolve or not the problem.

5.11.3 Slow convergence

Slow optimization convergence can manifest by following warnings:

nlsic: Maximal non linear iteration number is achieved

or/and

nlsic: Maximal backtrack iteration number is achieved

Theoretically, user can increase the limit for those two numbers (optctrl_maxit and optctrl_btmaxit re-
spectively in the OPTIONS section of FTBL file) but generally it is not a good idea. It can help only in very specific

44 Chapter 5. User’s manual

http:://metatoul.insa-toulouse.fr/metasys/software/isodes/
http:://metatoul.insa-toulouse.fr/metasys/software/isodes/

influx_si Documentation, Release 5.0

situations that we cannot analyze here as we estimate them low probable. In all cases, a slow convergence is due to
high non linearity of the solved problem. What can vary from one situation to another, it is the nature of this non
linearity. Depending on this nature, several steps can be undertaken to accelerate optimization:

1. If a non linearity causing the slow convergence is due to the use of function absolute value |𝑥| in the calculation
of forward and revers fluxes from net and exchange fluxes, then an option --zc=ZC (zero crossing) can be very
efficient. This non linearity can become harmful when during optimization a net flux has to change its sign, in
other words it has to cross zero.

This option splits the convergence process in two parts. First, a minimum is searched for fluxes under
additional constraints to keep the same sign during this step. Second, for fluxes that reached zero after
the first step, a sign change is imposed and a second optimization is made with these new constraints. If
--zc option is used with an argument 0 (--zc=0 or --zc 0), it can happen that fluxes reaching zero
produce a singular (non invertible) cumomer balance matrix. In this case, an execution is aborted with an
error starting like

Cumomer matrix is singular. Try '--clownr N' or/and '--zc N' options
→˓with small N, say 1.e-3 or constrain some of the fluxes listed
→˓below to be non zero
...

To avoid such situation, an argument to --zc must be a small positive number, say --zc 0.001. In
this case, positive net fluxes are kept over 0.001 and negative fluxes are kept under -0.001 value. In this
manner, an exact zero is avoided.

Another way to avoid problem induced by using module function |𝑥| is to add inequality(-ies) imposing
sens of reaction in INEQUALITIES/NET section, e.g.

0.0001 <= mae

Naturally, in this example, you have to be sure that the reaction catalyzed by malic enzyme (here mae)
must go in the sens written in your FTBL file.

You can find potential candidates to impose sens of reaction by examining the flux values in
mynetwork_res.kvh after a slow convergence and looking fluxes who’s sign (positive or negative)
looks suspicious to you. In our practice, we could observe a dramatic increase in convergence speed and
stability just after imposing a sens of reaction to a “key” reaction. Obviously, such constraint must be in
accordance with biological sens of a studied network and its biological condition.

2. A high non linearity can appear for some particular set of fluxes, especially when they take extreme values, e.g.
when exchange fluxes are close to 1 or net fluxes take very high values of order 102 or even 103 (supposing
that the main entry flux is normalized to 1). In such a case, user can low this limits (options --cupx=CUPX
and --cupn=CUPN respectively) or try to exclude outliers (--excl_outliers P-VALUE) as outliers can
attract the solution in weird zone of fluxes. In this latter case, the first convergence will continue to be slow and
will generate corresponding warnings but the second one (after a possible automatic elimination of outliers) can
be much quicker.

5.11.4 Convergence aborted

This situation is signaled by an error message:

nlsic: LSI returned not descending direction

This problem can occur for badly defined network which are very sensitive to truncation errors. The effect of such
errors can become comparable to the effect of the increment step during optimization. It means that we cannot
decrease the norm of residual vector under the values resulting from rounding errors. If it happens for relatively small

5.11. Problematic cases 45

influx_si Documentation, Release 5.0

increments then the results of convergence are still exploitable. If not, there is no so many actions that user could
undertake except to make his system better defined as described in previous sections.

Note: By default, we use a very small value for increment norm as stopping criterion (10−5). It can be considered as
very drastic criterion and can be relaxed to 10−3 or 10−2 depending on required precision for a problem in hand (to
do that, use an option optctrl_errx in the section OPTIONS of FTBL file).

5.12 Additional tools

Tools described in this section are not strictly necessary for running influx_si and calculating the fluxes. But in
some cases, they can facilitate the task of tracking and solving potential problems in FTBL preparation and usage.

Most of the utilities produce an output written on standard output or in a file who’s name is derived from the input file
name. This latter situation is signaled with a phrase “The output redirection is optional” and in the usage examples
the output redirection is taken in square brackets [> output.txt] which obviously should be omitted if an actual
redirection is required. Such behavior is particularly useful for drag-and-drop usage.

5.12.1 txt2ftbl: conversion of txt format to FTBL format

An easily readable/writable text format can be used to create de novo an FTBL file. Reactions in this text format can
look like:

v48: Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH ->
LL-DAP (0.5 abcdgfe + 0.5 efgdcba) + AKG (hijkl) + Suc (0.5 mnop + 0.5 ponm)

This long reaction illustrates several format features:

• v48 is the reaction name. It is optional. If reaction names (and theirs separators : signs) are omitted,
reactions will be just numbered. The numbering restarts after each comment block (a comment starts
with a # sign). This is done to give an opportunity to organize reactions in pathways. In such a case,
a comment is considered as stating a new pathway which is also numbered. Thus an automatic
reaction name can look like r2.3 where 2 is pathway number and 3 is a reaction number in this
pathway.

Note that in this example, the reaction is split in two lines only for convenience of presentation.
In a text file, a reaction must be written on only one line. No line breaks are admitted in
reactions and no more than one reaction can be written on a given line.

• Asp (abcd) is a metabolite name Asp followed by its optional carbon id string between paren-
theses (abcd). All carbon id must be a unique letter on each side of the reaction and if present on
one side of reaction, must also be present on the other one. Thus carbon atom balance is preserved.
In case of symmetric molecule, the carbon scrambling can be indicated as (0.5 mnop + 0.5
ponm) as e.g. for succinate Suc in the example above. Numeric coefficients of carbon forms (here
0.5) can be omitted as all forms are considered as equally probable and automatically normalized
to sum up to 1. So a completely equivalent form could be (mnop + ponm).

• + sign separates metabolites on each side of reaction

• -> separates two sides of reaction and indicates that this reaction is irreversible, i.e. its exchange
flux is zero. It does not precludes about the sens of reaction. Here we consider that a reaction can
be irreversible and have a negative net flux. If in addition, you wish to indicate that a reaction must
operate only from left to right, i.e. to have a positive net flux, then use ->> sign. To indicate a
reversible reaction use <-> and a reversible reaction with imposed positive net flux use <->>.

46 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

• ATP is an example of a cofactor, it does not have a carbon id string. It participates in mass balance
but not in carbon balance equations.

• 2 NADPH is an example of a cofactor with a stoechiometric coefficient different from 1. Coefficients
different from 1 are not allowed for metabolites participating in carbon exchanges in a given reaction.
But if a reaction has no carbon exchanges, then all metabolites are allowed to have a coefficient
different from 1 like for example in biomass reactions.

• # starts a comment that will be put in FTBL as is, except the first # hash sign that will be replaced
by // (FTBL comment tag)

• ### triple hash sign is used to introduce a pathway name. Respectively, //## will do the same in
FTBL. Pathway name can be useful for ftbl2metxml.py script which prepare xml and txt files
for visualization on a partner site MetExplore.

An example of a full featured metabolite network can be found in test/prl_exp/e_coli_anto.txt.

To convert it to FTBL file, you can run (in installation directory):

$./txt2ftbl.py test/prl_exp/e_coli_anto.txt [> test/prl_exp/e_coli_anto.
→˓ftbl]

Note that output redirection > ... is optional. In absence of such redirection, the output file name is guessed from
input file by replacing .txt with .ftbl extension. Thus obtained FTBL file must be completed with several kinds
of information like label input, label measurements and so on to be fully functional and suitable for influx_si.

5.12.2 ftbl2xgmml: cytoscape view

Once a valid FTBL file is generated, a user can visualize a graph representing his metabolic network in Cytoscape
program. To produce necessary graph files, user can run:

$ ftbl2xgmml.py mynetwork[.ftbl] [> mynetwotk.xgmml]

or drag and drop mynetwork.ftbl icon on ftbl2xgmml.py icon.

The output redirection is optional.

This will produce a file in the XGMML format mynetwork.xgmml in the directory of mynetwork.ftbl:

Once a generated file mynetwork.ftbl is imported in cytoscape, a user can use one of automatic cytoscape layouts
or edit node’s disposition in the graph by hand. For those who use CySBML plugin, a saving of a particular layout in
a file can be practical for later applying it to a new network.

Graphical conventions used in the generated XGMML are the following:

• metabolite are presented as rounded square nodes;

• simple (one to one) reaction are represented by simple edges;

• condensing and/or splitting reactions are represented by edges converging and/or diverging from additional
almost invisible node having a label with the reaction name;

• all nodes and edges have tool tips, i.e. when a pointer is put over, their name (metabolite or reaction) appears in
a tiny pop-up window;

• non reversible reaction are represented by a single solid line, have an arrow on the target end (i.e. produced
metabolite) and nothing on the source end (i.e. consumed metabolite);

• reversible reactions are represented by a double parallel line and have a solid circle on the source end;

• color code for arrows:

5.12. Additional tools 47

http://metexplore.toulouse.inra.fr/
http://www.cytoscape.org
http://apps.cytoscape.org/apps/cysbml

influx_si Documentation, Release 5.0

– green for free net flux;

– blue for dependent net flux;

– black for constrained net flux;

• color code for solid circles:

– green for free exchange flux;

– blue for dependent exchange flux;

– black for constrained exchange flux.

5.12.3 ftbl2netan: FTBL parsing

To see how an FTBL file is parsed and what the parsing module “understands” in the network, a following command
can be run:

$ ftbl2netan.py mynetwork[.ftbl] [> mynetwork.netan]

The output redirection is optional.

A user can examine mynetwork.netan in a plain text editor (not like Word) or in spreadsheet software. It has
an hierarchical structure, the fields are separated by tabulations and the field values are Python objects converted to
strings.

5.12.4 ftbl2cumoAb: human readable equations

Sometimes, it can be helpful to examine visually the equations used by influx_si. These equations can be produced
in human readable form by running:

$ ftbl2cumoAb.py -r mynetwork[.ftbl] [> mynetwork.sys]

or:

$ ftbl2cumoAb.py --emu mynetwork[.ftbl] [> mynetwork.sys]

The output redirection is optional.

The result file mynetwork.sys will contain systems of stoichiometric and cumomer balance equations as well as
a symbolic inversion of stoichiometric matrix, i.e. dependent fluxes are represented as linear combination of free and
constrained fluxes and an optional constant value. In the examples above, the option -r stands for “reduced cumomer
set” and --emu stands for “generate EMU framework equations”. In this latter case, only isotopologues of mass+0
in each EMU are reported in mynetwork.sys file. For other mass weights, equations does not change and the right
hand side term could get longer for condensation reactions but involves the same EMUs as in mass+0 weight.

If a full cumomer set has to be examined, just omit all options. Keep in mind that on real-world networks this can
produce more than thousand equations by cumomer weight which could hardly be qualified as human readable form.
So use it with caution.

For the sake of brevity, cumomer names are encoded in decimal integer form. For example, a cumomer Metab#xx1x
will be referred as Metab:2 because a binary number 0010 corresponds to a decimal number 2. The binary mask
0010 is obtained from the cumomer mask xx1x by a plain replacement of every x by 0.

For a given cumomer weight, the equations are sorted alphabetically.

48 Chapter 5. User’s manual

influx_si Documentation, Release 5.0

5.12.5 expa2ftbl: non carbon carrying fluxes

Some reactions of carbon metabolism require cofactor usage like ATP/ADP and some others. A mass balance on cofac-
tors can produce additional useful constraints on the stoechiometric system. Since the version 2.8, such mass balance
equation on non carbon carrying metabolites can be put in EQUATION section of FTBL file. A utility expa2ftbl.R
can be helpful for this purpose if a user has already a full set of reactions in expa format. To extract additional equation
from an expa file, expa2ftbl.R can be used as:

$ R --vanilla --slave --args file.expa < expa2ftbl.R > file.ftbl_eq

Then an information for the generated file.ftbl_eq has to be manually copy/pasted to a corresponding FTBL
file.

Note that expa2ftbl.R uses a Unix command grep and another utility described here above ftbl2netan.py.

5.12.6 res2ftbl_meas: simulated data

During preparation of a study, one of questions that biologist can ask is “Will the intended collected data be sufficient
for flux resolution in a given network?” Some clue can be obtained by making “dry runs” of influx_si with
--noopt (i.e. no optimization) option. User can prepare an FTBL file with a given network and supposed data to be
collected. At first, the measurement values can be replaced by NAs while the SD values for measurements must be
given in realistic manner. After running:

$ influx_s.py --noopt mynetwork

a utility res2ftbl_meas.py can be practical for preparing FTBL files with obtained simulated measurements:

$ res2ftbl_meas.py res2ftbl_meas.py mynetwork_res[.kvh] > mynetwork.ftbl_meas

(here .kvh suffix is optional). The information from the generated file mynetwork.ftbl_meas has to be man-
ually copy/pasted into corresponding FTBL file. Getting an ftbl file with real values instead of NAs in measurement
sections gives an opportunity to explore optimization behavior near a simulated point like convergence speed and/or
convergence stability to cite few of them.

5.12.7 ffres2ftbl: import free fluxes

This utility imports free flux values and metabolite concentrations (if any) from a result file _res.kvh and inject them
into an FTBL file. Usage:

$ ffres2ftbl.sh mynetwork_res.kvh [base.ftbl] > new.ftbl

If an optional argument base.ftbl is omitted, then the free flux values are injected into an FTBL file corresponding
to the _res.kvh file (here mynetwork.ftbl). This script can be used on a Unix (e.g. Linux, MacOS) or on a cygwin
(unix tools on Windows) platform. It makes use of another utility written in python ff2ftbl.py

5.12.8 ftbl2kvh: check ftbl parsing

This utility simply parses a ftbl file and write what was “understood” in a kvh file. No network analysis occurs here
unlike in ftbl2netan utility. Usage:

$ ftbl2kvh.py mynetwork[.ftbl] [> mynetwork.kvh]

The output redirection is optional.

5.12. Additional tools 49

http://gcrg.ucsd.edu/Downloads/ExtremePathwayAnalysis

influx_si Documentation, Release 5.0

5.12.9 ftbl2metxml: prepare MetExplore visualization

Convert an FTBL file to an xml file suitable for visualization on MetExplore site. If a result kvh file
mynetwork_res.kvh is present, it will be parsed to extract flux values corresponding to the last influx_si
run and put them in mynetwok_net.txt, mynetwork_fwd.txt and mynetwork_rev.txt. As their names
indicate, they will contain net, forward and revers flux values respectively.

5.12.10 IsoDesign: optimizing input label

One of means to increase a flux resolution can be an optimization of input label composition. A utility IsoDesing
solving this problem was developed by Pierre Millard. It is not part of influx_si distribution and can be down-
loaded at http://metatoul.insa-toulouse.fr/metasys/software/isodes/. In a nutshell, it works by scanning all possible
input label compositions with a defined step, running influx_si on each of them then collecting the SD informa-
tion on all fluxes for all label compositions and finally selecting an input label optimal in some sens (according to a
criterion chosen by a user).

50 Chapter 5. User’s manual

http://metexplore.toulouse.inra.fr/
http://metatoul.insa-toulouse.fr/metasys/software/isodes/

CHAPTER

SIX

PROGRAMMER’S DOCUMENTATION FOR INFLUX_S

In this chapter, Application Programming Interface (API) docs are collected. It can be helpful for programmers
desiring to extend some features of influx_s or to fix some bugs. This chapter can be safely skipped by users
aiming at simple usage of influx_s for biological research.

6.1 C13_ftbl

• Parse .ftbl

• Analyse ftbl

Restrictions:

• metabolite name cannot have

“:” it’s a separator in measure id

“+” in measurements it can be metab1+metab2+. . .

C13_ftbl.aglom(na, ta, loop)
new matrix A (na), transpose A (ta) are used to aglomerate neigbour mutually influencing nodes in a supernode.
Aglomerated noeds are put in the loop dictionnary. Return False if no nodes were aglomerated.

C13_ftbl.aglom_loop1(A)
Agglomerate nodes of A if they are mutually influence each other i.e.they are in a loop of length 1. Return a
new dictionary of influence where entries are those of A aglomerated and glued “by” tab symbol

C13_ftbl.allprods(srcs, prods, isos, metab, isostr)
Return a set of tuples (cmetab, cisostr, vmetab, visostr) where cmetab and cisostr describe a contex metabolite
which combined with metab+isostr produced vmetab+visostr. if metab is alone on its reaction part cmetab and
cisostr are set to an empty string (“”). The set covers all combination of metab+isostr and its co-substrates which
produce isotopes having at least one labeled carbon from metab+isostr. Co-substrate isotops are in a dictionary
isos[cmetab]=list(cisotopes).

C13_ftbl.bcumo_decomp(bcumo)
bcumo is a string of the form #[01x]+. It has to be decomposed in the linear combination of cumomers #[1x]+.
The coefficients of this linear combination are 1 or -1. So it can be represented as sum(cumos_positive)-
sum(cumos_negative). The result of this function is a dictionary {“+”: list of icumos, “-“: list of icumos}.
icumo is an integer whose binary form indicates 1’s positions in a cumomer.

C13_ftbl.conv_mid(x, y)→ z
convolute two mid vectors (numpy arrays) and return the result as numpy array.

C13_ftbl.cumo_infl(netan, cumo)->list(tuple(in_cumo, fl, imetab, iin_metab))
return the list of tuples (in_cumo, fl, imetab, iin_metab): input cumomer, flux (fwd.fl or rev.fl), index of metab

51

influx_si Documentation, Release 5.0

and index of in_metab generating cumo. cumo is in format “metab:icumo”. Condenstation reaction will give
the same flux and icumo but various iin_metab. Convergent point will give multiple fluxes.

C13_ftbl.cumo_iw(w, nlen)
iterator for a given cumomer weight w in the carbon length nlen

C13_ftbl.cumo_path(starts, A, visited={})
Enumerate cumomers along reaction pathways. Algo: start from an input, follow chemical pathways till no more
neighbours or till only visited metabolite rest in network. Return a list of cumomer pathways. Each pathways is
an ordered list.

C13_ftbl.dom_cmp(A, i, j)
Compares influances of i-th and j-th lements of A. Returns 0 if i and j are mutually influenced, 1 if i in A[j] (i
influences j) , -1 if otherwise

C13_ftbl.enum_path(starts, netw, outs, visited={})
Enumerate metabilites along to reaction pathways. Algo: start from an input, follow chemical pathways till an
output or already visited metabolite. Returns a list of metabolite pathways. Each pathways is an ordered list.

C13_ftbl.formula2dict(f, pterm=re.compile(’\\W*([+-])\\W*’), pflux=re.compile(’(?P<coef>\\d+\\.?\\d*|^)?\\s**?\\s*(?P<var>[a-
zA-Z_[\\]()][\\w\\. -\\[\\]]*)\\W*’))

parse a linear combination sum([+|-][a_i][*]f_i) where a_i is a positive number and f_i is a string starting by
non-digit and not white character (# is allowed). Output is a dict f_i:[+-]a_i

C13_ftbl.frag_prod(metab, frag, s, cmetab, cfrag, cs, prods)
Get fragments from labeled substrates

C13_ftbl.ftbl_netan(ftbl, netan, emu_framework=False, fullsys=False, case_i=False)
analyse ftbl dictionary to find

• network inputs (input)

• network outputs (output)

• substrates (subs)

• products (prods)

• metabolites (metabs)

• reactions (reacs)

• not reversible reactions (subset of reacs) (notrev) all above items are in named sets

• stocheometric matrix (sto_r_m)

• stocheometric matrix (sto_m_r)

• fwd-rev flux matrix (flux_m_r)

• cumomer balances (cumo_m_r_m)

• carbon length (Clen)

• reaction formula (formula)

• metabolite network (metab_netw)

• carbon transitions (carbotrans)

• free fluxes (flux_free)

• constrained fluxes (flux_constr)

• measured fluxes (flux_measured)

• variable growth fluxes (flux_vgrowth)

52 Chapter 6. Programmer’s documentation for influx_s

influx_si Documentation, Release 5.0

• input isotopomers (iso_input)

• input cumomers (cumo_input)

• input reduced cumomers (rcumo_input)

• flux inequalities (flux_ineqal)

• flux equalities (flux_eqal)

• label measurements, H1 (label_meas)

• peak measurements, C13 (peak_meas)

• mass measurements (mass_meas)

• cumomer ordered lists (vcumo)

• unknown fluxes ordered lists (vflux)

• linear problem on fluxes (Afl, bfl)

• free fluxes ordered lists (vflux_free)

• fw-rv fluxes ordered lists (vflux_fwrv)

• row names ordered lists for Afl (vrowAfl)

• in-out fluxes (flux_in, flux_out)

• measured concentrations (metab_measured)

C13_ftbl.ftbl_parse(f)→ dict
read and parse .ftbl file. The only input parameter f is a stream pointer with read permission or a file name. This
function parses the input and returns a dictionnary with items corresponding to sections in .ftbl. One section is
added. “TRANS” correponds to carbon transitions.

C13_ftbl.infl(metab, netan)->set(fluxes)
List incoming fluxes for this metabolite (fwd.reac, rev.reac, . . .)

C13_ftbl.iso2cumo(netan, strin, in_cumo, icumo, in_metab)
calculate cumomer fraction from isotopomer ones

C13_ftbl.iso2emu(netan, inmetab, mask, mpi, e)
calculate emu fraction from isotopomer dict iso_input. The fraction corresponds to a fragment defined by a
mask and the mass component mpi. Return a real number in [0; 1] interval.

C13_ftbl.label_meas2matrix_vec_dev(netan)
use netan[“label_meas”] list to construct a corresponding list of measure matrix matx_lab such
that scale_diag*metab_pool_diag*matx_lab*(cumos_vector,1) corresponds to label_measurements_vector.
matx_lab is defined as list of dict{“scale”:scale_name, “coefs”:dict{icumo:coef}, “metab”: metabolite,
“poolid”: metabolite pool id if pooled} where coef is a contribution of cumo in linear combination for given
measure. scale_name is of the form “metabs;group”. Group number is to group measurements of the same
measurement set. poolid is the index of pool list in pooled where each list regroups 0-based indexes rows in
returned matrix for what has to be pooled together. vec is a list of measurements (values in .ftbl) dev is a list
of deviations. Elements in matx_lab, vec and dev are ordered in the same way. The returned result is a dict
(mat,vec,dev)

C13_ftbl.labprods(prods, metab, isostr, strs)
Return a set of tuples (vmetab,visostr) which receive at least one labeled carbon from (metab, isostr)

C13_ftbl.lowtri(A)
Try low triangular ordering of matrix A entries

6.1. C13_ftbl 53

influx_si Documentation, Release 5.0

C13_ftbl.mass_meas2matrix_vec_dev(netan)
use netan[“mass_meas”] list to construct a corresponding list of measure matrix matx_mass such that
scale_diag*matx_mass*cumos_vector corresponds to mass_measures_vector. matx_mass is defined as
matx_lab in label_meas2matrix_vec_dev() Elements in matx_mass, vec and dev are ordered in the same way.
scale name is defined as “metab;fragment_mask” The returned result is a dict (mat,vec,dev)

C13_ftbl.mat2graph(A, fp)
write digraph file on file pointer fp representing links in matrix A given as bi-level dictionnary. A key of first
level (row index) is influenced by keys of second level (column indicies).

C13_ftbl.mat2pbm(A, v, fp)
Write an image map of non-zero entries of matrix A to file pointer fp. Matrix A is a dictionnary, v is a list
ordering keys of A.

C13_ftbl.mecoparse(terms, pmeco=re.compile(’\\s*((?P<coef>\\d+\\.?\\d*|^)\\s**\\s*)?(?P<metab>[^*+
]*)\\s*$’))

Parse a string term from a list (or a sing string) of chemical equation entries. The general form of each term is
‘coef*metab’. coef (if present) must be separated from metab by ‘*’ and be convertible to float. metab can start
with a number (e.g. ‘6PG’) so the presence of ‘*’ is mandatory to separate coef from metab.If coef is absent, it
is considered to be 1. Return a list of (or a single for str) tuples (metab (str), coef (real)).

C13_ftbl.ms_frag_gath(netan)
gather metabolite fragments necessary to obtain a given set of data observed in MS measurements. The fragment
mask is encoded in the same way as cumomers, Met:7 <=> Met#(0)111

C13_ftbl.ntimes(n)
Return charcater string ‘once’ for n=1, ‘twice’ for n=2 and ‘n times’ for other n

C13_ftbl.peak_meas2matrix_vec_dev(netan, dmask={’D+’: 3, ’D-’: 6, ’DD’: 7, ’S’: 2, ’T’: 7})
use netan[“peak_meas”] list to construct a corresponding list of measure matrix matx_peak such that
scale_diag*matx_peak*cumos_vector corresponds to peak_measures_vector. dmask is a dictionary with 3 car-
bon labeling pattern mask for various peak types. The middle bit corresponds to the targeted carbon, lower
bit corresponds to the next neighbour (D+) and higher bit corresponds to previous carbon (D-). matx_peak is
defined as matx_lab in label_meas2matrix_vec_dev() Elements in matx_peak, vec and dev are ordered in the
same way. scale name is defined as “metab;c_no;irow” The returned result is a dict (mat,vec,dev)

C13_ftbl.proc_kinopt(ftbl, netan)
Proceed label kinetics options from OPTIONS section: file_labcin, dt, tmax, nsubdiv_dt

C13_ftbl.proc_label_input(ftbl, netan)
Proceed LABEL_INPUT section in ftbl and add result to the list netan[“iso_input”] List item is a dict
{}metab;{isotop_int_index:fraction}}

C13_ftbl.proc_label_meas(ftbl, netan)
Proceed LABEL_MEASUREMENT section of ftbl file, add the result to a list of dicts

C13_ftbl.proc_mass_meas(ftbl, netan)
Proceed PEAK_MEASUREMENT section of ftbl file, add the result to a list of dicts

C13_ftbl.proc_peak_meas(ftbl, netan)
Proceed PEAK_MEASUREMENT section of ftbl file, add the result to a list of dicts

C13_ftbl.prod(metab, iso, s, cmetab, ciso, cs, prods)->set()
get isotops from labeled substrates

C13_ftbl.rcumo_sys(netan, emu=False)
Calculate reduced cumomers or EMU systems A*x=b we start with observed cumomers (emus) of max weight
and we include only needed involved cumomers (emus) A list of cumomer (emu) lists (by weight) is stored in
netan[“vrcumo”] (netan[“vemu”])

54 Chapter 6. Programmer’s documentation for influx_s

influx_si Documentation, Release 5.0

C13_ftbl.src_ind(substrate, product, iprod)
For a given substrate and product carbon strings (e.g. “abc”, “ab”) calculate substrate index corresponding to
product index. Return None if no source found. Return 0 if iprod==0 and intersection of product and substrate
strings is not empty

C13_ftbl.t_iso2cumo(n)
t_iso2cumo(n) return transition matrix from isotopomers fractions to cumomer vector n - carbon number return
numpy array of size (2**n,2**n)

C13_ftbl.t_iso2m(n)
t_iso2m(n) return transition matrix from isotopomers fractions to MID vector n - carbon number return numpy
array of size (n+1,2**n)

C13_ftbl.t_iso2pos(n)
t_iso2pos(n) return transition matrix from isotopomers fractions to positional labelling vector (cumomers of
weight 1) n - carbon number return numpy array of size (n,2**n)

C13_ftbl.topo_order(A, tA)
Try to sort keys of A in topological order. tA is just a transpose of A

C13_ftbl.transpose(A)
Transpose a matrix defined as a dict.

C13_ftbl.werr()
Write string to stream. Returns the number of characters written (which is always equal to the length of the
string).

C13_ftbl.wout()
Write string to stream. Returns the number of characters written (which is always equal to the length of the
string).

6.2 ftbl2code

Module for translation of .ftbl file to R code

ftbl2code.netan2Abcumo_spr(varname, Al, bl, vcumol, minput, f, fwrv2i, incu2i_b1)
Transform cumomer linear sytems collection (from ftbl file) to a R code calculating sparse matrix A and vector
b in A*x+b=0 for a given weight of fragment iw (index in resulting list) Flux vector fl of all fwd. and rev. fluxes
are known at R runtime.

Resulting code is a list sprAb indexed by cumomer weight (cf. generated R comments for details on sprAb)
cumomer vector incu=c(1, xi, xl), xi - input cumomers, xl - lighter cumomers.

incu2i_b1 gives i in incu from cumomer name. i=1 corresponds to the constant 1.

ftbl2code.netan2R_cumo(netan, org, f)→ dict
generate data structures for full cumomer matrices

ftbl2code.netan2R_fl(netan, org, f)
generate R code for flux and pool part for more details cf. netan2Rinit()

ftbl2code.netan2R_ineq(netan, org, f)
generate inequality code

ftbl2code.netan2R_meas(netan, org, f)
generate code for measure treatment

ftbl2code.netan2Rinit(netan, org, f, fullsys, emu=False, ropts=[])
Write R code for initialization of all variables before cumomer system resolution by khi2 minimization. :param
netan: a collection of parsed ftbl information :param f: R code output pointer :param fullsys (logical): write a

6.2. ftbl2code 55

influx_si Documentation, Release 5.0

code for the full or only reduced cumomer system :param emu (logical): write equations in EMU framework or
cumomer (default) :param ropts: list of items “param=value” to be written as is in R file.

Returns a dictionnary with some python variables: * “measures”: measures, * “o_mcumos”:
o_mcumos, * “cumo2i”: cumo2i, * . . .

6.3 ftbl2netan

Parse ftbl file from stdin or from first parameter and write netan in kvh format on stdout usage: ftbl2netan.py net-
work[.ftbl] [> network.netan]

6.4 ftbl2optR

Transform an ftbl to R code which will solve an optimization of flux analysis problem arg minΘ 𝑆, where 𝑆 =
||Predicted − Observed||2Σ and Θ is a vector of parameters to fit: free fluxes (net+xch), scaling parameters and
metabolite concentrations pools. Two variants of R code can be generated: “s” and “i” for stationary and isotopically
nonstationary labeling. Predicted vector is obtained from cumomer or emu vector x (calculated from free fluxes
and divided in chunks according to the cumo weight) by multiplying it by the measurement matrices, weighted by
metabolite pools (in case of pooling) and scale factor (for stationary case only), boths coming from ftbl file. Observed
values vector xo is extracted from ftbl file for “s” case and from special text file for “i” case. It is composed of flux,
label measurements and metabolite pools. Σ2, covariance diagonal matrices sigma[flux|mass|label|peak|metab.pool] is
orginated from the ftbl file.

usage: ./ftbl2optR.py [opts] organism where organism is the ftbl informative part of file name (before .ftbl), e.g.
organism.ftbl after execution a file organism.R will be created. If it already exists, it will be silently overwritten. The
system Afl*flnx=bfl is created from the ftbl file.

Important python variables:

• case_i - if True, the case is “i” otherwise it is the “s” case

Collections:

• netan - (dict) ftbl structured content

• tfallnx - (3-tuple[reac,[“d”|”f”|”c”], [“net”|”xch”]] list)- total flux collection

• measures - (dict) exp data

• rAb - (list) reduced linear systems A*x_cumo=b (a system by weight)

• scale - unique scale names

• nrow - counts scale names

• o_sc - ordered scale names

• o_meas - ordered measurement types

File names (str):

• n_ftbl (descriptor f_ftbl)

• n_R (R code) (f)

• n_fort (fortran code) (ff)

Counts:

• nb_fln, nb_flx, nb_fl (dependent fluxes: net, xch, total), nb_ffn, nb_ffx (free fluxes)

56 Chapter 6. Programmer’s documentation for influx_s

influx_si Documentation, Release 5.0

Index translators:

• fwrv2i - flux names to index in R:fwrv

• cumo2i - cumomer names to index in R:x

• ir2isc - mapping measurement rows indexes on scale index isc[meas]=ir2isc[meas][ir]

Vector names:

• cumos (list) - names of R:x

• o_mcumos - cumomers involved in measurements

Important R variables:

Scalars:

• nb_w, nb_cumos, nb_fln, nb_flx, nb_fl (dependent or unknown fluxes),

• nb_ffn, nb_ffx, nb_ff (free fluxes),

• nb_fcn, nb_fcx, nb_fc (constrained fluxes),

• nb_ineq, nb_param, nb_fmn

Name vectors:

• nm_cumo, nm_fwrv, nm_fallnx, nm_fln, nm_flx, nm_fl, nm_par,

• nm_ffn, nm_ffx,

• nm_fcn, nm_fcx,

• nm_mcumo, nm_fmn

Numeric vectors:

• fwrv - all fluxes (fwd+rev)

• x - all cumomers (weight1+weight2+. . .)

• param - free flux net, free flux xch, scale label, scale mass, scale peak, metabolite concentrations

• fcn, fcx, fc - constrained fluxes

• bp - helps to construct the rhs of flux system

• xi -cumomer input vector

• fallnx - complete flux vector (constr+net+xch)

• bc - helps to construct fallnx

• li - inequality vector (mi%*%fallnx>=li)

• ir2isc - measure row to scale vector replicator

• ci - inequalities for param use (ui%*%param-ci>=0)

• measvec - measurement vector

• fmn - measured net fluxes

Matrices:

• Afl, qrAfl, invAfl,

• p2bfl - helps to construct the rhs of flux system

• mf, md - help to construct fallnx

6.4. ftbl2optR 57

influx_si Documentation, Release 5.0

• mi - inequality matrix (ftbl content)

• ui - inequality matrix (ready for param use)

• measmat - for measmat*x+memaone=vec of simulated not-yet-scaled measurements

Functions:

• lab_sim - translate param to flux and cumomer vector (initial approximation)

• cumo_cost - cost function (khi2)

• cumo_gradj - implicit derivative gradient

6.5 ftbl2xgmml

read a .ftbl file from a parameter and translate to .xgmml file. The generated xgmml file can be then imported into
Cytoscape (www.cytoscape.org). Reactions involving two substrates or two products are represented by an additional
almost invisible node while one-to-one reactions are just edges. Node and edge attributes are written in respective xml
attributes. Compatibility: cytoscape v2.8.3 and v3.0

usage: ftbl2xgmml.py [-h|–help] mynetwork.ftbl [> mynetwork.xgmml]

OPTIONS -h, –help print this message and exit

param mynetwork the base of an ftbl file (mynetwork.ftbl)

returns mynetwork.xgmml – file of the network definition suitable for cytoscape

Copyright 2014, INRA, France Author: Serguei Sokol (sokol at insa-toulouse dot fr) License: Gnu Public License
(GPL) v3 http://www.gnu.org/licenses/gpl.html

6.6 kvh

kvh.dict2kvh(d, fp=sys.stdout, indent=0)
Write a nested dictionary on the stream fp (stdout by default).

kvh.escape(s, spch="|&;<>()$‘\"’ tn*?[#~=%", ech="\")
escape special characters in s. The special characters are listed in spch. Escaping is done by putting an
ech string before them. Default spch and ech corresponds to quoting Shell arguments in accordance with
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html Example: os.system(“ls %s” % es-
cape(file_name_with_all_meta_chars_but_newline)); .. note:

1. Escaped <newline> is removed by a shell if not put in a single-quotted string (‘ ‘)

2. A single-quote character even escaped cannot appear in a single-quotted string

kvh.kvh2dict(fp)
Read a kvh file from fp pointer then translate its tlist structure to a returned hierarchical dictionnary. Repeated
keys at the same level of a dictionnary are silently overwritten

kvh.kvh2obj(fp)
Read a kvh file from fp pointer then translate its tlist structure to a returned object hierarchy. Repeated fields at
the same level of an object are silently overwritten

kvh.kvh2tlist(fp, lev=[0], indent=[0])
Read a kvh file from fp stream descriptor and organize its content in list of tuples [(k1,v1), (k2,[(k2.1, v2.1)])]
If fp is a string, it is used in open() operator

58 Chapter 6. Programmer’s documentation for influx_s

http://www.gnu.org/licenses/gpl.html
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html

influx_si Documentation, Release 5.0

kvh.kvh_get_matrix(fp, keys)
Get matrix or vector whose key suite is in a list keys from a kvh file given in fp (file pointer of file name). For
big kvh files, this function can be much faster than kvh2tlist()+kvh_getv_by_k() Return a matrix which is a list
of lists (rows). The first item in each row is the row name. In case of matrix (i.e. “row_col” is present in kvh
file), the very first row contain column names.

kvh.kvh_getv_by_k(kvt, kl)→ None|String|kvh tlist
get value from kvt (kvh tlist) according to the key hierarchy defined in the list of keys kl. Return None if no key
is found

kvh.kvh_read_key(fp)

Read a string from the current position till the first unescaped , or the end of stream fp.

Returns tuple (key, sep), sep=None at the end of the stream

kvh.kvh_read_val(fp)

Read a string from current position till the first unescaped

or the end of file. Return the read string.

kvh.kvh_tlist2dict(tlist)
Translate a tlist structure read from a kvh file to a hierarchical dictionnary. Repeated keys at the same level of a
dictionnary are silently overwritten

kvh.kvh_tlist2obj(tlist)
Translate a tlist structure read from a kvh file to a hierarchical dictionnary. Repeated keys at the same level of a
dictionnary are silently overwritten

kvh.tlist2kvh(d, fp=sys.stdout, indent=0)
Write a (hierarchichal) list of 2-tuples on the stream fp (stdout by default).

6.7 tools_ssg

tools_ssg.aff(name, obj, ident=0, f=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

print formatted object: name=obj

tools_ssg.arr2pbm(A, fp)
Write an image map of non-zero entries of matrix A to file pointer fp. Matrix A is an array

tools_ssg.asort(d)
sorts a dictionnary by value preserving key=value association the result is a list of tuples (key,value)

tools_ssg.cumsum(l, tot=0)

Returns an iterable of the length len(l)+1 with cumulated sum of items in l. First element in cumsum
is equal to initial value of tot. Result depends on the meaning of “+” operator for l items and of
tot type.

>>> list(cumsum("abc",tot=""))
['', 'a', 'ab', 'abc']

>>> list(cumsum(xrange(1,5)))
[0, 1, 3, 6, 10]

6.7. tools_ssg 59

influx_si Documentation, Release 5.0

tools_ssg.expandbit(i, pos)
copy bits set to 1 in i to the result position given in the list pos. length of pos must be greater or equal to bitlength
of i

tools_ssg.icumo2iiso(icumo, size)

Returns iterator on isotopomers composing a given icumo. size is carbon number

tools_ssg.isstr(s)

Returns True if the argument is a string

tools_ssg.iterbit(i, size=0)
iterator on bits in integer starting from 0-position. The iterator stops at highest non-zero bit

tools_ssg.iternumbit(i, size=0)
iterator on bits and its number in integer starting from 0-position. The iterator yields tuples (n,bit). If optional
size is zero then it stops at highest non-zero bit. If not, it will stop at bit number size-1.

tools_ssg.join(c, l, p=”, s=”, a=”)
join the items of the list (or iterator) l separated by c. Each item is prefixed with p and suffixed with s. If the
join result is empty for any reason, an alternative a is returned. p, s and a are optional

tools_ssg.joint(c, l, p=”, s=”, a=”)
join “true” items of the list (or iterator) l separated by c. Each item is prefixed with p and suffixed with s. If the
join result is empty for any reason, an alternative a is returned. p, s and a are optional

tools_ssg.list2count(l, incr=1)
count values in a (short) list l incrementing the counter by optional incr.

Returns a dictionary {item:count}

tools_ssg.read_table(f) → dict(mat, col_names) read a plain text file f in a numpy mat. If some
columns are not numerical, they are replaced by np.nan. If header=True, number
of column names in the first row after skip must be the same as the number of
values in each following row.

tools_ssg.reverse(it)
reverse order of an iterable

tools_ssg.rstrbit(i, size=0)

Returns the integer as reversed string binary representation. The lowest bit is on the left side

tools_ssg.setbit32(i, nb)
set a bit number nb (0 based) in an integer i

tools_ssg.setcharbit(s, ch, i)
set character ch in a string s everywhere a corresponding bit of i is set

tools_ssg.ssign(i, sp=’+’, sm=’-’)

Returns a string of i sign: sp (i>=0) or sm (i<0).

tools_ssg.strbit(i, size=0)

Returns the lowest part of integer as string binary representation

tools_ssg.strbit2int(s)
translate a string of 0’s and 1’s interpreted as bits to an integer all characters different from 0,1 are silently
ignored

tools_ssg.strbit32(i)

Returns a string of 0-1s (in chunk of 4) in an 32 bit integer

60 Chapter 6. Programmer’s documentation for influx_s

influx_si Documentation, Release 5.0

tools_ssg.sumbit(i)

Returns sum of bits in an integer

tools_ssg.trd(l, d, p=”, s=”, a=”)
translate items in an iterable l by a dictionary d, prefixing translated items by optional p and suffixing them by
optional s. If an item is not found in the dictionnary alternative string a is used. If a==None, the item is left
unchanged. No prefix or suffix are applied in both case.

Returns iterator

tools_ssg.ulong(i)→ workarounded ulong

tools_ssg.valval(o, keepNone=True)

Returns an iterator over values of values, i.e. collapsing values of fisrt two nested lists in one list,
for example.

tools_ssg.wxlay2py(kvt, parent=[None])

Returns a string with python code generating wxWindow widget layout described in kvh tlist
sturcture

6.7. tools_ssg 61

influx_si Documentation, Release 5.0

62 Chapter 6. Programmer’s documentation for influx_s

CHAPTER

SEVEN

HOW TO . . .

... choose free fluxes?
You can define in FTBL all not constrained fluxes as dependent (put a letter D in the column FCD of the FTBL
sections FLUXES/NET and FLUXES/XCH), run influx_si and see an error message that will suggest some
candidates for free fluxes. For these fluxes, put a letter F in the column FCD and some numeric value in the next
column VALUE(F/C) to provide a starting value for the fitting. Don’t use 0 as starting value as it might lead
to singular matrices in cumomer balances.

If you want to create an FTBL de novo, consider using application txt2ftbl.py included in influx_si
package. Not only it translates an easily readable/writable text format into FTBL one, but it also automatically
assigns some fluxes to be free.

... get statistical information for a given set of free fluxes without
fitting measurements?

Put these values in the corresponding FTBL file as starting values for free fluxes and use influx_si with
--noopt option.

... accelerate calculations?
You can relax stopping criterion and pass from 1.e-5 (by default) to, for example, 1.e-2 if this precision is
sufficient for you. Use optctrl_errx option in FTBL file (section OPTIONS) for this.

If you mean to accelerate Monte-Carlo simulations in Unix environment, you can use a hardware with many
cores. In this case, the wall clock time can be reduced significantly. Note that distant nodes, even inside of the
same cluster, are not used in the such kind of Monte-Carlo simulations.

Check that your system is not using swap (disk) memory. If it is the case, stop other applications running in
parallel with influx_si. If possible extend the RAM on your hardware.

... extend upper limit for non linear iterations?
By default, this value is 50 which should be largely sufficient for most cases. If not, you can set another value
via optctrl_maxit option in the FTBL file (section OPTIONS). But most probably, you would like to check
your network definition or to add some data or to change a substrate labeling, anyway to do something to get
a well defined network instead of trying to make converge the fitting on some biologically almost meaningless
situation.

... make FTBL file with synthetic data?

Follow for example steps outlined hereafter:

• edit FTBL file(s) with NA in measurements and realistic SD, name it e.g. new_NA.ftbl

• simulate data:

$ influx_s.py --noopt --addnoise new_NA

• prepare FTBL sections with simulated data:

63

influx_si Documentation, Release 5.0

$ res2ftbl_meas.py new_NA_res.kvh

It will create file (or files if there are parallel experiments) with synthetic data formatted for inclusion
in FTBL file: new_NA_sim1.ftbl, new_NA_sim2.ftbl, etc.)

• copy/paste simulated data to a new file new.ftbl with numeric data instead of NA.

• use FTBL with synthetic data:

$ influx_s.py new.ftbl

... do custom post-treatment of Monte-Carlo iterations?
Let suppose that you want to filter some of Monte-Carlo (MC) iterations based on their cost values. In
OPTIONS/psottreat_R of your FTBL file add save_all.R. The file save_all.R can be found in
test directory of influx_si distribution and must be copied to the directory where your FTBL file resides.
Execution of save_all.R at the end of calculations will simply save all session variables in mynetwork.
RData file (supposing that your FTBL file is names mynetwork.ftbl). In particular, you need free_mc
matrix which contains free parameters (each column results from a given MC iteration). After that you can open
an interactive R session in your working directory and run something similar to:

preparations
load("mynetwork.RData")
source(file.path(dirx, "libs.R"))
source(file.path(dirx, "opt_cumo_tools.R"))
#source(file.path(dirx, "opt_icumo_tools.R")) # uncoment for influx_i use
tmp=sparse2spa(spa)

doing something useful
here, we calculate a vector of cost values, one per MC iteration
cost_mc=apply(free_mc, 2, function(p) cumo_cost(p, labargs))
do something else ...

If, instead of cost values, you need for example a full set of net-xch fluxes then do

allflux_mc=apply(free_mc, 2, function(p) param2fl(p, labargs)$fallnx)

for residuals, do:

resid_mc=apply(free_mc, 2, function(p) lab_resid(p, FALSE, labargs)$res)

After that, you can filter or do whatever needed with obtained vectors and matrices.

64 Chapter 7. How to . . .

CHAPTER

EIGHT

TROUBLESHOOTING

The software is provided “AS IS” without warranty of any kind explicit or implicit.

If you have some issue with influx_si you can try the following steps for solving them:

• partners and clients of MetaToul-RéseauxMétaboliques can benefit from advices of their dedicated stuff. If you
are not a partner/client but would like to become one, for example to get help for your label experiment design
and/or realization, you can contact platform MetaToul (cf. Consulting and more);

• you can search for similar problem discussion in the forum https://groups.google.com/forum/#!forum/influx_si.
If you don’t find your answer and wish to ask a new question you’ll have to subscribe to this group.

• if you think that you face a bug, try the latest version of the software to see if this bug was already fixed. If it
is still present, you can report it on https://github.com/sgsokol/influx/issues. Please note that we can’t guarantee
that any particular bug can be fixed in any particular release or can be fixed at all. It is possible, that we ask you
to send us (in a private email not in influx_si@googlegroups.com) an ftbl file on which an error occur. It will be
used only for purposes of bug reproducing and its identification. The received ftbl file will not be transmitted to
any third party.

• if you have a problem with FTBL editing, you can read the documentation from 13CFlux and/or interpret error
messages generated during FTBL parsing.

• if you have some difficulties in choosing free fluxes, define all not constrained fluxes as dependent (put a letter D
in the column FCD of the FTBL sections FLUXES/NET and FLUXES/XCH) and see an error message that will
suggest candidates for free fluxes. Another option is to use --ffguess flag that will automatically partition
not constrained fluxes between free and dependent.

• if your resulting fluxes are badly defined (statistically or structurally), i.e. they have big confidence intervals
or the Jacobian is rank deficient, you can try to play with input labeling (cf. IsoDesign software at http://
metatoul.insa-toulouse.fr/metasys/software/isodes/) or try to collect some additional data on metabolites not yet
measured. To have some insights on what part of the network is already well defined and which one still needs
additional measurements, you can try to run influx_si with an option --ln (as least norm) (in addition
to --noopt option) and examine standard deviation of the fluxes/concentrations in the resulting KVH file.
Another possibility is to use parallel labeling experiments (cf. manual section Parallel experiments)

Once again, if you could not resolve your problem during these steps, see the next section Consulting and more.

65

https://groups.google.com/forum/#!forum/influx_si
https://github.com/sgsokol/influx/issues
mailto:influx_si@googlegroups.com
https://www.13cflux.net
http://metatoul.insa-toulouse.fr/metasys/software/isodes/
http://metatoul.insa-toulouse.fr/metasys/software/isodes/
https://doi.org/10.1016/j.ymben.2012.11.010

influx_si Documentation, Release 5.0

66 Chapter 8. Troubleshooting

CHAPTER

NINE

CONSULTING AND MORE

If you need a help in design, conducting and interpretation of label experiments, you can expose your problem in
a brief email to platform MetaToul-Réseaux-Métaboliques (metatoul [at] insa-toulouse [dot] fr) located in Toulouse,
France. A dedicated person will take contact with your to detail what can be done to help you and to draw up a quote.
For more details about the platform MetaToul, you can visit their web site http://www.metatoul.fr (english version is
available).

If you need help in topics related to mathematics, influx_si software itself or custom feature for influx_si,
you can ask a project creation with Mathematics Cell in Toulouse Biotechnology Institute (sokol (at) insa-toulouse
(dot) fr).

You don’t have to ask for a consulting for a simple bug submission. A bug submission can be directly made at
https://github.com/sgsokol/influx/issues

67

http://www.metatoul.fr
https://github.com/sgsokol/influx/issues

influx_si Documentation, Release 5.0

68 Chapter 9. Consulting and more

CHAPTER

TEN

LICENSE FOR INFLUX_S SOFTWARE

LICENCE for influx_si software

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

(continues on next page)

69

influx_si Documentation, Release 5.0

(continued from previous page)

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any

(continues on next page)

70 Chapter 10. License for influx_s software

influx_si Documentation, Release 5.0

(continued from previous page)

part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source

(continues on next page)

71

influx_si Documentation, Release 5.0

(continued from previous page)

code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

(continues on next page)

72 Chapter 10. License for influx_s software

influx_si Documentation, Release 5.0

(continued from previous page)

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
(continues on next page)

73

influx_si Documentation, Release 5.0

(continued from previous page)

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

(continues on next page)

74 Chapter 10. License for influx_s software

influx_si Documentation, Release 5.0

(continued from previous page)

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

COPYRIGHT 2011-2019 INRA

75

influx_si Documentation, Release 5.0

76 Chapter 10. License for influx_s software

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

77

influx_si Documentation, Release 5.0

78 Chapter 11. Indices and tables

PYTHON MODULE INDEX

c
C13_ftbl, 51

f
ftbl2code, 55
ftbl2netan, 56
ftbl2optR, 56
ftbl2xgmml, 58

k
kvh, 58

t
tools_ssg, 59

79

influx_si Documentation, Release 5.0

80 Python Module Index

INDEX

A
aff() (in module tools_ssg), 59
aglom() (in module C13_ftbl), 51
aglom_loop1() (in module C13_ftbl), 51
allprods() (in module C13_ftbl), 51
arr2pbm() (in module tools_ssg), 59
asort() (in module tools_ssg), 59

B
bcumo_decomp() (in module C13_ftbl), 51

C
C13_ftbl (module), 51
conv_mid() (in module C13_ftbl), 51
cumo_infl() (in module C13_ftbl), 51
cumo_iw() (in module C13_ftbl), 52
cumo_path() (in module C13_ftbl), 52
cumsum() (in module tools_ssg), 59

D
dict2kvh() (in module kvh), 58
dom_cmp() (in module C13_ftbl), 52

E
enum_path() (in module C13_ftbl), 52
escape() (in module kvh), 58
expandbit() (in module tools_ssg), 59

F
formula2dict() (in module C13_ftbl), 52
frag_prod() (in module C13_ftbl), 52
ftbl2code (module), 55
ftbl2netan (module), 56
ftbl2optR (module), 56
ftbl2xgmml (module), 58
ftbl_netan() (in module C13_ftbl), 52
ftbl_parse() (in module C13_ftbl), 53

I
icumo2iiso() (in module tools_ssg), 60
infl() (in module C13_ftbl), 53

iso2cumo() (in module C13_ftbl), 53
iso2emu() (in module C13_ftbl), 53
isstr() (in module tools_ssg), 60
iterbit() (in module tools_ssg), 60
iternumbit() (in module tools_ssg), 60

J
join() (in module tools_ssg), 60
joint() (in module tools_ssg), 60

K
kvh (module), 58
kvh2dict() (in module kvh), 58
kvh2obj() (in module kvh), 58
kvh2tlist() (in module kvh), 58
kvh_get_matrix() (in module kvh), 58
kvh_getv_by_k() (in module kvh), 59
kvh_read_key() (in module kvh), 59
kvh_read_val() (in module kvh), 59
kvh_tlist2dict() (in module kvh), 59
kvh_tlist2obj() (in module kvh), 59

L
label_meas2matrix_vec_dev() (in module

C13_ftbl), 53
labprods() (in module C13_ftbl), 53
list2count() (in module tools_ssg), 60
lowtri() (in module C13_ftbl), 53

M
mass_meas2matrix_vec_dev() (in module

C13_ftbl), 53
mat2graph() (in module C13_ftbl), 54
mat2pbm() (in module C13_ftbl), 54
mecoparse() (in module C13_ftbl), 54
ms_frag_gath() (in module C13_ftbl), 54

N
netan2Abcumo_spr() (in module ftbl2code), 55
netan2R_cumo() (in module ftbl2code), 55
netan2R_fl() (in module ftbl2code), 55
netan2R_ineq() (in module ftbl2code), 55

81

influx_si Documentation, Release 5.0

netan2R_meas() (in module ftbl2code), 55
netan2Rinit() (in module ftbl2code), 55
ntimes() (in module C13_ftbl), 54

P
peak_meas2matrix_vec_dev() (in module

C13_ftbl), 54
proc_kinopt() (in module C13_ftbl), 54
proc_label_input() (in module C13_ftbl), 54
proc_label_meas() (in module C13_ftbl), 54
proc_mass_meas() (in module C13_ftbl), 54
proc_peak_meas() (in module C13_ftbl), 54
prod() (in module C13_ftbl), 54

R
rcumo_sys() (in module C13_ftbl), 54
read_table() (in module tools_ssg), 60
reverse() (in module tools_ssg), 60
rstrbit() (in module tools_ssg), 60

S
setbit32() (in module tools_ssg), 60
setcharbit() (in module tools_ssg), 60
src_ind() (in module C13_ftbl), 54
ssign() (in module tools_ssg), 60
strbit() (in module tools_ssg), 60
strbit2int() (in module tools_ssg), 60
strbit32() (in module tools_ssg), 60
sumbit() (in module tools_ssg), 60

T
t_iso2cumo() (in module C13_ftbl), 55
t_iso2m() (in module C13_ftbl), 55
t_iso2pos() (in module C13_ftbl), 55
tlist2kvh() (in module kvh), 59
tools_ssg (module), 59
topo_order() (in module C13_ftbl), 55
transpose() (in module C13_ftbl), 55
trd() (in module tools_ssg), 61

U
ulong() (in module tools_ssg), 61

V
valval() (in module tools_ssg), 61

W
werr() (in module C13_ftbl), 55
wout() (in module C13_ftbl), 55
wxlay2py() (in module tools_ssg), 61

82 Index

	Introduction
	Change Log for influx_si
	Installation
	Quick Start
	User’s manual
	Programmer’s documentation for influx_s
	How to …
	Troubleshooting
	Consulting and more
	License for influx_s software
	Indices and tables
	Python Module Index
	Index

