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Chapter 1

Introduction

This document contains descriptions of algorithms contained in the egads toolbox. Within
each algorithm description is the following:

• Algorithm Name – name of algorithm as implemented in egads .

• Category – general category of algorithm. Algorithm can be found in this subdi-
rectory in egads .

• Summary – short description of what the algorithm does.

• Inputs – expected inputs to algorithm. This field includes expected units, and data
type of input.

• Outputs – outputs produced by algorithm.

• Formula – description of formulas or methods behind the algorithm.

• Source – person, institution or entity who provided the algorithm.

• References – any references to literature, journals or documents with more infor-
mation on the current algorithm

To aid in algorithm usage and discovery, there is a general naming scheme for egads
algorithms. Generally, algorithm names are composed as follows:

{measurement}_{context/detail/instrument}_{source}

For example, an algorithm provided by CNRM to calculate the density of dry air would
be named density_dry_air_cnrm.

For more information about using these algorithms within egads , or using egads
itself, please refer to the egads documentation which can be found at https://github.com/
eufarn7sp/egads
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CHAPTER 2. MATHEMATICS

2.1 Time Derivative

Algorithm name: derivative wrt time

Category: Mathematics

Summary: Calculation of the first time derivative of a generic parameter. Calculations
of time derivatives are centered for all except the first and last values in the
vector. Returns None value for scalar parameters.

Inputs:

x Vector Parameter to calculate first derivative
t Vector Time signal [sec]

Outputs:

ẋ Vector First derivative of x [units of x / sec]

Formula:

ẋi =
xi+1 − xi−1

ti+1 − ti−1

Source:

References:
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CHAPTER 3. CORRECTIONS

3.1 Simple correction of spikes

Algorithm name: correction spike simple cnrm

Category: Corrections

Summary: Detection of spikes which exceed a specified threshold. The detected value
is replaced with the mean of the surrounding values.

This algorithm does not apply well to variables that are naturally discontinuous.

Inputs:

X Vector Parameter for analysis
S0 Coeff Spike detection threshold (same units as X, and must

be positive)

Outputs:

Xc Vector Parameter with corrections applied

Formula: The ith term is considered a spike if the following are all true:

‖X[i]−X[i− 1]‖ > S0 (3.1)

‖X[i]−X[i+ 1]‖ > S0 (3.2)

(X[i]−X[i− 1])(X[i]−X[i+ 1]) > 0 (3.3)

with

Xc[i] =
X[i+ 1] +X[i− 1]

2

Otherwise, Xc[i] = X[i]

Source: CNRM/GMEI/TRAMM

References:
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CHAPTER 4. TRANSFORMS

4.1 Linear Interpolation

Algorithm name: interpolate linear

Category: Transforms

Summary: This algorithm linearly interpolates a variable piecewise from one coordinate
system to another. It is mostly used to fill gaps.

Inputs:

x Vector x-coordinates of the data points (must be increasing).
f Vector Data points to interpolate.
xinterp Vector New set of x-coordinates to use in interpolation.
fleft Coeff, optional Value to return when xinterp < x0. Default is f0.
fright Coeff, optional Value to return when xinterp > xn. Default is fn.

Outputs:

finterp Vector Interpolated values of f .

Formula: For each value of xinterp the two surrounding points are found and designated
xa and xb, with corresponding values fa and fb. Then finterp is calculated piecewise as
follows:

finterp[i] = fa + (xinterp[i]− xa)
fb − fa
xb − xa

Values where xinterp is less than x0 are replaced with fleft, if provided, or f0. Likewise,
fright if given, or fn are substituted where xinterp is greater than xn.

Important: in the current version of the algorithm, the corresponding ith value is in-
terpolated only if:

• xinterp[i] doesn’t exist in x

• f(x) = NaN if xinterp[i] exists in x

Source:

References:
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CHAPTER 4. TRANSFORMS

4.2 Linear Interpolation (old)

Algorithm name: interpolate linear old

Category: Transforms

Summary: This algorithm linearly interpolates a variable piecewise from one coordinate
system to another. All values are interpolated, even if they exist in the new
coordinate system.

Inputs:

x Vector x-coordinates of the data points (must be increasing).
f Vector Data points to interpolate.
xinterp Vector New set of x-coordinates to use in interpolation.
fleft Coeff, optional Value to return when xinterp < x0. Default is f0.
fright Coeff, optional Value to return when xinterp > xn. Default is fn.

Outputs:

finterp Vector Interpolated values of f .

Formula: For each value of xinterp the two surrounding points are found and designated
xa and xb, with corresponding values fa and fb. Then finterp is calculated piecewise as
follows:

finterp[i] = fa + (xinterp[i]− xa)
fb − fa
xb − xa

Values where xinterp is less than x0 are replaced with fleft, if provided, or f0. Likewise,
fright if given, or fn are substituted where xinterp is greater than xn.

Source:

References:
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CHAPTER 4. TRANSFORMS

4.3 Convert ISO 8601 time to date/time elements

Algorithm name: isotime to elements

Category: Transforms

Summary: This algorithm takes a series of ISO 8601 strings and splits them into their
composant values (year, month, day, hour, minute, second) using the Python
dateutil module. This module is format agnostic, and will recognize any ISO
8601 format.

Inputs:

tISO Vector ISO 8601 date-time string

Outputs:

year Vector year
month Vector month
day Vector day
hour Vector hour
minute Vector minute
second Vector second

Formula: This algorithm applies the Python dateutil.parser module to decompose an
ISO date-time string into its composant values.

Source:

References:
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CHAPTER 4. TRANSFORMS

4.4 Convert ISO 8601 time string to seconds

Algorithm name: isotime to seconds

Category: Transforms

Summary: This algorithm converts a series of ISO 8601 date-time strings to delta time
in seconds. It takes an optional format string for the conversion and an
optional reference time. If no reference time is provided, then Jan 1, 1970,
00:00:00 is used as the reference.

Inputs:

tISO Vector ISO 8601 strings
tISOref String, Optional Reference time [ISO 8601 string] - default is

’19700101T000000’
format String, Optional ISO 8601 string format - if none provided, alg will

attempt to deconstruct time string.

Outputs:

∆t Vector Seconds since reference

Formula: This algorithm uses the Python dateutil and datetime modules to parse and
process ISO 8601 date strings into seconds elapsed. The basic steps of the algorithms are:

1. Convert from ISO 8601 string into datetime tuple. If no format string is used, the
Python function dateutil.parser.parse is used to deconstruct the string, since it can
automatically recognize nearly any date string format. If a format string is provided,
then datetime.datetime.strptime(string, format) is used to deconstruct the string.

2. datetime tuple objects are subtracted from the reference time to get a datetime.timedelta
object.

3. Number of seconds and microseconds are calculated from the datetime.timedelta
object and stored as numeric objects and passed out of the algorithm.

Source:

References:
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CHAPTER 4. TRANSFORMS

4.5 Convert elapsed seconds to ISO 8601 time string

Algorithm name: seconds to isotime

Category: Transforms

Summary: Given a vector of elapsed seconds and a reference time, this algorithm calcu-
lates a series of ISO 8601 formatted time strings using the Python datetime
module. The format of the returned ISO 8601 strings can be controlled
by the optional format parameter. The default format is yyyymmddTHH-
MMss.

Inputs:

tsecs Vector Elapsed seconds [s]
tref String ISO 8601 reference time
format String, optional ISO 8601 format string, default is yyyymmddTHH-

MMss

Outputs:

tISO Vector ISO 8601 date-time strings

Formula: The ISO 8601 time strings are generated from the inputs using the Python
datetime module using these steps for each item in the tsecs vector:

1. Create a datetime object using the input reference time (tref ) representing the start
time.

2. Calculate a timedelta object from the input elapsed seconds parameter.

3. Add the timedelta object to the reference datetime object to calculate an absolute
time.

4. Convert the resulting datetime object to an ISO 8601 string following the given
format, if any.

Source:

References:
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CHAPTER 4. TRANSFORMS

4.6 Converts a time or a time vector to decimal year.

Algorithm name: time to decimal year

Category: Transforms

Summary: Given a vector of time (ms/s/mm/h/d/m) and an optional reference year,
this algorithm converts the data to a format in decimal year. Ex: 1995.0125

Inputs:

t Vector Time [s]
tref String, optional Time reference, default is 19500101T000000

Outputs:

ty Vector Time in decimal year [year]

Formula: The decimal year vector ty is generated from the inputs using the Python
datetime module using these steps for each item in the t vector:

1. Regardless of the time format (second, minute, hour, day, month, ...), t is converted
to year automatically by the instance EgadsData.

2. The user time reference, tref , if provided by the user, is converted to seconds using
the algorithm ISOtimeToSeconds, based on the reference 1950-01-01 at 00h00mm00s.
tref can be positive if the user time reference is after 1950-01-01, or negative if the
user time reference is before 1950-01-01.

3. The time reference is then rescaled to year.

4. The final ty vector is computed by adding tref + 1950 to t.

Source:

References:
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CHAPTER 5. THERMODYNAMICS

5.1 Incremantal pressure altitude

Algorithm name: altitude pressure incremental cnrm

Category: Thermodynamics

Summary: Calculate a pressure altitude incrementally along the trajectory of an aircraft
from the Laplace formula (Z2 = Z1 + Ra/g < Tv > log(P1/P2)).

Inputs:

Ps Vector[t] Static pressure [hPa]
Tv Vector[t] Virtual temperature [K or ◦C]
t Vector[t] Measurement period [s]
Z0 Coeff Reference altitude at S0 if S0 is provided, can be air-

port altitude (m) if S0 is not provided and measure-
ments start in airport [m]

S0 Coeff, optional Reference time, if not provided S0 = t[0] [s]

Outputs:

alt p Vector[t] Pressure altitude [m]

Formula: Tv is converted to Kelvin if needed, then:

Zi0 = Z0 with i0 such as ref timei0 = S0

Zj = Zi+
Ra
g
·
(
Tvj + Tvi

2

)
· log

(
Psi
Psj

)
with

{
i = j + 1 for j < i0
i = j − 1 for j > i0

Source: CNRM/GMEI/TRAMM

References: Equation of state for a perfect gas, Triplet-Roche [10], page 36.
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CHAPTER 5. THERMODYNAMICS

5.2 Pressure altitude

Algorithm name: altitude pressure raf

Category: Thermodynamics

Summary: Calculates pressure altitude given static pressure using US Standard Atmo-
sphere definitions. Sea level conditions in the US Standard Atmosphere are
defined as having a pressure of 1013.25 hPa and a temperature of 15 degC
at an altitude of 0m.

Inputs:

Ps Vector Static pressure [hPa]

Outputs:

H Vector Pressure altitude [m]

Formula: For pressures greater than or equal to 226.3206:

H =
T0

L

[
1−

(
Ps
P0

)RaL
g

]

where the lapse rate L is 0.0065 K/m. For pressures less than 226.3206:

H = H1 +
RaT1

g
ln

(
P1

Ps

)
where H1 is 11000m, T1 is 216.65 K and P1 is 226.3206.

Source: NCAR EOL-RAF

References: US Standard Atmosphere 1976 (NASA-TM-X-74335), 241 pages. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539 1977009539.pdf
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CHAPTER 5. THERMODYNAMICS

5.3 Density of dry air

Algorithm name: density dry air cnrm

Category: Thermodynamics

Summary: Calculates density of dry air given static temperature and pressure.

Inputs:

Ps Vector Static pressure [hPa]
Ts Vector Static temperature [K or ◦C]

Outputs:

ρ Vector Density of dry air [kg/m3]

Formula:

ρ =
100Ps
RaTs

with Ra = 287.05 J kg−1 K−1

Density of humid air can be calculated using this same algorithm by using virtual
temperature instead of static temperature.

Source: CNRM/GMEI/TRAMM

References: Equation of state for a perfect gas, Triplet-Roche [10], page 34.
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CHAPTER 5. THERMODYNAMICS

5.4 Relative humidity from capacitive probe

Algorithm name: hum rel capacitive cnrm

Category: Thermodynamics

Summary: Calculates relative humidity using the measured frequency from a capacitive
probe.

Inputs:

Ucapf Vector Output frequency of the capacitive probe [Hz]
Ts Vector Static temperature [K]
Ps Vector Static pressure [hPa]
∆P Vector Dynamic pressure [hPa]
Ct Coeff. Temperature correction coefficient [%◦C]
Fmin Coeff. Minimal acceptable frequency [Hz]
C0 Coeff. 0th degree calibration coefficient
C1 Coeff. 1st degree calibration coefficient
C2 Coeff. 2nd degree calibration coefficient

Outputs:

Hu Vector Relative humidity [%]

Formula: If Ucapf ≤ Fmin then Ucapf = Fmin

Hu =
Ps

Ps + ∆P

[
C0 + C1Ucapf + C2Ucapf

2 + Ct(Ts − 20)
]

with Ts in ◦C and 20 in ◦C.

Source: CNRM/GMEI/TRAMM

References: CAM note on humidity instrument measurements. [1]
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CHAPTER 5. THERMODYNAMICS

5.5 Pressure and angle of incidence (CNRM)

Algorithm name: pressure angle incidence cnrm

Category: Thermodynamics

Summary: Calculates static pressure and dynamic pressure by correction of static error.
Angle of attack and sideslip are calculated from the horizontal and vertical
differential pressures.

Inputs:

Psr Vector Raw static pressure [hPa]
∆Pr Vector Raw dynamic pressure [hPa]
∆Ph Vector Horizontal differential pressure [hPa]
∆Pv Vector Vertical differential pressure [hPa]
Cα Coeff.[2] Angle of attack calibration coefficients
Cβ Coeff.[2] Slip calibration coefficients
Cerrstat Coeff.[4] Static error coefficients

Outputs:

Ps Vector Static Pressure [hPa]
∆P Vector Dynamic pressure corrected with static error [hPa]
α Vector Angle of attack [rad]
β Vector Sideslip [rad]

Formula: If ∆Pr > 25hPa:

Errstat = Cerrstat[0] + Cerrstat[1]∆Pr + Cerrstat[2]∆P 2
r + Cerrstat[3]∆P 3

r

otherwise:

Errstat =
∆Pr
25

Errstat @ 25 hPa (5.1)

Ps = Psr − Errstat
∆P = ∆Pr + Errstat

α = Cα[0] + Cα[1]
∆Pv
∆P

β = Cβ[0] + Cβ[1]
∆Ph
∆P

Source: CNRM/GMEI/TRAMM

References:
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CHAPTER 5. THERMODYNAMICS

5.6 Dynamic pressure and angle of incidence

Algorithm name: pressure dynamic angle incidence vdk

Category: Thermodynamics

Summary: This algorithm calculates dynamic pressure and angles of incidence from a
5-hole probe using differences in pressure between the ports. The algorithm
requires calibration coefficients which are obtained by a calibration proce-
dure of the probe at predefined airflow angles. See van den Kroonenberg,
2008 [11] for more details on the calibration procedure.

Inputs:

∆Pt Vector Pressure difference between top port and center port
[hPa]

∆Pb Vector Pressure difference between bottom port and center
port [hPa]

∆Pl Vector Pressure difference between left port and center port
[hPa]

∆Pr Vector Pressure difference between right port and center port
[hPa]

∆P0s Vector Pressure difference between center port and static
pressure [hPa]

aij Coeff[11,11] Angle of attack calibration coefficients
bij Coeff[11,11] Sideslip calibration coefficients
qij Coeff[11,11] Dynamic pressure calibration coefficients

Outputs:

q Vector Dynamic pressure [hPa]
α Vector Angle of attack [deg]
β Vector Sideslip angle [deg]

Formula: Total pressure difference is calculated using pressure differentials from the 5
ports.

∆P =

(
1

125
[(∆Pt + ∆Pr + ∆Pb + ∆Pl)

2 + (−4∆Pt + ∆Pr + ∆Pb + ∆Pl)
2

+ (∆Pt − 4∆Pr + ∆Pb + ∆Pl)
2 + (∆Pt + ∆Pr − 4∆Pb + ∆Pl)

2

+ (∆Pt + ∆Pr + ∆Pb − 4∆Pl)
2]

)1/2

+
1

4
(∆Pt + ∆Pr + ∆Pb + ∆Pl)

The dimensionless pressure coefficients kα and kβ are defined using ∆P and the mea-
sured differential pressures.

21



CHAPTER 5. THERMODYNAMICS

kα =
∆Pt −∆Pb

∆P

kβ =
∆Pr −∆Pl

∆P

These are applied to general calibration polynomial form (11th order) from Bohn and
Simon, 1975 [3], where m = n = 11.

α̃ =
m∑
i=0

(kα)i

 n∑
j=0

aij(kβ)j


β̃ =

m∑
i=0

(kα)i

 n∑
j=0

bij(kβ)j


kq =

m∑
i=0

(kα)i

 n∑
j=0

qij(kβ)j



Finally, the dynamic pressure, angle of attack and sideslip angle can be calculated
using these coefficients.

q = ∆P0s + ∆Pkq

α = α̃

β = arctan

(
tan β̃

cos α̃

)

Source:

References:
A.C. van der Kroonenberg, et al., “Measuring the Wind Vector Using the Autonomous

Mini Aerial Vehicle M2AV,” J. Atmos. Oceanic Technol., 25 (2008): 1969-1982. [11]
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CHAPTER 5. THERMODYNAMICS

5.7 Potential Temperature

Algorithm name: temp potential cnrm

Category: Thermodynamics

Summary: Calculates potential temperature.

Inputs:

Ts Vector Static temperature [K or ◦C]
Ps Vector Static pressure [hPa]
Ra/cpa Coeff. Gas constant of air divided by specific heat of air at

constant pressure

Outputs:

θ Vector Potential temperature [same unit as Ts]

Formula:

θ = Ts

(
1000

Ps

)Ra/cpa

Source: CNRM/GMEI/TRAMM

References: Triplet-Roche [10].
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CHAPTER 5. THERMODYNAMICS

5.8 Static Temperature

Algorithm name: temp static cnrm

Category: Thermodynamics

Summary: Calculates static temperature of the air from total temperature. This method
applies to probe types such as the Rosemount.

Inputs:

Tt Vector Measured total temperature [K]
∆P Vector Dynamic pressure [hPa]
Ps Vector Static pressure [hPa]
rf Coeff. Probe recovery coefficient
Ra/cpa Coeff. Gas constant of air divided by specific heat of air at

constant pressure

Outputs:

Ts Vector Static temperature [K]

Formula:

Ts =
Tt

1 + rf

((
1 + ∆P

Ps

)Ra/cpa
− 1

)

Source: CNRM/GMEI/TRAMM

References:
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CHAPTER 5. THERMODYNAMICS

5.9 Virtual Temperature

Algorithm name: temp virtual cnrm

Category: Thermodynamics

Summary: Calculates the virtual temperature of air.

Inputs:

Ts Vector Static temperature [K or ◦C]
r Vector Water vapor mixing ratio [g/kg]

Outputs:

Tv Vector Virtual temperature [same units as Ts]

Formula:

Tv = Ts
1 + (Rv/Ra)r

1 + r

where Rv/Ra = 1.608

Source: CNRM/GMEI/TRAMM

References: Triplet-Roche [10], page 56.
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CHAPTER 5. THERMODYNAMICS

5.10 Mach number

Algorithm name: velocity mach raf

Category: Thermodynamics

Summary: Calculates the mach number based on dynamic and static pressure.

Inputs:

∆P Vector Dynamic pressure [hPa]
Ps Vector Static pressure [hPa]

Outputs:

M Vector Mach number

Formula:

M =

√√√√ 2

γ − 1

[(
∆P

Ps
+ 1

) γ−1
γ

− 1

]

Source: NCAR-EOL

References: NCAR-RAF Bulletin #23 [7]
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CHAPTER 5. THERMODYNAMICS

5.11 True air speed (CNRM)

Algorithm name: velocity tas cnrm

Category: Thermodynamics

Summary: Calculates true air speed based on static pressure, static temperature and
dynamic pressure using the Barré-St Venant formula.

Inputs:

Ts Vector Static temperature [K]
∆P Vector Dynamic pressure [hPa]
Ps Vector Static pressure [hPa]
cpa Coeff. Specific heat of air at constant pressure (for dry air

1004 J K−1 kg−1)
Ra/cpa Coeff. Gas constant of air divided by specific heat of air at

constant pressure

Outputs:

Vt Vector True air speed [m/s]

Formula:

Vt =

√√√√2cpaTs

[(
1 +

∆P

Ps

)Ra/cpa
− 1

]

Source: CNRM/GMEI/TRAMM

References: NCAR-RAF Bulletin #23 [7], Méchanique des fluides, Candel [4]
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CHAPTER 5. THERMODYNAMICS

5.12 True air speed (RAF)

Algorithm name: velocity tas raf

Category: Thermodynamics

Summary: Calculates true air speed based on Mach number, measured temperature
and thermometer recovery factor. Typical values of the themometer recovery
factor range from 0.75-0.9 for platinum wire ratiometer (flush bulb type)
thermometers, and around 1.0 for TAT type thermometers.

Inputs:

Tr Vector Measured temperature [K]
M Vector Mach number
e Coeff. thermometer recovery factor

Outputs:

Vt Vector True air speed [m/s]

Formula:

Vt =

√
RγTrM2

1 + 0.5(γ − 1)eM2

where the recovery factor e can be determined for a thermometer by comparing its mea-
sured temperature with the actual total and static temperature.

e ≡ Tr − Ts
Tt − Ts

Source: NCAR-EOL

References: NCAR-RAF Bulletin #23 [7]
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5.13 Longitudinal true airspeed

Algorithm name: velocity tas longitudinal cnrm

Category: Thermodynamics

Summary: Calculates the true air speed along the longitudinal axis of the aircraft.

Inputs:

Vt Vector True air speed [m/s]
α Vector Angle of attack [rad]
β Vector Sideslip angle [rad]

Outputs:

Vtx Vector Longitudinal true air speed [m/s]

Formula:

Vtx =
Vt√

1 + tan2 α+ tan2 β

Source: CNRM/GMEI/TRAMM

References: NCAR-RAF Bulletin #23 [7]
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5.14 3D Wind Vectors

Algorithm name: wind vector 3d raf

Category: Thermodynamics

Summary: This algorithm applies vector transformations using aircraft speed, angle of
attack and sideslip to calculate the three-dimensional wind vector compo-
nents.

Inputs:

Ua Vector Corrected true air speed [m/s]
α Vector Aircraft angle of attack [rad]
β Vector Aircraft sideslip [rad]
up Vector Easterly aircraft velocity from INS [m/s]
vp Vector Northerly aircraft velocity from INS [m/s]
wp Vector Upward aircraft velocity from INS [m/s]
φ Vector Roll [rad]
θ Vector Pitch [rad]
ψ Vector True Heading [rad]

θ̇ Vector Pitch rate [rad/sec]

ψ̇ Vector Yaw rate [rad/sec]
L Vector Distance separating INS and gust probe

along aircraft center line [m]

Outputs:

u Vector Easterly wind velocity component [m/s]
v Vector Northerly wind velocity component [m/s]
w Vector Upwards wind velocity component (positive up) [m/s]

Formula:

D =
√

(1 + tan2 α+ tan2 β)

u = −UaD−1 [sinψ cos θ + tanβ(cosψ cosφ+ sinψ sin θ sinφ) + tanα(sinψ sin θ cosφ− cosψ sinφ)]

+ up − L(θ̇ sin θ sinψ − ψ̇ cosψ cos θ)

v = −UaD−1 [cosψ cos θ − tanβ(sinψ cosφ− cosψ sin θ sinφ) + tanα(cosψ sin θ cosφ+ sinψ sinφ)]

+ vp − L(ψ̇ sinψ cos θ + θ̇ cosψ sin θ)

w = −UaD−1(sin θ − tanβ cos θ sinφ− tanα cos θ cosφ) + wp + Lθ̇ cos θ

Source:

References: NCAR-RAF Bulletin #23 [7]
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6.1 Effective diameter

Algorithm name: diameter effective dmt

Category: Microphysics

Summary: Calculates effective diameter of a size distribution. In general, this definition
is only meaningful for water clouds, and another form must be used when
in ice clouds.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [cm−3]

di Vector[bins] Average diameter in size category i [µm]

Outputs:

De Vector[time] Effective diameter [µm]

Formula:

De =

3
m∑
i=1

cid
3
i

4
m∑
i=1

cid2
i

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]
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6.2 Mean diameter

Algorithm name: diameter mean raf

Category: Microphysics

Summary: Calculates the arithmetic average of all particle diameters given in a particle
size distribution.

Inputs:

ni Array[time, bins] Number of particles in each channel i
di Vector[bins] Channel i size [µm]

Outputs:

D̄ Vector[time] Mean diameter [µm]

Formula:

D̄ =

∑
i nidi
Nt

where Nt is the total number of particles.

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [8]
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6.3 Median Volume Diameter

Algorithm name: diameter median volume dmt

Category: Microphysics

Summary: Calculates the median volume diameter given a size distribution. The
median volume diameter is the size of droplet below which 50% of the total
water volume resides.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [cm−3]

di Vector[bins] Average diameter of size category i [µm]
si Array[time,

bins],Optional
Shape factor of the hydrometeor of size category i to
account for asphericity

ρi Vector[bins],Optional Density of hydrometeor in size category i [g cm−3].
Default is ρw = 1.0 g cm−3

Outputs:

Dmvd Vector[time] Median volume diameter [µm]

Formula: Step 1: Compute liquid water content

W =
π

6

m∑
i=1

cid
3
i ρisi

Step 2: Beginning at the first size channel, calculate the accumulated mass Sn =
w1 + w2 + ...wn where w1 is the mass of water in channel 1, and wn is the channel where
the accumulated mass is greater than or equal to 0.5W , i.e. greater than or equal to 50%
of the total LWC.

Step 3: Compute the median volume diameter, Dmvd by interpolating linearly between
the channels that bracket where the accumulated mass exceeded the total LWC:

Dmvd = dn−1 + (0.5− Sn−1/Sn)(dn − dn−1)

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 33. [5]
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6.4 Extinction Coefficient

Algorithm name: extinction coeff dmt

Category: Microphysics

Summary: Calculates extinction coefficient given a particle size distribution.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [cm−3]

di Vector[bins] Average diameter of size category i [µm]
Qe Vector[bins], Optional Extinction efficiency; default is Qe = 2

Outputs:

Be Vector[time] Extinction coefficient [km−1]

Formula:

Be =
π

4

m∑
i=1

Qecid
2
i

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]
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6.5 Mass Concentration

Algorithm name: mass conc dmt

Category: Microphysics

Summary: Calculates mass concentration given a size distribution. Can be used to
calculate liquid or ice water content depending on the types of hydrometeors
being sampled.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [cm−3]

di Vector[bins] Average diameter of size category i [µm]
si Array[time, bins] Shape factor of the hydrometeor of size category i to

account for asphericity
ρi Vector[time, bins] Density of the hydrometeor in size category i [g cm−3]

Outputs:

M Vector[time] Mass concentration [g cm−3]

Formula:

M =
π

6

m∑
i=1

siρicid
3
i

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]
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6.6 Total Number Concentration (DMT)

Algorithm name: number conc total dmt

Category: Microphysics

Summary: Calculation of total number concentration given distribution of particle
counts from a particle sampling probe.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [cm−3]

Outputs:

N Vector[time] Total number concentration [cm−3]

Formula:

N =

m∑
i=1

ci

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]
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6.7 Total Number Concentration

Algorithm name: number conc total raf

Category: Microphysics

Summary: Calculation of total number concentration for a particle probe.

Inputs:

ni Array Number of particles in each channel i
SV Array Sample volume [m3]

Outputs:

Nt Vector Total number concentration [m−3]

Formula:
Nt =

∑
i

ni
SVi

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [8]
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6.8 Sample area for imaging probes (All in)

Algorithm name: sample area oap all in raf

Category: Microphysics

Summary: Calculation of ’all in’ sample area size for OAP probes such as the 2DC,
2DP, CIP, etc. This sample area varies by number of shadowed diodes. This
routine calculates a sample area per bin.

Inputs:

λ Coeff. Laser wavelength [nm]
Darms Coeff. Distance between probe arm tips [mm]
dD Coeff. Diode diameter [µm]
M Coeff. Probe magnification factor
N Coeff. Number of diodes in array

Outputs:

SA Vector Sample area [m2]

Formula:

DOFi =
6R2

i

λ
(6.1)

Ri = i
dD

2
X = 1...N − 1

where DOF must be less than Darms. The parameter i ranges from 1 to N − 1, since
particles touching either edge are rejected as they are not considered ’all-in’.

ESWi =
dD(N −Xi − 1)

M

A value for ESWi (effective sample width) is calculated for each X.

SAi = (DOFi)(ESWi)

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [8]
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6.9 Sample area for imaging probes (Center In)

Algorithm name: sample area oap center in raf

Category: Microphysics

Summary: Calculation of ’center in’ sample area size for OAP probes such as the 2DC,
2DP, CIP, etc. This sample area varies by number of shadowed diodes. This
routine is intended to calculate a sample area per bin.

Inputs:

λ Coeff. Laser wavelength [nm]
Darms Coeff. Distance between probe arm tips [mm]
dD Coeff. Diode diameter [µm]
M Coeff. Probe magnification factor
N Coeff. Number of diodes in array

Outputs:

SA Vector Sample area [m2]

Formula:

DOFi =
6R2

i

λ
(6.2)

Ri = X
dD

2
X = 1...N

where DOF must be less than Darms. The parameter i ranges from 1 to N .

ESW =
NdD

M

SAi = (DOFi)(ESW )

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [8]
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6.10 Sample area for scattering probes

Algorithm name: sample area scattering raf

Category: Microphysics

Summary: Calculation of sample area for scattering probes such as the FSSP, CAS,
etc.

Inputs:

DOF Coeff. Depth of field [m]
BD Coeff. Beam diameter [m]

Outputs:

SA Coeff. Sample area [m2]

Formula:
SA = (DOF )(BD)

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [8]
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6.11 Sample Volume

Algorithm name: sample volume general raf

Category: Microphysics

Summary: Calculates sample volume for microphysics probes (1D, 2D, FSSP, etc).

Inputs:

Vt Vector True air speed [m/s]
SA Coeff. Sample area of probe [m2]
ts Coeff. Sample rate [s]

Outputs:

SV Vector Sample volume [m3]

Formula:
SV = VttsSA

Source: NCAR-RAF

References: NCAR-RAF Bulletin No. 24. [8]
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6.12 Surface Area Concentration

Algorithm name: surface area conc dmt

Category: Microphysics

Summary: Calculation of surface area concentration given size distribution from particle
probe.

Inputs:

ci Array[time, bins] Number concentration of hydrometeors in size cate-
gory i [cm−3]

di Vector[bins] Average diameter of size category i [µm]
si Array[time, bins] Shape factor of hydrometeor in size category i, to ac-

count for asphericity

Outputs:

S Vector[time] Surface area concentration [µm2 cm−3]

Formula:

S = π
m∑
i=1

sicid
2
i

Source:

References: “Data Analysis User’s Guide Chapter I: Single Particle Light Scattering,“
Droplet Measurement Technologies, 30. [5]
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7.1 Camera Viewing Angles

Algorithm name: camera viewing angles

Category: Radiation

Summary: Calculates per-pixel camera viewing angles of a digital camera given its
sensor dimension and focal length. x–y coordinates are defined as having
the left side of the image (x=0) aligned with the flight direction and y=0 to
the top of the image.

Inputs:

nx Coeff Number of pixels in x direction
ny Coeff Number of pixels in y direction
lx Coeff Length of the camera sensor in x direction [mm]
ly Coeff Length of the cameras sensor in y direction [mm]
f Coeff Focal length of the camera lens [mm]

Outputs:

θc Array[nx,ny] Camera viewing zenith angle [deg]
Φc Array[nx,ny] Camera viewing azimuth angle [deg], mathematic neg-

ative system with 0◦into flight direction, clockwise

Formula:
For each i, j where 0 < i < nx and 0 < j < ny:

x = lx
(i− nx/2)

nx

y = ly
(i− ny/2)

ny

d =
√
x2 + y2

θc(i, j) = 2 tan−1 d

2f

Φc(i, j) = 2π − tan−1 y

x

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:
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7.2 Planck Emission

Algorithm name: planck emission

Category: Radiation

Summary: Calculates the Planck emission of a surface at a given wavelength given its
temperature.

Inputs:

T Vector Temperature [K]
λ Coeff Wavelength [nm]

Outputs:

rad Vector Black body radiance [W m-2 sr-1 nm-1]

Formula: After converting λ to meters, the radiance is calculated by:

rad =
2hc2

λ5(exp( hc
kBλT

)− 1)
∗ 10−9

where c is the speed of light in m/s, h is the Planck constant in J s and kB is the
Boltzmann constant in J/K.

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:
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7.3 Rotate solar vector to aircraft frame

Algorithm name: rotate solar vector to aircraft frame

Category: Radiation

Summary: Rotates solar vector to aircraft coordinates given roll, pitch and yaw. All
rotations are defined with a mathematically positive spherical coordinate
system.

Inputs:

θ� Vector Solar Zenith [degrees]
Φ� Vector Solar Azimuth [degrees] (mathematic negative,

North=0◦, clockwise)
φa Vector Aircraft roll angle [degrees] (mathematic positive, left

wing up=positive)
θa Vector Aircraft pitch angle [degrees] (mathematic positive,

nose down=positive)
ψa Vector Aircraft yaw angle [degrees] (mathematic negative,

North=0◦, clockwise)

Outputs:

θ�a Vector Solar Zenith, AC coordinates [degrees]
Φ�a Vector Solar Azimuth, AC coordinates [degrees] (mathematic

negative, North=0◦, clockwise)

Formula: First, Φ� and ψa must be transformed into mathematially positive coordinate
systems by subtracting them from 360.

Next, the cartesian coordinates are calculated from the solar vector:

x = sin θ� cos Φ�

y = sin θ� sin Φ�

z = cos θ�

Then, the cartesian coordinates are rotated using three rotation matrixes using yaw,
pitch and roll:x′y′
z′

 =

 cos θa cosψa cos θa sinψa − sin θa
sinφa sin θa cosψa − cosφa sinψa sinφa sin θa sinψa + cosφa cosψa sinφa cos θa
cosφa sin θa cosψa + sinφa sinψa cosφa sin θa sinψa − sinφa cosψa cosφa cos θa

xy
z


Finally, convert back to spherical coordinates:

θ�a = cos−1 z′√
x′2 + y′2 + z′2

Φ�a = tan−1 y
′

x′
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Φ�a must be between 0 and 360 and then converted back to mathematic negative
coordinate system (i.e. subtract it from 360).

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:
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7.4 Scattering Angles

Algorithm name: scattering angles

Category: Radiation

Summary: Calculates the scattering angle for each pixel of an image given the camera
viewing angle and solar vector.

Inputs:

nx Coeff Number of pixels in x dimension
ny Coeff Number of pixels in y dimension
θc Array[nx, ny] Camera viewing zenith angle [degrees]
Φc Array[nx, ny] Camera viewing azimuth angle [degrees] (0◦= flight

direction)
θ� Coeff Solar zenith angle [degrees]
Φ� Coeff Solar azimuth angle [degrees] (0◦= North)

Outputs:

θscat Array[nx, ny] Scattering angles of each pixel [degrees]

Formula:

θscat = cos−1(− sin θ� cos Φ� sin θc cos Φc − sin θ� sin Φ� sin θc sin Φc + cos θ� cos θc)

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:
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7.5 Solar Vector Calculation (Blanco)

Algorithm name: solar vector blanco

Category: Radiation

Summary: This algorithm comuptes the current solar vector, given current date, time,
latitude and longitude. Algorithm is most accurate between 1999-2005, but
calculations out to 2015 show the solar vector can be determined with an
error of less than 0.5 minutes of arc.

Inputs:

Date timeVector ISO String of current date/time in UTC [yyyymmd-
dThhmmss]

lat Vector Latitude [degrees]
long Vector Longitude [degrees]

Outputs:

ra Vector Right ascension [radians]
δ Vector Declination [radians]
θz Vector Solar Zenith [radians]
γ Vector Solar Azimuth [radians]

Formula:

jd =
1461

4
(y + 4800 + (m− 14)/12) +

367

12
(m− 2− 12((m− 14)/12))

− 3

4
(y + 4900 + (m− 14)/12)/100 + d− 32075− 0.5 + hour/24.0

jd = (1461(y + 4800 + (m− 14)/12))/4 + (367(m− 2− 12((m− 14)/12)))/12

− (3((y + 4900 + (m− 14)/12)/100))/4 + d+ 32075− 0.5 + hour/24.0

where y is the year, m is the month, d is the day of the month and hour is the current
hour in decimal format, i.e. with minutes and seconds as fractions of an hour. Note that
all divisions in this calculation are integer divisions except the last.

The ecliptic coordinates of the sun are computed from the Julian Day by:

n = jd− 2451545.0

Ω = 2.1429− 0.0010394594n

L (mean longitude) = 4.8950630 + 0.017202791698n

g (mean anomaly) = 6.2400600 + 0.0172019699n

l (ecliptic longitude) = L+ 0.03341607 sin g + 0.00034894 sin 2g − 0.0001134− 0.0000203 sin Ω

ep (obliquity of the ecliptic) = 0.4090928− 6.2140× 10−9n+ 0.0000396 cos Ω
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The conversion from ecliptic coordinates to celestial coordinates is computed by:

ra (right ascension) = tan−1

[
cos ep sin l

cos l

]
δ (declination) = sin−1[sin ep sin l]

where ra must be between 0 and 2π.
The conversion between celestial coordinates to horizontal coordinates is then com-

puted by the following equations:

gmst = 6.6974243242 + 0.0657098283n+ hour

lmst =
pi

180
(15gmst+ long)

ω (hour angle) = lmst− ra
θz = cos−1[cos lat cosω cos δ + sin δ sin lat]

γ = tan−1

[
− sinω

tan δ cos lat− sin lat cosω

]
Parallax =

EarthMeanRadius

AstronomicalUnit
sin θz

θz = θz + Parallax

where: EarthMeanRadius = 6371.01 km and AstronomicalUnit = 149597890 km

Source:

References: Manuel Blanco-Muriel, et al., “Computing the Solar Vector,” Solar Energy
70 (2001): 436-38. [2]
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7.6 Solar Vector Calculation (Reda-Andreas)

Algorithm name: solar vector reda

Category: Radiation

Summary: This algorithm calculates the current solar vector based on time, latitude and
longitude inputs. It accepts optional pressure and temperature arguments
to correct for atmospheric refraction effects. The zenith and azimuth angle
calculated by this algorithm have uncertainties equal to ±0.0003◦ in the
period from the year -2000 to 6000.

Inputs:

Date timeVector ISO String of current date/time in UTC [yyyymmd-
dThhmmss]

lat Vector Latitude [degrees]
long Vector Longitude [degrees]
E Vector Elevation [m]
P Vector, Optional Local pressure [hPa]
T Vector, Optional Local temperature [◦C]

Outputs:

θ Vector Solar Zenith [degrees]
Φ Vector Solar Azimuth [degrees]

Formula:

1. Calculate Julian and Julian Ephemeris Day, Century and Millennium:

(a) Calculate Julian Day (JD):

JD = INT(365.25(Y + 4716)) + INT(30.6001(M + 1)) +D +B − 1524.5

where:

• INT is the integer of the calculated terms (e.g. 8.7 = 8, 8.2 = 8, etc)

• Y is the year

• M is the month of the year. If M <= 2 then Y = Y − 1 and M = M + 12

• D is the day of the month with decimal time (i.e. with fractions of the day
being represented after the decimal point.)

• B is equal to 0 for the Julian Calendar, and equal to (2− A+ INT(A/4))
for the Gregorian calendar, where A = INT(Y/100)

(b) Calculate Julian Ephemeris Day (JDE):

JDE = JD +
∆T

86400
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Where ∆T is the difference between the Earth rotation time and the Terrestrial
Time. It can be calculated following the NASA “Polynomial expressions for
delta T (∆T )“ [12].

(c) Calculate Julian Century (JC) and the Julian Ephemeris Century (JCE) for
the 2000 standard epoch:

JC =
JD− 2451545

36525

JCE =
JDE− 2451545

36525

(d) Calculate the Julian Ephemeris Millennium (JME) for the 2000 standard
epoch:

JME =
JCE

10

2. Calculate Earth heliocentric longitude, latitude and radius vector (L, B, and R):

(a) Calculate L0i and L0:

L0i = Ai cos(Bi + Ci × JME)

L0 =

n∑
i=0

L0i

Where the terms Ai, Bi and Ci are based on values found in table A4.2 of the
algorithm literature [9].

(b) Calculate the terms L1, L2, L3, L4 and L5 by using these same equations, but
using the appropriate terms from the table.

(c) Calculate the Earth heliocentric longitude (in radians):

L = 10−8(L0+L1×JME+L2×JME2 +L3×JME3 +L4×JME4 +L5×JME5)

(d) Convert L to degrees and limit between 0◦ and 360◦.

(e) Calculate the Earth heliocentric latitude B by using table A4.2 and repeating
steps (a)-(c) using the appropriate values. Then convert B to degrees. Note
that there are no B2 through B5.

(f) Calculate the Earth radius vector R (in AU) in a similar manner by repeating
steps (a)-(c) and using the appropriate values from table A4.2.

3. Calculate the geocentric longitude and latitude (Θ and β):

Θ = L+ 180

β = −B

Where Θ must be limited between 0◦ and 360◦.

4. Calculate the nutation in longitude and obliquity (∆ψ and ∆ε):
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(a) Calculate the mean elongation of the moon from the sun (in degrees):

X0 = 297.85036 + 445267.11480JCE− 0.0019142JCE2 +
JCE3

189474

(b) Calculate the mean anomaly of the sun (in degrees):

X1 = 357.52772 + 35999.050340JCE− 0.0001603JCE2 − JCE3

300000

(c) Calculate the mean anomaly of the moon (in degrees):

X2 = 134.96298 + 477198.867398JCE + 0.0086972JCE2 +
JCE3

56250

(d) Calculate the moon’s argument of latitude (in degrees):

X3 = 93.27191 + 483202.017538JCE− 0.0036825JCE2 +
JCE3

327270

(e) Calculate the longitude of the ascending node of the moon’s mean orbit on the
ecliptic, measured from the mean equinox of the date (in degrees):

X4 = 125.04452− 1934.136261JCE + 0.0020708JCE2 +
JCE3

450000

(f) For each row in table A4.3, calculate the terms ∆ψ and ∆ε (in 0.0001 of arc
seconds):

∆ψi = (ai + biJCE) sin

 4∑
j=0

XjYi,j


∆εi = (ci + diJCE) cos

 4∑
j=0

XjYi,j


where:

• ai, bi, ci and di are the values listed in the ith row and columns a, b c and
d in Table A4.3.

• Xj are the X values calculated above

• Yi,j are the values in row i and jth Y column in table A4.3.

(g) Calculate the nutation in longitude and obliquity (in degrees):

∆ψ =

63∑
i=0

∆ψi

36000000

∆ε =

63∑
i=0

∆εi

36000000
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5. Calculate the true obliquity of the ecliptic (in degrees):

U = JME/10

ε0 = 84381.448− 4680.93U − 1.55U2 + 1999.25U3 − 51.38U4

− 249.67U5 − 39.05U6 + 7.12U7 + 27.87U8 + 5.79U9 + 2.45U10

ε = ε0/3600 + ∆ε

6. Calculate the aberration correction (in degrees):

∆τ = −20.4898

3600R

7. Calculate the apparent sun longitude (in degrees):

λ = Θ + ∆ψ + ∆τ

8. Calculate the apparent sidereal time at Greenwich at any given time (in degrees):

ν0 = 280.46061837 + 360.98564736629(JD − 2451545) + 0.000387933JC2 − JC3

38710000
ν = ν0 + ∆ψ cos ε

where ν0 must be limited to the range from 0◦ to 360◦.

9. Calculate the geocentric sun right ascension (in degrees):

α =
180

π
tan−1

(
sinλ cos ε− tanβ sin ε

cosλ

)
where, as before, α must be limited to the range from 0◦ to 360◦.

10. Calculate the geocentric sun declination δ (in degrees):

δ =
180

π
sin−1(sinβ cos ε+ cosβ sin ε sinλ)

11. Calculate the observer local hour angle (in degrees):

H = ν + long − α

Limit H from 0◦ to 360◦, and note that in this algorithm H is measured westward
from south.

12. Calculate the topocentric sun right ascension and declination (in degrees):

(a) Calculate the equatorial horizontal parallax of the sun (in degrees):

ξ =
8.794

3600R
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(b) Calculate the terms u (in radians), x and y:

u = tan−1(0.99664719 tan lat)

x = cosu+
E

6378140
cos lat

y = 0.99664719 sinu+
E

6378140
sin lat

(c) Calculate the parallax in the sun right ascension (in degrees):

∆α =
180

π
tan−1

(
−x sin ξ sinH

cos δ − x sin ξ cosH

)
(d) Calculate the topocentric sun right ascension and declination (in degrees):

α′ = α+ ∆α

δ′ = tan−1

(
(sin δ − y sin ξ) cos ∆α

cos δ − x sin ξ cosH

)
13. Calculate the topocentric local hour angle (in degrees):

H ′ = H −∆α

14. Calculate the topocentric zenith angle (in degrees):

(a) Calculate the topocentric elevation angle without atmospheric correction (in
degrees):

e0 =
180

π
sin−1(sin lat sin δ′ + cos lat cos δ′ cosH ′)

(b) Calculate the atmospheric refraction correction (in degrees):

∆e =
P

1010

283

(T + 273)

1.02

60 tan
(
e0 + 10.3

e0+5.11

)
Note that this step is skipped if temperature and pressure are not provided by
the user. Also note that the argument for the tangent is computed in degrees. A
conversion to radians may be needed if required by your computer or calculator.

(c) Calculate the topocentric elevation angle (in degrees):

e = e0 + ∆e

(d) Calculate the topocentric zenith angle (in degrees):

θ = 90− e

15. Calculate the topocentric azimuth angle (in degrees):

Φ =
180

π
tan−1

(
sinH ′

cosH ′ sin lat− tan δ′ cos lat

)
+ 180

Limit Φ from 0◦ to 360◦. Note that Φ is measured eastward from north.
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Source:

References: Reda and Andreas, “Solar Position Algorithm for Solar Radiation Appli-
cations,” National Renewable Energy Laboratory, Revised 2008, accessed
February 14, 2012, http://www.nrel.gov/docs/fy08osti/34302.pdf. [9]
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7.7 Blackbody Temperature

Algorithm name: temp blackbody

Category: Radiation

Summary: Calculates the blackbody temperature for a given radiance at a specific
wavelength.

Inputs:

rad Vector Blackbody radiance [W m-2 sr-1 nm-1]
λ Coeff Wavelength [nm]

Outputs:

T Vector Temperature [K]

Formula: After converting λ to m and rad to W m-3 sr-1, the blackbody temperature
is calculated by:

T =
hc

kBλ ln( 2hc2

λ5rad
+ 1)

where c is the speed of light in m/s, h is the Planck constant in J s and kB is the
Boltzmann constant in J/K.

Source: Andre Ehrlich, Leipzig Institute for Meteorology (a.ehrlich@uni-leipzig.de)

References:
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8.1 Check navigation data for inconsistencies

Algorithm name: nav chk

Category: Quality Control

Summary: Tests navigation file (position and attitude) for inconsistencies and corrects
them. The code is based on a HyMap *gps File.

Inputs: *.gps file plus the number of image lines according to the ENVI header of the
related image data. The *.gps file is a multi-column ASCII file derived by HyVista Corp.
proprietary software, which synchronises times and generates an output which is indexed
by scan line number. The table below shows the list of parameters.

Parameters Example Description

Line 1 Scan line number
UTC Time 48835.0462/20/5/2004 Time of day in seconds/day/month/year
VME Time 929386852.0 Internal computer tick time in microsec-

onds
IMU Time 2048825953.1 Internal IMU time in microseconds
Latitude 48.03321015 Decimal degrees (positive = north, nega-

tive = south)
Longitude 11.28140200 Decimal degrees (positive = east, negative

= west)
Altitude 2970.79892155 Meters above MSL
Pitch 0.22235917 Decimal degrees (positive = nose up)
Roll 0.54269902 Decimal degrees (positive = right wing

up)
Heading 0.37774316 Decimal degrees (positive = N-E-S direc-

tion, negative = N-W-S direction)
True Track 1.00507651 Decimal degrees (0 to 360)
Ground Speed 72.90907700 Meters / second
Sat 5 Number of satellites being received
DGPS 1 DGPS status: 1 = DGPS being received

0 = no DGPS received

Outputs: status file → template+’ status’
If applicable: corrected gps file
backup of original .gps → filename.gps original

Formula: test & correct the following

• point or colon - separator in .gps =¿ error catched in hymap read gps.pro corrected
when re-writing the .gps-file anyway
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• #lines in image = #lines in gps

if too many gps-lines: truncate lines at beginning (like Hyvista does)

if too few gps-lines: adding extrapolated lines at end

• invalid start / end time: calculating average timestep & using last relieable line

• data gaps (indicated by identical time): interpolate info

Source: DLR-DFD

References: EUFAR FP7 - DJ2.2.2 - Quality Layers for VITO, DLR, INTA and PML
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8.2 Additional consistency check & QA for navigation data
(no correction!)

Algorithm name: nav const

Category: Quality Control

Summary: Tests navigation file (position and attitude) for consistency. The code is
based on a HyMap *gps File.

This check can be performed after nav chk.pro.

Inputs: *.gps file. The *.gps file is a multi-column ASCII file derived by HyVista Corp.
proprietary software, which synchronises times and generates an output which is indexed
by scan line number. The table below shows the list of parameters.

Parameters Example Description

Line 1 Scan line number
UTC Time 48835.0462/20/5/2004 Time of day in seconds/day/month/year
VME Time 929386852.0 Internal computer tick time in microsec-

onds
IMU Time 2048825953.1 Internal IMU time in microseconds
Latitude 48.03321015 Decimal degrees (positive = north, nega-

tive = south)
Longitude 11.28140200 Decimal degrees (positive = east, negative

= west)
Altitude 2970.79892155 Meters above MSL
Pitch 0.22235917 Decimal degrees (positive = nose up)
Roll 0.54269902 Decimal degrees (positive = right wing

up)
Heading 0.37774316 Decimal degrees (positive = N-E-S direc-

tion, negative = N-W-S direction)
True Track 1.00507651 Decimal degrees (0 to 360)
Ground Speed 72.90907700 Meters / second
Sat 5 Number of satellites being received
DGPS 1 DGPS status: 1 = DGPS being received

0 = no DGPS received

Outputs: if (KEYWORD SET(gps err array)) → QC array
otime, lat, lon, alt, pit, rol, heading, track, speed, sat, dgps
Values: 0:OK 1:minor problem 2:major problem
if (KEYWORD SET(gps data)) → gps data as array
otime, lat, lon, alt, pit, rol, heading, track, speed, sat, dgps

Formula: test & report the following

• if data range is not plausible
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• if change between steps > threshold:

latlon, alt, pit, rol, heading, track, speed

• uncorrectable errors in:

time, latlon, alt, pit, rol, heading, track, speed, sat, dgps

Source: DLR-DFD

References: EUFAR FP7 - DJ2.2.2 - Quality Layers for VITO, DLR, INTA and PML
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scattering angles, 49
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[4] Candel, S., 1990. Méchanique des fluides. Dunod.

[5] Droplet Measurement Technologies, Inc, 2009. Data Analysis User’s Guide Chapter
I: Single Particle Light Scattering. DOC-0222, Rev A. Accessed February 2, 2012.
http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data Anal-
ysis Guide/DOC-0222 Rev A Data Analysis Guide Ch 1.pdf

[6] Droplet Measurement Technologies, Inc, 2009. Data Analysis User’s Guide Chap-
ter II: Single Particle Imaging. DOC-0223, Rev A. Accessed February 2, 2012.
http://www.dropletmeasurement.com/sites/default/files/ManualsGuides/Data Anal-
ysis Guide/DOC-0223 Rev A Data Analysis Guide Ch 2.pdf

[7] Lenschow, D.H. and P. Spyers-Duran, 1989: Measurement Techniques: Air
Motion Sensing. NCAR Bulletin No. 23, 1989. Accessed June 23, 2010.
http://www.eol.ucar.edu/raf/Bulletins/bulletin23.html

[8] Barmgardner, Darrel, 1989. Airborne Measurements for Cloud Mi-
crophysics. NCAR Bulletin No. 24, 1989. Accessed June 23, 2010.
http://www.eol.ucar.edu/raf/Bulletins/bulletin24.html

[9] Reda, Ibrahim and Afshin Andreas, 2008: Solar Position Algorithm for Solar Radiation
Applications. National Renewable Energy Laboratory. Revised 2008. Last accessed
February 14, 2012. http://www.nrel.gov/docs/fy08osti/34302.pdf.

[10] Triplet, J.P. and G. Roche, 1971. Météorolgie Générale. Météo-France.
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