
SOFT: SO(3) Fourier Transforms

Peter J. Kostelec

and

Daniel N. Rockmore∗

September 16, 2007

SOFT, version 2.0, is a collection of C routines which compute the discrete Fourier transforms of functions
defined on SO(3), the famous Rotation Group. SOFT is free software and is distributed under the terms of the
GNU General Public License.

Theoretical details, as well as a discussion of the performance of SOFT, are to be found in the preprint
FFTs on the Rotation Group [3], and the references contained therein. The routines in SOFT are based on
the “Separation of Variables” technique [4]. Both forward (spatial → spectral) and inverse (spectral → spatial)
transform routines are provided, as well as examples of how they may be used, e.g. correlation or pattern
matching on the sphere. Subsets of SpharmonicKit [8] and S2kit [7], necessary for some of the routines and
examples, are also included in SOFT. Finally, variations of some of the transform routines are provided which
use the more efficient FFTW [2] collection (version 3, to be precise), and not our home-grown code, to perform
the “standard” (i.e. Euclidean) FFTs.

Some of the differences between SOFT 2.0 and the original v.1.0 are worth noting right up front.

• The FFTW-based routines can now handle arbitrary bandwidths, i.e. the bandwidth does not have to be
a power of 2. (And there was much rejoicing.)

• Files have been reorganized (or should we say, organized). Instead of a single directory containing lots
and lots of source and header files, we have tried to place “like-minded” files into separate directories, so
things won’t appear so overwhelming. E.g. Header files now reside in their own directory.

• One now makes a library. Hopefully, having a library will make integrating the SOFT routines into your
code easier.

• A scaling error in the correlation routines in v.1.0 has been corrected. Details can be found in both
sections 2.4.3 and 2.4.4.

• A bug in one of the example routines in v.1.0 has been fixed. More information can be found in section 2.5.3.

• In addition to code being cleaned up (at least a little), some “wrapper” routines have also been written,
to provide an easier (but not exclusive) means of interfacing with the SOFT library.

The code was developed and tested in the GNU/Linux environment. Some of the code has also been
successfully compiled and executed on a Macintosh (PowerPC) running OS 10.3.9 and 10.4.10, an SGI running
Irix 6.5, an HP/Compaq Alpha running Tru64 V5.1, and even (under VMware) OpenStep 4.2 for Intel!

I do not have access to a Windows machine for development. (Shocking, but true.) However, I do not see
there being any reason why the code won’t compile and run under Windows. Some modifications might be
required, but I do not believe anything drastic should be necessary.

In this document, we provide some theoretical background, hopefully a sufficient amount to give the user a
precise understanding of what it is the routines in SOFT are calculating. Interspersed within this background
are comments containing pertinent information regarding what is actually implemented. So it behooves the
reader to not skip this portion of the document!

Questions concerning the software can be sent to Peter Kostelec geelong@cs.dartmouth.edu.

∗Department of Mathematics; Dartmouth College; Hanover NH 03755

1

A Final Word SOFT 2.0 has existed, in one form or another, for considerably longer than we care to admit.
To overcome inertia (and other obligations), and to finally release the software, we may have spent a little less
time on this document you are reading than we would have liked. Some descriptions are less than brief. If
something is not clear, look at the fairly well documented source code. That should clear things up, touch
wood.

Contents

1 Theoretical Background 2
1.1 Euler Angle Decomposition . 2
1.2 Wigner D-functions . 3
1.3 Wigner d-functions . 4
1.4 Recurrences . 5
1.5 The Transforms . 5

2 The SOFT Package 6
2.1 Directory organization . 6
2.2 How To Compile . 7

2.2.1 If FFTW is not on your system . 7
2.2.2 If FFTW is on your system . 7

2.3 Data Conventions: Ordering of Samples and Coefficients . 8
2.4 Major Files . 9

2.4.1 common/ . 10
2.4.2 include/ . 10
2.4.3 lib0/ . 10
2.4.4 lib1/ . 11

2.5 The Test Routines . 11
2.5.1 examples/ . 12
2.5.2 examples0/ . 12
2.5.3 examples1/ . 15

2.6 The Test Data . 16
2.7 Memory . 17

3 Correlation Examples 17
3.1 First Example . 18
3.2 Second Example . 19
3.3 Third Example . 20

4 Bibliography 20

1 Theoretical Background

Since there are many conventions when dealing with functions defined on SO(3), e.g. normalizations, powers
of −1, etc. etc., we say at the outset that the definitions and normalizations we give henceforth are taken from
[9].

1.1 Euler Angle Decomposition

Any element g ∈ SO(3), i.e. an arbitrary rotation about the origin, may be expressed as the product of two
rotations about the z-axis, and one about the y-axis. Let

Rz(A) =





cosA − sinA 0
sin A cosA 0

0 0 1



 Ry(A) =





cosA 0 sin A
0 1 0

− sinA 0 cosA



 . (1)

2

So Rz(A) describes a rotation about the z-axis, and Ry(A) describes a rotation about the y-axis. Then g has
the Euler Angle Decomposition

g = Rz(α)Ry(β)Rz(γ)

where 0 ≤ α, γ < 2π and 0 ≤ β ≤ π. A function f defined on SO(3) can be written as a function of the three
Euler angle variables: α, β and γ.

1.2 Wigner D-functions

A Wigner D-function, DJ
MM ′(α, β, γ), has three integer indeces: J , M , M ′. The degree J ranges over the

non-negative integers. For each J , the order indeces M , M ′, satisfy the constraint −J ≤ M, M ′ ≤ J . The
Wigner D-function is of the form

DJ
MM ′(α, β, γ) = e−iMα dJ

MM ′ (β) e−iM ′γ , (2)

where dJ
MM ′ (β), the Wigner-d function, is related to a Jacobi polynomial. An exact definition will be given

in the next section.
The collection of Wigner D-functions {DJ

MM ′(α, β, γ)} form a complete set of orthogonal functions with
respect to integration over SO(3):

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ DJ2∗
M2M ′

2
(α, β, γ)DJ1

M1M ′
1
(α, β, γ) =

8π2

2J1 + 1
δJ1J2

δM1M2
δM ′

1M ′
2

(3)

where DJ∗
MM ′(α, β, γ) denotes the complex conjugate of DJ

MM ′(α, β, γ). Hence, any function f ∈ L2(SO(3)) has
the following decomposition:

f(α, β, γ) =
∑

J≥0

J
∑

M=−J

J
∑

M ′=−J

f̂J
MM ′DJ

MM ′ (α, β, γ) (4)

where

f̂J
MM ′ =

〈

f, DJ
MM ′

〉

=
2J + 1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ f(α, β, γ)DJ∗
MM ′ (α, β, γ). (5)

The collection of numbers {f̂J
MM ′} is the Fourier transform of f .

Definition 1.1 A continuous function f on SO(3) is band-limited with band-limit (or bandwidth) B if

f̂ l
MM ′ = 0 for all l ≥ B.

Implementation Notes

• The C code uses the L2-normalized versions of the D-functions:

D̃J
MM ′(α, β, γ) =

1

2π

√

2J + 1

2
DJ

MM ′(α, β, γ) (6)

This means we have (comparing with Eq. 3)

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ D̃J2∗
M2M ′

2
(α, β, γ)D̃J1

M1M ′
1
(α, β, γ) = δJ1J2

δM1M2
δM ′

1M ′
2
. (7)

In this normalized situation, we then have

f(α, β, γ) =
∑

J≥0

J
∑

M=−J

J
∑

M ′=−J

f̂J
MM ′D̃J

MM ′(α, β, γ) (8)

3

where

f̂J
MM ′ =

〈

f, D̃J
MM ′

〉

=

∫ 2π

0

dα

∫ π

0

dβ sin β

∫ 2π

0

dγ f(α, β, γ)D̃J∗
MM ′(α, β, γ) (9)

• When the signal is real-valued, some of the routines can be told, via function argument, to take advantage
of the following symmetry:

DJ
MM ′(α, β, γ) = (−1)M ′−MDJ∗

−M−M ′(α, β, γ). (10)

when performing a transform. The user should look at the source code of the “major” transform routines
for further information. What constitutes a “major” routine is basically defined in the first three header
files discussed in section 2.4.2.

1.3 Wigner d-functions

As promised earlier, we now give a precise definition of the Wigner d-function, dJ
MM ′ (β):

dJ
MM ′ (β) = ζMM ′

√

s!(s + µ + ν)!

(s + µ)!(s + ν)!

(

sin
β

2

)µ(

cos
β

2

)ν

× P (µ,ν)
s (cosβ) (11)

where

µ = |M − M ′| ν = |M + M ′| s = J − µ + ν

2

and

ζMM ′ =

{

1 if M ′ ≥ M

(−1)M
′−M if M ′ < M.

and P
(µ,ν)
s (cosβ) is a Jacobi polynomial. Note that unless J ≥ max(|M |, |M ′|), we have dJ

MM ′ (β) = 0.
This function satisfies the following orthogonality condition:

∫ π

0

dJ
MM ′ (β)dJ′

MM ′ (β) sin β dβ =
2

2J + 1
δJJ′ , (12)

Implementation Notes

• The C code uses the L2-normalized versions of the d-functions:

d̃J
MM ′ (β) =

√

2J + 1

2
dJ

MM ′ (β). (13)

• In order to reduce (by a factor of 8!) the number of Wigner-d functions necessary for performing a
transform, the following symmetries are used within most of the C routines (the exceptions will be clearly
stated later):

dJ
MM ′ (β) = (−1)M−M ′

dJ
−M−M ′(β) = (−1)M−M ′

dJ
M ′M (β) = dJ

−M ′−M (β) (14)

= (−1)J−M ′

dJ
−MM ′ (π − β) = (−1)J+MdJ

M−M ′ (π − β) (15)

= (−1)J−M ′

dJ
−M ′M (π − β) = (−1)J+MdJ

M ′−M (π − β) (16)

4

1.4 Recurrences

The Wigner-d functions satisfy the following 3-term recurrence:

0 =

√

[

(J + 1)2 − M2
] [

(J + 1)2 − M ′2
]

(J + 1)(2J + 1)
dJ+1

MM ′ (β) +

(

MM ′

J(J + 1)
− cosβ

)

dJ
MM ′ (β)

+

√

(J2 − M2)(J2 − M ′2)

J(2J + 1)
dJ−1

MM ′ (β) (17)

Implementation Notes

• Since the C code uses the L2-normalized versions of the d-functions, here is the normalized version of the
recurrence (which is used in the C code):

d̃J+1
MM ′ (β) =

√

2J + 3

2J + 1

(J + 1)(2J + 1)
√

[

(J + 1)
2 − M2

] [

(J + 1)
2 − M ′2

]

(

cosβ − MM ′

J(J + 1)

)

d̃J
MM ′ (β)

−
√

2J + 3

2J − 1

√

[J2 − M2]
[

J2 − M ′2
]

√

[

(J + 1)
2 − M2

] [

(J + 1)
2 − M ′2

]

J + 1

J
d̃J−1

MM ′ (β). (18)

The recurrence has been verified stable through bandwidths B = 512, and it’s probably still ok up to
B = 1024.

• To properly initialize the normalized recurrence, the C code uses the following identities (where 0 ≤ M ≤
J):

d̃J
JM (β) =

√

2J + 1

2

√

(2J)!

(J + M)!(J − M)!

(

cos
β

2

)J+M(

− sin
β

2

)J−M

(19)

d̃J
−JM (β) =

√

2J + 1

2

√

(2J)!

(J + M)!(J − M)!

(

cos
β

2

)J−M(

sin
β

2

)J+M

(20)

d̃J
MJ (β) =

√

2J + 1

2

√

(2J)!

(J + M)!(J − M)!

(

cos
β

2

)J+M(

sin
β

2

)J−M

(21)

d̃J
M−J (β) =

√

2J + 1

2

√

(2J)!

(J + M)!(J − M)!

(

cos
β

2

)J−M(

− sin
β

2

)J+M

. (22)

1.5 The Transforms

We first define the quadrature weights necessary for a bandwidth B transform [1]:

wB(j) =
2

B
sin

(

π(2j + 1)

4B

) B−1
∑

k=0

1

2k + 1
sin

(

(2j + 1)(2k + 1)
π

4B

)

(23)

where j = 0, . . . , 2B − 1.

• Discrete Wigner-d transform: For given integers (M, M ′), define the Discrete Wigner Transform
(DWT) of a data vector s to be the collection of sums of the form

ŝ(l, M, M ′) =

2B−1
∑

k=0

wB(k) d̃l
M,M ′(βk)[s]k max(|M |, |M ′|) ≤ l < B (24)

5

where d̃l
M,M ′ is a normalized Wigner d-function of degree l and orders M , M ′, and βk =

π(2k + 1)

4B
.

Eqn. 24 is what the C code naively evaluates.

We can express the DWT in matrix terms. Let s = the data vector, ŝ = the coefficient vector, w = the
diagonal matrix whose entries are the weights, and d = the sampled Wigner-ds, dij = di

MM ′ (βj). Then
we can write the forward (analysis) transform as

d ∗ w ∗ s = ŝ.

The inverse (synthesis) transform is
dT ∗ ŝ = s

where dT is the transpose of d.

• Discrete SO(3) Fourier transform at bandwidth B: The Discrete SO(3) Fourier transform (DSOFT)
at bandwidth B of a function f ∈ L2(SO(3)), denoted DSOFT(f), is the collection of sums of the form:

f̂ l
MM ′ =

(π

B

)2 2B−1
∑

j1=0

2B−1
∑

j2=0

2B−1
∑

k=0

wB(k)f(αj1 , βk, γj2)D̃
l∗
MM ′ (αj1 , βk, γj2) (25)

=
π

(2B)
2

2B−1
∑

k=0

wB(k)d̃l
MM ′ (βk)

2B−1
∑

j2=0

eiM ′γj2

2B−1
∑

j1=0

eiMαj1 f(αj1 , βk, γj2) (26)

where l = 0, . . . , B − 1, and −l ≤ M, M ′ ≤ l. The function is sampled on the 2B × 2B × 2B grid

αj1 =
2πj1
2B

, βk =
π(2k + 1)

4B
, γj2 =

2πj2
2B

. Eqn. 26 is the discrete version of Eqn. 9.

Eqn. 26 is what the C code evaluates via the Separation of Variables technique. The scalars in
front of the summations may look odd, but they are different because of the way we defined the normalized
Wigner-D and Wigner-d functions.

2 The SOFT Package

In this section, we cover such topics as what the package includes, some of the conventions observed (mostly
having to do with the format of input and output arrays of the test routines), and how to compile the routines
in the first place.

2.1 Directory organization

Instead of a single directory, files have now been organized into appropriate sub-directories. The organization
is as follows:

bin/ Where the compiled test routines live
common/ Contains source code common to both FFTW -based, and non-FFTW -based rou-

tines; basically Wigner d-function code
examples/ Contains source code for example Wigner-d function routines (generation and trans-

form)
examples0/ Contains source code for example SO(3) Fourier transform routines which do not

depend on FFTW

examples1/ Contains source code for example SO(3) Fourier transform routines which do de-
pend on FFTW

include/ Contains header files
lib0/ Contains source code for SO(3) Fourier transform library routines which do not

depend on FFTW

lib1/ Contains source code for SO(3) Fourier transform library routines which do depend
on FFTW

sampleData/ Contains sample data files (ascii format)

6

2.2 How To Compile

If all you want to do is compute the forward or inverse DSOFT, and you don’t care about doing this as fast as
possible, or being restricted to powers-of-2 problem sizes, then the SOFT package is completely self-contained.
Otherwise, you should use one of the flavours of the routines which depend on FFTW. Performing a DSOFT
involves computing “standard” DFTs. While SOFT includes FFT code, the ones provided by FFTW are more
efficient. Also, they enable the user to perform DSOFTs at arbitrary problem sizes.

2.2.1 If FFTW is not on your system

If you do not have FFTW on your system, the first thing to do is make a copy of the file Makefile.fftw0, and
call it Makefile . Then ...

1. Set the variable CFLAGS in Makefile to be what you want. These options are passed to the compiler. The
default setting is

CFLAGS = -O3

2. Type

make lib

to create the library libsoft0.a, which will appear in the top-level SOFT directory, i.e. the directory
containing the Makefile.

3. If the previous step worked, then type

make tests

to compile all the example routines. The library just made will be linked to them. The resulting binaries
will be in bin/. In Sections 2.5.1 and 2.5.2, we list and describe the test routines this step creates.

Other possible things to make are:

make all Make the library and all the example routines
make clean Remove all the object (*.o) files
make vclean Remove all the object (*.o) files, executables, and library
make examples Make the example routines having to do with the discrete Wigner transform
make examples0 Make the example routines having to do with the SO(3) Fourier transform

2.2.2 If FFTW is on your system

The first thing to do is make a copy of the file Makefile.fftw1, and call it Makefile . Then ...

1. In Makefile, set the variables FFTWINC and FFTWLIB so the compiler knows where to find the FFTW

header file and libraries, e.g.

FFTWINC = -I/net/misc/geelong/local/linux/include

FFTWLIB = -L/net/misc/geelong/local/linux/lib -lfftw3

The default setting for each is blank, i.e.

FFTWINC =

FFTWLIB =

When you define FFTWLIB, do not forget to link with the FFTW library, e.g. -lfftw3 (or whatever the
name of the FFTW library is). In Sections 2.4.4 and 2.5.3, when we discuss the major files in SOFT,
we will try to note the level of rigor used to generate the fftw plan. You may change the rigor at your
descretion (unless the source code suggests otherwise).

7

2. Make sure the variable CFLAGS is defined the way you like. These options are passed to the compiler. The
default setting is

CFLAGS = -O3 ${FFTWINC}

You must have ${FFTWINC} as one of your options!

3. Type

make lib

to create the library libsoft1.a, which will appear in the top-level SOFT directory, i.e. the directory
containing the Makefile.

4. If the previous step worked, then type

make tests

to compile all the example routines. The library just made will be linked to them. The resulting binaries
will be in bin/. In Sections 2.5.1 amnd 2.5.3, we list and describe the test routines this step creates.

Other possible things to make are:

make all Make the library and all the example routines
make clean Remove all the object (*.o) files
make vclean Remove all the object (*.o) files, executables, and library
make examples Make the example routines having to do with the discrete Wigner transform
make examples1 Make the example routines having to do with the SO(3) Fourier transform

2.3 Data Conventions: Ordering of Samples and Coefficients

For all that follows, we’re dealing with a fixed bandwidth B.
Let’s first deal with the samples. Recall that for a DSOFT at bandwidth B, the function f needs to be

sampled on the 2B × 2B × 2B grid

{(αj1 , βk, γj2) | 0 ≤ k, j1, j2 ≤ 2B − 1}

where αj1 =
2πj1
2B

, βk =
π(2k + 1)

4B
, and γj2 =

2πj2
2B

. The C code expects the samples to be ordered as follows:

f(α0, β0, γ0)

f(α0, β0, γ1)

...

f(α0, β0, γ2B−1)

f(α1, β0, γ0)

f(α1, β0, γ1)

...

f(α2B−1, β0, γ2B−1)

f(α0, β1, γ0)

f(α0, β1, γ1)

...

f(α2B−1, β2B−1, γ2B−1)

So of the three indeces, j2 iterates the fastest, and k the slowest. Think of it as sampling at all legal longitudes
for each latitude. That’s how the S2 transform works.

8

Since the function can be complex-valued, the samples need to be in “complex” format. Ergo, unless
otherwise stated, the example routines expect the input sample files to be in interleaved format. For example,
suppose there are four sample values: 1 + 2ı, 3 + 4ı, 5 + 6ı, 7 + 8ı. The samples are arranged, in the input file,
as 1, 2, 3, 4, 5, 6, 7, 8, one number per line.

If you want to try your own sample data with an example routine that expect complex samples, and if your
samples are strictly real-valued, you will have to interleave 0s into your samples.

Some SOFT C functions expect the input samples to be in interleaved format, others as separate real and
imaginary arrays, i.e. either a pointer to one length 2N double array, or two pointers to two length N double

arrays. Check the documented source files for details.

Now for the ordering of the Fourier coefficients. It might seem a little weird, but bear with me.
Consider a matrix A whose rows are indexed by M as follows:

M = 0, 1, 2, ..., B − 1,−(B − 1),−(B − 2), ...,−1

This is the order they occur, e.g. if B = 4, then the fifth row corresponds to M = −3. Similarly for the columns,
indexed by M ′:

M ′ = 0, 1, 2, ..., B − 1,−(B − 1),−(B − 2), ...,−1

E.g. the seventh column corresponds to M ′ = −1. Ok, now I reveal that the element at A(i, j) is actually an
array which contains the Fourier coefficients

{f̂ l
ij =< f, D̃l

ij > | max(|i|, |j|) ≤ l ≤ B − 1}

Now, finally, write down this matrix A in row-major format. E.g. First write down the set of coefficients for
M = 0, M ′ = 0, then for M = 0, M ′ = 1, then for ... , then for M = 0, M ′ = −(B − 1), then for ..., then for
M = 0, M ′ = −1. Then proceed to the second row, and write down the set of coefficients for M = 1, M ′ = 0,
and then M = 1, M ′ = 1, and so on. You get the idea. Believe me, in some sense, this is natural.

To make things easier, here are four formulæ which will tell you where in the list the coefficient f l
MM ′ occurs.

These formulæ can be simplified, but then they might seem a little more mysterious.
Let B denote the bandwidth, h(M, M ′, B) = B − max(|M |, |M ′|). Then the location of f l

MM ′ in the file is

M−1
∑

k=0

(B2 − k2) +
M ′−1
∑

k=0

h(M, k, B) + (l − max(M, M ′)) + 1 if M, M ′ ≥ 0 (27)

M
∑

k=0

(B2 − k2) −
−1
∑

k=M ′

h(M, k, B) + (l − max(M, |M ′|)) + 1 if M ≥ 0, M ′ < 0 (28)

4B3 − B

3
−

|M|
∑

k=1

(B2 − k2) +

M ′−1
∑

k=0

h(M, k, B) + (l − max(|M |, M ′)) + 1 if M < 0, M ′ ≥ 0 (29)

4B3 − B

3
−

|M|−1
∑

k=1

(B2 − k2) −
−1
∑

k=M ′

h(M, k, B) + (l − max(|M |, |M ′|)) + 1 if M, M ′ < 0 (30)

If you program this in C, you don’t have to do that “+1”. I.e. as it’s written now, the formula for M = M ′ = 0
will tell you that the location of f̂0

00 is 1.
There is a C version of the above formulæ. Defined in utils so3.c, the function so3CoefLoc() takes as

inputs: the bandwidth B, degree l, and orders M , M ′. It returns the index of f̂ l
MM ′ in the coefficient array (so

it does not have that “+1” in it).

2.4 Major Files

While there are lots of source files within the SOFT package, the following files contain the functions the user
will most likely want to use. However, since all the files are pretty well documented, feel free to look through
those we do not list here. The test routines, covered in sections 2.5.1, 2.5.2 and 2.5.3, will exercise and provide
examples of how to use the functions. The test data included in SOFT is discussed in section 2.6.

9

2.4.1 common/

First, those related to the Wigner-d functions and the DWT (Eqn. 24).

• makeweights.c: Functions for calculating the quadrature weights (Eqn. 23).

• makeWigner.c: Functions necessary for generating the Wigner-d functions.

• wignerTransforms.c: Functions that compute the DWT. Also used in computing the DWT portion of
the DSOFT, i.e. Eqn. 26.

2.4.2 include/

This directory contains all the SOFT header files. Most of the header files probably will not be of interest, but
there are a few that will (hopefully) make SOFT easier to use in one’s own code.

• soft.h: Header file for the “plain” forward and inverse DSOFT routines Forward SO3 Naive() and
Inverse SO3 Naive().

• soft fftw.h: Header file for forward and inverse SO(3) transforms which require FFTW : the routines
Forward SO3 Naive fftw() and Inverse SO3 Naive fftw().

• soft sym.h: Header file for forward and inverse SO(3) routines which use symmetries of the Wigner
little-D functions Forward SO3 Naive sym() and Inverse SO3 Naive sym().

• wrap.h: Header file for the “wrapper” versions of SOFT routines which do not require FFTW. These
wrapper functions hide a lot of details behind the scenes, e.g. allocating memory for temporary storage.
Using these functions (with their simplified function arguments) provides an easy means of doing forward
and inverse SO(3) transforms. However, if you plan on doing lots of SO(3) transforms, you might want
to consider using “unwrapped” versions of the functions, e.g. to avoid allocating (and freeing) temporary
memory over and over again.

• wrap fftw.h: Just like above, but instead a header file for SOFT routines which do require FFTW.

2.4.3 lib0/

This directory contains files having to do with computing the forward and inverse DSOFT, i.e. (Eqn. 26). The
Fourier transforms are evaluated using our home-grown FFT code, and not the faster FFTW. These routines
handle only powers-of-2 bandwidths.

Now, about that scaling error in the correlation routine in SOFT 1.0. The derivation in [3] of the recipe
for combining S2 coefficients to produce the SO(3) coefficient assumes that the Wigner-D functions are not
normalized. The transform routines, however, do. In v.1.0, the combined S2 coefficients were not scaled to
account for this. In v.2.0, they are. The relevent source file is so3 correlate sym.c.

• wignerTransforms sym.c: Functions that compute the DWT portion of the DSOFT, but expected to be
used in soft sym.c (see below).

• soft.c: Functions for computing the forward and inverse DSOFT; uses the homegrown FFT routines;
does not use any symmetries of the Wigner-D or Wigner-d functions; computes the necessary Wigner-d
functions on the fly.

• soft sym.c: As soft.c, but uses the symmetries of the Wigner-d functions (14-16). If the spatial data is
known to be strictly real, can tell the routines to take advantage of this, and so use one of the symmetries
observed by the Wigner-D function, i.e. Eqn. 10.

• so3 correlate sym.c: Function necessary for correlating two functions f, h ∈ L2(S2). The DSOFT
required uses soft sym.c.

• rotate so3.c: Functions necessary for rotating a function f ∈ L2(S2) by massaging f ’s spherical coeffi-
cients with Wigner-D functions.

10

• rotate so3 mem.c: As above, but a slightly more memory friendly version, since it writes over the original
signal samples with the rotated signal samples.

• wrap s2 rotate.c: Very basic wrapper functions for functions in rotate so3.c.

• wrap soft.c: Very basic wrapper functions for functions in soft.c.

• wrap soft sym.c: Very basic wrapper functions for functions in soft sym.c.

• wrap soft sym cor2.c: Very basic wrapper functions for function in so3 correlate sym.c.

2.4.4 lib1/

This directory contains files having to do with computing the forward and inverse DSOFT, i.e. (Eqn. 26). The
Fourier transforms are evaluated using FFTW. These routines handle non powers-of-2 bandwidths.

Now, about that scaling error in the correlation routine in SOFT 1.0. The derivation in [3] of the recipe
for combining S2 coefficients to produce the SO(3) coefficient assumes that the Wigner-D functions are not
normalized. The transform routines, however, do. In v.1.0, the combined S2 coefficients were not scaled to
account for this. In v.2.0, they are. The relevent source file is so3 correlate fftw.c.

• wignerTransforms fftw.c: Functions that compute the DWT portion of the DSOFT, but expected to
be used in soft fftw.c (see below).

• soft fftw.c: Just like soft sym.c, but uses FFTW.

• soft fftw pc.c: Just like soft fftw.c, but assumes that all the Wigner-d functions necessary for a
complete Fourier transform have been precomputed.

• soft fftw nt.c: Used to be called soft fftw wo.c in version 1.0 of SOFT. Just like soft fftw.c; does
not precompute the Wigner-d functions (computes them on the fly); writes over input as much as possible
in order to conserve memory, hence it’s not so fast ... or not? Your mileage may vary. You see, one
unique thing about the transforms in this file is that there is no explicit function call to perform a matrix
transpose. (The “ nt” stands for “no transpose.”) A cleverly chosen FFTW plan is required (see the test
routine test soft fftw nt.c discussed below in section 2.5.3).

• so3 correlate fftw.c: Function necessary for correlating two functions f, h ∈ L2(S2). The DSOFT
required uses soft fftw.c.

• rotate so3 fftw.c: Functions necessary for rotating a function f ∈ L2(S2) by massaging f ’s spherical
coefficients with Wigner-D functions, but uses FFTW. Default fftw plan rigor is FFTW ESTIMATE.

• wrap s2 rotate fftw.c: Very basic wrapper functions for functions in rotate so3 fftw.c.

• wrap soft fftw.c: Very basic wrapper functions for functions in soft fftw.c. Default fftw plan rigor
is FFTW MEASURE.

• wrap soft fftw cor2.c: Very basic wrapper functions for function in so3 correlate fftw.c. Default
fftw plan rigor is FFTW ESTIMATE.

2.5 The Test Routines

Here are the example routines compiled with make all or make tests. If you forget how the input arguments
go, just execute the command without any function arguments, and they will be returned to you. Hopefully,
the examples will provide a sufficient introduction as to how adapt the routines for your own use. Remember
that the compiled example routines live in bin/.

11

2.5.1 examples/

First, here are the routines which involve the Wigner-d functions.

• test Wigner Analysis.c: Does a DWT, i.e. Eqn. 24, at a user-specified bandwidth and orders. Needs a
strictly real (no 0s for imaginary part!) input array to read in samples from, and the name of an output
file to write the results to. E.g.

test_Wigner_Analysis m1 m2 bw input_file output_file

• test Wigner Naive.c: To test speed and stability, does X-many inverse-forward DWTs (X defined by the
user) on randomly generated Wigner-d coefficients. No user input required, can save the errors if you’d
like. E.g.

test_Wigner_Naive m1 m2 bw loops [output_file]

or do 100 loops at bandwidth B = 16, orders M = M ′ = 0, not bothering to save the errors:

test_Wigner_Naive 0 0 16 100

• test Wigner Synthesis.c: Does an inverse DWT at a user-specified bandwidth and orders. Needs a
strictly real (no 0s for imaginary part!) input array to read samples in from, and the name of an output
to write the results to. E.g.

test_Wigner_Synthesis m1 m2 bw input_file output_file

• test genWig.c: Generate all the Wigner-d functions needed for a DWT at bandwidth B, orders M , M ′.
Saves the results in a user-specified file. E.g.

test_genWig m1 m2 bw output_file_name

• test wigSpec.c: Example routine to generate the Wigner-d function to jump-start the recurrence for
orders M , M ′ and bandwidth B, i.e. Eqns. 19-22. Saves the results in a user-specified file. E.g.

test_wigSpec m1 m2 bw output_file_name

• test Wigner angle.c: Example routine to evaluate the Wigner-d functions at user-specified angles. Given
orders M , M ′, bandwidth B, and angles (in radians) α0, α1, . . . , αN , the routine will evaluate dl

MM ′ (α)
at the provided angles for l = max(|M |, |M ′|), ..., B, and write them to a user-specified text file. The
output will be written as an array of size (B − max(|M |, |M ′|)) × N .

test_Wigner_angle m1 m2 bw flag output_file_name a0 [a1 a2 ... aN]

If flag is set to 0, the Wigner-d functions will not be L2-normalized. If flag is set to 1, they will.

2.5.2 examples0/

Now, those routines dealing with the DSOFT which do not require FFTW. Keep in mind the bandwidths these
routines handle must be a power of 2.

• test soft.c: To test speed and stability; does X-many inverse-forward DSOFTs at bandwidth B, via
soft.c; uses interleaved real-imaginary arrays. The coefficients are randomly generated, resulting in a
complex-valued signal. Computes the Wigner-d functions on the fly. No user input required, can save the
errors (differences between real and imaginary parts of the coefficients) if you’d like. E.g.

test_soft bw loops [error_file]

12

or do 10 loops at bandwidth B = 16, not bothering to save the errors:

test_soft 16 10

• test soft for.c: Does a forward DSOFT at bandwidth B via soft.c; user-input expected; uses inter-
leaved real-imaginary arrays; can order the output coefficients in either the algorithm’s order, as described
in Sec. 2.3, or in “human order,” which goes as follows:

for l = 0 : bw - 1

for m1 = -l : l

for m2 = -l : l

coefficient of degree l, orders m1, m2

Set order flag to 0 for the algorithm’s order, 1 for human order. E.g.

test_soft_for bw sampleFile coefFile order_flag

• test soft inv.c: Just like test soft for, but does an inverse DSOFT. E.g.

test_soft_inv bw coefFile sampleFile

The ordering of the input coefficients must be the algorithm’s order, and not the human order.

• test soft sym.c: Just like test soft, but uses the Wigner-d symmetries (Eqns. 14-16); soft sym.c

routines. As it’s “packaged,” the routines generate random coefficients with no restrictions whatsoever,
in the sense that it is possible, by commenting and uncommenting the appropriate block of code within
the test routine, to generate random coefficients such that the inverse transform results in a (random)
real-valued signal.

If you do generate random real-valued signals this way, don’t forget to adjust the “real/complex” flags in
the forward and inverse routines appropriately, to take advantage of the real-valuedness, i.e. get to use a
symmetry of the Wigner-D functions to make the routine a little more efficient. Look at the documentation
in soft sym.c.

• test soft sym for.c: Just like test soft for, but uses the Wigner-d symmetries (Eqns. 14-16); uses
interleaved real-imaginary arrays.

• test soft sym inv.c: Just like test soft inv, but uses the Wigner-d symmetries (Eqns. 14-16); uses
interleaved real-imaginary arrays.

Now, some application-type examples.

• test soft sym correlate.c: Routine to correlate two functions f, h ∈ L2(S2) of bandwidth B. The
inputs are the spherical (not SO(3)!!!) coefficients of f and h in interleaved format. The ordering of
the coefficients is that produced by the routines in SpharmonicKit. The function seanindex(), defined
in primitive FST.c from SpharmonicKit (this file is provided in the SOFT distribution), takes as its
arguments the bandwidth B, degree l, and order m, and returns the location of the spherical coefficient
f̂m

l in the coefficient array. Uses soft sym.c, so3 correlate sym.c. Also has the additional parameter
degLim, which allows you to choose the highest degree coefficients you’re willing to use. E.g. Even though
the two functions are of bandwidth B = 8, you might want to use only the Wigner-Ds through degree 5
(i.e. by setting equal to 0 the higher degree coefficients). The routine returns the (α, β, γ) which maximizes
the correlation, i.e. the g = g(α, β, γ) ∈ SO(3) which maximizes

C(g) =

∫

S2

f(ω) Λ(g)h(ω) dω

The user has the option of saving all the correlation values, E.g.

13

test_soft_sym_correlate sigCoefs patCoefs bw degLim [result]

The test routine assumes that the two functions f and h are real-valued, so the correlation values
returned are strictly real numbers. If f and h are complex-valued, you will have to make the appropriate
adjustments in test soft sym correlate.c.

• test soft sym correlate2.c: Just like test soft sym correlate except the user-provided inputs are
the samples values (not the coefficients!) of f and h in interleaved format. The functions are sampled
on the following S2 grid (which is the same as SpharmonicKit expects them):

{(θj , φk) | 0 ≤ j, k ≤ 2B − 1}

where θj =
π(2j + 1)

4B
is colatitude, and φk =

2πk

2B
is longitude. The samples are ordered so that k

iterates faster than j, e.g. (θ0, φ0), (θ0, φ1), ..., (θ1, φ0), (θ1, φ1), ..., (θ2B−1, φ2B−1). This ordering should
look familiar.

Another exception to test soft sym correlate: along with degLim, can also specify the bandwidth of
the inverse SO(3) Fourier transform. E.g. So you can correlate two B = 256 functions f, h ∈ S2 by doing
a bandwidth B = 32 inverse SO(3) Fourier transform. However, it must be the case that bwIn ≥ bwOut.
As above, can save the correlation values:

test_soft_sym_correlate2 signalFile patternFile bwIn bwOut degLim [result]

Read Section 3.1, especially the latter half, for a reason why you might want to perform the inverse SO(3)
Fourier transform at a bandwidth bwOut less than the input S2 bandwidth bwIn.

• test soft sym correlate2 wrap.c: A simplified version of test soft sym correlate2, but shows how
to use one of the “wrapper” routines:

test_soft_sym_correlate2_wrap signalFile patternFile bw isReal

If isReal is 0, that means the signal and pattern are both complex samples, and so the input sample
values are in interleaved format. If isReal is 1, then the signal and pattern are real, and the input sample
values consist of just the real samples. There is no need to interleave them with 0s.

• test s2 rotate.c: test function to rotate a function f ∈ S2 by specifying the three Euler angles α,
β and γ. The samples input and output are interleaved. Can up- or down-sample by specifying the
input and output bandwidths. To generate the Wigner-D functions necessary for massaging the spherical
coefficients, we adapt an algorithm of Risbo’s [6]. In some sense, in this situation it is more natural to use
this algorithm than the usual 3-term recurrence.

test_s2_rotate bwIn bwOut degOut alpha beta gamma input_filename output_filename

Here are the order of rotation events:

1. First rotate by γ about the z-axis

2. Then rotate by β about the y-axis

3. And finally rotate by α about the z-axis.

• test s2 rotate mem.c: Just like test s2 rotate but a little friendlier on the memory. Assumes that
bwIn equals bwOut.

test_s2_rotate_mem bwIn degOut alpha beta gamma input_filename output_filename

• test s2 rotate wrap.c: A simplified version of test s2 rotate, but shows how to use one of the “wrap-
per” routines:

test_s2_rotate_wrap bw alpha beta gamma input_filename output_filename isReal

If isReal is 0, that means the signal and pattern are both complex samples, and so the input sample
values are in interleaved format. If isReal is 1, then the signal and pattern are real, and the input sample
values consist of just the real samples. There is no need to interleave them with 0s.

14

2.5.3 examples1/

These example routines require FFTW. These routines handle arbitrary bandwidths, i.e. they do not have to
be a power of 2. The routine test soft fftw wo.c did not work in version 1.0 of SOFT. It has been corrected,
and the name has changed to test soft fftw nt.c. Details a little further down.

• test soft fftw.c: Just like test soft, but uses the Wigner-d symmetries (Eqns. 14-16) and FFTW;
uses interleaved real-imaginary arrays.

test_soft_fftw bw loops [error_file]

Default fftw plan rigor is FFTW MEASURE.

• test soft fftw for.c: Just like test soft for, but uses the Wigner-d symmetries (Eqns. 14-16) and
FFTW; uses interleaved real-imaginary arrays.

test_soft_fftw_for bw inputFile coef_file isReal order_flag

If isReal is 0, the function samples are complex, the sample values are interleaved, otherwise, just have
the real samples (i.e. do not have to interleave 0s).

• test soft fftw inv.c: Just like test soft inv, but uses the Wigner-d symmetries (Eqns. 14-16) and
FFTW; uses interleaved real-imaginary arrays.

test_soft_fftw_inv bw coefFile sample_file isReal

If isReal is 1, the coefficients are for a strictly real function, and so symmetries will be used when doing
the inverse transform (to cut down on the computations.

• test soft fftw pc.c: Just like test soft fftw, but precomputes all the Wigner-ds necessary in advance
of any transforming. Default fftw plan rigor is FFTW MEASURE.

• test soft fftw nt.c: Was once the broken test soft fftw wo.c in SOFT 1.0. Just like test soft fftw,
but routines try to save memory, e.g. forward transform writes over inputs, and we let FFTW do the
matrix transposes by a cleverly chosen plan. So there is no explicit function call in soft fftw nt.c to
perform a matrix transpose. The routine test soft fftw wo.c did not work in SOFT 1.0. There
was a problem with our fftw plan, resulting in a bus error when doing the transform in the forward
direction. A work around has now been implemented. Default fftw plan rigor is FFTW MEASURE.

• test soft fftw correlate2.c: Just like test soft sym correlate2 but uses FFTW; uses soft fftw.c

and so3 correlate fftw.c. E.g.

test_soft_fftw_correlate2 signalFile patternFile bwIn bwOut degLim [result]

Default fftw plan rigor is FFTW ESTIMATE.

• test soft fftw correlate2 wrap.c: A simplified version of test soft fft correlate2, but shows how
to use one of the “wrapper” routines:

test_soft_fft_correlate2_wrap signalFile patternFile bw isReal

If isReal is 0, that means the signal and pattern are both complex samples, and so the input sample
values are in interleaved format. If isReal is 1, then the signal and pattern are real, and the input sample
values consist of just the real samples. There is no need to interleave them with 0s.

• test s2 rotate fftw.c: Just like test s2 rotate but uses FFTW.

test_s2_rotate_fftw bwIn bwOut degOut alpha beta gamma input_filename output_filename

15

• test s2 rotate fftw mem.c: Just like test s2 rotate mem but uses FFTW.

test_s2_rotate_fftw_mem bw degOut alpha beta gamma input_filename output_filename

• test s2 rotate fftw wrap.c: Just like test s2 rotate wrap but uses FFTW.

test_s2_rotate_fftw_wrap bw alpha beta gamma input_filename output_filename isReal

2.6 The Test Data

Included in the SOFT distribution are the following function samples. They can be used to verify that things
are working as they should.

• D101 bw4.dat: The real and imaginary parts (interleaved) of (2 + ı)D̃1
01(α, β, γ), i.e. J = 1, M = 0, and

M ′ = 1, sampled on the bandwidth B = 4 grid. This can be verified by doing

test_soft_for 4 D101_bw4.dat Coeff.dat 1

and then checking Coeff.dat, the real and imaginary parts of the Fourier coefficients.

• D3-11 bw4.dat: The real and imaginary parts (interleaved) of D̃3
−11(α, β, γ), i.e. J = 3, M = −1, and

M ′ = 1, sampled on the bandwidth B = 4 grid. This can be verified by doing

test_soft_sym_for 4 D3-11_bw4.dat Coeff.dat 1

• dSum bw4.dat: The real and imaginary parts (interleaved) of

(2 + ı
√

2)D̃1
10(α, β, γ) + (7 + ı

√
3)D̃3

0−2(α, β, γ) + (−
√

5 + 11ı)D̃2
22(α, β, γ)

sampled on the bandwidth B = 4 grid. This can be verified by doing

test_soft_sym_for 4 dSum_bw4.dat Coeff.dat 1

• D751 bw9.dat: The real and imaginary parts (interleaved) of D̃7
51(α, β, γ), i.e. J = 7, M = 5, and M ′ = 1,

sampled on the bandwidth B = 9 grid. This can be verified by doing

test_soft_fft_for 9 D751_bw9.dat Coeff.dat 0 1

• dMix bw10.dat: The real and imaginary parts (interleaved) of

(
√

2 + ı)D̃3
12(α, β, γ) + ı

√
3D̃5

1−4(α, β, γ) + (2 + ıπ)D̃6
−32(α, β, γ) +

3

4
D̃8

47(α, β, γ) + D̃9
−5−5(α, β, γ)

sampled on the bandwidth B = 10 grid. This can be verified by doing

test_soft_fft_for 10 D751_bw10.dat Coeff.dat 0 1

• randomS2sig bw8.dat: A strictly real-valued, bandlimited function on S2, with bandwidth B = 8. Since
this file is expected to be used with the correlation routines, it is interleaved, and the imaginary parts
are all 0.

• randomS2sigA bw8.dat: The signal randomS2sig bw8.dat rotated by the Euler angles α = π/8, β =
11π/32, and γ = π/4. As with the original signal, this one is strictly real-valued, with bandlimit B = 8.
Note that the angles I am rotating by are exactly on the 2B × 2B × 2B grid necessary for a bandlimit
B = 8 forward or inverse DSOFT. This is not a coincidence.

16

Routines B = 8 B = 16 B = 32 B = 64 B = 128 B = 256
test soft 0.21 2 14 107 854 6828
test soft sym

test soft fftw

test soft for 0.21 2 13 101 811 6487
test soft sym for

test soft inv

test soft sym inv

test soft fftw pc 1 3 20 197 2252 29000 (wow!)
test soft fftw wo 0.5 2 10 74 600 4780
test soft sym correlate < 0.5 1 9 70 560 4500
test soft sym correlate2

test soft fftw correlate2

test s2 rotate < 0.5 < 0.5 0.5 2 12 80
test s2 rotate mem < 0.5 < 0.5 0.3 1.3 8 52

Table 1: Very approximate memory requirements of DSOFT-related test routines, in megabytes (220 bytes =
1 megabyte), assuming using C type double. In those routines where it is relevant, it is assumed that the
“bandwidth in” equals the “bandwidth out.” Note that I have not run all the routines at all the bandwidths
listed in this table.

• randomS2sigB bw8.dat: The signal randomS2sig bw8.dat rotated by the Euler angles α = 0.452, β =
1.738, and γ = 2.378. As with the original signal, this one is strictly real-valued, with bandlimit B = 8.
Note that these angles are not on the 2B × 2B × 2B grid necessary for a bandlimit B = 8 forward or
inverse DSOFT. This is not a coincidence, either.

• randomS2sigCX bw7.dat: A complex-valued, bandlimited function on S2, with bandwidth B = 7. Since
this file is expected to be used with the correlation routines, it is interleaved.

• randomS2sigCXA bw7.dat: The signal randomS2sigCX bw7.dat rotated by the Euler angles α = 6π/7,
β = 11π/28, and γ = 3π/7. As with the original signal, this one is complex-valued, with bandlimit B = 7.
Note that the angles I am rotating by are exactly on the 2B × 2B × 2B grid necessary for a bandlimit
B = 7 forward or inverse DSOFT. This is not a coincidence.

2.7 Memory

In Table 1 are the memory requirements for the DSOFT test routines. The ones involving the Wigner-d
transforms don’t use that much memory, but these guys do. They are real hogs. (It might be possible to be
more careful with the memory, to be less of a hog. I need to look into this.) Once you see the list, you’ll
understand why the sample data is of such small bandwidths (at least when compared with SpharmonicKit).

Now realize that this is for the test routines themselves, e.g. some of the memory is allocated for storing
original values of things like samples and coefficients, in order to compare them with what’s computed (e.g.
for computing errors). If you’re not interested in those things, if you’re just using the “transform” C functions
themselves, then memory use won’t be as bad.

3 Correlation Examples

In this section, we go through a couple of examples of how to correlate two real-valued functions defined on
S2. That is, given two functions f, h ∈ L2(S2), we will determine the rotation g = g(α, β, γ) ∈ SO(3) which
maximizes the correlation

C(g) =

∫

S2

f(ω) Λ(g)h(ω) dω.

17

where α, β, γ are the Euler angles defining the rotation. Briefly, from the S2 Fourier coefficients of f and h,
one constructs the SO(3) Fourier coefficients of C(g). Taking the inverse SO(3) Fourier transform yields C(g)
evaluated on the 2B × 2B × 2B grid (where B equals the bandwidth of the inverse SO(3) Fourier transform).
Finding the location of the maximum value on the grid tells you how to rotate h.

3.1 First Example

The main purpose of this example is just to make sure the code is working properly after compilation. The
two functions we will correlate are those whose samples are contained in the files randomS2sig bw8.dat and
randomS2sigA bw8.dat.

Ok. Let f be the function whose samples are in randomS2sigA bw8.dat, and h be the function whose samples
are in randomS2sig bw8.dat. We wish to determine how to rotate h so that the correlation is maximized. We
can think of this graphically: how do we rotate h so that its graph matches that of f ’s? We know what the
answer should be:

α = π/8 (about 0.392699)

β = 11π/32 (about 1.07922)

γ = π/4 (about 0.785398).

Hopefully this is what the answer will be when you run it yourself. We can use either test soft sym correlate2

or test soft fftw correlate2. Let’s use the latter.
Now our signal is f and our pattern is h. The bandwidth is B = 8. Therefore, we execute the command:

test_soft_fftw_correlate2 randomS2sigA_bw8.dat randomS2sig_bw8.dat 8 8 7

I will explain the 8 8 7 shortly. Meanwhile, here’s what you should see (the name of my machine is gallant):

gallant 240: test_soft_fftw_correlate2 randomS2sigA_bw8.dat randomS2sig_bw8.dat 8 8 7

Generating seminaive_naive tables...

Reading in signal file

now taking spherical transform of signal

Reading in pattern file

now taking spherical transform of pattern

freeing seminaive_naive_table and seminaive_naive_tablespace

about to combine coefficients

combine time = 0.0000e+00

about to inverse so(3) transform

finished inverse so(3) transform

inverse so(3) time = 0.0000e+00

ii = 5 jj = 1 kk = 2

alpha = 0.392699

beta = 1.079922

gamma = 0.785398

gallant 241:

Bingo! We get the correct Euler angles! We know how to rotate h to match f . The indeces ii, jj and kk refer
to the location, in the 2B × 2B × 2B grid, where the maximum correlation value occurs: ii is the index for β
(really - recall how the SO(3) samples are arranged - if you forgot, see Sec. 2.3), jj for α, and kk for γ.

Remark Note that you will get an answer different from the one above if you instead do

test_soft_fftw_correlate2 randomS2sig_bw8.dat randomS2sigA_bw8.dat 8 8 7

This will tell you how much to rotate f to match h. Be careful not to get confused!

If in addition to the Euler angles, for whatever reasons, you want to save all the correlation values, too, say
in a file called corValues.dat, then instead execute

18

test_soft_fftw_correlate2 randomS2sigA_bw8.dat randomS2sig_bw8.dat 8 8 7 corValues.dat

We now address the 8 8 7. The first 8 refers to the bandwidth of the two input functions. The second 8

refers to the bandwidth you want the inverse DSOFT done at. Why wouldn’t you always want the bandwidth
for DSOFT equal to the bandwidth of the input signals? To answer in a word: memory. Suppose the two S2

functions you want to correlate are of bandwidth B = 256. A quick check of Table 1 will probably show that
your machine does not have sufficient memory for a SO(3) Fourier transform at bandwidth B = 256.

However, all is not lost. You could instead do the DSOFT at B = 32, e.g.

test_soft_fftw_correlate2 signal.dat pattern.dat 256 32 31

While this will not use all the information you have available in each of the two S2 functions, you will still be
able to get a (hopefully useful) result. And you will need only barely 32 megs of RAM.

Ok, now for that 7 (to return to the original example). This refers to the maximum degree of Wigner-D
coefficient the SO(3) transform will use. That is, for a B = 8 transform, you are considering SO(3) functions
(which C(g) is)

f(α, β, γ) =

7
∑

J=0

J
∑

M=−J

J
∑

M ′=−J

f̂J
MM ′DJ

MM ′(α, β, γ)

The 7 in the J-summation is the 7 in the input line. The maximum degree is one less the bandwidth.
Now suppose, for whatever reasons, you may not want to use all the Wigner-D functions. You may still

want to perform the DSOFT at B = 8, but you’re fine with going through degree, say 4. In this case, then, you
want to consider

f(α, β, γ) =

4
∑

J=0

J
∑

M=−J

J
∑

M ′=−J

f̂J
MM ′DJ

MM ′ (α, β, γ),

basically setting all the f̂J
MM ′ equal to 0 for 5 ≤ J ≤ 7. In this case you would do

test_soft_fftw_correlate2 signal.dat pattern.dat 8 8 4

and that’s it. You’re still doing a SO(3) transform at B = 8. You’re just not using all the coefficients you can.

3.2 Second Example

This will be like the first example, except the signal f will be that whose samples live in randomS2sigB bw8.dat.
Again, we know how the function was rotated:

α = 0.452

β = 1.738

γ = 2.378.

However, the critical difference between here and the previous example is that these rotation angles are not
on the B = 8 grid used when doing the DSOFT. Therefore, we will not get these exact numbers from the test
routine. The Euler angles returned will be those on the grid which will yield the largest correlation:

gallant 258: test_soft_fftw_correlate2 randomS2sigB_bw8.dat randomS2sig_bw8.dat 8 8 7

Generating seminaive_naive tables...

Reading in signal file

now taking spherical transform of signal

Reading in pattern file

now taking spherical transform of pattern

freeing seminaive_naive_table and seminaive_naive_tablespace

about to combine coefficients

combine time = 0.0000e+00

about to inverse so(3) transform

finished inverse so(3) transform

19

inverse so(3) time = 0.0000e+00

ii = 8 jj = 1 kk = 6

alpha = 0.392699

beta = 1.668971

gamma = 2.356194

gallant 259:

The Euler angles returned are still pretty close to the truth. You could then rotate the pattern by that amount,
e.g.

gallant 260: test_s2_rotate 8 8 7 0.392699 1.668971 2.356194 randomS2sig_bw8.dat xxx.dat

Generating seminaive_naive tables...

Generating seminaive_naive tables...

Generating trans_seminaive_naive tables...

reading in signal ...

about to rotate ...

finished rotating ...

rotation time = 0.0000e+00

finished writing ...

gallant 261:

and xxx.dat contains the rotated pattern.

3.3 Third Example

Try correlating a function with itself, e.g.

test_soft_fftw_correlate2 randomS2sig_bw8.dat randomS2sig_bw8.dat 8 8 7

You might not get the answer you expect, but it is correct. Hint: Where are we sampling C(g) ? Also, add
together the α and γ you get, and then think about the rotations these correspond to, i.e. which axis are you
rotating about?

4 Bibliography

Here are the references. Enjoy!

References

[1] J. R. Driscoll and D. Healy, Computing Fourier transforms and convolutions on the 2-sphere. (extended
abstract) in Proc. 34th IEEE FOCS, (1989) 344-349; Adv. in Appl. Math., 15 (1994), 202-250.

[2] FFTW is a free collection of fast C routines for computing the Discrete Fourier Transform in one or more
dimensions. It includes complex, real, symmetric, and parallel transforms, and can handle arbitrary array
sizes efficiently. FFTW is available at www.fftw.org/.

[3] P. Kostelec and D. Rockmore, FFTs on the Rotation Group, Santa Fe Institute’s Working Papers series,
Paper #: 03-11-060, 2003.

[4] D. Maslen and D. Rockmore, Generalized FFTs, in Proceedings of the DIMACS Workshop on Groups and

Computation, June 7-10, 1995, L. Finkelstein and W. Kantor (eds.) (1997), 183-237.

[5] D. Maslen and D. Rockmore, Separation of Variables and the Computation of Fourier Transforms on Finite
Groups I, Journal of the American Math Society, 10(1), (1997), 169-214.

[6] T. Risbo, Fourier transform summation of Legendre series and D-functions, Journal of Geodesy, 70 (1996),
p. 383 - 396.

20

http://www.fftw.org/

[7] S2kit is a freely available collection of C programs for doing Legendre and scalar spherical transforms.
Developed at Dartmouth College by P. Kostelec and D. Rockmore, derived from SpharmonicKit [8], it is
available at www.cs.dartmouth.edu/~geelong/sphere/.

[8] SpharmonicKit is a freely available collection of C programs for doing Legendre and scalar spherical trans-
forms. Developed at Dartmouth College by S. Moore, D. Healy, D. Rockmore and P. Kostelec, it is available
at www.cs.dartmouth.edu/~geelong/sphere/.

[9] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World
Scientific Publishing, Singapore, 1988.

21

http://www.cs.dartmouth.edu/~geelong/sphere/
http://www.cs.dartmouth.edu/~geelong/sphere/

	Theoretical Background
	Euler Angle Decomposition
	Wigner D-functions
	Wigner d-functions
	Recurrences
	The Transforms

	The SOFT Package
	Directory organization
	How To Compile
	If FFTW is not on your system
	If FFTW is on your system

	Data Conventions: Ordering of Samples and Coefficients
	Major Files
	common/
	include/
	lib0/
	lib1/

	The Test Routines
	examples/
	examples0/
	examples1/

	The Test Data
	Memory

	Correlation Examples
	First Example
	Second Example
	Third Example

	Bibliography

