Nomenclature

This section provides an overview of the formulations and optimization models used in the package.

Indexes

\(g\)

Generator index

\(\mathcal{G}_n\)

Set of generators at bus \(n\)

\(n, m\)

Bus indices

\(l\)

Transmission line index

Parameters

\(S_{\text{base}}\)

Base power [MVA]

\(a_{g}, b_{g}, c_{g}\)

Cost coefficients for \(g\)

\(\overline{p}_g, \underline{p}_g\)

Active power generation limits for \(g\) [MW]

\(\overline{q}_g, \underline{q}_g\)

Reactive power generation limits for \(g\) [MW]

\(p^d_n, q^d_n\)

Active and reactive power demand at node \(n\) [MW, MVAr]

\(\overline{\theta}_n, \underline{\theta}_n\)

Voltage angle limits at bus \(n\) [radians]

\(\underline{v}_n, \overline{v}_n\)

Voltage magnitude limits at node \(n\) [p.u.]

\(G^{sh}_n, B^{sh}_n\)

Shunt conductance and susceptance at node \(n\) [p.u.]

\(r_l, x_l\)

Series resistance and reactance of branch \(l\) [p.u.]

\(b_l\)

Total charging susceptance of branch \(l\) [p.u.]

\(\tau_l, \gamma_l\)

Tap ratio magnitude and phase shift angle of branch \(l\)

\(\overline{s}_l\)

Apparent power flow limit for branch \(l\) [MVA]

\(F_{l,n}, T_{l,n}\)

Incidence matrices for “from” and “to” buses of line \(l\)

We also define the following parameters for the branch \(l\):

\[\begin{split}\begin{align} & G^{ff}_l + jB^{ff}_l = \left(\tfrac{1}{r_l+jx_l}+j\tfrac{b_l}{2} \right)\tfrac{1}{\tau_l^2} \\ & G^{ft}_l + jB^{ft}_l = -\tfrac{1}{r_l+jx_l}\tfrac{1}{\tau_l e^{-j\gamma_l}} \\ & G^{tf}_l + jB^{tf}_l = -\tfrac{1}{r_l+jx_l}\tfrac{1}{\tau_l e^{j\gamma_l}} \\ & G^{tt}_l + jB^{tt}_l = \left(\tfrac{1}{r_l+jx_l}+j\tfrac{b_l}{2} \right) \end{align}\end{split}\]

Variables

\(p_g\)

Active power generation of \(g\) [MW]

\(q_g\)

Reactive power generation of \(g\) [MVAr]

\(v_n\)

Voltage magnitude at node \(n\) [p.u.]

\(\theta_n\)

Voltage angle at bus \(n\) [radians]

\(v_n^{(2)}\)

Voltage magnitude squared at node \(n\) [p.u.]

\(e_n, f_n\)

Real and imaginary parts of voltage at node \(n\) [p.u.]

\(p^f_l, p^t_l\)

Active power flow on branch \(l\) (from/to) [MW]

\(q^f_l, q^t_l\)

Reactive power flow on branch \(l\) (from/to) [MVAr]