
Practical 10 Solutions
Jumping Rivers

Question 1 - Titanic

We’re going to try and better the model prediction survival in the
notes (shouldn’t be hard!). The following code will load the data in
and take a look at it

import pandas as pd
import jrpyml
titanic = jrpyml.datasets.load_titanic()
titanic.head()

PassengerId Survived Pclass ... Fare Cabin Embarked
0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN S
##
[5 rows x 12 columns]

a) Set up your X_train and y_train objects such that your response
variable is Survived and the one predictor variable is Pclass.

y_train = titanic["Survived"]
X_train = titanic[["Pclass"]]

b) Pclass represents the class of the persons room on the titanic.
Should this be a categoric or a numeric variable? What data pre-
processing should you therefore be using?

Categoric so OneHotEncoding
from sklearn.preprocessing import OneHotEncoder

c) Write a pipeline the preprocesses the data in the correct way, then
fits a regression model and then fit the model to your data.

from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

model = Pipeline([
('pre', OneHotEncoder()),
('logis', LogisticRegression(class_weight='balanced'))
])
model.fit(X_train, y_train)

practical 10 solutions 2

d) For each class, what is the predicted category of survival and the
corresponding probability for that category?

new_values = pd.DataFrame({
"Pclass": [1, 2, 3]

})
model.predict(new_values)

array([1, 1, 0])

model.predict_proba(new_values)

array([[0.26809931, 0.73190069],
[0.42648742, 0.57351258],
[0.68196219, 0.31803781]])

e) Overall, how many predictions did we get correct?

from sklearn.metrics import accuracy_score
y_pred = model.predict(X_train)
accuracy_score(y_train, y_pred)

0.665266106442577

f) Of those that survived, what proportion were actually classified
that way?

from sklearn.metrics import recall_score
recall_score(y_train, y_pred, pos_label=1) # tp/(tp + fp)

0.7068965517241379

g) The following code will perform 10-fold cross validation on the
data and return the accuracy. Make it return the precision and
recall

from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
import pandas as pd

acc = make_scorer(accuracy_score)

output = cross_validate(model, X_train, y_train, scoring={
'acc': acc

}, cv=10, return_train_score=False)

from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score

practical 10 solutions 3

import pandas as pd

acc = make_scorer(accuracy_score)

def precision(y_true, y_pred):
return precision_score(y_true, y_pred, pos_label=1)

def recall(y_true, y_pred):
return recall_score(y_true, y_pred, pos_label=1)

prec = make_scorer(precision)
rec = make_scorer(recall)
output = cross_validate(model, X_train, y_train, scoring={
'acc': acc,
'prec': prec,
'rec': rec

}, cv=10, return_train_score=False)

What is the average test accuracy, precision and recall? What does
this tell you about the model?

Question 2 - Advancing titanic

To attempt to improve the model, we want to inclue Age in the model.

a) Set up your X_train model appropriately

X_train = titanic[["Age", "Pclass"]]

b) Using ColumnTransformer(), StandardScaler() and OneHotEncoder(),
set up an appropriate preprocessing object, then include it in a
model pipeline and fit the model to the data

from sklearn.compose import ColumnTransformer
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler, OneHotEncoder

numeric_features = ['Age']
categorical_features = ['Pclass']

preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), numeric_features),
('cat', OneHotEncoder(), categorical_features)

]
)

practical 10 solutions 4

model = Pipeline(
steps=[

('preprocess', preprocessor),
('regression', linear_model.LogisticRegression())]

)

model.fit(X_train, y_train)

c) The following code will set up a DataFrame of peoples ages and
pclasses. Use your model to predict whether these people would
survive.

import numpy as np
Age = np.repeat([10, 20, 30, 40, 50, 60], repeats=3)
Pclass = np.array([1, 2, 3]*6)
new_values = pd.DataFrame({

"Age": Age,
"Pclass": Pclass

})

new_values["pred"] = model.predict(new_values)

d) We could plot the new persons like so.

import seaborn as sns
sns.scatterplot(x="Age", y="Pclass", hue="pred", data=new_values)

What is this graph showing? What does this say about the relation-
ship between Age, Pclass and Survived?

e) Just like in part g) of the previous question, the following code will
perform 10-fold criss validation on the new model.

from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
import pandas as pd

acc = make_scorer(accuracy_score)

def precision(y_true, y_pred):
return precision_score(y_true, y_pred, pos_label=1)

def recall(y_true, y_pred):
return recall_score(y_true, y_pred, pos_label=1)

prec = make_scorer(precision)

practical 10 solutions 5

rec = make_scorer(recall)
output = cross_validate(model, X_train, y_train, scoring={
'acc': acc,
'prec': prec,
'rec': rec

}, cv=10, return_train_score=False)

How does the test accuracy compare to the previous model? Have
we improved results?

