FORTH INTEREST GROUP-—~~—~——P Q. Box 1105 ————San Carlos, CA 34070

3 HOOCOTENEENEENNAECCECaarCErtereeearroannnennnnneee
FORTH —79 ;

October 1980
Produced by: FORTH Standards Team
Diseributed by: FORTE Interest Group

CCC Ot CCCCCCtCCCCCCCCOCCCCCeerrrererereerr



g.
1.
2.
3.
4.
S.
6.
7.
8.
9.
10.
11.

12.

FORTH-79 STANDARD

A PUBLICATION OF THE FORTH STANCARDS TEAM

CONTENTS

FOREWCRD

PURPOSE

SCOPE

CRGANTZATION

DEF INITION CF TERMS
REFERENCES
REQUIREMENTS
COMPLIANCE AND LABELING
USE

GLOSSARY NOTATION
REQUIRED WORD SET
EXTENSION WORD SETS

11.1 Double Number Word Set
11.2 Assembler Word Set

EXPERIMENTAL PROPOSALS

REFERENCE WORD SET

FCRTH-79 HANDY REFERENCE CARD

Page

10

¥

13
15
32

32
34

34



FORTH~-79 STANDARD
A PUBLICATION CF THE FORTH STANDARDS TEAM
O. FOREWORD

The computer language FORTH was created by Mr. Charles Moore, as an
extensible, multi-level environment containing elements of an operating system,
a machine monitor, and facilities for program development and testing.

This Standard is a direct descendant of FORTH-77, a work of the FORTH
Users Group (Europe). The constituency of the Standards Team has steadily
broadened, to include users of an increasing variety of host computers.

1. PURFOSE

The purpose of this FORTH Standard is to allow transportability of standard
FORTH programs in source form among standard FORTH systems. A standard program
shall execute equivalently on all standard FORTH systems.

2. SCOPE

This standard shall apply to any Standard FORTH program executing on any
Standard FORTH system, provided sufficient computer resources (memory, mass
storage) are available.

3. CRGANIZATTION

This standard consists of:

1) General Text

2) Definitions of Terms
3) Required Word Set

4) Extension Word Sets

Word sets may be subdivided for conceptual purposes by function:

Nucleus
Interpreter
Compiler
Devices



When
Standards

1)

2)

3)
4)

5)

7)
8)
9)
10)
11)

conflicting choices must be made, the following order shall guide the
Team.

Functional correctness
- known bounds, non-ambiguous.

Portability
= repeatable results when transported among Standard systems.

Simplicity.

Naming clarity
-~ uniformity of expression. Descriptive names are preferred over
procedural. (i.e., [COMPILE] rather than 'C, and ALLOT rather
than DP+! .)

Generality.

Execution speed.

Memory compactness.

Compilation speed.

Historical continuity.

Pronounceability.

Teachability.

4, DEFINITIONS OF TERMS

These definitions, when in lower case, are terms used within this Standard.
They present terms as specifically used within FORTH,

address, byte

An unsigned number that locates an 8-bit byte in a standard FORTH ;address
space over {0..65,535}. It may be a native machine address or a repre-
sentation on a virtual machine;, locating the ‘addr-th' byte within the
virtual byte address space. Address arithmetic is modulo 65,536 without
overflow.

address, ccmpilation

The numerical value equivalent t0 a FORTH word definition, which is
compiled for that definition. The address interpreter uses this value to
locate the machine code corresponding to each definition. (May also be
called the code field address.)

-2 -



address, native machine

The natural address representation of the host computer.

address, parameter field

The address of the first byte of memory associated with a word definition
for the storage of compilation addresses (in a colon-definition), numeric
data and text characters.

arithmetic
All integer arithmetic is performed with signed 16 or 32 bit two's comple~-
ment results, unless noted.

block

The unit of data from mass storage, referenced by block number. A block
must contain 1024 bytes regardless of the minimum data unit read/written
from mass storage. The translation from block number to device and
physical record is a function of the implementation.

block buffer

A memory area where a mass storage block is maintained.

byte
An assembly of 8 bits. In reference to memory, it is the storage capacity
for 8 bits.

cell

A 16-bit memory location. The n~-th cell contains the 2n-th and (2n+l)-th
byte of the FORTH address space. The byte order is presently unspecified.

character
A 7-bit number which represents a terminal character. The ASCII character
set is considered standard. When contained in a larger field, the higher
order bits are zero.

compilation

The action of accepting text words from the input stream and placing
corresponding compilation addresses in a new dictionary entry.

defining word

A word that, when executed, creates a new dictionary entry. The new word
name is taken from the input stream. If the input stream is exhausted
before the new name is available, an error condition exists. Common



defining words are:
: CONSTANT CREATE
definition
See 'word definition'.

dictionary

A structure of word definitions in a computer memory. In systems with a
text incerpreter, the dictionary entiies are organized in vocabularies o
enable lccaticn by name. The dictionary is extensible, growing toward

high memory.

equivalent execution

Far the execution of a standard program, a set of non~time dependent inputs
will produce the same non=time dependent ocutputs on any FORTH Standard
System with sufficient resources to execute the program. Only standard
source code will be transportable.

error condition

An exceptional conditicn which requires acticn by the system cther than the
expected function. Acticns may be:

1. ignore, and continue
2. display a message

.
il .
2 particular word

]
n

4, interpret a block

5. return contrcl to the text interpreter
A Standard System shall be provided with a tabulaticn of the acticn taken
for all specified error conditions.
General errcr conditicns:

1. input stream exhausted before a required <name>.

2. empty stack and full stack for the text interpreter.

3. an unknown word, nct a valid number for the text interpreter.

4. compilaticn of incorrectly nested conditicnals.

5. interpretation of words restricted to compilaticn.



6. FORGETing within the system to a point that removes a word
required for correct execution.

7. insufficient space remaining in the Jdictionary.
false
A zero number represents the false condition flag.

flag

A number that may have two logical states, zero and non-zero. These are
named 'true' = non-zero, and 'false' = zero. Standard word definitions
leave 1 for true, 0 for false. :

glossary

A set of word definitions given in a natural language describing the
corresponding computer execution action.

immediate word

A word defined to automatically execute when encountered during compila-
tion, which handles exception cases to the usual compilation. See IF
LITERAL ." etc.

input stream

A sequence of characters available to the system, for processing by the
text interpreter. The input stream conventionally may be taken from a
terminal (via the terminal input buffer) and mass storage (via a block
buffer). >IN and BLK specify the input stream. Words using or altering
>IN and BLK are responsible for maintaining and restoring control of the
input stream.

interpreter, address

The (set of) word definitions which interprets (sequences of) FORTH
compilation addresses by executing the word definition specified for each
one,

interpreter, text

The (set of) word definitions that repeatedly accepts a word name from the
input stream, locates the corresponding dictionary entry, and starts the
address interpreter to execute it. Text in the input stream interpreted
as a number leaves the oorresponding value on the data stack. When in
the compile mode, the addresses of FORTH words are compiled into the
Jdictionary for later interpretation by the address interpreter. In this
case, numbers are compiled, to be placed on the Jata stack when later
interpreted. Numbers shall be accepted unsigned or negatively signed,
according to BASE.



1nad

The acceptance of text from a mass storage device and execution of the
dictionary definition of the words encountered. This is the general method
for compilation of new definitions into the dictionary.

mass storage

Data is read from mass storage in the form of 1024 byte blocks. This .ata
is held in block buffers. When indicated as UPDATEd (modified) data will

o St s - -t

be ultimately written to mass storage.
nuiier

When values exist within a larger field, the high order bits are zero.
When stored in memory the byte order of a number is unspecified.

type range minimum field
bit 0..1 1
character 0..127 7
byte 0..255 8
number -32,768..32,767 16
positive number 0..32,767 16
unsigned number 0..65,535 16
double number -2,147,483,648..

2,147,483,647 32
positive double number 0..2,147,483,647 32
unsigned double number 0..4,294,967,295 32

When represented on the stack, the higher 16-bits (with sign) of a double
number are most accessible. When in memory the higher 16-bits are at the

lower addrese . Sroarace avtends cver faur hutee frward hich memors, The
e ST T T TR e S S e e e e - h i i S e g™ St T e e e R Shg o S

byte order within each 16-bit field is unspecified.

output, pictured

The use of numeric output primitives, which convert numerical values into
text strings. The operators are used in a sequence which resembles a
symbolic 'picture' of the desired text format. Conversion proceeds from
low digit to high, from high memory to low.

program

A complete specification of execution to achieve a specific function
(application task) expressed in FORTH source code form.

return
The means of terminating text from the input stream. (Conventionally a
null (ASCITI 0) indicates end of text in the input stream. This character

is left by the 'return' key actuation of the operator's terminal, as an
absolute stopper to text interpretation.)

-6 - .



screen

Textual data arranged for editing. By convention, a screen consists of 16
lines (numbered 0 thru 15) of 64 characters each. Screens usually contain
program source text, but may be used to view mass storage data. The first
byte of a screen occupies the first byte of a mass storage block, which is
the beginning point for text interpretation during a load.

source definition

Text consisting of word names suitable for execution by the text inter-
preter. Such text is usually arranged in screens and maintained on a mass
storage device.

stack, data.
A last in, first out list consisting of 16-bit binary values. This stack
is primarily used to hold intermediate values during execution of word
definitions. Stack values may represent numbers, characters, addresses,
boolean values, etc.
When the name 'stack' is used, it implies the data stack.

stack, return

A last in, first out 1list which contains the machine addresses of word
definitions whose execution has not been comvleted by the address inter-
preter. As a word definition passes control to another definition, the
return point is placed on the return stack.

The return stack may cautiously be used for other values, such as loop
control parameters, and for pointers for interpretation of text.

string

A sequence of 8-bit bytes containing ASCII characters, located in memory by
an initial byte address and byte count.

transiportability

This term indicates that eguivalent execution results when a program is
executed on other than the system on which it was created. See 'equivalent
execution',

true

A non-zero value represents the true condition flag. Any non-zero value
will be accepted by a standard word as 'true'; all standard words return
one when leaving a 'true' flag.

user area

An area in memory which contains the storage for user variables.

-7 -



variables, user

So that the words of the E‘OMH vocabulary may be re—entrant (to different

users), a ooy of each system variable is maintained in the user area.
vocabulary

An ordered list of word definitions. Vocabulary lists are an advartage
in reducing dictionary search time and in separating different word
definitions that may carry the same name.

A sequence of characters terminated by at least one blank (or ‘'return').
Words are usually obtained via the input stream, from a terminal or mass
storage device.

word definition

A named FORTH execution procedure compiled into the dictionary. Its
execution may be defined in terms of machine code, as a sequence of
compilation addresses or other compiled words. If named, it may be located
by specifying this name and the vocabulary in which it is located.

word name

The name of a word definition. Standard names must be distinguished by
their length and first thirty-one characters, and may not oontain an ASCII
null, blank, or 'return'.

word set
ot
A gmuup Of FORIA word Gefinitions listed Ly Coilion Chacacleristics.

The standard word sets consist of:

Required Word Set
Nucleus Words
Interpreter Words
Compiler Words
Device Words

Extension Word Sets
32-bit Word Set
Assembler Word Set

Included as reference material only:
Reference Word Set

word set, compiler

Words which add new procedures to the dictionary or aid ocompilation by
adding compilation addresses or data structures to the dictionary.



word

set, devices

word

Words which allow access to mass storage and computer peripheral devices.

set, interpreter

word

Words which support interpretation of text input from a terminal or mass
storage by execution of corresponding dictionary entries, vocabularies, and
terminal output.

set, nucleus

word

The FORTH words generally defined in machine code that create the stacks
and fundamental stack operators (virtual FORTH machine).

set, reference

word

This set of words is provided as a reference document only, as a set of
formerly standardized words and candidate words for standardization.

set, required

The minimum words needed to compile and execute all Standard Programs.

word, standard

A named FORTH procedure definition, formally reviewed and accepted by the
Standards Team. A serial number identifier {100..999 } indicates a Standard
Word. A functional alteration of a Standard Word will require assigrmment
of a new serial number identifier.

The serial number identifier has no required use, other than to correlate
the definition name with its unique Standard definition.

5. REFERENCES

The following documents are considered to be a portion of this Standard:

American Standard Code for Information Interchange,
American National Standards Institute, X3.4-1968

Webster's Collegiate Dictionary shall be used to resolve conflicts
in spelling and English word usage.

The following documents are noted as pertinent to the FORTH-79 Standard,

but are not part of this Standard.

FORTH-77, FORTH Users Group, FST-780314

FORTH-78, FORTH International Standards Team

-9 -



TWITNTTY 0 T o 2 o v v, o, rv.-._.A X o o

e e els b e e e e s 5 S e G e s e e e

FORTH-79, Experimental Proposals

6.  REQJJIREMENTS

5.1 Documentation Reguirements

Each Standard System and Standard Program shall be accompanied by a state-
ment of the minimum (Dyte) reguirements ror:

1. System dictionary space

2. Application dictionary space

3. Data stack

4. turn stack

5. Mass storage contiguous block quantity required
6. An operator's terminal.

Each Standard System shall be provided with a statement of the system
action upon each of the error conditions as identified in this Standard.

6.2 Testing Regquirements

- . . . . D
The rcllowlng os‘- cc":putez. configuration is specified as a minimum

PN N . Llad m (A om T e Renenl 4 mende § menes  mmer <wmmone 4 o

:AAV .A.L. UAAA“CALB. d o b h:; i....l :q u\ji—-ﬁ.&&ﬂs— bnt-bha o s s b Rk eh e W LY o e R R R ] ey e e

different capacities.
1. 2000 bytes of memory for application dictionary
2. Data stack of 64 bytes
3. turn stack of 48 bytes
4, Mass storage capacity of 32 blocks, numbered 0 thrcugh 31

5. One ASCII input/output device acting as an operatcr's terminal.

- 10 -



7. COMPLIANCE AND LABELING

The FORTH Standards Team hereby specifies the requirements for labeling of
systems and applications so that the conditions for program portability may be
established.

A system may use the specified labeling if it complies with the terms of
this Standard, and meets the particular Word Set definitions.

A Standard Program (application) may use the specified labeling if it
Utilizes the specified standard system according to this Standard, and executes
equivalently on any such system.

FCRTH Standard

A system may be labeled 'FORTH-79 Standard' if it includes all of the
Required Word Set in either source or object form, and complies with the text of
this Standard. After executing "79-STANDARD" the dictionary must contain all of
the Required Word Set in the vocabulary FORTH, as specified in this Standard.

Standard Sub-set

A system may be labeled 'FORTH-79 Standard Sub-set' if it includes a
portion of the Required Word Set, and complies with the remaining text of
this standard. However, no Required Word may be present with a non-standard
definition.

Standard with Extensions

A system may be labeled 'FORTH-79 Standard with <name> Standard Exten-
sion(s)' if it comprises a FORTH-79 Standard System and one or more Standard
Extension Word Set(s). The designation would be in the form:

'FORTH-79 Standard with Double~Number Standard Extensions'

- 1] -



8. USE

A FORTH Standard program may reference only the definitions of the Required
word Set, and definitions which are subsequently defined in terms of these
words. Furthermore, a FORTH Standard program must use the standard words as
required by any conventions of this Standard. Equivalent execution must result
from Standard programs.

The FORTH system may share the dictionary space with the user's applica-
tion, and the native addressing protocol of the host computer is beyorxd the
scope of this Standard.

Therefore, in a Standard program, the user may only operate on data which
was stored by the application. No exceptions!

A Standard Program may address:

1. ©parameter fields of variables, constants and DOES> words. A DOES>
word's parameter field may only be addressed with respect to the
address left by DOES> , itself.

2. dictionary space ALLOTed.

3. data in mass storage block buffers. (Note restriction in BLOCK on
latest buffer addressing.)

4. | the user area and PAD.

A Standard Program may NOT address:
1. directiy intG e data or return stacks.

2. into a definition's name field, link field, or code field.

3. into a definition's parameter field if not stored by the application.

Purther usage requirements are expected to be added for transporting programs
between standard systems.

FORTH Standard definitions have a serial number assigned, in the range

100 thru 999. Neither a Standard System nor Standard Program may redefine these
word names, within the FORTH vocabulary.

-12 -



9. GLOSSARY NOTATION

Order
The Glossary definitions are listed in ASCII alphabetical order.

Stack Notation

The first line of each entry describes the execution of the definition:
stack parameters before execution
— showing point of execution
stack parameters after execution
i.e., before-— after

In this notation, the top of the stack is to the right. Words may also
be shown in context, when appropriate. )

Attributes

Capitalized symbols indicate attributes of the defined words:

o The word may only be used within a colon-definition.
I Indicates that the word is IMMEDIATE and will execute during compilé—
tion, unless special action is taken. i
U A user variable.
Capitalization

Word names as used within the dictionary are conventionally written in
upper case characters. Within this Standard lower case will be used when
reference is made to the run-time machine code, not directly accessible,
i.e., VARIABLE is the user word to create a variable. Each use of that
variable makes use of a code sequence 'variable' which executes the func-
tion of the particular variable.

Pronunciation

The natural language pronunciation of FORTH names is given in double quotes
(")

Stack Parameters

Unless otherwise stated, all references to numbers apply to 1l6-bit signed
integers.

The implied range of values is shown as {from..to}. The content of an

address is shown by double curly brackets, particularly for the contents of
variables. 1i.e., BasE {{2..70}}

-13 -



addr : {0..65,535}
A value representing the address of a byte, within the FCRTH standard
memory space. This addressed byte may represent the first byte of a larger
data field in memory.

byte {0..255}

A value representing an 8 bit byte. When in a larger field, the higher
bits are zero.

oy a0y s {Ov

v M

127}

A value representing a 7 bit ASCII character code. When in a larger field,
the higher bits are zero.

d {-2,147,483,648..2,147,483,647}

32 bit signed ‘'‘double' number. The most significant 16-bits, with sign, is
most accessible on the stack.

flag

A numerical value with two logical states; 0= false, non-zero = true,
n {-32,768..32,767}

16 bit signed integer number.

Any other symbol refers to an arbitrary signed 16-bit integer in the range
{-32’768-032'767}' unless OtherWiSE nOtEd.

Input Text
<name>

An arbitrary FORTH word accepted from the input stream. ~ This notation
refers to text from the input stream, not to values on the data stack.
If the input stream is exhausted before encountering <name>, an error
condition exists.

- 14 -



10. REQUIRED WORD SET

The words of the Required Word Set are grouped to show like character-
istics. No implementation requirements should be inferred from this grouping.

Nucleus Words

1 % */ *MOD + +! +loop -~ /
/MDD K 0= 0 1+ 1= 2+ 2= <

= > DR 7?7DUP @ ABS AND begin C!
Ce colon MOVE oonstant create D+
D< DEPTH DNEGATE do does>

DROP DUP else EXECUTE EXIT FILL I
if J LEAVE literal 1loop MAX MIN
MOD MOVE NEGATE NOT OR OVER PICK
R> R@ repeat ROLL ROT semicolon
SWAP then U* U/ U< until wvariable
while XOR

(note that the lower case entries refer to just the run-time code corresponding
to a compiling word.)

Interpreter Words

# # #5 ' ( ~-TRAILING .
79-STANDARD <# >IN ? ABORT BASE BLK
CONTEXT CONVERT COUNT CR CURRENT
DECIMAL EMIT EXPECT FIND FORTH HERE
HOLD KEY PAD QUERY QUIT SIGN SPACE
SPACES TYPE U. WCORD

Compiler Words

+00P , ." : ; ALLOT BEGIN

COMPILE CONSTANT CREATE DEFINITIONS DO
DOES> ELSE FORGET IF IMMEDIATE

LITERAL LOOP REPEAT STATE THEN UNTIL

VARIABIE VOCABULARY WHILE [ [COMPILE] ]

Device Words

BLOCK BUFFER  EMPTY-BUFFERS  LIST
LOAD SAVE-BUFFERS SCR  UPDATE

- 15 -



Pia
we

#5

n addr = 112
Store n at address. "store"
udl - ud2 158

Generate from an unsigned double-number dl, the next ASCII character
which is placed in an output string. Result d2 is the quotient after
division by BASE and is maintained for further processing. Used between

LUALE L2 o i &

<# and #>. "sharp"
a — a&addr n 150

End pictured numeric output conversion. Drop d, leaving the text address,
and character count, suitable for TYPE. "sharp-greater"

ud — 0 0 ‘ 209

Convert all digits of an unsigned 32-bit number ud, adding each to the
ictured numeric output text, until remainder is zero. A single zero
is added to the output string if the number was initially zero. Use
only between < and #>. “sharp-s"

— addr 1,171
Used in the form:

' <name>

If executing, leave the parameter field address of the next word accepted
from the input stream. If compiling, compile this address as a literal;
later execution will place this value on the stack. 2An error condition
exists if oot found alter a searchh of e CONIEAT and FOKTH vOcabularies,
V;Iithir: a colon—definition ' <name> is identical to [ ' <name> ] LITERAL.
tick’

1,122

PP, |

Used in the form:
{ cco)

Accept and ignore comment characters from the input stream, until the
next right parenthesis. As a word, the left parenthesis must be followed
Wy one blank. It may be freely used while executing or compiling.
An error oondition exists if the input stream is exhausted before the
right parenthesis. "paren" The right parenthesis is pronounced "close-
paren”

nl n2 — n3 138

Leave the arithmetic product of nl times n2. “times®

- 16 -



* nl n2 — n3 138
Leave the arithmetic product of nl times n2. "times"
*/ nil n2 n3 —nd ’ 220

Multiply nl by n2 , divide the result by n3 and leave the quotient nd. n4
is rounded toward zero. The product of nl times n2 is maintain-:d as an
intermediate 32-bit value for greater precision than the otherwise egquiv-
alent sequence: nl n2 * n3 / "times-divide"

*/MCD nl n2 n3 — n4 nS 192

Multiply nl By n2, divide the result by n3 and leave the remainder  n4 and
quotient n5. A 32-bit intermediate product is used as for*/. The
remainder has the same sign as nl. "times-divide-mod" '

+ nl n2 — n3 121
Leave the arithmetic sum of nl plus n2. "plus"
+! n addr — 157

Add n to the 1l6-bit value at the address, by the convention given for +.
"plus-store"

!

Add the signed increment n to the loop index using the convention for +,
and compare the total to the limit. Return execution to the corresponding
DO until the new index is equal to or greater than the limit (n>0), or
until the new index is less than the limit (n<0). Upon the exiting from
the loop, discard the loop control parameters, continuing execution ahead.

Index and limit are signed integers in the range {-32,768..32,767}. "plus-
loop”

(Comment: It is a historical precedent that the limit for n<0 is ir-
regular. Further consideration of the characteristic is likely.)

' n — 143
Allot two bytes in the dictionary, storing n there. "comma"

- nl n2 — n3 134
Subtract n2 from nl and leave the difference n3. "minus"

~-TRATLING addr n1 — addr n2 148

Adjust the character count nl of a text string beginning at addr to exclude
trailing blanks, i.e., the characters at addr+n2 to addr+nl-l are blanks.
An error condition exists if nl is negative. "dash~-trailing"

- 17 -



0<

=

0>

1+

2+

n — 193

Display n oonverted according to BASE in a free-field format with one
trailing blank. Display only a negative sign. "dot"
1,133
Interpreted or used in a colon-definition in the form:
" ccoc”
Acrept the following text from the input stream, terminated by " (double-

quote). If ex=scuting, transmit this text to the selacted output device,
If compiling, compile so that later execution will transmit the text to the
selected output device. At least 127 charactesrs are allowed in the text.
If the input stre=am is exhausted before the terminating double-quote, an
error condition exists. "dot-quote" -

nl n2 —— n3 178

Divide nl by n2 and l=ave the quotient n3. n3 is rounded toward zero.
"divide"

nl n2 — n3 nd 198

Divide nl by n2 and leave the remainder n3 and quotient n4. n3 has the
same sign as nl. "divide-mod"

n -— flag 144
True if n is less than zero (negative). "zero-less"

n = I1&g 180
True if n is zero. "zero-equals”

n — flag 118
True if n is greater than zero. "zero-greater"

n —— n+l 107
Increment n by one, according to the operation for +. ‘'"one-plus"

n — n=l 105
Decrement n by one, according to the operation =-. “one-minus"
n — nt2 135

Increment n by two, according to the operation for +. "two-plus"

- 18 -



2- *n — n-2 129
Decrement n by two, according to the operation for -. "two-minus"

79-STANDARD 119
Execute assuring that a FORTH-79 Standard system is available, otherwise an
error condition exists.

: 116
A defining word used in the form:

s <name> . . .

Select the CONTEXT vocabulary to be identical to CURRENT. Create a
dictionary entry for <name> in CURRENT, and set compile mode. Words thus
defined are called 'colon-definitions'. The compilation addresses of
subsequent words from the input stream which are not immediate words are
stored into the dictionary to be executed when <name> is later executed.
IMMEDIATE words are executed as encountered.
If a word is not found after a search of the CONTEXT and FORTH vocabu-
laries, conversion and compilation of a literal number is attempted, with
regard to the current BASE; that failing, an error condition exists.
"colon"

; I1,C,196
Terminate a colon-definition and stop compilation. If compiling from mass
storage and the input stream is exhausted before encountering ; an error
condition exists. ‘"semi-colon"

< nil n2 -— flag 139
True if nl is less than n2.
-32768 32767 < must return true.
-32768 0 must be distinguished. "less~than"

<# 169

Initialize pictured numeric output. The words:
< # #S HOLD SIGN #

can be used to specify the conversion of a double-precision number into an
ASCII character string stored in right-to-left order. "less-sharp"

nl n2 — flag 173

True if nl is equal to n2. "equals"

- 19 -



> nl n2 — flag 102
True if nl is greater than n2. "greater-than"
>IN — addr U,201

Leave the address of a variable which contains the present character ffset
within the input stream {{0..1023}} "to-in"

See: WORD ( ." FIND
>R n - , C,200

Transfer n to the return stack. Every >R must be balanced by a R> in the
same control structure nesting level of a colon-definition. "to-r"

o

addr — . 194
Display the number at address, using the format of ".". "question-mark"
?DUP n — n (n) 184
Duplicate n if it is non-zero. "query-dup"
@ addr —— n 199

Leave on the stack the number contained at addr. "fetch"

ABORT 101
Pl R E3 P P . mmde = a o o A B & e e i mms wde & [ TN e e e 2™
\...u:cu. i ucn.a wa ETLULLL OLALAO » == LI_.LJJM CACGUL LWL HAdCGe A== Ai GG GAL
to the terminal.

ABRS n — n2 108

Leave the absolute value of a number. "“absolute"
ALLOT n -— 4 154

Add n bytes to the parameter field of the most recently defined word.
AND nl n2 —— n3 183

Leave the bitwise logical ‘and' of nl and n2. |
BASE — addr U,115

Leave the address of a variable containing the current input-output
numeric conversion base. {{2.,70}}

-20 -



BEGIN I,C,147

Used in a colon-definition in the forms:

BEGIN . . . flag UNTIL or
BEGIN . . . flag WHILE ... REPEAT

BEGIN marks the start of a word sequence for repetitive execu:ion. A
BEGIN-INTIL loop will be repeated until flag is true. A BEGIN-WHILE-REPEAT
loop will be repeated until flag is false. The words after UNTIL or REPEAT
will be executed when either loop is finished. flag is always dropped
after being tested.

Leave the address of a variable oontaining the number of the mass storage
block being interpreted as the input stream.

If the content is zero, the input stream is taken from the terminal.
"o-1-k" {{unsigned-number}}

BLOCK n -— addr 191

Leave the address of the first byte in block n. If the block is not
already in memory, it is transferred from mass storage into whichever
memory buffer has been least recently accessed. If the block occupying
that buffer has been UPDATEd (i.e. modified), it is rewritten onto mass
storage before block n is read into the buffer. n is an unsigned number.
If correct mass storage read or write it not possible, an error condition
exists. Only data within the latest block referenced by BLOCK is valid by
byte address, due to sharing of the block buffers.

BUFFER n -— addr 130

C!

ce

MOVE

Obtain the next block buffer, assigning it to block n, The block is
not read from mass storage. If the previous oontents of the buffer has
been marked as UPDATEd, it is written to mass storage. If correct writing
to mass storage is not possible, an error oondition exists. The address
left is the first byte within the buffer for data storage. n is an
unsigned number,

n addr -—- 219
Store the least significant 8-bits of n at addr. "c-store"
addr -— byte 156

Leave on the stack the contents of the byte at addr (with higher bits zero,
in a l6-bit field). "c-fetch"

addrl addr2 n — 153
Move n bytes beginning at address addrl to addr2. The contents of addrl
is moved first proceeding toward high memory. If n is zero or negative

nothing is moved. "c-move"

-2] -



COMPILE C,i40
When a word containing COMPILE executes, the 16-bit value following the
compilation address of COMPILE is copied (compiled) into the dictionary.
i.e., COMPILE DUP will copy the compilation address of DUP.
COMPILE [ 0 , ] will copy zero.

CONSTANT n -— 185
A defining word used in the form:

n CONSTANT <name>

to create a dictionary entry for <name>, leaving n in its parameter
field. When <name> is later executed, n will be left on the stack.

CONTEXT - addr U,i54

Leave the address of a variable specifying the vocabulary in which dic-
tionary searches are to made, during interpretation of the input Stream.

CONVERT dl addrl -—— d2 addr? 195
Convert to the equivalent stack number the text beginning at addrl+l with
regard to BASE. The new value is accumulated into double number dl, being
left as d2., addr2 is the address of the first non-convertible character.

COUNT addr —— addr+l n 159

Leave the address addr+l and the character count of text beginning at
addr. e first byte at addr must contain the character count n. Range
P =

PTG 1 Y451
dhe il diS Ve s j e

CR 160

Cause a carriage-return and line-feed to occur at the current output
device. "c-r"

CREATE 235
A defining word used in the form:
CREATE <name>
to create a dictionary entry for <name>, without allocating any parameter
field memory. When <name> is subsequently executed, the address of th
first byte of <name)>'s parameter field is left on the stack. :
CURRENT - addr 0,137
Leave the address of a variable specifying the vocabulary into which new

word definitions are to be entered.

- 22 -



D+ d 42 — a3 241
Leave the arithmetic sum of dl plus d2. "d-plus"

X d 42 -— flag 244
True if dl is less than d2. "d-less-than"

DECIMAL 197
Set the input-output numeric conversion base to ten.

DEFINITICNS 155

Set CURRENT to the CONTEXT vocabulary so that subsequent definitions will
be created in the vocabulary previously selected as CONTEXT.

DEPTH - n 238

Leave the number of the quantity of 16-bit values contained in the data
stack, before n was added.

DNEGATE d — -d 245
Leave the two's‘ complement of a double number.

DO nl n2 -— I,C,142
Use in a colon-definition:

DO ... LOCOP or
ml.. +LmP

Begin a loop which will terminate based on control parameters. The loop
index begins at n2, and terminates based on the limit nl. At LOOP or
+L00P, the index is modified by a positive or negative value. The range of
a DO-LOOP is determined by the terminating word.

DO-LOOP may be nested. Capacity for three levels of nesting is specified
as a minimum for standard systems.

DOES> I,C,168

Define the run-time action of a word created by a high-level defining
word. Used in the form:

: <name> . .. CREATE ., . . DOES> . . . ;

and then <name> <namex>
Marks the termination of the defining part of the defining word <name> and
begins the definition of the run time action for words that will later be
defined by <name>. On execution of <namex> the sequence of words between

DOES> and ; will be executed, with the address of <namex>'s parameter
field on the stack. "does"

- 23 -



DROP n ~—— 233
Drop the top number from the stack.
DUP n — n n 205
Leave a copy of the top stack number.
ELSE ‘ I,C,167
Used in a ocolon-definition in the form:
IF . . . ELSE . . . THEN

ELSE executes after the true part following IF. ELSE forces execution to
skip till just after THEN. It has no effect on the stack. (See IF)

EMIT char — 207
Transmit character to the current output device.
EMPTY-BUFFERS 145

Mark all block buffers as empty, without necessarily affecting their actual
contents. UPDATEd blocks are not written to mass storage.

EXECUTE addr — 163

Execute the dictionary entry whose compilation address is on the stack.

EXIT C,117

Y

twhen compiied wivhin a coion-definition. terminaste execution of that

definition, at that point. May not be used within a DO...LOOP.

EXPECT addr n -~ 189
Transfer characters from the terminal beginning at addr, upward, until a
“return® or the count of n has been received. Take no action for n
less than or equal to zero. One or two nulls are added at the end of
text.

FILL addr n byte — 234

Fill memory beginning at address with a sequence of n copies of byte. If
the quantity n is less than or equal to zero, take no action.

FIND — addr '203

Leave the compilation address of the next word name, which is accepted from
the input stream, If that word camnot be found in the dictionary after a

S el b

search of CONTEXT and FORTH leave zero.

...24..



FORGET 186

Execute in the form:
FORGET <name>

Delete from the dictionary <name> (which is in the CURRENT vocabulary)
and all words added to the dictionary after <name>, regardless of their
vocabulary. Failure to find <name> in CURRENT or FORTH is an error
condition.

FORTH 1,187 .

HOLD

The name of the primary vocabulary. Execution makes FORTH the CONTEXT
vocabulary.

New definitions become a part of FORTH until a differing CURRENT vocabulary
is established.

User vocabularies conclude by 'chaining' to FORTH, so it should be con-
sidered that FORTH is 'contained' within each user's vocabulary.

—— addr 188
Return the address of the next available dictionary location.
char — 175

Insert char into a pictured numeric output string. May only be used
between < and #>. '

I - n C,136
Copy the loop index onto the data stack. May be only used in the form:
m * * L] I L] . . LmP Or m L] L ] L ] I . - - +I.mP
Used in a colon-definition in the forms:
flag IF ... ELSE ... THEN or
flag IF . . . THEN
If flag is true, the words following IF are executed and the words follow-
ing ELSE are skipped. The ELSE part is optional.
If flag is false, words between IF and ELSE, or between IF and THEN (when
no ELSE is used), are skipped. IF-ELSE~THEN conditionals may be nested.
IMMEDIATE 103

Mark the most recently made dictionary entry as a word which will be
executed when encountered during compilation rather than compiled.

- 25 -



Return the index of the next outer lcop. May be used only within a nested
DO-LOOP in the form:

wnﬁomieaJeeemaaamp
KEY - char 100

Leave the ASCII value of the next available character from the current
input device.

LEAVE C,213

Force termination of a DO-LOOP at the next LOOP or +LOOP by setting
the loop limit equal to the current value of the index. The index itself
remains unchanged and execution proceeds normally unt11 the loop ter-
minating word is encountered.

LIST n — 105
List the ASCII symbollc contents of screen non the current cutput device,
setting SCR tc centain n. n is unsigned.
LITERAL n — I,215

If compiling, then compile the stack value n as a l6-bit literal, which
when later executed, will leaven on the stack.

LOAD n — 202
Begin imterpretation of screen n bv making it the input stream: preserve
tne locators Orf the presen\: lﬂput streain u:rom >IN and DL:E\) . .LI .uxcer_-
pretation is not terminated explicitly it will be terminated when the input
stream is exhausted. Control then returns to the input stream containing
LOAD, determined by the input stream locators >IN and BILK.

LOCP I,C,124
Increment the DO-LOOP index by one, terminating the loop if the new index
is equal to or greater than the limit. The limit and index are signed
numbers in the range {-32,768..32,767}.

MAX nl n2 — n3 218
Leave the greater of two numbers. "max"

MIN n n2 —— n3 . 127

Leave the lesser of two numbers. ™"min”

- 26 =



MCD ni n2 — n3 104

Divide nl by n2, leaving the remainder n3, with the same sign as nl.
llmdll

MOVE- addrl addr2 n — 113
Move the specified quantity n of 16-bit memory cells beginning at addrl

into memory at addr2., The contents of addrl is moved first., If n is
negative or zero, nothing is moved.

NEGATE n -— -n 177
Leave the two's complement of a number, i.e., the difference of 0 less
n.

NOT flagl -— flag2 165

Reverse the boolean value of flagl. This is identical to 0=,

R nl n2 -— n3 223
Leave the bitwise inclusive-or of two numbers.

OVER nl n2 — nl n2 nl 170
Leave a copy of the second number on the stack.

PAD ~— addr 226
The address of a scratch area used to hold character strings for inter-
mediate processing. The minimum capacity of PAD is 64 characters (addr
through addr+63).

PICK nl — n2 240

Return the contents of the nl-th stack value, not counting nl itself. An
error condition results for n less than one.

2 PICK is equivalent to OVER. {1 .. n!

QUERY 235
Accept input of up to 80 characters (or until a ‘return') from the opera-
tor's terminal, into the terminal input buffer. WORD may be used to accept
text from this buffer as the input stream, by setting >IN and BLK to
zZero.

QUIT 211

Clear the return stack, setting execution mode, and return control to the
terminal. Mo message is given.

-27 -



rR>
Transfer n from the return stack to the data stack. "r-from"
R@ — n C,228 -
Copy the number on the top of the return stack to the data stack.
"r-fetch"
REPEAT I,C,120
Uged in 2 colon—dafinition in the form:
BEGIN ... WHILE ... REPEAT
At run-time, REPEAT returns to just after the corresponding BEGIN.
ROLL n = 236
Extract then-th stack value to the top of the stack, not counting n
itself, moving the remaining values into the vacated position. An error
condition results for n 1less than one. {1 .. n}
3 ROLL = ROT
1l ROLL = null operation
ROT nl n2 n3 — n2 n3 nl 212
Rotate the top three values, bringing the deepest to the top. "rote"
SAVE~BUFFERS 221
Write all blocks to mass-storage that have been flagged as UPDATEd. An
error condition results if mass-storage writing is not completed.
SCR — addr U,217
Leave the address of a wvariable oontiziining the number of the screen most
recently listed. "s-c-r" unsigned-number
SIGN n =—— C,140
Insert the ASCII "-" (minus sign) into the pictured numeric output string,
if n is negative.
SPACE 232

Transmit an ASCII blank to the current output device.

- 28 -



SPACES n — 231

Transmit n spaces to the current output device. Take no action for n
of zero or less. .

STATE - addr U,164
Leave the address of the variable containing the compilation state. A
non-zer® content indicates compilation is occurring, but the value itself
may be installation dependent.

SWAP nl n 2 — n2 nl 230
Exchange the top two stack values.

THEN 1,C,161

Used in a oolon-~definition, in the form:

IF ... ESE ... THEN or
IF .. . THEN

THEN is the point where execution resumes after ELSE or IF (when no
ELSE is present).

TYPE addr n -— 222

Transmit n characters beginriing at address to the current output device.
No action takes place for n less than or equal to zero.

U* unl un2 -~ ud3 242

Perform an unsigned multiplication of unl by un2, leaving the double number
product ud3. All values are unsigned. "u-times"

Display un converted according to BASE as an unsigned number, in a
free-field format, with one trailing blank. "u-dot"

U/MOD udl un2 -— un3 und 243
Perform the unsigned division of double number udl by un2, leaving the
remainder un3, and quotient und4. All values are unsigned.
"u-divide-mod"

(114 unl un2 — flag 150

Leave the flag representing the magnitude comparison of unl < un2 where unl
and un2 are treated as 16-bit unsigned integers. "u-less-than"

- 29 -



~ L P,

Within a colon—definiti O, mark the end of a BEGIN=-UNTIL +C0Py which will
terminate based on a flag. If flag is true, the loop is terminated.
If flag is false, execution returns to the first word after BEGIN.

BEGIN-UNTIL structures may be nested.

UPDATE 229

Mark the most recently referenced block as modified. The block will
subsequently be automaticallv transferred to mass storage should its memory
buffer be needed for storage of a different block, or upon execution of

SAVE-BUFFERS.
VARIABLE 227
A defining word executed in the form:

VARIABLE <name>

to create a dictionary entry for <name> and allot two bytes for storage inm
the parameter field. The application must initialize the stored value.
When <name> is later executed, it will place the storage address on the

stack.
VOCABULARY 208
A defining word executed in the form:

VOCABULARY <name>

r <name’ .

to create (in the CURRENT vocabularv) a dictionaryv entriy
which specifies a new ordered list of word definitions. Subsequent
execution of <name> will make it the CONTEXT vocabulary. When <name>
becomes the CURRENT vocabulary (see DEFINITIONS), new definitions will be

created in that list.

th

further specification, new vocabularies 'chain' to FORTH,
Tha s wh-.-u d1 tionary search thr ough a vocabulary is exhaust.ed FORTH

WHILE flag — I,C,149
Used in a colon~definition in the form:
BEGIN ... flag WHILE ... REPEAT
Select conditional execution based on the flag. On a true flag, continue

execution through to REPEAT, which then returns back to just after BEGIN.
On a false flag, skip execution to just after REPEAT, exiting the struc-

ture.

- 30 -



WORD

char —— addr 181

Receive characters from the input stream until the non-zero delimiting
character is encountered or the input stream is exhausted, ignoring lead-
ing delimiters. The characters are stored as a packed string with the
character count in the first character position. The actual delimiter
encountered (char or null) is 'stored at the end of the text but not
included in the count. If the input stream was exhausted as WORD is
called, then a zero length will result. The address of the beginning of
this packed string is left on the stack.

XOR nl n2 — n3 174
Leave the bitwise exclusive-or of two numbers. "x-—or"

( 1,125
End the compilation mode. The text from the input stream is subsequently
executed. See ] "left-bracket"

[COMPILE] 1,C,179

Used in a colon-definition in the form:
[COMPILE] <name>

Force compilation of the following word. This allows compilation of an
IMMEDIATE word when it would otherwise be executed. "bracket—-compile"

126

Set the compilation mode. The text from the input stream is subsequently
compiled. See [ "right-bracket"

-3 -



11. EXTENSION WCORD SETS

11.1 DOUBLE NUMBER WCORD SET
2! . d addr -

Store d in 4 consecutive bytes beginning at addr, as for a double nurber.
*two—-store®

2@ addr — d

Leave on the stack the contents of the four consecutive bytes beginning at
addr, as for a double number. "two-fetch"

2CONSTANT d ——
A defining word used in the form:
d 2CONSTANT <name>

to create a dictionary entry for <name>, leaving d in its parameter

2o e 3

fieid. when <name> is later executed, & wiil be ieft onm the stack.
" two~-constant”

2DROP d —
Drop the top double number on the stack. “"two-drop"
2DUP d — d d

Muplicate the ton douhle mmbher on the stack. "two-dip"

20VER d &2 — d a2 da
Leave a copy of the second doubie number on the stack. "two—over”
2R0T dl &2 &8 — d&2 &8 d
Rotate the third double number to the top of the stack. "two-rote"
2SWAP d @2 —ada a
Exchange the top two double numbers on the stack. "two-swap”
ZVARIABLE
A defining word used in the form:
ZVARTABLE <name>
to create a dictionary entry of <name> and assign 4 bytes for storage in
the parameter field. When <name> is later executed, it will leave the

address of the first byte of its parameter field on the stack. "two-
variable”

-32 -



D+ d &2 — 43 241
Leave the arithmetic sum of dl1 and d2. "d-plus"
D- d 42 — da |
Subtract d2 from dl and leave the difference d43. "d-minus”
D. d -— 129
Display d oonverted according to BASE in a free-field format, with one
trailing blank. Display the sign only if negative. "d-dot"
D.R d n — ‘
Display 4 oonverted according to BASE, right aligned in an n character
field. Display the signonly if negative. "d-dot-r"
DO= d — flag
Leave true if dis zero. "d-zero-equals"
X d 42 — flag 244
True if dl is less than 42, "d-less"
D= di 42 — flag
True if dl equals d2. "d-equal"
DABS da — a
Leave as a positive double number d2, the absolute value of a double
number, dl. {0..2,147,483,647} "d-abs"
DMAX d 42 — 4
Leave the larger of two double numbers. "d—max"
DMIN d 42 -— 4
Leave the smaller of two double numbers. "d-min"
DNEGATE d — -d | 245
Leave the double number two's complement of a double number, i.e., the
difference 0 less 4. "d-negate"
DU< udl ud2 -— flag

True of udl is less than ud2. Both numbers are unsigned. "d-u-less"

- 33 -



11.2 ASSEMBLER WORD SET
;CODE ‘ C,I,206
Used in the form:
: <name> . . . ;CODE

Stop compilation and terminate a defining word <name>. ASSEMBLER beccmes
the CONTEXT vocabulary. When <name> is executed in the form:

<name> <{namex>
to define the new <namex>, the execution address of <namex> will c:bntain
the address of the code sequence following the ;CODE in <name>. Execution
of any <namex> will cause this machine code sequence to be executed.
"semi-colon-code”
ASSEMBLER I,166
Select assembler as the CMWTEAT vocabulary.
CODE 111
A defining word used in the form:
CODE <name> . . . END-CODE
to create a dicticnary entry for <name> to be defined by a following
sequence of assembly language words. ASSEMBLER becomes the comntext
vocabulary.
Terminate a code definition, resetting the CONTEXT vocabulary to the

CURRENT vocabulary. If nmo errors have occurred, the code definition is
made available for use.

12. EXPERIMENTAL PROPOSALS

No Experimental Proposals were submitted for publication.



REFERENCE WORD SET

This word set is furnished as a reference document. It is a set of
formerly standardized words and candidate words for standardization.






REFERENCE WORD SET
FORTH~-79

The Reference Word Set contains both Standard Word Definitions (with
Serial number identifiers in the range 100 through 999), and uncontrolled word
definitions.

Uncontrolled definitions are included for public reference of words that
have present usage and/or are candidates for future standardization.

No restrictions are placed on the definition or usage of uncontrolled
words. However, use of these names for procedures differing from the given
definitions is discouraged.

IBITS - nl addr n2 -

Store the value of nl masked by n2 into the equivalent masked part

of the contents of addr, without affecting bits outside the mask. "store-

bits" :
okl nl n2 -— n3

Leave the value of nl to the power n2. "power"

+BLOCK nl -— n2

Leave the sum of nl plus the number of the block being interpreted. nl
and n2 are unsigned. "plus-block"

-! - ( addr ) flag
Used in the form:
-!' <name>
Leave the parameter field of <name> beneath zero (false) if the name can
be found in the CONTEXT vocabulary; leave only true if not found. "dash-
tick”. )
_— I,131

Continue interpretation on the next sequential block. May be used within a
colon-definition that crosses a block boundary. "next-block"

-MATCH addrl nl addr2 n2
- addr3 £

Attempt to find the n2-character string beginning at addr2 somewhere in
the nl-character string beginning at addrl. Return the last +1 character
address addr3 of the match point and a flag which is zero if a match
exists. "dash-match"



~TEXT addrl nl addr2 -—-— n2

Compare two strings over the length nl beginning at addrl and addr2.
Return zero if the strings are equal. If unequal, return n2, the differ-
ence between the last characters compared:

addrl(i) - addr2(i)

t

"dash-text"

.R nl n2 -—
Print nl right aligned in a field of n2 characters, according to BASE. If
n2 is less than 1, no leading blanks are supplied. "dot-r"

/1LO0OP n —
A DO-LOOP terminating word. The loop index is incremented by the unsigned
magnitude of n. Until the resultant index exceeds the limit, execution
returns to just after the corresponding DO: otherwise, the index and limit
are discarded. Magnitude logic is used. “up-loop"

1s! addr =
Add one to the l6-bit contents at addr. "one-plus-store"

1-=! addr —
Subtract 1 from the 16-bit contents at addr. “one-minus-store"

2% nl -— n2
foave Z5nii.  Trwoerimes?

2/ nl =-— n2

~e
ve

~e
tn

Leave (nl)/2. "two-divide"

Used to specify a new defining word:

:<na1ne> « s o

» »
° ’

14
<name> <namex>
When <name> is executed, it creates an entry for the new word <namex>.
Later execution of <namex> will execute the sequence of words between ;:

ard ; ., with the address of the first (if any) parameters associated with
<namex> on the stack. "semi-colon-colon”

Stop interpretation of a block. For execution only. ‘"semi-s"

-2 =



< nl n2 —— flag
Leave true if nl is not equal to n2. "not-equal”
<BUILDS c

Used in conjunction with DOES> in defining words, in the form:

: <name> . . . <BUIIDS . . .
mES> e e o ;
and then <name> <nmamex>

When <name> executes, <BUILDS creates a dictionary entry for the new
<namex>. The sequence of words between <BUILDS and DOES> established a
parameter field for <namex>. When <namex> is later executed, the sequence
of words following DOES> will be executed, with the parameter field
address of <namex> on the data stack. "builds"

<CMOVE addrl addr2 n —

Copy n bytes beginning at addrl to addr2. The move proceeds within the
bytes from high memory toward low memory. "reverse~c-move"

>< nl — n2
Swap the high and low bytes within nl. "byte-swap"
>MOVEK addrl addr2 n —

Move n bytes beginning at addrl to the memory beginning at addr2. During
this move, the order of each byte pair is reversed. "byte-swap~-move"

@BITS addr nl — n2
Return the 1l6~bits at addr masked by nl. "fetch-bits"
ABORT" flag — I,C
Used in a ’colon—definition in the form:
ABORT" stack empty"

If the flag is true, print the following text, till". Thenexecute
ABORT. "abort-quote"

AGAIN 1,C,114
Effect an unconditional jump back to the start of a BEGIN-AGIN loop.

ASCII —— char (executing)
— (compiling) I,C

Ieave the ASCII character value of the next non-blank character in the
input stream. If compiling, compile it as a literal, which will be later

left when executed.



ASHIFT ni.. nzZ -——nJ

.

Shift the value nl arithemetically n2 bits left if n2 is positive, shifting
it

movre  inta Fhe losok.aioni Fios me o e TE w2 4 v oo o b S
L L B sane da e A A.S

| B

b ic negacive, nl is
shifted right. Sign extension is to be consistent with the processor's
arithmetic shift.

B

G T e R S R 7 = = b R e L T = )

B/BUF — 1024
A oonstant leaving 1024, the number of bytes per block buffer. ‘“bytes-
per-buffer”
BELL
Activate a terminal bell or noise-maker as appropriate to the device in use.
BL —n 176
Leave the ASCII character value for blank (decimal 32). "b-1"
BLANKS addr n — 152

Fill an area of memory over n bytes withthe value for ASCIT blank, start-
ing at addr. If n is less than or equal to zero, take no action,

C' N ==

Store the low-order 8 bits of n at the next byte in the dictionary,
advancing the dictionary pointer. "c—comma®

CHAIN

Tlmemd cen blom Emsem.
(S AR & - S U A T

CHAIN <name>

Connect the CURRENT vocabulary to all definitions that might be entered
into the vocabulary <name> in the future. The CURRENT vocabulary may not
be FORTH or ASSEMBLER. Any given vocabulary may only be chained once,
but may be the object of any number of chainings., [For example, every
user-defined vocabulary may include the sequence:

CHAIN FORTH
coM nl = n2
Leave the one's complement of nl.
CONTINUED n —

Continue interpretation at block n.



CUR - addr

A variable pointing to the physical record number before which the tape is
currently positioned. REWIND sets CUR=l.

DBLOCK d -— addr
Identical to BIOCK but with a 32-bit block unsigned number. "D-tlock”

DPL — addr
A variable containing the number of places after the fractional point for
output conversion. If DPL contains zero, the last character output will be
a decimal point. No point is Gutput if DPL contains a negative value. DPL
may be set explicitly, or by certain output words, but is unaffected by
number input. "d-p-1"

DUMP adir n — 123

List the contents of n addresses starting at addr. Each line of values may
be preceeded by the address of the first value.

EDITOR 1,172

The name of the editor vocabulary. When this name is executed, EDITOR is
established as the CONTEXT vocabulary.

END I,C, 224
A synonym for UNTIL.
ERASE addr n -— 182

Fill an area of memory over n bytes with zeros, starting at addr. If n
is zero or less, take no action.

FLD ~— addr

A variable pomtmg to the field length reserved for a number during
output conversion. "f-l-d"

FLUSH
A synonym for SAVE-BUFFERS
H. n —

Qutput n as a hexadecimal integer with one trailing blank. The current
base is unchanged. "h-dot"

HEX 162

Set the numeric input-output conversion base to sixteen.

-5 -



I|

— n C

Used within a cclon—definition execnted nn'lv from within a MO-LOOP o

IFEND

Terminate a condi t‘Onal interpretation sequence begun by IFTRUE.

IFTRUE flag —-

Begin an
IFTRUE ... OTHERWISE ... IFEND
conditional sequence. These conditional words operate like
IF ... ELSE ... THEN
except that they cannot be nested, and are to be used only during inter-
pretutlon In conjunction with the words [ and ] they may be used

within a colon-definition to control compilation, although they are not to
be compiled.

INDEX nl n2 ———
Print the first line of each screen over the range {nl..n2}. This displays
the first line of each screen of source text, which conventionally contains
a title.

INTERPRET

Begin interpretation at the character indexed by the contents of >IN
relative to the block number contained in BLX, continuing until the input
stream is exhausted. If BLK contains zero, interpret characters from the
terminal input buffer.

K —- n c
Within a nested DO-~LOOP, return the index of the second ocuter loop.

LAST - addr
A variable ceontaining the address of the beginning of the last dicticonary
entry made, which may not yet be a complete or valid entry.

LINE n — addr
Leave the =ddress of the beginning of linen for the screen whose number is
contained in SCR. The range of n 1s {0..151.

LINELOAD nl n2 -—

Begin interpretation at line nl of screen n2.

-5 -



LOADS n =
A defining word used in the form:
n IOADS <name>
When <naxﬁe> is subsequently executed, block n will be loaded.
MAPQ — addr
A variable pointing to the first location in the tape map.
MASK nil — n2

Leave a mask of nl most significant bits if nl is positive, or n least
significant bits if nl is negative.

MS n -
Delay for approximately n milliseconds.

NAND niL n2 -— n3
The one's complement of the logical and of nl and n2,

NCR nlL n2 — n3
The one's complement of the logical or of nl and n2,

NUMBER addr - n
Convert the count and character string at addr, to a signed 32-bit integer,
using the current base. If numeric conversion is not possible, an error
condition exists. The string may contain a preceding negative sign.

0. n =

Print n in octal format with one trailing blank, The value in BASE is
unaffected. "o-dot"

OCTAL
Set the number conversion base to 8.
OFFSET - addr 128
A variable that contains the offset added to the block number on the stack
by BIOCK to determine the actual physical block number.
The user must add any desired offset when utilizing BUFFER.
OTHEIWISE

An interpreter-level conditional word. See IFTRUE.

-7 -



PAGE

Clear the terminal screen or perform an action suitable to the output
device currently active.

READ-MADP

Read to the next file mirk on tape constructing a correspondence tabie in
memory {the map) relating physical block position to logical block number.

[

The tape should normally be rewound to its load point before executing

READ-MAP.
REMEMBER

A defining word used in the form:
REMEMBER <name>
Defines a word which, when executed, will cause <name> and all subsequently

defined words to be deleted from the dictionary. <name> may be compiled
into and executed from a colon definition. The sequence

provides a standardized preface to any group of transient word definitions.

REWIND
Rewind the tape to its load point, setting CUR=L.
ROTATE nl n2 — n3

LSS T .-V D e S Aad e ans amlnde ) s b AE W A

Rlabe Uie Value in 1ol ne witd if 02 is P Ddcde Ve bl e 3B6s  hddn e dma  sbde  awe
negative. Bits shifted out of one end of the cell are shifted back in at
the opposite end.

S0 - addr

r
L
)
+
]
l.

-
1

Returns the address of the bottom
SET n addr -
A defining word used in the form:
n addr SET <name>

Defines a word <name> which, when executed, will cause the value n to be
stored at address.

SHIFT nl n2 -— n3

[P R, | P -1 - A dems A
Logical shift nl left n2 bits if

)
ik 4
Zeros are shifted into vacated bit positions.

Q



Spa — addr 214

Return the address of the top of the stack, just before SP@ was executed.
"s-p-fetch”

TEXT c -

Accept characters from the input sStream, as for WORD, into PAD, Llank-
filling the remainder of PAD to 64 characters.

THRO nl n2 -—
Load consecutively the blofks from nl through n2.

U.R unl n2 -—- 216
OQutput unl as an unsigned number right justified in a field n2 characters
wide. If n2 is smaller than the characters required for nl, no leading
spaces are given. "u-dot-r"

USER n -—
A defining word used in the form:

n USER <name>

which creates a user variable <name>. n is the cell offset within the user
area where the value for <name> is stored. Execution of <name> leaves its
absolute user area storage address.

VLIST

List the word names of the CONTEXT vocabulary starting with the most recent
definition.

WHERE
Output information about the status of FORTH, (e.g., after an error
abort). Indicate at least the last word compiled and the last block
accessed.
A DO-LOOP terminating word. The loop index is decremented by n and the

loop terminated when the resultant index becomes equal to or less than the
limit. Magnitude logic is used, and n must be positive. "down-loop"






FORTH-79 HANDY REFERENCE

. Stack inputs and outputs are shown; top of stack on right. See operand key at bottom.

STACK MANIPULATION

ouP {n-nn}
DROP (n—)

SWAP (A n2 - n2n)
OVER {(nt n2 = nl n2nt)
ROT {(ntn2n3 - M2n3n1)
PICK (n1 ~n2)
ROLL (n-—)

70UP (n —=n(n)

>R (n—

> - —n)

R@ { =n)

DEPTH { ~=n)
COMPARISON

< (n1 n2 — flag)
= {ni N2 — flag)
> (n1 n2 — flag)
o< (n — flag)

o= {n — flag)

o> {n — flag)

D< (d1 a2 - flag)
U< (um un2 - flag)
NOT ( flag — =flag)

ARITHMETIC AND LOGICAL

+ (1l N2 - sum)
O+ (d1 &2 - sum)

- {n1 n2 - diff)

1+ (n—n+1)

- (n - n-)

24 {n = n+2)

2- (n — n=2)

. (M n2 —prod)

/ (nt n2 - quot)
MOD (n n2 = rem)
/MOD ({n1 n2 - rem quot )
*/MOD (:n1 n2 n3 - rem quot)
*f {n1 n2 n3 — quot )
u {unt un2 — ud)
U/MOD {ud un ~ urem uquot )
MAX {nt N2 = max)
MIN (N1 n2 — min)
ABS {n—Inl)

NEGATE (n —=—n)
DNEGATE (d = —d)

AND (n1 n2 — and)
OR (n1 n2 ~ or)

XOR {n1 n2 = xor)
MEMORY

@ {(addr—n)

! (naddr - )

ce@ ( addr — byta )

(o] (naddr—)

? (addr~)

+! {(n addr -~ )
MOVE ( addrt addr2 n — }
CMOVE { addr1 addr2 n — }
FiLL. ( addr n byta ~ )

CONTROL STRUCTURES

00 ... LooP do: (end+1 start — )

] { — indax)

J ( —indax)

LEAVE (=)

DO ... +LOOP do: ( fimit start — )
+loop: (n —~ )

IF...(rue)... THEN if (flag — )

IF...(true)... ELSE if(flag — )

... (faise). .. THEN
.BEGIN ... UNTIL
BEGIN ... WHILE
... REPEAT

EXIT
EXECUTE

until: { flag - )
while: ( flag ~ )

{
(addr—~)

Qperand kay:

n, n1, ... 18-bit signed numbers u

d di,... 32-bit signed numbers

Duplicate top of stack.

Discard top of stack.

Exchange top two stack items.

Make copy of second item on top.

Rotate third item to top. “rote”

Copy ni1-th item to top. (Thus 1 PICK = DUP , 2 PICK = QVER)
Rotate n-th itam to top. (Thus 2 ROLL= SWAP , 3 ROLL= ROT)
Duplicate only if non-zero. “query-dup”

Move top item to “retumn stack™ for.temporary storage (use caution). “to-r"
Retrieve item from retum stack. “r-from”

Copy top of retum stack onto stack. “r-fetch”

Count number of items on stack.

Trua if n1 less than n2. “lass-than”

True if top two numbers are equal. “equals”

True if n1 greater than n2. “greater-than”

Trua if top number negative. “zero-less”

True if top number zero, (Equivaient to NOT ) “zero-equais”
True if top number greater than zero. “zero-greater”

True if d1 less than d2. “d-less-than”

Compare top two items as unsigned integers. “u-lass-than”
Revarse truth value. (Equivalent to 0= )

Add. “plus”

Add double-pracision numbers. “d-plus”

Subtract (n1-n2). “minus”

Add 1 to top number. “one-plus™

Subtract 1 from top number. “one-minus”™

Add 2 to top number. “two-pius”

Subtract 2 from top number. “two-minus”

Muitiply. “timas”

Divida (n1/n2). (Quotient rounded toward zero) “divida”

Modulo (ie., remaindar from division n1/n2). Remainder hag sama sign as ni. *mod”
Divide, giving remainder and guotiant. “divide-mod™ :

Muitiply, then divide (n1*n2/n3), with double-precision intermediate. “times-divide-mod”
Like */MOD, but give quotiant only, rounded toward zero. “times-divida”

Muitiply unsigned numbers, leaving unsigned doubie-precision resuilt. “u-times”
Divide doubie number by single, giving remainder and quotient, all unsigned. “u-divide-mod™
Leave graatar of two numbars. “max”

Leave lesser of two numbers. “min”

Absolute valus. “absoluta”

Leave two's complement.

Leave two's compiement of double-precision number. “d-negata”

Bitwise logical AND.

Bitwisa iogical OR.

Bitwise fogical exclusive-OR. “x-or”

Replace addrass by number at address. “fetch”

Stora n at addr. “store”

Fetch least significant byte only. “c-fetch”

Stora least signficant byta only. “c-stora”

Dispiay number at address. “quaestion-mark”

Add n to numbar at addr. “plus-store”

Move n numbers starting at addr1 to mamory starting at addr2, if n>0.

Move n bytes starting at addr1 to memory starting at addr2, if n>0. “c-move”
Fill n bytes in memory with byta baginning at addr, if n>0.

Set up loop, given index range.

Placa current loop indax -on data stack.

Ratum index of next outer loop in same definition.

Terminate loop at next LOOP or +LOOP , by setting limit equal to index.

Like DO ... LOOP , but adds stack value (instead of always 1) t0 index. Loop terminatas when
index ig graater than or aqual to limit (n>0), or when index is less than limit (n<Q). “plus-icop”
If top of stack true, executa.

Sama, but if false, executas ELSE clause.

Loop back to BEGIN until true at UNTIL .

Loop while true at WHILE; REPEAT loops unconditionally to BEGIN. When falsa, continue after
REPEAT.

Terminate execution of colon definition. (May not be used within 0O ... LOOP )

Execute dictionary entry at compilation address on stack (8.g., address returned by FIND).

char 7-bit ascii character value
flag boolean flag

addresses
8-bit byte

addr, addry, . ..

unsigned byte



TERMINAL INPUT-OUTPUT

CR (=) Do a carriage retum and line feed. “c-r"

EMIT (char —~ ) Type ascii vaiue from stack.

SPACE (=) Type one spacs.

SPACES (n=) Type 0 spaces, it n>0.

TYPE {addrn — ) Type string of n characters beginning at addr, § n>0.

COUNT ( addr -~ addr+1 n) Change address of string (prefixed Dy length byte at addr) to TYPE form.

~TRAILING ( addr n1 — addrn2) Raeducs character count of string at addr to omit trailing blanka. “dash-trailing”

KEY ( = char) Read key and leave ascil value on stack.

EXPECT {addrn - ) Read n characters (or untii carriage return) from terminal to address, with nuii(s) at end.
QUERY (=) Read line of up to 80 characters from terminal to input butfer.

WORD { char — addr ) Read naxtwordfrom input stream using char as delimiter, or until null. Leaveaddrof length byte.
NUMERIC CONVERSION

BASE { - addr) System variable containing radix for numeric conversion.

DECIMAL {—) Set detimal number base.

. (n=) Print number with one trailing blank and sign if negative. “dot”

uU. {un - ) Print top of stack as unsigned number with one trailing blank. “u-dot”

CONVERT { d1 addri — d2 addr2 ) Convertstringataddri+1 todoublenumber.Addtod1 leavingsumd2andaddr2offirstnon-digit.
<# () Start numaeric output string conversion. “less-shamp”

* {udt - ud2) Convert next digit of unsigned double number and add character to output string. “sharp”
#S {(ud —-00) Convert all significant digits of unsigned double number to output string. “sharp-s”

HOLD (char - ) Add ascii char to output string.

SIGN {(n~=) Add minus sign to output string it n<0.

*> {(d — addrn) Drop d and terminate numeric output string, leaving addr and count for TYPE, “shamp-greater”

MASS STORAGE INPUT/OUTPUT

LIST (n=)
LOAD (n—=)
SCR { - addr)
BLOCK (n = addr)
UPDATE (-}
BUFFER (n - addr )

DEFINING WORDS

o (Z)
VARIABLE xxx (=)

xxx ( - addr )
CONSTANT xxx (n—)

e (=~ n)

VOCABULARY xxx ( = )
CREATE ... DOES> does: ( = addr)

VOCABULARIES
CONTEXT { ~addr)
CURRENT { —addr)
FORTH (=)
DEFINITIONS (=)

! XXX { - addr)
FIND ( — addr)
FORGET xxx { =)
COMPILER

. (n-)
ALLOT (n—=)

= (=)
IMMEDIATE (=)
UTERAL (n =)
STATE { — addr)
[ (=)

| (=)
COMPILE (=)
[COMPILE] (~)
MISCELLANEOUS

( (=)
HERE { - addr)
PAD { - addr)
>IN ( - addr)
BLK { -~ addr)
ABORT (—)
Qur (-
79-STANDARD (=)

List screen n and set SCR to contain n.

Interpref screen n, then resume interpretation of the current input stream.

System variable containing screen number most recently listed.

L.eave memory address of block, reading from mass storage if necessary.

Mark last block referenced as modified.

Leave addrof a free buffer, assignedtoblockn; write previouscontents tomass storage fUPDATEd.
Write all UPDATEd blocks to mass storage.

Mark all block buffers as empty, without writing UPDATEd blocks to mass storage.

Begin colon definition of xxx . “colon”
End colon definition. “semi-colon”
Create a two-byte variable named xxx ; retums address when executed.

Create a constant named xxx with value n; retums value when executed.

Create a vocabulary named xxx ; becomes CONTEXT vocabulary when executed.
Used fo create a new defining word, with axecution-time routine in high-level FORTH. “does”

System variable pointing fo vocabulary where word names are searched for.

System variable pointing to vocabulary where new definitions are put.

Mainvocabulary confainedinallothervocabularies.Execution of FORTHsetscontaxtvocabulary.
Sets CURRENT vocabulary fo CONTEXT.

Find address of xxx in dictionary; it used in definition, complle address. “tick”

Leave compilation address ofnextword in input stream. If notfound in CONTEXT or FORTH, leave 0.
Forget all definitions back o and including xxx , which must be in CURRENT or FORTH.

Compile a8 number info the dictionary. “comma®

Add two bytes fo the parameter field of the most recently-defined word.

Print message (terminated by “). If used in definition, print when executed.. “dot-quote™
Mark last-defined word o be executed when encountfered in a definifion, rather than compiled.
If compiling, save n in dictionary, to be returned to stack when definition is executed.
Sysfem variable whose value is non-zero when compilation is occurring.

Sfop compiling input text and begin executing. “left-bracket”

Stop executing input fext and begin compiling. “right-bracket”

Compile the address of the next non-MMEDIATE word into the dictionary.

Compile the following word, even if MMEDIATE. “bracket-compile”

Begin comment, terminated by ) on same line or screen; space after (. “paren”, “close-paren”
Leave address of next available dictionary locafion. .

Leave address of a scratch area of af least 64 bytes.

System variable containing character offset into input buffer; used, e.g., by WORD. “to-in"
System variable containing block number currently being interpreted, or0 if from terminal, “brhk™
Clear data and refurn sfacks, set exscution mode, return control to terminal.

Like ABORT , except does not clear data stack or prinf any message.

Verify that system-conforms to FORTH-79 Standard.

FORTH INTEREST GROUP, P.0O. Box 1105, San Carios, CA 94070, USA



