""" **Description**
A polynomial rate filter produces a reference signal which approximates
an incident signal evaluated at an effective frequency equal to the
product of an incident sample frequency and a specified rate.
A polynomial rate filter synthesizes a sequence of polynomials which
form local approximations to an incident signal, and are evaluated at
indices corresponding to a specified rate to produce a reference
signal, effectively modifying the sampling rate by a specified rate
ratio.
A specified rate must be greater than zero, supporting decimation and
interpolation.
Latency compensation is not necessary, as no group delay is introduced.
Edge effects are internally mitigated by linear extension of an
incident signal.
A polynomial rate filter may be the most appropriate option in
applications which require fractional decimation and interpolation and
benefit from minimization of edge effects due to discontinuous
operation or dynamic rate.
**Example**
::
from diamondback import ComplexExponentialFilter, PolynomialRateFilter
import math
import numpy
# Create an instance with rate and order.
obj = PolynomialRateFilter( rate = math.pi, order = 3 )
# Filter an incident signal.
x = ComplexExponentialFilter( 0.0 ).filter( numpy.ones( 128 ) * 0.1 ).real
y = obj.filter( x )
**License**
`BSD-3C. <https://github.com/larryturner/diamondback/blob/master/license>`_
© 2018 - 2021 Larry Turner, Schneider Electric Industries SAS. All rights reserved.
**Author**
Larry Turner, Schneider Electric, Analytics & AI, 2018-03-19.
**Definition**
"""
from diamondback.interfaces.IRate import IRate
from typing import Any, List, Union
import numpy
[docs]class PolynomialRateFilter( IRate ) :
""" Polynomial rate filter.
"""
@property
def order( self ) :
""" order : int - in [ 2, inf ).
"""
return self._order
@order.setter
def order( self, order : int ) :
if ( order < 2 ) :
raise ValueError( f'Order = {order}' )
self._order = order
@IRate.rate.setter
def rate( self, rate : float ) :
""" rate : float - ratio of effective frequency in ( 0.0, inf ).
"""
if ( rate <= 0.0 ) :
raise ValueError( f'Rate = {rate}' )
if ( not numpy.isclose( self.rate, rate ) ) :
self._index = 0.0
IRate.rate.fset( self, rate )
[docs] def __eq__( self, other : Any ) -> bool :
""" Equal.
Arguments :
other : Any.
Returns :
equal : bool.
"""
return ( ( super( ).__eq__( other ) ) and ( numpy.isclose( self._index, other._index ) ) and ( self.order == other.order ) )
def __init__( self, rate : float, order : int = 3 ) -> None :
""" Initialize.
Arguments :
rate : float - ratio of effective frequency in [ 1.0, inf ).
order : int - in [ 2 , inf ).
"""
if ( order < 2 ) :
raise ValueError( f'Order = {order}' )
super( ).__init__( )
self._index, self._order = 0.0, order
self.rate = rate
[docs] def filter( self, x : Union[ List, numpy.ndarray ] ) -> numpy.ndarray :
""" Filters an incident signal and produces a reference signal.
Arguments :
x : Union[ List, numpy.ndarray ] - incident signal.
Returns :
y : numpy.ndarray - reference signal.
"""
if ( ( not numpy.isscalar( x ) ) and ( not isinstance( x, numpy.ndarray ) ) ) :
x = numpy.array( list( x ) )
if ( ( len( x.shape ) != 1 ) or ( len( x ) < 2 ) ) :
raise ValueError( f'X = {x}' )
cc = len( x )
x = numpy.concatenate( ( [ 2.0 * x[ 0 ] - x[ 1 ] ], x, [ 2.0 * x[ -1 ] - x[ -2 ], 3.0 * x[ -1 ] - 2.0 * x[ -2 ] ] ) )
y = numpy.zeros( int( numpy.ceil( cc * self.rate ) ) )
eps, u, v = numpy.finfo( float ).eps, numpy.linspace( -1.0, 2.0, 4 ), 1.0 / self.rate
ii, jj = 0, 0
while ( ii < cc ) :
if ( self._index < ( 1.0 - eps ) ) :
b = numpy.polyfit( u, x[ ii : ii + 4 ], self.order )
while ( ( self._index < ( 1.0 - eps ) ) and ( jj < len( y ) ) ) :
y[ jj ] = numpy.polyval( b, self._index )
self._index += v
jj += 1
self._index -= 1.0
ii += 1
return y[ 0 : min( jj, len( y ) ) ]