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ABSTRACT. We prove that a finite group in which any two nontrivial p-elements
are conjugate have Sylow p-subgroups which are either elementary abelian or ex-
traspecial of order p3 and exponent p.

1. INTRODUCTION

Let G be a finite group and let p be a prime. The main result of this note is to
solve a group theoretical problem that naturally arises in block theory (and in the
theory of fusion systems).

Theorem A. Let p be a prime and G a finite group in which any two nontrivial
p-elements are conjugate. Then one of the following holds:

(i) The Sylow p-subgroups of G are elementary abelian,
(i) p = 3 and O (G/O,(Q)) is isomorphic to Ru, Jy or *Fy(q) with q = 20*!
for a monnegative integer b;
(ili) p =5 and G/Oy(G) is isomorphic to Th.
In cases (1) and (1), the Sylow p-subgroups of G are extra-special of order p* and
exponent p.

Theorem A can be reformulated in terms of Brauer blocks. If B is a p-block
of a finite group G, recall that a B-subsection is a pair (u,b,) consisting of a p-
element u € G and a p-block b, of the centralizer Cg(u) such that the induced block
(b,)¢ = B. The trivial B-subsection is (1, B). It is a natural problem to study
blocks in which all the non-trivial subsections are G-conjugate, and the question is
whether or not in this case the defect groups of B should be elementary abelian or
extra-special of order p? and exponent p. Theorem A provides an answer to this
for the principal block of G. (In Section 3 of this paper, we shall comment on the
corresponding question for fusion systems.)
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Theorem A is also related to a recent theorem due to the second and fourth authors
of this paper, which states that for p # 3,5, a finite group G has abelian Sylow p-
subgroups if and only if the conjugacy class size of every p-element of G is not
divisible by p, cf. [23]. This group theoretical result also admits a block theoretical
reformulation which we find of interest. We discuss this and some other related
problems in Section 3 of this paper. Finally, in Section 4, we study blocks with
a small number of irreducible characters, a topic that naturally connects with the
previous parts of the paper.

2. PROOF OF THEOREM A
We begin by proving a slightly more general result than Theorem A.

Theorem 2.1. Let p be a prime and G a finite group in which any two nontrivial
cyclic p-subgroups are conjugate. Then one of the following holds:

(i) The Sylow p-subgroups of G are elementary abelian,
(ii) p = 3 and O (G/O,(Q)) is isomorphic to Ru, Jy or *Fy(q) with q = 26°*!
for a nonnegative integer b;

(ili) p =5 and G/Oy(G) is isomorphic to Th.

As might be expected, the proof of Theorem 2.1 uses the Classification of Finite
Simple Groups.

Note that Theorem 2.1 is trivial in the case where p does not divide |G|. So in
proving Theorem 2.1 we will assume that |G| is divisible by p. Then the assumptions
in Theorem 2.1 imply that the exponent of P, exp(P), is p if P € Syl,(G). In
particular, if p = 2, then certainly P is elementary abelian. Furthermore we have
that |g“| has the same size for all 1 # g € P. By choosing g € Z(P), we have that
this common size is coprime to p. Hence, if p > 5 then Theorem 2.1 follows from the
main result of [23]. So in what follows we may assume that p = 3 or 5.

Next we prove Theorem 2.1 for finite simple groups.

Theorem 2.2. Let S be a finite simple group and let p € {3,5} be a prime divisor
of |S|. Suppose that |g°| is the same (and hence coprime to p) for all the nontrivial
p-elements g € S, and moreover assume that exp(P) = p for P € Syl (S). Then one
of the following holds:

(i) The Sylow p-subgroups of S are elementary abelian.

(ii) P = pr is extra-special of order p®. Furthermore, either p = 3 and S is
isomorphic to Ru, Jy or *Fy(q)" with q¢ = 2% for a nonnegative integer b, or p =5
and S = Th.

Lemma 2.3. Theorem 2.2 holds if S is an alternating or sporadic simple group.

Proof. Repeat the proof of [23, Lemma 2.2]. O
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Lemma 2.4. Theorem 2.2 holds if S is a finite simple group of Lie type in charac-
teristic p.

Proof. Tt is convenient to view S as [H, H|, where H = G for a simple algebraic
group G of adjoint type and a Frobenius map F' : G — G; in particular, Z(G) = 1
and |H : S| is coprime to p. Suppose first that p is a good prime for G. Then the
proof of [23, Lemma 2.3] shows that G is of type A;, i.e. S = PSLy(q) and so its
Sylow p-subgroups are abelian.

Assume now that p is a bad prime for G; in particular, G is exceptional since
p > 2. Suppose that G is of type G, and so p = 3. If H = *G5(q), by [19, Table
22.2.7] we can find a p-element v € H such that |Cy(u)| = 2¢%, whence q||u’].
Similarly, if H = Gs(q), by [19, Table 22.2.6] we can find a p-element v € H such
that |Cy(u)] = 2¢*, whence ¢*|[uff|. If H = Fy(q) (and p = 3), by [19, Table
22.2.4] we can find a p-element u € H such that |Cg(u)| = 2¢°, whence ¢°||uf?|. If
H = FEg(q) or *Es(q), by [19, Table 22.2.3] we can find a p-element u € H such that
|ICx(u)| = ¢%, whence ¢*8||uf|. If H = Ex(q), by [19, Table 22.2.2] we can find a
p-element u € H such that |Cg(u)| = 2¢*', whence ¢*?||u’!|. Finally, if H = Ex(q),
by [19, Table 22.2.1] we can find a p-element u € H such that |Cg(u)| = 2¢*®, whence
¢”||u"]. O

In what follows, we use the notation SL¢ to denote SL when ¢ = + or +1, and
SU when € = — or —1, and similarly for the Lie types Af. Furthermore, N, denotes
the p-part of the integer N. We use the notation for various finite classical groups as
described in [16].

Lemma 2.5. Theorem 2.2 holds if the simple group S is a finite classical group in
characteristic r # p.

Proof. (i) First we consider the case S = PSLE(q), where ¢ = r/ and ¢ = £1. Since
p # r divides |S], there is a smallest positive integer m < n such that p|(¢"™ — €™).
View S = L/Z(L), with L = SL¢(q). Now the proof of [23, Proposition 2.5] shows
that m = 1 and n = p = 3. Suppose that 9|(¢ — €). Choosing 0 € F, of order 9 and
g = diag(f,01,1) € L, we see that g has order 9 in S, contradicting the condition
that exp(P) = p. On the other hand, if 9 f(q — €), then P is elementary abelian of
order 9.

(ii) For all other classical groups, since p > 2 we may without any loss replace S
by G = Span(q), GOs,11(q), GO3 (q), or GO, (q), if S is of type C,, B, D,, or
D,,, respectively. In all these cases, there is a smallest positive integer m < n such
that p|(¢*™ — 1), and a = £1 such that p|(¢™ — «). Write (¢™ — ), = p°. Since
p > 2 we have that (¢*"? — 1), = (¢"" — a), = p°*'. If n < mp, then the proof of
[23, Proposition 2.5] shows that the Sylow p-subgroups of S are abelian. So we may
assume that n > mp.
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Suppose first that (¢,m,p,«) = (2,1,3,—). In this case Sps(2) embeds in G' and
so P contains an element of order 9, a contradiction.

Hence we may assume that (¢, m,p, @) # (2,1,3,—). Then the proof of [23, Propo-
sition 2.5] shows that G contains an element of order p°™ > p, unless G = GO;2(q),
in which case the Sylow p-subgroups of S are abelian. U

Lemma 2.6. Theorem 2.2 holds if S is an exceptional finite simple group of Lie type
in characteristic r # p.

Proof. (i) The case S = ?Fy(2)’ can be checked directly using [4], so we will assume
S 2 2Fy(2)'. We view S = G/Z(G), where G = G for a simple algebraic group G of
simply connected type and a Frobenius map F' : G — G. If G € {?By(q), G2(q)} is
a Suzuki or a Ree group, then the Sylow p-subgroups of GG are all abelian as p > 2.
The same is true when G = S = ?Fy(q) with ¢ > 8, unless p = 3. In the latter
case, p = 3|(¢ + 1); moreover, according to [18, Table 5.1], G contains a subgroup
X = SU3(q). If 9(¢ + 1), then, as we noted in the proof of Lemma 2.5, X contains
an element of order 9, contrary to exp(P) = 3. Assume that 9 f(¢+ 1), which means
that ¢ = 20! for some b > 1. Then |S|3 = 27, and P can be embedded in %Fy(2)’,
whence P = 3172

(ii) In all the other cases, we can write |G| = ¢*- [, ®% (¢) for some power ¢ = r/
of r, a,b; > 0, and m; > 0 pairwise distinct, where ®,,(t) is the m*™® cyclotomic
polynomial in t. According to [9, §4.10.2], if p divides exactly one ®,,,(¢), then the
Sylow p-subgroups of G are abelian (in fact they are homocyclic of rank b;). We will
now assume that p divides ®,,,(¢q) for more than one m,;.

Here we consider the case G = S = Ga(q). The above condition on p implies
that there is some € = =£1 such that p = 3|(¢ — ¢). Then, by [18, Table 5.1],
S > X = SL5(q). Now if 9|(¢ — €), then, as noted above, X and S contain an
element of order 9. More generally, according to [20], S contains an element a of
order 3, with centralizer of type A;(q) - C,_., whence |Cg(a)|3 = (¢ — €)3 and 3||a®].

Similarly, if G = S = 3D,(q), then again p = 3|(q — ¢€) for some ¢ = +1. Then,
according to [20], S contains an element a of order 3, with centralizer of type A;(¢®)-
C,—., whence |Cg(a)|z = 3(¢ — €)% and 3||a®].

Assume that p = 3 and S is one of the remaining exceptional groups. Then again
p|(q — €) for some € = +1, and S contains a subquotient X = Qgy(q). As mentioned
in the proof of Lemma 2.5, then X contains an element of order 9, a contradiction.

(iii) It remains to consider the case p =5 and p|®,,,(¢) for i = 1,2 and m; # ma.
This happens precisely when

(a) 5|(q — €) for some € = £1, and G € {Ef(q), E+(q), Es(q)}, or

(b) 5|(¢*> + 1) and G = Eg(q).

In the case of (a), note that G contains a subgroup X = SL§(q), according to [18,
Table 5.1]. In turn, X contains Y = GL5(q) > Cp_. and so it contains an element
of order 25, a contradiction.
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Suppose we are in the case of (b). According to [18, Table 5.1], G = S contains a
maximal subgroup X = SUs(¢?) - Cy. Now if 25|(¢> + 1), then X and G contain an
element of order 25, a contradiction. In general, we can find an element z € Z(X') of
order 5. We claim that C':= Cg(z) < X. (Indeed, Z := Z(X') = (z) is normalized
by X which is maximal in G, whence Ng(Z) = X or Z < G. In the latter case,
since G is perfect, we would have that Z < Z(G) = 1, a contradiction. Hence
X = Ng(Z) > Cg(z).) On the other hand, also according to [18, Table 5.1], G
contains a subgroup Y of type C2 - (PQF(q))?, where d = ged(2,q — 1). Choosing
an element of order 5 lying in one factor P (¢), we see that G' contains an element
y € Y of order 5 such that Cg(y) contains a subquotient & PQ¢ (¢). In particular,
|Cc(y)] is divisible by ¢* — 1. But obviously | X| is not divisible by ¢ — 1. It follows
that |y“| # |2Y|, a contradiction. O

Proof of Theorem 2.1. As mentioned above, by the main result of [23], we may
assume that p € {3,5}. Suppose that G satisfies the hypothesis of Theorem 2.1 and
that P € Syl (G) is non-abelian.

Step 1. We have that O,(G) = 1 and may also assume that O, (G) = 1.

Indeed, suppose @ := O,(G) # 1. Then 1 # Z(Q)) < P. By the assumption,
every nontrivial cyclic p-subgroup of P is conjugate to some subgroup of Z(Q) < G,
whence Z(Q)) = P and P is abelian. So we have that O,(G) = 1. Next, by Sylow’s
Theorem, two non-cyclic p-subgroups of G are conjugate in G if and only if their
images are conjugate in G/O, (G). Furthermore, the Sylow p-subgroups of G/O,/(G)
are isomorphic to P, so they are not abelian. Replacing G by G/O,(G), we may
assume that O, (G) = 1.

Step 2. We have that G has a unique minimal normal subgroup K, which is non-
abelian of order divisible by p.

Suppose that K; are two distinct minimal normal subgroups of G, where i = 1, 2.
Hence 1 = K; N K,. Now, by Step 1 we know that K; contains nontrivial cyclic
p-subgroups @Q; for ¢ = 1,2 as O,(G) = 1, and ), and @), are not G-conjugate.
Hence, G has a unique minimal normal subgroup K of order divisible by p. Now if
K is abelian, then O,(G) # 1, contrary to Step 1.

Step 3. We have that K is simple non-abelian and K = O¥ (G). Furthermore, K
satisfies the assumptions of Theorem 2.2.

Since K is minimal normal in G, we see that K = S; x --- x .S, &£ S", where
the S;’s are non-abelian simple groups of order divisible by p which are transitively
permuted by G.
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Suppose that n > 1. Then we can find a p-element 1 # = € S and consider the

p-elements
y=(z,1,...,1), z=(x,2,1,...,1)

in K. Now the cyclic p-subgroups (y) and (z) are not G-conjugate, a contradiction.

Thus K is simple non-abelian. The uniqueness of K implies that Cg(K) = 1
and so G embeds in Aut(K). Since all cyclic p-subgroups of G are conjugate to a
subgroup of K, we see that K > O” (G), whence K = O (G) by the minimality of
K.

It is obvious that exp(P) = p. Moreover, for any two nontrivial p-elements in
K, their centralizers in GG are G-conjugate. Hence also their centralizers in K are
G-conjugate; in particular, these K-centralizers have the same order.

Step 5. Now we apply Theorem 2.2 to K = O (G). Note that in the case p = 5
and K =2 Th, G = K since G — Aut(K) = K. Also, the Sylow p-subgroups of K are
isomorphic to P and so are non-abelian. Now we see that G satisfies the conclusions
(ii) or (iii) of Theorem 2.1 and so we are done. O

3. RELATED QUESTIONS ON BLOCKS AND FUSION SYSTEMS

In this section we ask some related questions and prove a few results. If B is a
p-block of G, recall that a B-subsection (u, b,) is called major if the defect groups of
b, are also defect groups of B. Inspired by the main result of [23], we propose the
following.

Question 3.1. Let B be a p-block of a finite group, and suppose that all B-subsections
are magjor. What can be said about the structure of the defect groups of B?

The main result of [23] provides an answer to Question 3.1 whenever 3 # p # 5
and B is the principal block: the defect groups of B in this case should be abelian.
Another partial answer is given by the following result which we prove below.

Theorem 3.2. Let B be a p-block of a finite p-solvable group G. Then all B-
subsections are major if and only if the defect groups of B are abelian.

Theorem 3.2 generalizes several results in the literature, such as Lemma 4.1 in [21]
and parts of the main theorem of [28]. J. Olsson [25] already observed that Theorem
3.2 does not hold for arbitrary groups G.

It is well-known that the fusion system of a p-solvable group on its Sylow p-
subgroup is p-solvable (cf. p. 2446 of [5]) and that saturated subsystems of p-solvable
fusion systems are again p-solvable (cf. p.2431 of [5]). Thus the fusion system of a p-
block of a p-solvable group on its defect group is p-solvable and therefore constrained.
(For background on fusion systems we refer to [1] and [6].) Thus Theorem 3.2 is a con-
sequence of the following result on fusion systems. We recall that elements =,y € P
are called F-conjugate if f(x) =y for a morphism f : (z) — (y) in F.
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Theorem 3.3. Let F be a constrained fusion system on a finite p-group P. Suppose
that every element in P is F-conjugate to an element in Z(P). Then P is abelian.

Proof. By Theorem 2.5 in [5], there exists a finite group G with Sylow p-subgroup P
such that O, (G) = 1, C(0,(G)) € O,(G) and F = Fp(G). Let Q := O,(G) and
x € P. Then our hypothesis implies that there exists an element g € G such that

grg " € Z(P) < Ce(Q) < Z(Q)
which is normal in G, and therefore € Z(Q). This shows that P = Z(Q); in
particular, P is abelian. O

Next we ask whether the following generalization of Theorem A holds:

Question 3.4. Let B be a p-block of a finite group G, and suppose that all nontrivial
B-subsections are conjugate in G. Are the defect groups of B necessarily either
elementary abelian or extraspecial of order p* and exponent p?

Since again Question 3.4 is mainly concerned with the fusion system of B we may
formulate an even more general question for fusion systems:

Question 3.5. Let F be a saturated fusion system on a finite p-group P, and suppose
that any two nontrivial cyclic subgroups of P are F-conjugate. Is P mnecessarily
abelian or extraspecial of order p* and exponent p?

If P is extraspecial of order p* and exponent p then the saturated fusion systems
on P are described in [27]. It follows from these results that p € {3,5,7} whenever
any two nontrivial elements in P are F-conjugate. Also, if B is a p-block of a finite
group with extraspecial defect groups of order p® and exponent p such that any two
nontrivial B-subsections are conjugate, then the results in [27] and [14] imply that
p € {3,5}.

There are several ways to measure the complexity of a block, including to study
the structure of a defect group D of B, or the quantities k(B) or I(B). (As usual,
here k(B) = |Irr(B)| and I(B) = |IBr(B)| where Irr(B) denotes the set of irreducible
ordinary characters of G associated to B, and IBr(B) denotes the set of irreducible
Brauer characters of G associated to B.) Another interesting invariant of the block
B is the difference k(B) — I(B). It was already known by Richard Brauer that
kE(B) —l(B) = 0 if and only if D = 1 (if and only if k&(B) = I(B) = 1). From this
point of view, the next natural step seems to be to study blocks with

k(B) —I(B) =1,

which is one of the problems that led us to the main result of this paper. An important
formula by Brauer shows that every p-block B of a finite group G satisfies

kB) =Y 1)
(u,bu)

U,by
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where (u,b,) ranges over a transversal for the conjugacy classes of B-subsections.

In particular, Brauer’s formula implies that, for a p-block B with k(B) —{(B) =1,
all nontrivial B-subsections are conjugate. In this case, a result by Fujii [7] shows that
the Cartan matrix of B has determinant |D|. Moreover, the stable center Z(B) :=
Z(B)/ZP*(B) is a symmetric algebra, by the results in [13]. In fact, the stable center
of B has dimension 2. Theorem 1.1 in [13] implies that, if B is the principal block
of G and k(B) — [(B) = 1 then the Sylow p-subgroups of G are elementary abelian.
Next, we prove more generally the following result.

Theorem 3.6. Let B be a p-block of a finite group G with k(B) —1(B) = 1. Suppose
that the fusion system of B is nonezotic (for instance, if B is the principal block or
if G is p-solvable). Then the defect groups of B are elementary abelian.

Recall that a fusion system F on a finite p-group P is called nonexotic if there
exists a finite group X with Sylow p-subgroup P such that F is the fusion system
Fp(X) on P coming from X. (Otherwise the fusion system F is called ezotic.) It
seems to be an open question whether all fusion systems coming from blocks are
nonexotic. A negative answer to Question 3.4 would provide an example of an exotic
block fusion system.

Proof of Theorem 3.6. Assume that B has a nonabelian defect group D. Since the
fusion system F of B on D is nonexotic, Theorem A implies that p € {3,5} and that
D is extraspecial of order p? and exponent p.

Suppose first that p = 5. Then F is the fusion system of the sporadic simple
Thompson group Th on its Sylow 5-subgroup. Now Proposition 6.1 in [11] shows
that B is Morita equivalent to the principal 5-block By of T'h. In particular, we have
k(By) —1(By) = 1. Let (u,b,) be a nontrivial By-subsection. Then b, is the principal
5-block of Cry(u), and I(b,) = 1. Thus Crp(u) is 5-nilpotent, a contradiction.

It remains to consider the case p = 3. Let (u,b,) denote a nontrivial B-subsection,
and denote by b, the unique 3-block of C¢(u)/{u) dominated by b,. Then 1 = I(b,) =
I(b,), and b, has an elementary abelian defect group of order 9. By Theorem A, we
may assume that F is the fusion system of 2F(2) or J; on its Sylow 3-subgroup.
Thus the inertial quotient of B is isomorphic to Dg or SDi¢ respectively, by the
results in [27] (cf. [22]). It follows easily that the inertial quotient of b, is isomorphic
to Cy or Qg respectively. However, if the inertial quotient of b, is isomorphic to Cl,
then the results of [15] lead to the contradiction I(b,) = 4.

Thus we may assume that the inertial quotient of b, is isomorphic to Qs. Then
the arguments in [15] show that there are only two b,-subsections, and we obtain
k(Eu) = 2. However, then the defect groups of b, have order 2, a contradiction. [0

Examples of p-blocks B with k(B) — I(B) = 1 are the p-blocks of multiplicity one
introduced in [21] by G. Michler. We recall that the multiplicity u(B) of a p-block B
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is defined by

u(B) :=max{c; —1:i=1,...,l(B)}
where C' = (¢;;) denotes the Cartan matrix of B. Thus p(B) = 1 if and only if all
diagonal entries in the Cartan matrix of B are equal to 2.

In [21], Michler showed that a block B of multiplicity one satisfies k(B) —I(B) = 1,
and that all irreducible ordinary characters associated to B have height zero. Thus,
Brauer’s Height Zero Conjecture predicts that B should have abelian defect groups.
In fact, in [21], it is shown that a p-block B of a finite group G with multiplicity one
has abelian defect groups if G is p-solvable or if p = 2.

The following more general result is now a consequence of Theorem 3.6:

Corollary 3.7. Let B be a p-block of a finite group G with multiplicity one. Suppose
that the fusion system F of B is nonexotic (e.qg. B is the principal block or G 1is
p-solvable). Then the defect groups of B are elementary abelian.

4. BLOCKS WITH FEW CHARACTERS

To finish this paper, we now concentrate on the subject of blocks with few charac-
ters. In this context, blocks B with k(B) — [(B) = 1 appear quite naturally, as we
shall see. First of all, let us summarize a few facts on a p-block B of a finite group
G with defect group D having a small number of characters. We have the following:

(i) We have k(B) =1 if and only if D = 1.
(ii) We have k(B) = 2 if and only if |D| = 2 (see [2]).

(iii) If £(B) <4 and I(B) = 1, then |D| = k(B) (see [17]).

(iv) If k(B) =5 and I(B) = 1, then D € {Cj5, Dg, Qg} (see [3]).

In this paper we conjecture that if k(B) = 3 then |D| = 3, and we prove that this
is a consequence of the Alperin-McKay conjecture. First, we take care of the case
where the defect group is normal.

Theorem 4.1. Let B be a p-block of a finite group G with normal defect group D,
and suppose that k(B) = 3. Then |D| = 3.

Proof. By results of Fong and Reynolds, we may assume that D is a Sylow p-subgroup
of G, and that Z := O,(G) is cyclic and central in G. By [17], we may also assume
that I(B) = 2. Then G acts transitively on D \ {1} by conjugation; in particular,
D is elementary abelian. We write |D| = p?. By the Hall-Higman Lemma, the
kernel of the action of G on D is ZD. By a result of Passman [26], apart from
finitely many exceptions, G/Z D is isomorphic to a subgroup of the semilinear group
T(p?). Here T(p?) denotes the semidirect product of the multiplicative group F;d
of the finite field F,« with the Galois group I' of F,« over F,. In particular, G/ZD
has a cyclic normal subgroup H/ZD whose order s divides p? — 1 such that G/H is
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cyclic of order ¢ dividing d. Since G/ZD acts transitively on D \ {1} we also have
(p?*—1) | |G: ZD| = st.

It is well-known that IBr(B) = IBr(G|() for some ( € IBr(Z). Let us consider
IBr(H|¢). On the one hand, |IBr(G|()| = |IBr(B)| = I(B) = 2 implies that G has
at most two orbits on IBr(H|(). Moreover, each of these orbits has length at most
|G : H| =t. Thus |IBr(H|()| < 2t < 2d.

On the other hand, we have ZD/D < Z(H/D). Since H/ZD is cyclic, H/D has to
be abelian; in particular, we have [IBr(H|()| = |H : ZD| = s. Thus s = |IBr(H|()| <
2d, and p? — 1 < |G : ZD| < st < 2d>.

If p = 2, then our result follows easily since ko(B) = 0 (mod 4) for d > 2. Thus
we may assume that p > 3.

If d = 1 then our result follows easily from the Brauer-Dade theory of blocks with
cyclic defect groups. Thus we may assume that d > 2 and p > 3.

If d =2 then p? <148 =09, ie. p= 3. This case leads to a contradiction by
making use of the results in [15]. Thus we may assume that d > 3 and p > 3, so that
3¢ < p? <1+ d?; however, this is impossible.

It remains to deal with the exceptional cases in Passman’s Theorem; so we may
assume that

|D| € {3%, 5%, 7%, 11%, 197, 232 29? 592 3%}.

Suppose first that d = 2, and choose a nontrivial B-subsection (u,b,). Then b,
dominates a unique block b, of C¢(u)/{u), and b, has defect 1. Since 1 = I(b,) = I(b,)
we conclude that b, has inertial index 1. Thus b, has inertial index 1 as well, and
G/ZD acts regularly on D \ {1}. Hence G/Z is a Frobenius group with Frobenius
kernel ZD/Z and Frobenius complement G/ZD. In particular, the Sylow subgroups
of G/ZD are cyclic or (generalized) quaternion. Thus the Schur multiplier of G/ZD
is trivial. Hence we may assume that Z = 1. But then B is the only p-block of G, so
that G has class number 3. This implies that |G| < 6, a contradiction.

We are left with the case |D| = 3% In this case G/Z is a doubly transitive
permutation group of degree 3*. It is well-known that |G/Z| = 2¥3%5 with k €
{5,6,7} (see Example XII.7.4 in [12]). Using GAP [8], it is easy to work out the
structure of G/Z and to derive a contradiction. O

Theorem 4.2. Let B be a p-block of a finite group G with defect group D such
that k(B) = 3. Moreover, suppose that ko(B) = ko(b) where b denotes the Brauer
correspondent of B in Ng(D). Then |D| = 3.

Here ko(B) denotes the number of irreducible ordinary characters of height zero
associated to B. Thus the conclusion of this theorem is satisfied if the Alperin-McKay
Conjecture holds.

Proof of Theorem 4.2. It is well-known that b has defect group D. Then b dominates
a unique p-block b of Ng(D)/®(D), and b has defect group D := D/®(D) which is
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abelian and normal in Ng(D)/®(D). Moreover, we have

k(b) = ko(b) < ko(b) = ko(B) < k(B) = 3.
If we assume that k(b) < 2, then we get |D| < 2. Thus D is a cyclic 2-group which

is impossible. This shows that we must have k(b) = 3.
Since D is normal in Ng(D)/®(D), Theorem 4.1 implies that |D| = 3. Thus D is

cyclic, and the Brauer-Dade theory yields the result. 0

It is known that ko(B) > 2 for every block B with positive defect (see [24]). Hence,
one may ask what can be said in case ko(B) = 2. A similar proof as above shows
that the Alperin-McKay Conjecture implies the following generalization of Brandt’s
result:

ko(B) =2 <= k(B) =2 <= |D| =2.
Finally, in this context of blocks with few characters, it might be of interest to
recall that Héthelyi and Kiilshammer conjectured in [10] that

k(B) >2p—1

for arbitrary p-blocks B of arbitrary finite groups.
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