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BURKHARD KÜLSHAMMER, GABRIEL NAVARRO, BENJAMIN SAMBALE,
AND PHAM HUU TIEP

Abstract. We prove that a finite group in which any two nontrivial p-elements
are conjugate have Sylow p-subgroups which are either elementary abelian or ex-
traspecial of order p3 and exponent p.

1. Introduction

Let G be a finite group and let p be a prime. The main result of this note is to
solve a group theoretical problem that naturally arises in block theory (and in the
theory of fusion systems).

Theorem A. Let p be a prime and G a finite group in which any two nontrivial
p-elements are conjugate. Then one of the following holds:

(i) The Sylow p-subgroups of G are elementary abelian;

(ii) p = 3 and Op′(G/Op′(G)) is isomorphic to Ru, J4 or 2F4(q)
′ with q = 26b±1

for a nonnegative integer b;
(iii) p = 5 and G/Op′(G) is isomorphic to Th.

In cases (ii) and (iii), the Sylow p-subgroups of G are extra-special of order p3 and
exponent p.

Theorem A can be reformulated in terms of Brauer blocks. If B is a p-block
of a finite group G, recall that a B-subsection is a pair (u, bu) consisting of a p-
element u ∈ G and a p-block bu of the centralizer CG(u) such that the induced block
(bu)

G = B. The trivial B-subsection is (1, B). It is a natural problem to study
blocks in which all the non-trivial subsections are G-conjugate, and the question is
whether or not in this case the defect groups of B should be elementary abelian or
extra-special of order p3 and exponent p. Theorem A provides an answer to this
for the principal block of G. (In Section 3 of this paper, we shall comment on the
corresponding question for fusion systems.)
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Theorem A is also related to a recent theorem due to the second and fourth authors
of this paper, which states that for p 6= 3, 5, a finite group G has abelian Sylow p-
subgroups if and only if the conjugacy class size of every p-element of G is not
divisible by p, cf. [23]. This group theoretical result also admits a block theoretical
reformulation which we find of interest. We discuss this and some other related
problems in Section 3 of this paper. Finally, in Section 4, we study blocks with
a small number of irreducible characters, a topic that naturally connects with the
previous parts of the paper.

2. Proof of Theorem A

We begin by proving a slightly more general result than Theorem A.

Theorem 2.1. Let p be a prime and G a finite group in which any two nontrivial
cyclic p-subgroups are conjugate. Then one of the following holds:

(i) The Sylow p-subgroups of G are elementary abelian;
(ii) p = 3 and Op′(G/Op′(G)) is isomorphic to Ru, J4 or 2F4(q)

′ with q = 26b±1

for a nonnegative integer b;
(iii) p = 5 and G/Op′(G) is isomorphic to Th.

As might be expected, the proof of Theorem 2.1 uses the Classification of Finite
Simple Groups.

Note that Theorem 2.1 is trivial in the case where p does not divide |G|. So in
proving Theorem 2.1 we will assume that |G| is divisible by p. Then the assumptions
in Theorem 2.1 imply that the exponent of P , exp(P ), is p if P ∈ Sylp(G). In
particular, if p = 2, then certainly P is elementary abelian. Furthermore we have
that |gG| has the same size for all 1 6= g ∈ P . By choosing g ∈ Z(P ), we have that
this common size is coprime to p. Hence, if p > 5 then Theorem 2.1 follows from the
main result of [23]. So in what follows we may assume that p = 3 or 5.

Next we prove Theorem 2.1 for finite simple groups.

Theorem 2.2. Let S be a finite simple group and let p ∈ {3, 5} be a prime divisor
of |S|. Suppose that |gS| is the same (and hence coprime to p) for all the nontrivial
p-elements g ∈ S, and moreover assume that exp(P ) = p for P ∈ Sylp(S). Then one
of the following holds:
(i) The Sylow p-subgroups of S are elementary abelian.
(ii) P ∼= p1+2

+ is extra-special of order p3. Furthermore, either p = 3 and S is
isomorphic to Ru, J4 or 2F4(q)

′ with q = 26b±1 for a nonnegative integer b, or p = 5
and S ∼= Th.

Lemma 2.3. Theorem 2.2 holds if S is an alternating or sporadic simple group.

Proof. Repeat the proof of [23, Lemma 2.2]. �
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Lemma 2.4. Theorem 2.2 holds if S is a finite simple group of Lie type in charac-
teristic p.

Proof. It is convenient to view S as [H,H], where H = GF for a simple algebraic
group G of adjoint type and a Frobenius map F : G → G; in particular, Z(G) = 1
and |H : S| is coprime to p. Suppose first that p is a good prime for G. Then the
proof of [23, Lemma 2.3] shows that G is of type A1, i.e. S = PSL2(q) and so its
Sylow p-subgroups are abelian.
Assume now that p is a bad prime for G; in particular, G is exceptional since

p > 2. Suppose that G is of type G2, and so p = 3. If H = 2G2(q), by [19, Table
22.2.7] we can find a p-element u ∈ H such that |CH(u)| = 2q2, whence q||uH |.
Similarly, if H = G2(q), by [19, Table 22.2.6] we can find a p-element u ∈ H such
that |CH(u)| = 2q4, whence q2||uH |. If H = F4(q) (and p = 3), by [19, Table
22.2.4] we can find a p-element u ∈ H such that |CH(u)| = 2q6, whence q6||uH |. If
H = E6(q) or

2E6(q), by [19, Table 22.2.3] we can find a p-element u ∈ H such that
|CH(u)| = q8, whence q28||uH |. If H = E7(q), by [19, Table 22.2.2] we can find a
p-element u ∈ H such that |CH(u)| = 2q21, whence q42||uH |. Finally, if H = E8(q),
by [19, Table 22.2.1] we can find a p-element u ∈ H such that |CH(u)| = 2q28, whence
q92||uH |. �

In what follows, we use the notation SLǫ to denote SL when ǫ = + or +1, and
SU when ǫ = − or −1, and similarly for the Lie types Aǫ

n. Furthermore, Np denotes
the p-part of the integer N . We use the notation for various finite classical groups as
described in [16].

Lemma 2.5. Theorem 2.2 holds if the simple group S is a finite classical group in
characteristic r 6= p.

Proof. (i) First we consider the case S = PSLǫ
n(q), where q = rf and ǫ = ±1. Since

p 6= r divides |S|, there is a smallest positive integer m ≤ n such that p|(qm − ǫm).
View S = L/Z(L), with L = SLǫ

n(q). Now the proof of [23, Proposition 2.5] shows
that m = 1 and n = p = 3. Suppose that 9|(q − ǫ). Choosing θ ∈ Fq of order 9 and
g = diag(θ, θ−1, 1) ∈ L, we see that g has order 9 in S, contradicting the condition
that exp(P ) = p. On the other hand, if 9 6 |(q − ǫ), then P is elementary abelian of
order 9.

(ii) For all other classical groups, since p > 2 we may without any loss replace S
by G = Sp2n(q), GO2n+1(q), GO+

2n(q), or GO−

2n(q), if S is of type Cn, Bn, Dn, or
2Dn, respectively. In all these cases, there is a smallest positive integer m ≤ n such
that p|(q2m − 1), and α = ±1 such that p|(qm − α). Write (qm − α)p = pc. Since
p > 2 we have that (q2mp − 1)p = (qmp − α)p = pc+1. If n < mp, then the proof of
[23, Proposition 2.5] shows that the Sylow p-subgroups of S are abelian. So we may
assume that n ≥ mp.
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Suppose first that (q,m, p, α) = (2, 1, 3,−). In this case Sp6(2) embeds in G and
so P contains an element of order 9, a contradiction.
Hence we may assume that (q,m, p, α) 6= (2, 1, 3,−). Then the proof of [23, Propo-

sition 2.5] shows that G contains an element of order pc+1 > p, unless G = GO−α
mp(q),

in which case the Sylow p-subgroups of S are abelian. �

Lemma 2.6. Theorem 2.2 holds if S is an exceptional finite simple group of Lie type
in characteristic r 6= p.

Proof. (i) The case S = 2F4(2)
′ can be checked directly using [4], so we will assume

S 6∼= 2F4(2)
′. We view S = G/Z(G), where G = GF for a simple algebraic group G of

simply connected type and a Frobenius map F : G → G. If G ∈ {2B2(q),
2G2(q)} is

a Suzuki or a Ree group, then the Sylow p-subgroups of G are all abelian as p > 2.
The same is true when G = S = 2F4(q) with q ≥ 8, unless p = 3. In the latter
case, p = 3|(q + 1); moreover, according to [18, Table 5.1], G contains a subgroup
X ∼= SU3(q). If 9|(q + 1), then, as we noted in the proof of Lemma 2.5, X contains
an element of order 9, contrary to exp(P ) = 3. Assume that 9 6 |(q+1), which means
that q = 26b±1 for some b ≥ 1. Then |S|3 = 27, and P can be embedded in 2F4(2)

′,
whence P ∼= 31+2

+ .

(ii) In all the other cases, we can write |G| = qa ·
∏

i Φ
bi
mi
(q) for some power q = rf

of r, a, bi > 0, and mi > 0 pairwise distinct, where Φm(t) is the mth cyclotomic
polynomial in t. According to [9, §4.10.2], if p divides exactly one Φmi

(q), then the
Sylow p-subgroups of G are abelian (in fact they are homocyclic of rank bi). We will
now assume that p divides Φmi

(q) for more than one mi.
Here we consider the case G = S = G2(q). The above condition on p implies

that there is some ǫ = ±1 such that p = 3|(q − ǫ). Then, by [18, Table 5.1],
S > X ∼= SLǫ

3(q). Now if 9|(q − ǫ), then, as noted above, X and S contain an
element of order 9. More generally, according to [20], S contains an element a of
order 3, with centralizer of type A1(q) · Cq−ǫ, whence |CS(a)|3 = (q − ǫ)23 and 3||aS|.
Similarly, if G = S = 3D4(q), then again p = 3|(q − ǫ) for some ǫ = ±1. Then,

according to [20], S contains an element a of order 3, with centralizer of type A1(q
3) ·

Cq−ǫ, whence |CS(a)|3 = 3(q − ǫ)23 and 3||aS|.
Assume that p = 3 and S is one of the remaining exceptional groups. Then again

p|(q − ǫ) for some ǫ = ±1, and S contains a subquotient X ∼= Ω9(q). As mentioned
in the proof of Lemma 2.5, then X contains an element of order 9, a contradiction.

(iii) It remains to consider the case p = 5 and p|Φmi
(q) for i = 1, 2 and m1 6= m2.

This happens precisely when
(a) 5|(q − ǫ) for some ǫ = ±1, and G ∈ {E±

6 (q), E7(q), E8(q)}, or
(b) 5|(q2 + 1) and G = E8(q).
In the case of (a), note that G contains a subgroup X ∼= SLǫ

6(q), according to [18,
Table 5.1]. In turn, X contains Y ∼= GLǫ

5(q) > Cq5−ǫ and so it contains an element
of order 25, a contradiction.
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Suppose we are in the case of (b). According to [18, Table 5.1], G = S contains a
maximal subgroup X ∼= SU5(q

2) · C4. Now if 25|(q2 + 1), then X and G contain an
element of order 25, a contradiction. In general, we can find an element z ∈ Z(X ′) of
order 5. We claim that C := CG(z) ≤ X. (Indeed, Z := Z(X ′) = 〈z〉 is normalized
by X which is maximal in G, whence NG(Z) = X or Z � G. In the latter case,
since G is perfect, we would have that Z ≤ Z(G) = 1, a contradiction. Hence
X = NG(Z) ≥ CG(z).) On the other hand, also according to [18, Table 5.1], G
contains a subgroup Y of type C2

d · (PΩ+
8 (q))

2, where d = gcd(2, q − 1). Choosing
an element of order 5 lying in one factor PΩ+

8 (q), we see that G contains an element
y ∈ Y of order 5 such that CG(y) contains a subquotient ∼= PΩ+

8 (q). In particular,
|CG(y)| is divisible by q3 − 1. But obviously |X| is not divisible by q3 − 1. It follows
that |yG| 6= |zG|, a contradiction. �

Proof of Theorem 2.1. As mentioned above, by the main result of [23], we may
assume that p ∈ {3, 5}. Suppose that G satisfies the hypothesis of Theorem 2.1 and
that P ∈ Sylp(G) is non-abelian.

Step 1. We have that Op(G) = 1 and may also assume that Op′(G) = 1.

Indeed, suppose Q := Op(G) 6= 1. Then 1 6= Z(Q) ≤ P . By the assumption,
every nontrivial cyclic p-subgroup of P is conjugate to some subgroup of Z(Q) ⊳ G,
whence Z(Q) = P and P is abelian. So we have that Op(G) = 1. Next, by Sylow’s
Theorem, two non-cyclic p-subgroups of G are conjugate in G if and only if their
images are conjugate in G/Op′(G). Furthermore, the Sylow p-subgroups of G/Op′(G)
are isomorphic to P , so they are not abelian. Replacing G by G/Op′(G), we may
assume that Op′(G) = 1.

Step 2. We have that G has a unique minimal normal subgroup K, which is non-
abelian of order divisible by p.

Suppose that Ki are two distinct minimal normal subgroups of G, where i = 1, 2.
Hence 1 = K1 ∩ K2. Now, by Step 1 we know that Ki contains nontrivial cyclic
p-subgroups Qi for i = 1, 2 as Op′(G) = 1, and Q1 and Q2 are not G-conjugate.
Hence, G has a unique minimal normal subgroup K of order divisible by p. Now if
K is abelian, then Op(G) 6= 1, contrary to Step 1.

Step 3. We have that K is simple non-abelian and K = Op′(G). Furthermore, K
satisfies the assumptions of Theorem 2.2.

Since K is minimal normal in G, we see that K = S1 × · · · × Sn
∼= Sn, where

the Si’s are non-abelian simple groups of order divisible by p which are transitively
permuted by G.
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Suppose that n > 1. Then we can find a p-element 1 6= x ∈ S and consider the
p-elements

y = (x, 1, . . . , 1), z = (x, x, 1, . . . , 1)

in K. Now the cyclic p-subgroups 〈y〉 and 〈z〉 are not G-conjugate, a contradiction.
Thus K is simple non-abelian. The uniqueness of K implies that CG(K) = 1

and so G embeds in Aut(K). Since all cyclic p-subgroups of G are conjugate to a
subgroup of K, we see that K ≥ Op′(G), whence K = Op′(G) by the minimality of
K.
It is obvious that exp(P ) = p. Moreover, for any two nontrivial p-elements in

K, their centralizers in G are G-conjugate. Hence also their centralizers in K are
G-conjugate; in particular, these K-centralizers have the same order.

Step 5. Now we apply Theorem 2.2 to K = Op′(G). Note that in the case p = 5
and K ∼= Th, G = K since G →֒ Aut(K) ∼= K. Also, the Sylow p-subgroups of K are
isomorphic to P and so are non-abelian. Now we see that G satisfies the conclusions
(ii) or (iii) of Theorem 2.1 and so we are done. 2

3. Related Questions on Blocks and Fusion Systems

In this section we ask some related questions and prove a few results. If B is a
p-block of G, recall that a B-subsection (u, bu) is called major if the defect groups of
bu are also defect groups of B. Inspired by the main result of [23], we propose the
following.

Question 3.1. Let B be a p-block of a finite group, and suppose that all B-subsections
are major. What can be said about the structure of the defect groups of B?

The main result of [23] provides an answer to Question 3.1 whenever 3 6= p 6= 5
and B is the principal block: the defect groups of B in this case should be abelian.
Another partial answer is given by the following result which we prove below.

Theorem 3.2. Let B be a p-block of a finite p-solvable group G. Then all B-
subsections are major if and only if the defect groups of B are abelian.

Theorem 3.2 generalizes several results in the literature, such as Lemma 4.1 in [21]
and parts of the main theorem of [28]. J. Olsson [25] already observed that Theorem
3.2 does not hold for arbitrary groups G.

It is well-known that the fusion system of a p-solvable group on its Sylow p-
subgroup is p-solvable (cf. p. 2446 of [5]) and that saturated subsystems of p-solvable
fusion systems are again p-solvable (cf. p. 2431 of [5]). Thus the fusion system of a p-
block of a p-solvable group on its defect group is p-solvable and therefore constrained.
(For background on fusion systems we refer to [1] and [6].) Thus Theorem 3.2 is a con-
sequence of the following result on fusion systems. We recall that elements x, y ∈ P
are called F-conjugate if f(x) = y for a morphism f : 〈x〉 −→ 〈y〉 in F .
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Theorem 3.3. Let F be a constrained fusion system on a finite p-group P . Suppose
that every element in P is F-conjugate to an element in Z(P ). Then P is abelian.

Proof. By Theorem 2.5 in [5], there exists a finite group G with Sylow p-subgroup P
such that Op′(G) = 1, CG(Op(G)) ⊆ Op(G) and F = FP (G). Let Q := Op(G) and
x ∈ P . Then our hypothesis implies that there exists an element g ∈ G such that

gxg−1 ∈ Z(P ) ≤ CG(Q) ≤ Z(Q)

which is normal in G, and therefore x ∈ Z(Q). This shows that P = Z(Q); in
particular, P is abelian. �

Next we ask whether the following generalization of Theorem A holds:

Question 3.4. Let B be a p-block of a finite group G, and suppose that all nontrivial
B-subsections are conjugate in G. Are the defect groups of B necessarily either
elementary abelian or extraspecial of order p3 and exponent p?

Since again Question 3.4 is mainly concerned with the fusion system of B we may
formulate an even more general question for fusion systems:

Question 3.5. Let F be a saturated fusion system on a finite p-group P , and suppose
that any two nontrivial cyclic subgroups of P are F-conjugate. Is P necessarily
abelian or extraspecial of order p3 and exponent p?

If P is extraspecial of order p3 and exponent p then the saturated fusion systems
on P are described in [27]. It follows from these results that p ∈ {3, 5, 7} whenever
any two nontrivial elements in P are F -conjugate. Also, if B is a p-block of a finite
group with extraspecial defect groups of order p3 and exponent p such that any two
nontrivial B-subsections are conjugate, then the results in [27] and [14] imply that
p ∈ {3, 5}.

There are several ways to measure the complexity of a block, including to study
the structure of a defect group D of B, or the quantities k(B) or l(B). (As usual,
here k(B) = |Irr(B)| and l(B) = |IBr(B)| where Irr(B) denotes the set of irreducible
ordinary characters of G associated to B, and IBr(B) denotes the set of irreducible
Brauer characters of G associated to B.) Another interesting invariant of the block
B is the difference k(B) − l(B). It was already known by Richard Brauer that
k(B) − l(B) = 0 if and only if D = 1 (if and only if k(B) = l(B) = 1). From this
point of view, the next natural step seems to be to study blocks with

k(B)− l(B) = 1 ,

which is one of the problems that led us to the main result of this paper. An important
formula by Brauer shows that every p-block B of a finite group G satisfies

k(B) =
∑

(u,bu)

l(bu)
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where (u, bu) ranges over a transversal for the conjugacy classes of B-subsections.
In particular, Brauer’s formula implies that, for a p-block B with k(B)− l(B) = 1,

all nontrivial B-subsections are conjugate. In this case, a result by Fujii [7] shows that
the Cartan matrix of B has determinant |D|. Moreover, the stable center Z(B) :=
Z(B)/Zpr(B) is a symmetric algebra, by the results in [13]. In fact, the stable center
of B has dimension 2. Theorem 1.1 in [13] implies that, if B is the principal block
of G and k(B)− l(B) = 1 then the Sylow p-subgroups of G are elementary abelian.
Next, we prove more generally the following result.

Theorem 3.6. Let B be a p-block of a finite group G with k(B)− l(B) = 1. Suppose
that the fusion system of B is nonexotic (for instance, if B is the principal block or
if G is p-solvable). Then the defect groups of B are elementary abelian.

Recall that a fusion system F on a finite p-group P is called nonexotic if there
exists a finite group X with Sylow p-subgroup P such that F is the fusion system
FP (X) on P coming from X. (Otherwise the fusion system F is called exotic.) It
seems to be an open question whether all fusion systems coming from blocks are
nonexotic. A negative answer to Question 3.4 would provide an example of an exotic
block fusion system.

Proof of Theorem 3.6. Assume that B has a nonabelian defect group D. Since the
fusion system F of B on D is nonexotic, Theorem A implies that p ∈ {3, 5} and that
D is extraspecial of order p3 and exponent p.
Suppose first that p = 5. Then F is the fusion system of the sporadic simple

Thompson group Th on its Sylow 5-subgroup. Now Proposition 6.1 in [11] shows
that B is Morita equivalent to the principal 5-block B0 of Th. In particular, we have
k(B0)− l(B0) = 1. Let (u, bu) be a nontrivial B0-subsection. Then bu is the principal
5-block of CTh(u), and l(bu) = 1. Thus CTh(u) is 5-nilpotent, a contradiction.
It remains to consider the case p = 3. Let (u, bu) denote a nontrivial B-subsection,

and denote by bu the unique 3-block of CG(u)/〈u〉 dominated by bu. Then 1 = l(bu) =
l(bu), and bu has an elementary abelian defect group of order 9. By Theorem A, we
may assume that F is the fusion system of 2F4(2)

′ or J4 on its Sylow 3-subgroup.
Thus the inertial quotient of B is isomorphic to D8 or SD16 respectively, by the
results in [27] (cf. [22]). It follows easily that the inertial quotient of bu is isomorphic
to C4 or Q8 respectively. However, if the inertial quotient of bu is isomorphic to C4,
then the results of [15] lead to the contradiction l(bu) = 4.
Thus we may assume that the inertial quotient of bu is isomorphic to Q8. Then

the arguments in [15] show that there are only two bu-subsections, and we obtain
k(bu) = 2. However, then the defect groups of bu have order 2, a contradiction. �

Examples of p-blocks B with k(B)− l(B) = 1 are the p-blocks of multiplicity one
introduced in [21] by G. Michler. We recall that the multiplicity µ(B) of a p-block B
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is defined by
µ(B) := max{cii − 1 : i = 1, . . . , l(B)}

where C = (cij) denotes the Cartan matrix of B. Thus µ(B) = 1 if and only if all
diagonal entries in the Cartan matrix of B are equal to 2.
In [21], Michler showed that a block B of multiplicity one satisfies k(B)− l(B) = 1,

and that all irreducible ordinary characters associated to B have height zero. Thus,
Brauer’s Height Zero Conjecture predicts that B should have abelian defect groups.
In fact, in [21], it is shown that a p-block B of a finite group G with multiplicity one
has abelian defect groups if G is p-solvable or if p = 2.
The following more general result is now a consequence of Theorem 3.6:

Corollary 3.7. Let B be a p-block of a finite group G with multiplicity one. Suppose
that the fusion system F of B is nonexotic (e.g. B is the principal block or G is
p-solvable). Then the defect groups of B are elementary abelian.

4. Blocks with few characters

To finish this paper, we now concentrate on the subject of blocks with few charac-
ters. In this context, blocks B with k(B) − l(B) = 1 appear quite naturally, as we
shall see. First of all, let us summarize a few facts on a p-block B of a finite group
G with defect group D having a small number of characters. We have the following:

(i) We have k(B) = 1 if and only if D = 1.
(ii) We have k(B) = 2 if and only if |D| = 2 (see [2]).
(iii) If k(B) ≤ 4 and l(B) = 1, then |D| = k(B) (see [17]).
(iv) If k(B) = 5 and l(B) = 1, then D ∈ {C5, D8, Q8} (see [3]).

In this paper we conjecture that if k(B) = 3 then |D| = 3, and we prove that this
is a consequence of the Alperin-McKay conjecture. First, we take care of the case
where the defect group is normal.

Theorem 4.1. Let B be a p-block of a finite group G with normal defect group D,
and suppose that k(B) = 3. Then |D| = 3.

Proof. By results of Fong and Reynolds, we may assume thatD is a Sylow p-subgroup
of G, and that Z := Op′(G) is cyclic and central in G. By [17], we may also assume
that l(B) = 2. Then G acts transitively on D \ {1} by conjugation; in particular,
D is elementary abelian. We write |D| = pd. By the Hall-Higman Lemma, the
kernel of the action of G on D is ZD. By a result of Passman [26], apart from
finitely many exceptions, G/ZD is isomorphic to a subgroup of the semilinear group
T (pd). Here T (pd) denotes the semidirect product of the multiplicative group F

×

pd

of the finite field Fpd with the Galois group Γ of Fpd over Fp. In particular, G/ZD
has a cyclic normal subgroup H/ZD whose order s divides pd − 1 such that G/H is
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cyclic of order t dividing d. Since G/ZD acts transitively on D \ {1} we also have
(pd − 1)

∣

∣ |G : ZD| = st.
It is well-known that IBr(B) = IBr(G|ζ) for some ζ ∈ IBr(Z). Let us consider

IBr(H|ζ). On the one hand, |IBr(G|ζ)| = |IBr(B)| = l(B) = 2 implies that G has
at most two orbits on IBr(H|ζ). Moreover, each of these orbits has length at most
|G : H| = t. Thus |IBr(H|ζ)| ≤ 2t ≤ 2d.
On the other hand, we have ZD/D ≤ Z(H/D). Since H/ZD is cyclic, H/D has to

be abelian; in particular, we have |IBr(H|ζ)| = |H : ZD| = s. Thus s = |IBr(H|ζ)| ≤
2d, and pd − 1 ≤ |G : ZD| ≤ st ≤ 2d2.
If p = 2, then our result follows easily since k0(B) ≡ 0 (mod 4) for d ≥ 2. Thus

we may assume that p ≥ 3.
If d = 1 then our result follows easily from the Brauer-Dade theory of blocks with

cyclic defect groups. Thus we may assume that d ≥ 2 and p ≥ 3.
If d = 2 then p2 ≤ 1 + 8 = 9, i.e. p = 3. This case leads to a contradiction by

making use of the results in [15]. Thus we may assume that d ≥ 3 and p ≥ 3, so that
3d ≤ pd ≤ 1 + d2; however, this is impossible.
It remains to deal with the exceptional cases in Passman’s Theorem; so we may

assume that

|D| ∈ {32, 52, 72, 112, 192, 232, 292, 592, 34}.

Suppose first that d = 2, and choose a nontrivial B-subsection (u, bu). Then bu
dominates a unique block bu ofCG(u)/〈u〉, and bu has defect 1. Since 1 = l(bu) = l(bu)
we conclude that bu has inertial index 1. Thus bu has inertial index 1 as well, and
G/ZD acts regularly on D \ {1}. Hence G/Z is a Frobenius group with Frobenius
kernel ZD/Z and Frobenius complement G/ZD. In particular, the Sylow subgroups
of G/ZD are cyclic or (generalized) quaternion. Thus the Schur multiplier of G/ZD
is trivial. Hence we may assume that Z = 1. But then B is the only p-block of G, so
that G has class number 3. This implies that |G| ≤ 6, a contradiction.
We are left with the case |D| = 34. In this case G/Z is a doubly transitive

permutation group of degree 34. It is well-known that |G/Z| = 2k345 with k ∈
{5, 6, 7} (see Example XII.7.4 in [12]). Using GAP [8], it is easy to work out the
structure of G/Z and to derive a contradiction. �

Theorem 4.2. Let B be a p-block of a finite group G with defect group D such
that k(B) = 3. Moreover, suppose that k0(B) = k0(b) where b denotes the Brauer
correspondent of B in NG(D). Then |D| = 3.

Here k0(B) denotes the number of irreducible ordinary characters of height zero
associated to B. Thus the conclusion of this theorem is satisfied if the Alperin-McKay
Conjecture holds.

Proof of Theorem 4.2. It is well-known that b has defect group D. Then b dominates
a unique p-block b of NG(D)/Φ(D), and b has defect group D := D/Φ(D) which is
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abelian and normal in NG(D)/Φ(D). Moreover, we have

k(b) = k0(b) ≤ k0(b) = k0(B) ≤ k(B) = 3.

If we assume that k(b) ≤ 2, then we get |D| ≤ 2. Thus D is a cyclic 2-group which
is impossible. This shows that we must have k(b) = 3.
Since D is normal in NG(D)/Φ(D), Theorem 4.1 implies that |D| = 3. Thus D is

cyclic, and the Brauer-Dade theory yields the result. �

It is known that k0(B) ≥ 2 for every block B with positive defect (see [24]). Hence,
one may ask what can be said in case k0(B) = 2. A similar proof as above shows
that the Alperin-McKay Conjecture implies the following generalization of Brandt’s
result:

k0(B) = 2 ⇐⇒ k(B) = 2 ⇐⇒ |D| = 2.

Finally, in this context of blocks with few characters, it might be of interest to
recall that Héthelyi and Külshammer conjectured in [10] that

k(B) ≥ 2
√

p− 1

for arbitrary p-blocks B of arbitrary finite groups.
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