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COMMUTATIVITY DEGREE OF FINITE GROUPS
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The commutativity degree of a group is the probability that two randomly se-
lected (with replacement) elements of the group commute. We find bounds on the
commutativity degree of a finite group, equate restricted values of commutativity
degree to finite groups with particular structures, compute the commutativity de-
gree for a number of classes of finite groups, and discuss the set of possible values of
commutativity degree for finite groups.
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Chapter 1: Introduction

The probability that two elements of a group commute is called the commutativity

degree of the group. It is well known that no finite group has commutativity degree in

the interval (5
8
, 1) and that a group G has commutativity degree P (G) = 5

8
= 22+2−1

23

if and only if G/Z ∼= Z2 × Z2. We extend this result to any prime p. We expand

upon a result from Rusin [43] showing that any group with commutativity degree in

the interval (1
2
, 5

8
] has a commutativity degree of 1

2
(1 + 1

22n ) for some n ∈ N and we

construct a class of groups realizing these values for all n. Lescot [32] shows that if

a group G has the property G/Z(G) ∼= S3, then P (G) = 1
2
. What are the possible

values of commutativity degree less than 1
2
? We show that the value 1

n
, for any n ∈ N,

is the commutativity degree of a finite group, and that this group cannot be nilpotent.

We will show that, if a group is not nilpotent then its commutativity degree is less

than 1
2
, and if a group is not solvable then its commutativity degree is less than 1

12
.

We will find additional useful bounds on commutativity degree for different types of

groups.

Finding the commutativity degree of a finite group is equivalent to finding the

number of conjugacy classes of the group or to finding the number of irreducible

characters of the group. This relates commutativity degree to many areas of group

theory; there are many questions, and a long history of results, concerning the rela-

tionship between irreducible characters of a group and group-theoretic properties of

the group.

Our investigation begins with a formal definition and brief introduction to com-

mutativity degree.

1
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1.1 Initial Definitions and Notation

1.1.1 What is the Probability That Two Elements Commute?

Let G be a finite group. Suppose that a random element, x, of G is selected, replaced,

and then a second random element y is selected. What is the probability that x and

y commute?

Each outcome of this experiment is represented by the ordered pair (x, y) and the

sample space is G×G. An outcome (x, y) for which xy = yx is called a commutativity.

The set of all commutativities is the event “randomly chosen x and y commute” which

we denote by c(G). Explicitly, c(G) = {(x, y) : xy = yx}. Assuming that all draws

are equally likely, the probability that randomly chosen x and y commute is

P (c(G)) =
|c(G)|
|G×G|

. (1.1)

The probability P (c(G)) is a property of G called commutativity degree and we

shorten the notation to P (G) for convenience. Note that it xy = yx then both (x, y)

and (y, x) are elements of c(G). Also, if G is Abelian, then c(G) = G × G and

P (G) = 1.

The table of occurrences of commutativities for a group G is called a Commuta-

tivity Table. A Commutativity Table contains an entry for each pair in the sample

space G × G. Each ordered pair in c(G) is represented by a 1 and all other ordered

pairs by a 0. The commutativity degree P (G) is the proportion of nonzero entries to

total entries in the table.

For instance, Table 1.1 is the Commutativity Table for the dihedral group D3.
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e ρ ρ2 r rρ rρ2

e 1 1 1 1 1 1
ρ 1 1 1 0 0 0
ρ2 1 1 1 0 0 0
r 1 0 0 1 0 0
rρ 1 0 0 0 1 0
rρ2 1 0 0 0 0 1

Table 1.1: Commutativity Table for
D3 = 〈r, ρ : r2 = e, ρ3 = e, ρr = rρ2〉

There are 30 ordered pairs represented by a 1 on Table 1.1, so the commutativity

degree of D3 is

P (D3) =
|c(G)|
|G×G|

=
18

36
=

1

2
.

As additional examples, Tables 1.2 and 1.3 are Commutativity Tables for the

quaternion group Q8 and the alternating group A4, respectively.

e b b2 b3 a ab ab2 ab3

e 1 1 1 1 1 1 1 1
b 1 1 1 1 0 0 0 0
b2 1 1 1 1 1 1 1 1
b3 1 1 1 1 0 0 0 0
a 1 0 1 0 1 0 1 0
ab 1 0 1 0 0 1 0 1
ab2 1 0 1 0 1 0 1 0
ab3 1 0 1 0 1 0 0 1

Table 1.2: Commutativity Table for
Q8 = 〈a, b : a4 = b4 = e, a2 = b2, ba = ab3〉
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(1) (12)(34) (13)(24) (14)(23) (123) (243) (142) (134) (132) (143) (234) (124)

(1) 1 1 1 1 1 1 1 1 1 1 1 1
(12)(34) 1 1 1 1 0 0 0 0 0 0 0 0
(13)(24) 1 1 1 1 0 0 0 0 0 0 0 0
(14(23) 1 1 1 1 0 0 0 0 0 0 0 0

(123) 1 0 0 0 1 0 0 0 0 0 0 0
(243) 1 0 0 0 0 1 0 0 1 0 1 0
(142) 1 0 0 0 0 0 1 0 0 0 0 1
(134) 1 0 0 0 0 0 0 1 0 1 0 0
(132) 1 0 0 0 1 0 0 0 1 0 0 0
(143) 1 0 0 0 0 0 0 1 0 1 0 0
(243) 1 0 0 0 0 1 0 0 0 0 1 0
(124) 1 0 0 0 0 0 1 0 0 0 0 1

Table 1.3: Commutativity Table for A4

Counting the ratios of entries in Tables 1.2 and Table 1.3 yields that the commu-

tativity degree of Q8 is

P (Q8) =
40

64
=

5

8

and that the commutativity degree of A4 is

P (A4) =
48

144
=

1

3
.

1.1.2 Additional Definitions and Notation

Let G be a group. Throughout this paper, we assume that G is finite. Let g ∈ G.

The conjugation map φg : G → G is defined by φg(x) = gxg−1. The centralizer

of x is the set of elements in G that commute with x, and in terms of conjugation

it is the set of g ∈ G such that φg(x) = x. The centralizer of x in G is denoted

by CG(x). The set of all possible images of x under conjugation by elements of G,

{y ∈ G : φg(x) = y for some g ∈ G}, is the conjugacy class of x. The conjugacy class

of x ∈ G is denoted by [x]. The centralizer and conjugacy class of x are related by

the equation |[x]| = [G : CG(x)]. Define k(G) to be the number of distinct conjugacy

classes of G.
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The center of G is the set {h ∈ G : hg = gh for all g ∈ G}. The center is denoted

by Z(G) or by Z when the referenced group is clear. The commutator subgroup is

< [x, y] = xyx−1y−1 : x, y ∈ G > and is denoted by G′ or [G,G].

If the normal series of G is

G = G(0) �G(1) �G(2) � ...�G(d) = {e}

with G(i) = [G(i−1), G(i−1)] for 1 ≤ i ≤ d, then G is solvable of derived length d.

If the lower central series of G is

G = L(0) � L(1) � L(2) � ...� L(n) = {e}

with L(i) = [G,L(i−1)] for 1 ≤ i ≤ n or if the upper central series of G is

e = Z0 ( Z1 ( ... ( Zn = G

with Zi = Z(G/Z(i−1)) for 1 ≤ i ≤ n, then G is nilpotent of nilpotence class n.

1.2 Applications of the Definition of Commutativ-

ity Degree

In this section we use the definition of commutativity degree to derive the formula

P (G) = k(G)
|G| , to show that the commutativity degree of a direct product is the product

of the commutativity degrees of the factor groups, and to find a general lower bound

on the commutativity degree of a non-Abelian group.

1.2.1 A Formula for P (G) Using Basic Definitions

Recall the definition P (G) = |c(G)|
|G×G| . First notice that we can rewrite the event c(G)

in terms of the conjugation map.

c(G) = {(x, y) ∈ G×G : xy = yx}

= {(x, y) ∈ G×G : xyx−1 = y}

= {(x, y) ∈ G×G : φx(y) = y}. (1.2)
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Theorem 1.2.1. Let G be a finite group. Then the commutativity degree of G is

P (G) = k(G)
|G| .

Proof. Let {[x1], [x2], ..., [xk]} be the set of distinct conjugacy classes of G so that

k = k(G). Recall that G is the disjoint union of the distinct conjugacy classes of G.

Notice from Equation 1.2 that for x ∈ G, (x, y) ∈ c(G) if and only if y ∈ CG(x). Thus

|c(G)| =
∑
x∈G

|CG(x)|.

It follows that

|c(G)| =
∑
x∈G

|CG(x)|

=

k(G)∑
i=1

|[xi]||CG(xi)|

=

k(G)∑
i=1

[G : CG(xi)]|CG(xi)|

=

k(G)∑
i=1

|G|

= k(G)|G|.

Therefore,

P (G) =
|c(G)|
|G×G|

=
k(G)|G|
|G|2

=
k(G)

|G|
. (1.3)

Calculating the commutativity degree of a finite group becomes a question of

counting the number of conjugacy classes of the group. For some groups of small

order, it is possible to explicitly compute the conjugacy classes. As an example, we

find the commutativity degree of the symmetric group S3.
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Example 1.2.2. Consider S3 = {e, σ, σ2, τ, στ, σ2τ}. The conjugacy classes of S3

are:

[e] = {e}

[σ] = {σ, σ2}

[τ ] = {τ, στ, σ2τ}.

The symmetric group S3 is partitioned into three conjugacy classes so

P (S3) =
3

|S3|
=

1

2
.

1.2.2 Direct Products

We can calculate the commutativity degree of a direct product directly from the

definition of commutativity degree.

Proposition 1.2.3. Let H and K be groups and G = H × K. Then P (G) =

P (H)P (K).

Proof. Recall that P (G) = |c(G)|
|G×G| where

c(G) = {((h1, k1), (h2, k2)) ∈ G×G : (h1, k1)(h2, k2) = (h2, k2)(h1, k1)}.

Next we rewrite c(G) in terms of c(H) and c(K) as follows:

c(G) = {((h1, k1), (h2, k2)) ∈ G×G : (h1h2, k1k2) = (h2h1, k2k1)}

c(G) = {(h1, h2) ∈ H ×H : h1h2 = h2h1}{(k1, k2) ∈ K ×K : k1k2 = k2k1}

c(G) = c(H)c(K)

Therefore,

P (G) =
|c(G)|
|G×G|

=
|c(H)||c(K)|
|H ×H||K ×K|

= P (H)P (K).
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1.2.3 A Lower Bound from Basic Definitions

We find a general lower bound by applying the definition of commutativity degree.

Proposition 1.2.4. Suppose |G/Z| = l. Then P (G) ≥ 2l−1
l2

.

Proof. Let |G/Z| = l. The set of commuting pairs, c(G), contains two copies of Z(G)

so that

|c(G)| ≥ |G× Z|+ |Z ×G| − |Z × Z|,

with the last term accounting for redundancy in counting the pairs of central elements.

Then

P (G) =
|c(G)|
|G×G|

≥ |G× Z|+ |Z ×G| − |Z × Z|
|G×G|

=
|G||Z|+ |Z||G| − |Z|2

|G|2

=
l|Z|2 + l|Z|2 − |Z|2

l2|Z|2

=
2l − 1

l2
.

1.3 Commutativity Degree and the Class Equation

In this section, we will discuss the class equation as it relates to commutativity degree.

To write the class equation, let G be a group and let {[xi] : 1 ≤ i ≤ k(G)} be the set

of distinct conjugacy classes of G. Since the conjugacy classes partition G,

|G| =
k(G)∑
i=1

|[xi]|. (1.4)
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Equation 1.4 is called the class equation of G. The number of summands in the

class equation equals the number of conjugacy classes in the group, and this makes

the class equation one of our primary tools for calculating the number of conjugacy

classes of a group. Among our applications of the class equation include derivations of

approximately half of the bounds in Chapter 2 and computation of the commutativity

degree of many of the groups in Chapter 4.

The class equation is often written in terms of the center. Notice that x ∈ Z(G)

if and only if [x] = |{x}|. Hence the set {|[x]| = 1} = |Z(G)|. We can write the class

equation in the form

|G| = |Z(G)|+
k(G)∑

i=|Z(G)|+1

|[xi]|. (1.5)

Since |[x]| = [G : CG(x)] for all x ∈ G, we can also write the class equation in the

form

|G| = |Z(G)|+
k(G)∑

i=|Z(G)|+1

[G : CG(xi)]. (1.6)

Next, let x ∈ G. By Lagrange’s theorem

|G| = |CG(x)|[G : CG(x)] = |CG(x)||[x]|.

Thus |[x]| divides |G|, and all terms of the class equation divide the order of G.

To calculate the commutativity degree of a group, it is often easier to count the

number of terms in Equation 1.4 than to compute each conjugacy class explicitly. We

illustrate this with the dihedral group D4.

Example 1.3.1. Consider D4 =< r, ρ : r2 = e, ρ4 = e, ρr = rρ3 >. The class

equation of D4 is

|D4| = |Z|+
k(D4)∑
i=|Z|+1

|[xi]|,

with xi /∈ Z. Since e and ρ2 are the only elements of D4 which commute with all

elements in the group, Z = {e, ρ2}.
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For each remaining conjugacy class [xi], |[xi]| ∈ {2, 4} because |[xi]| divides |G|.

Suppose there were some xi ∈ D4 with |[xi]| = 4. Then |CG(xi)| = 2 and xi would

commute only with e and itself. Since all elements of D4 commute with ρ2, no such

element exists. Then the class equation of D4 written in the form of Equation 1.4 is

|D4| = 1 + 1 + 2 + 2 + 2.

Thus the class equation of D4 has five summands so

P (D4) =
5

|D4|
=

5

8
.

1.4 Commutativity Degree and the Degree Equa-

tion

The degree equation provides another way to write the order of a group as a sum

with k(G) summands. This makes the degree equation our second primary tool for

calculating the commutativity degree of a group. Before stating the degree equation,

we will briefly discuss the structure of group representations and of group rings, as

these pertain to the degree equation.

Let G be a group. The C-vector space with basis {g : g ∈ G} is called the group

ring and is denoted by C[G]. Elements of the group ring are written
∑

g∈G agg with

ag ∈ C, and multiplication is defined by extending the group multiplication via the

distributive law.

A complex representation of G is a homomorphism φ : G → GLn(C); n is called

the degree of the representation. Notice that GLn(C) acts on the vector space of

column vectors V = Cn. Also, we can make V into a left C[G]-module by defining

g · v = φ(g)(v) and extending linearly to all of C[G]. Conversely, if M is a left C[G]-

module with dimCM = n, then we can define a representation φM : G → GLn(C).

To define this representation, first fix a vector space basis for CM . If g ∈ G, then



11

λg : M → M defined by λg(m) = gm is an invertible linear transformation. Define

φ(g) to be the matrix representation of λg with respects to the fixed basis. Thus

representations of G are equivalent to left modules over C[G].

The representation φ is called irreducible if V has no proper, nontrivial, invariant

subspaces; equivalently, V is simple when considered as a left C[G]-module.

The structure of C[G] is further described using Masche and Wedderburn’s theo-

rems. We combine their results as they apply to our situation:

Theorem 1.4.1. (Masche and Wedderburn) Let G be a finite group. Then the group

ring C[G] can be written as

C[G] = C×Mn2(C)×Mn3(C)× ...Mnl(C)

for some l ∈ N and where each integer ni ≥ 1.

A finite dimensional algebra of the form described by Theorem 1.4.1 is called

semisimple. It is know that over a semisimple finite dimensional algebra, every module

is a direct sum of simple modules each of which is isomorphic to a simple left ideal.

In terms of Theorem 1.4.1, C[G] has finitely many nonisomorphic simple modules.

Explicitly, these modules are

C,Cn2 ,Cn3 , ...,Cnl .

Hence G has l non-equivalent irreducible representations of degree 1,n2,n3, . .. nl.

(The factor C corresponds to φ : G → C? defined by φ(g) = 1 for all g ∈ G.) Hence

we have the following equation, which we call the degree equation

|G| = 1 + n2
2 + n2

3 + ...+ n2
l .

It can be shown that l is the number of conjugacy classes of G.

The most common way to write the degree equation requires showing that all

representations of G/G′ are of degree one. Let H = G/G′. Let φ : H → Mni(C) be
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a representation of H. Note that H is Abelian, so C[H] is a commutative ring and φ

must map to a commutative matrix ring. Then ni = 1 and Mni(C) = C? is the ring

of scalar matrices. It is not difficult to show that all degree one representations of G

factor through H. Hence we can write the degree equation as

|G| = [G : G′] +

k(G)∑
[G:G′]+1

n2
i . (1.7)

It can also be shown that ni divides |G| for each i. We omit this proof, but a proof this

statement, as well as a more complete discussion of the degree equation, is provided

in Chapter 18 of [15].

Since k(G) is the number of conjugacy classes of G, the degree equation is used

in a similar manner to the class equation to find the number of conjugacy classes of

a group. We include three examples.

Example 1.4.2. Consider the quaternion group

Q8 = 〈a, b : a4 = b4 = e, a2 = b2, ba = ab3〉. By Equation 1.7,

8 = |Q8| = [Q8 : Q′8] +

k(Q8)∑
i=[Q8:Q′8]+1

n2
i .

Since Q′8 = {e, b2}, [Q8 : Q′8] = 4. Then

|Q8| = 1 + 1 + 1 + 1 +

k(Q8)∑
i=5

n2
i

= 1 + 1 + 1 + 1 + 22,

so Q8 has 5 irreducible representations and thus 5 conjugacy classes. Then P (Q8) = 5
8
.

Example 1.4.3. We count the number of irreducible representations of A4. The

commutator subgroup of A4 includes the identity and three pairs of disjoint 2-cycles,

so [A4 : A′4] = 3. Also note that |A4| = 12. Then the degree equation is

|A4| = 1 + 1 + 1 +

k(A4)∑
4

n2
i

= 1 + 1 + 1 + 32.
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Hence A4 has 4 conjugacy classes and the commutativity degree is P (A4) = 1
3
.

Example 1.4.4. Consider S4. Note that |S4| = 24. Since S ′4 = A4, [S4 : S ′4] = 2.

Then

|S4| = 1 + 1 +

k(S4)∑
i=3

n2
i

= 1 + 1 + 22.

Then
∑k(S4)

i=3 n2
i = 22 is a sum of squares each greater than 1. If there were an ni > 4

then n2
i > 22. Hence all ni ≤ 4. If there were some ni = 4, then 22 = 16 +

∑k(S4)
i=4 n2

i

and then 8 =
∑k(S4)

i=4 n2
i . However, 8 cannot be written as a sum of squares greater

than 1. Hence all ni ≤ 3. If all the ni > 1 were equal to 2, or all the ni > 1 were

equal to 3, then
∑k(S4)

i=3 n2
i 6= 22. Thus there must be some ni = 2 and another nj = 3.

It follows that

|S4| = 1 + 1 + 22 + 32 +

k(S4)∑
i=5

n2
i

= 1 + 1 + 22 + 32 + 32.

The degree equation for S4 has 5 terms, so k(S4) = 5 and P (S4) = 5
24

.



Chapter 2: Bounds on Commutativity Degree

In this Chapter, we apply the class and degree equations to find lower and upper

bounds on the commutativity degree of finite non-Abelian groups.

In Section 2.1, we use the class equation to derive the upper bound of 5
8

on the

commutativity degree of all finite non-Abelian groups. For a finite group G we find

bounds in terms of the smallest prime p dividing |G/Z| called the upper and lower

p-bounds. Then we find a second set of bounds called the upper and lower l-bounds

in terms of l = |G/Z|. An additional set of bounds written in terms of both |G/Z|

and p are called the lp-bounds. A final upper bound derived from the class equation

is written in terms of a centralizer of maximal order in G.

In Section 2.2, we use the degree equation to find a general pair of lower and

upper bounds on the commutativity degree of any finite non-Abelian group in terms

of the commutator subgroup. We use a similar method to find another upper bound

called the minimal dimension degree equation bound. A corollary of the general upper

bound is a second proof of the 5
8

bound. Two additional upper bounds are written in

terms of the derived length of the group. One of these bounds applies to all solvable

groups, the second only to p-groups.

In Section 2.3, we find three lower bounds using the structure of the group. The

first two bounds are found by counting conjugacy classes. One applies to nilpotent

groups and the other to solvable groups. The third bound, which we call the Pyber

lower bound, is another bound for solvable groups.

14
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2.1 Bounds from the Class Equation

In this section, we use the class equation to find bounds on the commutativity of

non-Abelian finite groups.

2.1.1 The 5
8 Bound

The upper bound of 5
8

applies to all non-Abelian finite groups. It is worth emphasizing

that there is no group with commutativity degree in the interval (5
8
, 1). We derive the

5
8

bound from the class equation and then include some examples of groups realizing

the bound.

Proposition 2.1.1. Let G be a finite non-Abelian group. Then P (G) ≤ 5
8
.

Proof. Consider the class equation

|G| = |Z(G)|+
k(G)∑

i=|Z(G)|+1

|[xi]|.

For each i, |[xi]| ≥ 2. Then

|G| ≥ |Z(G)|+ 2(k(G)− |Z(G)|), (2.1)

and solving for k(G) yields

k(G) ≤ |G|+ |Z(G)|
2

.

Since G is not Abelian, G/Z(G) is not cyclic. Thus |G/Z(G)| ≥ 4 and then |Z(G)| ≤
|G|
4

. Therefore

k(G) ≤ 1

2

(
|G|+ |G|

4

)
=

5|G|
8
,

and

P (G) =
k(G)

|G|
≤ 5

8
.
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The following example describes some groups realizing the 5
8

bound.

Example 2.1.2. First, recall from Example 1.3.1 that P (D4) = 5
8
. Notice that

D4/Z(D4) = D4/{e, ρ2} ∼= V4.

Secondly, the Quasidihedral Groups,

QDn =< a, b : a2n = b2 = e, bab = a2n+1 >

are a class of groups with commutativity degree 5
8
. In Section 4.1.2, we calculate prop-

erties of the Quasidihedral groups and show that it is also true that QDn/Z(QDn) ∼=

V4.

In Proposition 5.2.2, we will generalize this example to show that P (G) = 5
8

if and

only if |G/Z| ∼= V4, the Klein 4-group.

2.1.2 p-Bounds

A more specific upper bound on the commutativity degree of a group is written in

terms of the smallest prime p dividing |G/Z(G)|. This bound is called the upper

p-bound.

Proposition 2.1.3. Let p be the smallest prime dividing |G/Z(G)|. Then

P (G) ≤ p2 + p− 1

p3
.

Proof. Let p be the smallest prime dividing |G|. Let |G| = pl|Z(G)|. Then l ≥ p

since G/Z(G) is not cyclic. Notice that for each xi /∈ Z(G) |[xi]| = [G : CG(xi)] ≥ p

since CG(xi) ) Z(G).

The class equation yields the bound,

|G| ≥ |Z(G)|+ p(k(G)− |Z(G)|).
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Solving for k(G) yields

k(G) ≤ |G|+ (p− 1)|Z(G)|
p

.

Then

P (G) ≤ |G|+ (p− 1)|Z(G)|
p|G|

=
(p− 1)|Z(G)|+ pl|Z(G)|

p2l|Z(G)|

=
(p− 1) + pl

p2l
.

Next consider the ratio

(
p− 1 + pl

p2l
)/(

p− 1 + p2

p3
) =

(p− 1 + pl)p3

p2l(p− 1 + p2)
(2.2)

=
(p− 1 + pl)p

l(p− 1 + p2)

=
p2l + p(p− 1)

p2l + l(p− 1)

≤ 1.

Since this ratio is less than or equal to 1 and the commutativity degree is less than or

equal to the numerator (p−1)+pl
p2l

, it follows that the commutativity degree is less than

or equal to the denominator as well. Hence

P (G) ≤ p2 + p− 1

p3
.

Table 2.1 lists p-upper bounds for G with smallest prime p dividing |G|. As p

increases, the bound becomes close to 1
p
. For instance, if p = 641, the bound is

approximately 0.001562 and 1
641
≈ 0.001560. Notice the additional upper bound of

p+pl−1
p2l

, with l = |G/Z| and p the smallest prime dividing |G|, in Equation 2.2. We

call this bound the p?-bound. The p?-bound provides a slightly improved estimate

of P (G). Table 2.2 lists some sample p- and p?-bounds. Table 2.2 suggests that the
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p 2 3 5 7 11 13 17 19

P−Bound 0.6250 0.4074 0.2320 0.1603 0.0984 0.0824 0.0621 0.0553

5/8 11/27 29/125 55/343 25/254 29/352 37/596 41/742

Table 2.1: p-Upper Bounds

additional bound reduces the p-bound by at most little more than 0.1, and appears

to make a significant difference for small p values. A corresponding lower p-bound

can be calculated for a group with |G/Z(G)| = pk.

Proposition 2.1.4. Let |G/Z(G)| = pk.Then

P (G) ≥ pk + pk−1 − 1

p2k−1
.

Proof. Suppose |G/Z(G)| = pk. Let x ∈ G such that x /∈ Z(G). Then since x ∈

CG(x) and x /∈ Z(G), CG(x) ( G. Also Z(G) ( CG(x) because Z(G) ⊆ CG(x) but

x /∈ Z(G). Thus

|Z(G)| < |CG(x)| < |G|.

and then

p|Z(G)| ≤ |CG(x)| ≤ pk−1|Z(G)|

where |CG(x)| divides |G|. Then |[x]| = [G : CG(x)] and

pk−1 ≥ |[x]| ≥ p.

From the class equation,

|G| ≤ |Z(G)|+ pk−1(k(G)− |Z(G)|).

Solving for k(G) yields

k(G) ≥ |G|+ (pk−1 − 1)|Z(G)|
pk−1

.
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p l = G/Z (p−1)+pl
p2l

p2+p−1
p3

2 3 0.5833 7/12 0.625 5/8

2 5 0.55 11/20 0.625 5/8

2 40 0.5063 81/160 0.6250 5/8

2 100000 0.5000 1/2 0.6250 5/8

3 5 0.3778 17/45 0.4074 11/27

3 7 0.3651 23/63 0.4074 11/27

3 99 0.3356 299/891 0.4074 11/27

5 7 0.2229 39/175 0.232 29/125

5 11 0.2145 59/275 0.232 29/125

7 13 0.1523 97/637 0.1603 55/343

7 49 0.1454 108/743 0.1603 55/343

11 13 0.0971 32/329 0.0984 25/254

11 53 0.0925 27/292 0.0984 25/254

41 43 0.0250 11/441 0.02450 21/841

41 47 0.0249 6/241 0.02450 21/841

41 1009 0.0244 1/41 0.02450 21/841

1009 1013 0.0010 0 0.0010 0

1009 1933 0.0010 0 0.0010 0

1009 3989 0.0010 0 0.0010 0

27107 27109 0.00004 0 0.00004 0

Table 2.2: Sample Upper p-Bounds and p?-Bounds



20

Then

P (G) ≥ |G|+ (pk−1 − 1)|Z(G)|
pk−1|G|

=
|G/Z(G)|+ (pk−1 − 1)

pk−1|G/Z(G)|

=
pk + (pk−1 − 1)

pk−1pk

=
pk + pk−1 − 1

p2k−1
.

(2.3)

In Table 2.3, we compare the lower and upper p-bounds for several p and k values.

Observe from Table 2.3 that in the case of k = 2, the lower p-bound equals the upper

p-bound; hence a group G with |G/Z(G)| = p2 realizes the bound p2+p−1
p3

. This will

be illustrated by Proposition 5.2.2, which states that |G/Z(G)| ∼= V4 if and only if

P (G) = 5
8

= 22+2−1
23 . Proposition 5.2.3 is a proof of the general case, and Corollary

2.1.5 is the specific case in which |G| = p3 and G realizes the bound.

Corollary 2.1.5. Let p be a prime. If G is non-Abelian with |G| = p3 then P (G) =

p2+p−1
p3

.

Proof. Suppose that G is non-Abelian and |G| = p3. First we will show that |Z(G)| =

p. Since G is a p-group, |Z(G)| > 1. Suppose |Z(G)| = p2. Then [G : Z(G)] = p,

G/Z(G) is cyclic, and G Abelian. Hence |Z(G)| = p.

Next suppose a ∈ G and a /∈ Z(G). Since CG(a) ⊃ {a} and a /∈ Z(G), |CG(a)| >

|Z(G)| = p. Further, since a ∈ CG(a) and a /∈ Z(G), |CG(a)| < |G| = p3. Hence

|CG(a)| = p2 and |[a]| = [G : CG(a)] = p.
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k p UpperBound LowerBound

2 2 0.6250 5/8 0.6250 5/8

3 2 0.6250 5/8 0.3438 11/32

4 2 0.6250 5/8 0.1797 23/128

10 2 0.6250 5/8 0.0029 2/683

15 2 0.6250 5/8 0.0001 0

2 3 0.4074 11/27 0.4074 11/27

3 3 0.4074 11/27 0.1440 35/243

4 3 0.4074 11/27 0.0489 41/838

10 3 0.4074 11/27 0.0001 0

2 5 0.2320 29/125 0.2320 29/125

3 5 0.2320 29/125 0.0477 37/776

4 5 0.2320 29/125 0.0096 3/313

7 5 0.2320 29/125 0.0001 0

2 41 0.0250 21/841 0.0250 21/841

3 41 0.0250 21/841 0.0006 0

2 641 0.0016 1/640 0.0016 1/640

3 641 0.0016 1/640 0.0000 0

Table 2.3: Comparison of Upper and Lower p-Bounds
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By the class equation

|G| = |Z(G)|+ p(k(G)− |Z(G)|)

= p+ p(k(G)− p).

Solving for k(G) yields

k(G) = p2 + p− 1.

Therefore,

P (G) =
p2 + p− 1

p3
.

To illustrate the generality of Proposition 5.2.3 in comparison to Corollary 2.1.5,

we provide an example of an indecomposable group G with commutativity degree

p2+p−1
p3

such that |G| > p3 and |Z(G)| 6= p. This example is also an application of GAP.

For more information on GAP and more detailed descriptions on the terminology and

tasks described in this example, see Appendix 6.1.

Example 2.1.6. We located the groupG in the SmallGroup library with SmallGroup

ID Tag [16, 4] and found that the presentation of this group is

G =< a, b : a4 = b4 = e, aba−1 = b3 > .

In GAP, we verified that G has |Z(G)| = 4, and k(G) = 10. Then for the prime

p = 2,

P (G) =
5

8
=
p2 + p− 1

p3

and |G/Z(G)| = p2, as desired. However, |G| = p4 and |Z| = p2.

Next we will show that G is indecomposable. Notice that D8 × Z2 and Q8 × Z2

are the only non-isomorphic direct products of order 16 with a non-Abelian factor.

The SmallGroup ID Tags for these groups are [16, 12] and [16, 11], respectively. Since
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G has ID Tag [16, 4], it is not a direct product with a non-Abelian factor. Hence it is

indecomposable.

It is also useful to apply the upper p-bound to a nilpotent group with a non-

Abelian factor.

Example 2.1.7. An Application of the p-Bound to Nilpotent Groups. Let G be a

nilpotent group. Then G is a direct product of p-Sylow subgroups, say G = Πr
i=1Pi

where |Pi| = pnii for some prime pi and ni ∈ Z . The commutativity degree of G is

P (G) = Πr
i=1P (Pi)

by Proposition 1.2.3. If, for some i, Pi is Abelian then P (Pi) = 1, so the commu-

tativity degree of G is completely determined by the commutativity degree of its

non-Abelian p-Sylow factors. That is, for some s ≤ r, P (G) = Πs
i=1P (Pi) where each

Pi, for 1 ≤ i ≤ s, is non-Abelian.

Each non-Abelian p-Sylow factor Pi has commutativity degree bounded by the

p-bound

P (Pi) ≤
p2
i + pi − 1

p3
i

,

so the commutativity degree of G is bounded by the product of the p-bounds on the

non-Abelian factors:

P (G) ≤ Πs
i=1

(
p2
i + pi − 1

p3
i

)
.

Table 2.4 lists upper bounds for nilpotent groups with given non-Abelian p-Sylow

factors: P1 = pn1
1 , P2 = pn2

2 , and P3 = pn3
3 . All possible products of p-Sylow factors

which yield an upper bound greater than 0.05 are listed.
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1 Factor 2 Factors 3 Factors

p1 Bound p1, p2 Bound p1, p2, p3 Bound

2 0.625 2, 3 0.2546 2, 3, 5 0.0591

3 0.4074 2, 5 0.1450

5 0.2320 2, 7 0.1002

7 0.1603 3, 5 0.0945

11 0.0984 3, 7 0.0653

13 0.0824

17 0.0621

19 0.0553

Table 2.4: Upper p-Bounds for Nilpotent Groups

2.1.3 l-Bounds and lp-Bounds

Let G be a finite group, let l = |G/Z(G)|, and let p be the smallest prime dividing

|G/Z(G)|. Upper and lower bounds on the commutativity degree of G are calculated

from the class equation in terms of l and p. We call these bounds the upper and lower

lp-bounds. The l-bounds will be a special case of the lp-bounds.

Proposition 2.1.8. Let |G/Z(G)| = l. If p is the smallest prime such that p divides

|G/Z(G)|, then

lp+ l − p
l2

≤ P (G) ≤ l + p− 1

pl
.

Proof. Let |G/Z(G)| = l and let p be the smallest prime dividing |G/Z(G)|. Suppose

a ∈ G and a /∈ Z(G). Then Z ( CG(a) ( G. Hence

p|Z(G)| ≤ |CG(a)| ≤ l

p
|Z(G)|.

and since [G : CG(a)] = |[a]|,

p|Z(G)| ≤ |G|
|[a]|
≤ l

p
|Z(G)|.

|G|
p|Z(G)|

≥ |[a]| ≥ p|G|
l|Z(G)|

.
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Then

l

p
≥ |[a]| ≥ p. (2.4)

We apply the second inequality in Equation 2.4 to the class equation as follows

|G| ≥ |Z(G)|+ p(k(G)− |Z(G)|).

Solving for k(G) yields

k(G) ≤ |G|+ (p− 1)|Z(G)|
p

.

Then

P (G) ≤ |G|+ (p− 1)|Z(G)|
p|G|

,

and

P (G) ≤ l|Z(G)|+ (p− 1)|Z(G)|
pl|Z(G)|

=
l + p− 1

pl
.

This establishes the upper lp-bound. Next, we apply the first inequality in Equation

2.4 to the class equation as follows

|G| ≤ |Z(G)|+ l

p
(k(G)− |Z(G)|).

Solving for k(G) yields

k(G) ≥
|G|+ ( l

p
− 1)|Z(G)|
l
p

=
p|G|+ (l − p)|Z(G)|

l
.

Then

P (G) ≥ p|G|+ (l − p)|Z(G)|
l|G|

,

and

P (G) ≥ lp|Z(G)|+ (l − p)|Z(G)|
l2|Z(G)|

=
lp+ l − p

l2
.

This establishes the lower lp-bound.

Since p = 2 is the smallest possible prime dividing |G/Z(G)|, we can calculate the

more general, but less accurate, l-bounds in terms of only |G/Z(G)|.
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Corollary 2.1.9. Let G be a non-Abelian group. If |G/Z(G)| = l, then

3l − 2

l2
≤ P (G) ≤ l + 1

2l
.

Proof. Let |G/Z(G)| = l and let p be the smallest prime dividing |G/Z(G)|. Since

p ≥ 2,

P (G) ≤ l + p− 1

pl
≤ l + 1

2l

and

3l − 2

l2
≤ lp+ l − p

l2
≤ P (G).

Notice that the lower bound in Corollary 2.1.9 is a sharper bound than the lower

bound 2l−1
l2

found using the definition of commutativity degree in Proposition 1.2.4.

Table 2.5 contains upper and lower lp- and l-bounds for G with select small composite

orders of G/Z(G).

From Table 2.5, notice that the l- and lp-bounds are calculated for groups with

|G/Z| ≥ 4 because if |G/Z| < 4 then G is Abelian. Several observations should

be noted from the Table. First, for groups with p = 2, the l- and lp-bounds are

equivalent. For p > 2, the lp-bounds are always as sharp or sharper than the l-

bounds. For example, when l = 10, both types of upper bounds are 11
20

and both

types of lower bounds are 7
25

. Also, when l = p2, the upper and lower lp-bounds are

equal. For instance, when l = 49, the lower and upper lp-bounds are both 55
343

. This

value is the commutativity degree of a group with |G/Z| = 49. In this case, l = p,

and the lp-bounds equals the upper p-bound.

2.1.4 Centralizer Upper Bound

A fourth type of upper bound on the commutativity degree of a non-Abelian group

derived from the class equation is written in terms of a centralizer of maximal order.

The proof is adopted from Guralnick [21].
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l L−Upper L−Lower LP−Upper LP−Lower

4 0.6250 5/8 0.6250 5/8 0.6250 5/8 0.6250 5/8

6 0.5833 7/12 0.4444 4/9 0.5833 7/12 0.4444 4/9

8 0.5625 9/16 0.3438 11/32 0.5625 9/16 0.3438 11/32

9 0.5556 5/9 0.3086 25/81 0.4074 11/27 0.4074 11/27

10 0.5500 11/20 0.2800 7/25 0.5500 11/20 0.2800 7/25

12 0.5417 13/24 0.2361 17/72 0.5417 13/24 0.2361 17/72

14 0.5357 15/28 0.2041 10/49 0.3810 8/21 0.2704 53/196

15 0.5333 8/15 0.1911 43/225 0.5333 8/15 0.1911 43/225

16 0.5313 17/32 0.1797 23/128 0.5313 17/32 0.1797 23/128

21 0.5238 11/21 0.1383 61/441 0.3651 23/63 0.1837 9/49

25 0.5200 13/25 0.1168 73/625 0.2320 29/125 0.2320 29/125

27 0.5185 14/27 0.1084 79/729 0.3580 29/81 0.1440 35/243

33 0.5152 17/33 0.0891 22/247 0.3535 35/99 0.1185 43/363

35 0.5143 18/35 0.0841 75/892 0.2229 39/175 0.1673 41/245

39 0.5128 20/39 0.0756 31/410 0.3504 41/117 0.1006 17/169

45 0.5111 23/45 0.0657 31/472 0.2178 49/225 0.1309 53/405

49 0.5102 25/49 0.0604 34/563 0.1603 55/343 0.1603 55/343

51 0.5098 26/51 0.0581 40/689 0.3464 53/153 0.0773 67/867

55 0.5091 28/55 0.0539 43/798 0.2145 59/275 0.1074 13/121

Table 2.5: l-Upper, l-Lower, lp-Upper, and lp-Lower Bounds
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Proposition 2.1.10. For some x ∈ G so that x /∈ Z(G), P (G) ≤ 3
2[G:CG(x)]

. If

Z(G) = {e}, then P (G) ≤ 1
[G:CG(x)]

for some x ∈ G such that x 6= {e}.

Proof. Choose x = xZ ∈ G/Z(G) such that c = |CG(x)| is of maximal order. Let

y ∈ G so that y /∈ Z(G). Then c ≥ |CG(y)|, and

|G|
c
≤ |G|
|CG(y)|

. (2.5)

Applying Equation 2.5 to the class equation as follows

|G| = |Z(G)|+
k(G)∑
Z(G)

[G : CG(xi)]

≥ |Z(G)|+
k(G)∑
Z(G)

|G|
c

= |Z(G)|+ |G|
c

(k(G)− |Z(G)|).

Then solving for k(G) yields

k(G) ≤ c− c|Z(G)|
|G|

+ |Z(G)|.

Since k(G), c, and |Z(G)| ∈ N, it follows that c|Z(G)|
|G| ∈ Z and

k(G) ≤ c− 1 + |Z(G)|.

Next,

P (G) ≤ c

|G|
+
|Z(G)| − 1

|G|
. (2.6)

Also,

Z(G)− 1 ≤ Z(G) ≤ |CG(x)|
2

.

Hence

P (G) ≤ 3

2[G : CG(x)]
. (2.7)
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Next suppose Z(G) = {e}. Then Equation 2.6 may be rewritten as follows:

P (G) ≤ c

|G|
+

1− 1

|G|

=
1

[G : CG(x)]
. (2.8)

Notice from the proof of Proposition 2.1.10 that to apply the upper bound in

Equation 2.7 or Equation 2.8, it is necessary to find a element in G with centralizer

of maximal order. We will illustrate the case when Z(G) = {e} and P (G) ≤ 1
[G:CG(x)]

with two examples.

Example 2.1.11. A Bound on Sn. Let n ≥ 4 and consider Sn. It can be shown

that Z(Sn) = {e}. First we will find an x ∈ Sn with |CSn(x)| of maximal order. Let

ρ ∈ Sn. Recall the well known result that [ρ] is the set of elements of Sn with the

same cycle structure as ρ. Dummit and Foote, [15] (4.3, Proposition 11), prove this

result, and we discuss it in more detail when computing the commutativity degree

of Sn in Section 4.2. Since |CSn(ρ)| = |G|
|[ρ]| , a minimal order of [ρ] corresponds to the

desired maximal order CG(ρ). Hence we will find cycle structure ρ having minimal

order. Suppose γ = ρ1ρ2, where ρ1 ia a cycle and ρ2 is a product of disjoint cycles

each disjoint from ρ1. Then |[γ]| = |[ρ1]||[ρ2]| since the number of conjugates of ρi

equals the number of elements of the same cycle structure as ρi. It follows that a

conjugacy class of minimal order must be the class of a cycle. Next let α ∈ Sn be

a cycle of length m. We can count the number of m cycles as follows

|[α]| = (n)(n− 1)...(n−m+ 1)

m
=
P (n,m)

m
.

We will show by induction on the length k of a k-cycle in Sn that

|[(12)]| = n(n− 1)

2
<

(n)(n− 1)...(n− k + 1)

k
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for all k-cycles such that 2 < k ≤ n and n > 4. Let k = 3. Then

(n)(n− 1)(n− 2)

3
≥ (n)(n− 1)

2

2(n− 2)

3

≥ (n)(n− 1)

2
· 1

= |[(12)]|.

Suppose the hypothesis is true for k = n− 1 and consider k = n. Then

(n)(n− 1)...(n− k + 1)

k
=

(n)(n− 1)...(1)(n− 2)

n(n− 2)

≥ (n)(n− 1)

2

(2)(n− 2)

n

≥ (n)(n− 1)

2
· 1

≥ [(12)].

Therefore, [(12)] is of minimal order, and CSn((12)) is of maximal order. Also,

|CSn((12))| = 2n!

n(n− 1)
.

Therefore

P (Sn) ≤ 2(n− 2)!

n!
=

2

n(n− 1)
.

Table 2.6 lists the bound of P (Sn) and the value of P (Sn) for small n. Observe

that as n increases, the bound becomes large relative to the actual commutativity

degree. However both the bound and actual commutativity degree approach the

same value, 0, as n increases.
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n P (Sn) Bound Sn

2 1 1

3 0.5 0.3333

4 0.2083 0.1667

5 0.0583 0.1

6 0.0153 0.0667

7 0.0030 0.0476

8 0.0005 0.0357

Table 2.6: A Comparison of Bounds on P (Sn) and the Value of P (Sn)

Our second application of the bound 1
[G:CG(x)]

shows that this bound not useful for

all groups.

Example 2.1.12. Consider the dihedral groups, Dn with odd n. Since |Z(Dn)| = 1,

we apply the bound P (Dn) ≤ 1
[G:CG(x)]

for an element x with centralizer CG(x) of

maximal order. Observe from the tabulated conjugacy classes in Table 4.16 that the

centralizer of maximal order has order n. Hence the bound P (G) ≤ 1
[G:CG(x)]

yields a

bound of only

P (D2n) ≤ 1

2
.

However, in Section 4.1.2 we also show that as , Pn→∞(Dn) = 1
4

and for n ≥ 5, P (Dn)

is close to 1
4
.

2.2 Bounds From the Degree Equation

In this section, we discuss various bounds derived from the degree equation.

2.2.1 Generic Bounds from the Degree Equation

A pair of general bounds on all non-Abelian groups written in terms of the commutator

subgroup is obtained from the degree equation. We will refer to these bounds as the

upper and lower degree equation bounds.
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Proposition 2.2.1. Given a finite group G,

(1) P (G) ≤ 1
4
(1 + 3

|G′|), and

(2) 1
|G′| ≤ P (G).

Proof. 1. Recall the degree equation:

|G| = [G : G′] +

k(G)∑
i=[G:G′]+1

(ni)
2

with each ni ≥ 2. It follows that

|G| ≥ [G : G′] + 4(k(G)− [G : G′]).

Solving for k(G),

k(G) ≤ 1

4
(|G|+ 3[G : G′]).

Finally,

P (G) ≤ 1

4

(
1 +

3

|G′|

)
. (2.9)

2. Since [G : G′] counts irreducible characters of degree one, [G : G′] < k(G).

Then

|G|
|G′||G|

≤ k(G)

|G|
= P (G)

and so

1

|G′|
≤ P (G).

An application of the upper degree equation bound provides a simple alternate

proof of the upper bound of 5
8

on the commutativity degree of all non-Abelian groups.
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Corollary 2.2.2. There are no finite groups with commutativity degree in the interval

(5
8
, 1).

Proof. Suppose G is a group with P (G) > 5
8
. Solving the upper degree equation

bound,

5

8
< P (G) <

1

4

(
1 +

3

|G′|

)
,

for G′ yields |G′| < 2. Hence |G′| = 1 and G is Abelian. Therefore, P (G) = 1.

2.2.2 Minimal Dimension Degree Equation Bound

Guralnick [21] improves the upper degree equation bound by finding an upper bound

in terms of the smallest degree, d, of a nonlinear representation of G. A nonlinear

representation of G is any representation of degree d > 1 and a linear representation

of G is a degree one representation. Proposition 2.2.3 is a version of this proof.

Proposition 2.2.3. If G is non-Abelian and d is the smallest degree of a nonlinear

representation of G, then

P (G) ≤ 1

d2
+

(
1− 1

d2

)
1

|G′|
.

Equality follows if all nonlinear representations of G are of degree d.

Proof. Let d the smallest degree of a nonlinear representation of G. Recall the degree

equation:

|G| = [G : G′] +

k(G)∑
[G:G′]

n2
i .

The term [G : G′] counts the number of linear irreducible representations. Since

d ≤ ni for [G : G′] < i ≤ k(G) there can be at most 1
d2

(|G| − [G : G′]) nonlinear

irreducible representations. Hence by the degree equation,

k(G) ≤ [G : G′] +
1

d2
(|G| − [G : G′]) . (2.10)
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Then,

P (G) ≤ 1

|G′|
+

1

d2

(
1− 1

|G′|

)
=

1

d2
+

(
1− 1

d2

)
1

|G′|
.

(2.11)

If each ni corresponding to a nonlinear representation is ni = d, equality follows in

Equation 2.10 and 2.11.

Next we provide an example of the case of equality in Equation 2.11 by describing

a class of groups that realize the minimal dimension degree equation bound. Equality

holds in the bound in Equation 2.11 for other types of groups as well, including the

dihedral groups.

Example 2.2.4. A Class of Groups realizing the Minimal Dimension Degree Equation

Bound. The Mersenne GroupGp of order |Gp| = p(2k), where p = 2k−1 is a Mersenne

Prime, is constructed in Example 5.3.4. Notice that

|Gp| = (2k − 1)(2k) = 22k − (2)2k + 1 + 2k − 1 = p+ p2.

In Example 5.3.4, we also show that P (Gp) = 1
p
. It follows that k(Gp) = 2k = p+ 1.

From Example 5.3.4, it is easy to see that |G′p| = 2k and then that [Gp : G′p] = p. The

degree equation is

|Gp| = p+

j∑
i=1

n2
i .

Then j = 1 since k(Gp) = p+ 1, and it follows that

|Gp| = p+ p2 = p+ n2
i .

Hence ni = p and the degree equation may be rewritten as

|Gp| = p+ p2.



35

The only irreducible character of degree greater than 1 has degree p. Then the degree

equation bound yields

P (Gp) ≤
1

p2
+ (1− 1

p
)

1

2k
=

1

p

and 1
p

is the commutativity degree of the group.

Next we compare the minimal dimension bound from Proposition 2.2.3 to the

upper and lower degree equation bounds determined in Proposition 2.2.1. Let G be

a group with a fixed order of G′. First suppose d = 2. Then the minimal dimension

upper bound equals the upper degree bound:

1

d2
+

(
1− 1

d2

)
1

|G′|
=

1

4

(
1 +

3

|G′|

)
.

However, if we suppose that the minimal dimension d increases

lim
d→∞

[
1

d2
+

(
1− 1

d2

)
1

|G′|

]
=

1

|G′|
,

As d → ∞, the minimum dimension bound converges to the lower bound of 1
|G′| in

Proposition 2.2.1. This suggests that for groups with a large minimum nonlinear

irreducible representation degree, 1
|G′| is a good approximation of the commutativity

degree of the group.

Table 2.7 includes degree equation bounds for G with |G′| ≤ 16. The first row

lists |G′|, the next row lists the upper bound from Proposition 2.2.1 (i.e. the minimal

dimension bound with d = 2), and the last row lists the lower bound from 2.2.1. All

intermediate rows list minimum dimension bounds for select small d.



36

G′ 2 3 4 5 6 7 8 9 10 11 12 13

Bound

Upper
5
8

1
2

7
16

2
5

3
8

5
14

11
32

1
3

13
40

7
22

5
16

4
13

d=3
5
9

11
27

1
3

13
45

7
27

5
21

2
9

17
81

1
5

19
99

5
27

7
39

d=4
17
32

3
8

19
64

1
4

7
32

11
56

23
128

1
6

5
32

13
88

9
64

7
52

d=5
13
25

9
25

7
25

29
125

1
5

31
175

4
25

11
75

17
125

7
55

3
25

37
325

d=10
101
200

17
50

103
400

26
125

7
40

53
350

107
800

3
25

86
789

1
10

37
400

28
325

Lower
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

Table 2.7: Degree Equation Bounds

2.2.3 Derived Length Upper Bounds

The following bounds from the degree equation are written in terms of the derived

length of the group. The first is an upper bound on non-Abelian solvable groups. The

second improves upon the upper p-bound of p2+p−1
p3

for p-groups. The derived length

bounds appear in Guralnick [21].

Lemma 2.2.5. No group of order less than 24 has derived length greater than 2.

Proof. Let |G| < 24. First, if |G| is prime, then G is of derived length one. Next,

using the Sylow Theorems, it is easily shown that G has a proper normal p-Sylow

subgroup N for all composite orders of G except 8 and 16. Further, in each of these

cases, G/N and N are Abelian so G has derived length of 2.

If |G| = 8, either G is Abelian and derived length one, G ∼= D8 and derived length

two, or G ∼= Q8 and derived length two. Similarly, by classification of groups of order

12, the derived length is less than or equal to two if |G| = 12. If |G| = 16, then G

has a normal subgroup of order 4 = 22 and hence has derived length 2.
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Proposition 2.2.6. 1. Let G be solvable and let the derived length of G be d ≥ 4.

Then

P (G) ≤ 4d− 7

2d+1
.

2. Let p be prime and let G be a finite p-group of derived length d ≥ 2. Then

P (G) ≤ pd + pd−1 − 1

p2d−1
.

Proof. 1. We proceed by induction on d. Let H be a finite solvable group of derived

length 4. If |H ′| < 24, then by Lemma 2.2.5 the derived length of H ′ ≤ 2, and

then the derived length of H is d ≤ 3. Hence |H ′| ≥ 24. Then by the upper degree

equation bound (Proposition 2.2.1),

P (H) ≤ 1

4
+

3

4|H ′|
≤ 9

32
.

Notice that for d = 4,

9

32
=

4d− 7

2d+1
.

Suppose that the derived length of G is d > 4 and assume that the result is true

for groups of derived length d− 1.

By Proposition 3.1.5 and the comment thereafter, P (G) ≤ P (G/N) for any normal

subgroup N of G. Let N0 be a normal subgroup of G maximal with respect to the

property that the derived length of G equals the derived length of G/N0.

First we will show that G has a unique minimal normal subgroup, M . Since G/N0

has the property that every normal subgroup has derived length less than d, we can

assume that every proper subgroup of a homomorphic image of G has derived length

less than d. Next suppose G has two distinct minimal normal subgroups, M1 and

M2. The derived lengths of G/M1 and G/M2 are both less than d, and so the derived

length of G/M1 × G/M2 is less than or equal to the derived length of both G/M1

and G/M2. Hence the derived length of G/M1 × G/M2 is less than d. Since the
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intersection of normal subgroups is normal, M1 ∩M2 � G. Further, since M1 and

M2 are minimal normal, M1 ∩ M2 = {e}. Thus G embeds in the direct product,

G/M1 ×G/M2 under the mapping g 7→ (gM1, gM2). Then the derived length of G is

less than d, a contradiction. Therefore, there is a unique minimal normal subgroup

M �G. Also notice that the derived length of G/M is d− 1.

Notice that each irreducible character either has the property that M ≤ kerχ

or has the property that M � kerχ. (We write kerχ to denote the kernel of the

representation associated to χ). First we will address those characters χ satisfying

M � kerχ.

Let χ be an irreducible character of G such that M � kerχ. Since kerχ�G and

M is the minimal normal subgroup of G, if M 6 kerχ then kerχ = {e} and χ is

faithful. Hence in this case the degree of the representation of χ is n = χ(1). By

Dixon, [12] (Theorem (2) and comments thereafter), it follows that

d ≤ 5(log3 n+ 1)

2
≈ 1.58 log2 n.

Hence

d ≤ 2 log2(n) ≤ 2 + 2 log2(χ(1)).

Solving for χ(1)2 yields

χ(1)2 ≥ 2d−2.

Finally, we use the degree equation to count the conjugacy classes in G as follows:

k(G) = k(G/M) +
|G| − [G : M ]

2d−2

where the first term counts the number of irreducible characters satisfying M ≤ kerχ.

These are the irreducible characters that factor through G/M . The second term

counts those characters with M � kerχ.

Then

P (G) ≤ k(G/M)

|G|
+
|G| − [G : M ]

|G|2d−2
=
P (G/M)− 2d−2

|M |
+

1

2d−2
.
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By induction, P (G/M) ≤ 4d−11
2d

. Then

P (G/M)− 1

2d−2
≤ 4d− 15

2d

and since |M | ≥ 2,

P (G/M)− 2d−2

|M |
≤ 4d− 15

2d+1
.

It follows that

P (G) ≤ P (G/M)− 2d−2

|M |
+

1

2d−2

≤ 4d− 15

2d+1
+

1

2d−2

=
4d− 7

2d+1
.

2. Again, we proceed by induction on d. Let G have derived length d = 2. By

Proposition 2.1.3, P (G) ≤ p2+p−1
p3

because p is the smallest prime dividing |G/Z(G)|.

Suppose that d > 2 and assume that the result is true for d − 1. As in part (1)

we can assume that every proper subgroup of a homomorphic image of G has derived

length less than d and that G has a unique proper minimal normal subgroup, M ,

with derived length d − 1. In this case, M ≤ Z(G) because both the center and M

are normal p groups and M is minimal. Also, |M | = p.

Also similarly to part (1), every irreducible character χ such that M � kerχ is

faithful. In this case, the degree of χ is n ≥ pd−1, [21], Theorem 12.

Again we count those characters with M ≤ kerχ and those with ker = {e}

separately to find the number of conjugacy classes of G:

k(G) ≤ k(G/M) +
|G| − [G : M ]

pd−1
.

Then

P (G) ≤ k(G/M)

|M |
+

1− 1
|M |

pd−1
=
P (G/M)

p
+
p− 1

p2d−1
.
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Also, by induction,

P (G/M) ≤ pd + pd−1 − 1

p2d−2

and so

P (G) ≤ pd + pd−1 − p
p2d−2p

+
p− 1

p2d−1

=
pd + pd−1 − 1

p2d−1
.

Example 2.2.7. Let G be a p-group with order |G| = pn with n > 2. Then G has

derived length of at most d = dn
2
e. So suppose d = dn

2
e. The upper p-bound is

P (G) ≤ p2 + p− 1

p3
=

1

p
+

1

p2
− 1

p3

and the upper bound from Proposition 2.2.6 (2) is

P (G) ≤ pd
n
2
e + pd

n
2
e−1

pn−1
=

1

pd
n−2

2
e

+
1

pd
n
2
e −

1

pn−1
.

For large p, the p-bound is close to 1
p

and the new bound close to 1

pd
n−2

2 e
. For n > 2,

the new bound is a smaller and closer bound.

2.3 Additional Lower Bounds

The following bounds are derived using the structure of the group rather than the

class or degree equation. We count conjugacy classes to find a lower bound for the

commutativity degree of nilpotent groups and a lower bound for the commutativity

degree of solvable groups. However, this bound for solvable groups is very general. We

find a second sharper lower bound on the commutativity degree of solvable groups,

which we call the Pyber Lower Bound [41].
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2.3.1 A Lower Bound for Nilpotent Groups and Solvable
Groups

In 1968 Erdös and Turan [16] proved that k(G) ≥ log2(log2 |G|). Sherman [45] pro-

vided a significantly greater lower bound on the commutativity degree of nilpotent

groups by proving that k(G) ≥ log2 |G| for nilpotent groups. We provide a proof of

Sherman’s result.

Proposition 2.3.1. If G is a finite nilpotent group of nilpotence class n, then

P (G) ≥ n|G| 1n − n+ 1

|G|
.

Proof. Let

e = Z0 ( Z1 ( ... ( Zn = G

be the upper central series of G. Then G is the disjoint union

G = Z0 ∪ (Z1 − Z0) ∪ (Z2 − Z1) ∪ ... ∪ (Zn − Zn−1).

Since each Zi �G each set Zi − Zi−1 is a disjoint union of conjugacy classes of G.

Let g ∈ G and suppose x ∈ Zi − Zi−1 for some i, 1 ≤ i ≤ n. Since Zi/Zi−1 =

Z(G/Zi−1), xZi−1 ∈ Z(G/Zi−1). Then the commutator x−1g−1xg ∈ Zi−1 because

Zi−1 is the identity of the group G/Zi−1. Hence g−1xg ∈ xZi−1 and so [x] ⊆ xZi−1.

Then

|[x]| ≤ |xZi−1| = |Zi−1|.

Since Zi − Zi−1 is the disjoint union of conjugacy classes, there are at least

|Zi| − |Zi−1|
|Zi−1|

=
|Zi|
|Zi−1|

− 1

conjugacy classes in Zi − Zi−1.
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Counting conjugacy classes (beginning with the center), then applying the arithmetic-

geometric mean inequality yields

k(G) ≥ 1 +
n∑
i−1

(
|Zi|
|Zi−1|

− 1

)

= 1 +
n∑
i−1

(
|Zi|
|Zi−1|

)
− n

=

(
1

n

) n∑
i−1

(
|Zi|
|Zi−1|

)
− n+ 1

≥

(
n∏
i−1

(
|Zi|
|Zi−1|

)) 1
n

− n+ 1

= n|G|
1
n − n+ 1.

Then

P (G) ≥ n|G| 1n − n+ 1

|G|
. (2.12)

Corollary 2.3.2. If G is a finite nilpotent group of nilpotence class n, then k(G) >

log2 |G| and

P (G) >
log2 |G|
|G|

.

Proof. Consider the function h(x) = (nx
1
n − n+ 1)− (log2 x). Then

h′(x) = x
1
n
−1 − 1

x ln 2

=
1

x

(
x

1
n − 1

ln 2

)
,

(2.13)

and critical points occur at x1 = 0 and x2 = 1
(ln 2)n

. We restrict x to x > 0 (we are

only concerned with values of x that may equal |G| for some G), so we only need to

check for a minimum may only occur at x2. Since

h′(1) = 1− 1

ln 2
< 0,
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h′(2n) =
1

2n

(
2− 1

ln 2

)
> 0,

and 1 < x2 < 2n, it follows that the function has a minimum when x = x2. Then the

minimum value of the function is

h

(
1

ln 2n

)
= n

(
1

ln 2

)
− n+ 1− n log2

(
1

ln 2

)
= n

(
1

ln 2
− 1 + log2(ln 2)

)
+ 1

=
n

ln 2
(1− ln 2 + ln (ln 2)) + 1

> 0.

Substitute |G| for x and also notice from Equation 2.12 that k(G) ≥ n|G| 1n − n + 1.

Then 0 < h(x) ≤ k(G)− log2 |G| for all orders of G. Hence k(G) > log2 |G| and

P (G) >
log2 |G|
|G|

.

A similar proof provides a general lower bound for solvable groups.

Proposition 2.3.3. If G is solvable of derived length d, the

P (G) ≥ d+ 1

|G|
.

Proof. The normal series of G is

G = G(0) �G(1) �G(2) � ...�G(d) = {e}

with G(i) = [G(i−1), G(i−1)] for 1 ≤ i ≤ d. Then G is the disjoint union

G = {e} ∪ (G(d−1) −G(d)) ∪ (G(d−2) −G(d−1)) ∪ ... ∪ (G(0)− (1)).

Since each G(i) char G(i−1), G(i) �G. Hence each set G(i)−G(i) is a disjoint union of

conjugacy classes of G. Then k(G) ≥ d+ 1 and

P (G) ≥ d+ 1

|G|
.



44

Although this bound is a rather rough estimate, it does prove to be a sharp bound

as illustrated by the following example.

Example 2.3.4. The normal series for D3 is D3 ≥< ρ >≥ {e}, so the derived

length of D3 is 2. Then the bound from Proposition 2.3.3 is P (D3) ≥ 2+1
6

= 1
2
. By

calculations in Section 4.1.2, P (D3) = 1
2
.

Further, the bound d+1
|G| is a closer bound than the historical bound log2 log2 |G| in

some cases. Table 2.8 tabulates the bounds log2 log2 |G|, log2 |G|, and d+1
|G| for select

groups of small order. Note that the second bound applies only to nilpotent groups

and third only to solvable groups. Also, since the derived length of all non-Abelian

solvable groups less than order 60 is d = 2 (See Proposition 3.3.1), this third bound is

d+1
|G| = 3

|G| for each of the groups in this table. The bound of 3
|G| on the commutativity

degree of solvable groups is a closer bound than log2 log2 |G| for groups of order less

than 26.

|G| log2 log2 |G| log2 |G| 3
|G|

4 0.2500 0.5000 na

6 0.2284 0.4308 0.5000

8 0.1981 0.3750 0.3750

9 0.1849 0.3522 0.3333

10 0.1732 0.3322 0.3000

12 0.1535 0.2987 0.2500

14 0.1378 0.2720 0.2143

24 0.0915 0.1910 0.1250

25 0.0886 0.1858 0.1200

26 0.0859 0.1808 0.0385

Table 2.8: Lower Bounds
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2.3.2 Pyber’s Solvable Group Lower Bound

An improved lower bound on the commutativity degree of solvable groups is written

in terms of the derived length of a solvable group as discussed in Pyber [41].

Lemma 2.3.5. For any finite group G, k(G) ≥ |G/G′|.

Proof. Since all non-Abelian groups have a representation of degree greater than one,

by the degree equation k(G) > [G : G′] = |G/G′|.

Proposition 2.3.6. If G is a finite solvable group of derived length d, then

k(G) ≥ |G|
1

2d−1

and

P (G) ≥ 1

|G|
2d−2

2d−1

>
1

|G|
.

Proof. Let the derived series of G be

G = G(0) �G(1) �G(2) � �G(d) = {e}

with G(i) = [G(i−1), G(i−1)] for 1 ≤ i ≤ d. Since G is solvable, each factor G(i−1)/G(i)

is Abelian. By Proposition 3.1.4,

k(G) ≥ k(G(1))

|G/G(1)|

≥ k(G(i−1))

|G/G(1)||G(1)/G(2)|...|G(i−2)/G(i−1)|
(2.14)

≥ k(G(i−1))

|G/G(i−1)|
.

By Lemma 2.3.5, k(G(i−1)) ≥ |G(i−1)/Gi|. Then

k(G) ≥ |G
(i−1)/G(i)|
|G/G(i−1)|

.
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Next we induct on the length of the derived series. For each i,i = 1, ..d, we can

rewrite G/G(i) as follows

|G/G(i)| = |G/G(i−1)||G(i−1)/G(i)|

≤ |G/G(i−1)|2k(G)...

≤ (|G/G(i−i)|)2i−1(k(G)2i−1)

= k(G)2i−1

Therefore |G| = |G/G(d)| ≤ k(G)2d−1, so

k(G) ≥ |G|
1

2d−1

and

P (G) ≥ 1

|G|
2d−2

2d−1

.

2.4 Summary of Bounds

In Table 2.9, we summarize the bounds discussed in this chapter. In the table, p is the

smallest prime dividing |G/Z|, l = [G : Z], CG(x) is a maximal noncentral centralizer

in G, d is the smallest degree of a non-linear representation of G, d1 is the derived

length of G, and k ∈ Z such that |G/Z(G)| = pk.
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UPPER BOUNDS

Bound Name Bound Restrictions Method

5
8
−bound 5

8
Class Eqn.

p-bound p2+p−1
p3

Class Eqn.

Alt. p-bound (p−1)+pl
p2l

Class Eqn.

lp-bound l+p−1
pl

Class Eqn.

l-bound l+1
2l

Class Eqn.

centralizer bound (1) 3
2[G:CG(x)]

Z(G) 6= {e} Class Eqn.

centralizer bound (2) 1
[G:CG(x)]

Z(G) = {e} Class Eqn.

deg. eqn. bound 1
4
(1 + 3

|G′|) Deg. Eqn.

min. dim. deg. eqn. bound 1
d2

+ (1− 1
d2

) 1
|G′| Deg. Eqn.

solvable group bound 4d1−7
2d1+1 d1 ≥ 2 Deg. Eqn.

G solvable

p−group bound pd1+pd1−1−1
p2d1−1 d1 ≥ 4 Deg. Eqn.

G a p-group

LOWER BOUNDS

Bound Name Bound Restrictions Source

generic bound 2l−1
l2

Definitions

p-bound 1
pk−1 + 1

pk
− 1

p2k−1 Class Eqn.

lp-bound lp+l−p
l2

Class Eqn.

l-bound 3l−2
l2

Class Eqn.

deg. eqn. bound 1
|G′| Deg. Eqn.

solvable group bound d1+1
|G| G solvable Counting Classes

nilpotent group bound log2 |G| G nilpotent Counting Classes

Pyber bound 1

|G|
2d1−2
2d1−1

G solvable Counting Classes

Table 2.9: Bounds



Chapter 3: Structural Results

In Section 2.3 we derived several bounds on the commutativity degree of nilpotent

and solvable groups. Can we determine more information about the commutativity

degree of a group if the group is nilpotent or solvable? What about if the group has

a normal subgroup or if we can write the composition series of the group? In this

chapter, we develop restrictions on the commutativity degree of a group resulting

from the structure of the group.

First we discuss bounds on the commutativity degree of a group in terms of the

commutativity degree of a subgroup or normal subgroup of the group. Let H ≤ G

and N �G. We show that

1

[G : H]2
P (H) ≤ P (G) ≤ P (H),

and

P (G) ≤ P (N)P (G/N).

Then we describe conditions required for the bounds to be realized. These bounds,

first given by Gallagher [20], are used by a number of authors to prove multiple

results. To demonstrate the usefulness of these bounds, we apply these bounds to

find additional bounds on the commutativity degree in terms of a type of subgroup

called a section, in terms of the factors of the composition series of a group, and in

terms of the factors of a semidirect product.

In the remaining two sections, we discuss commutativity degree in terms of nilpo-

tence and solvability. In Section 3.2 we show that if the commutativity degree of a

group is greater than 1
2
, then the group is nilpotent with a specific structure. If the

commutativity degree of the group is greater than 1
12

, then the group is solvable. In

48
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Section 3.3, we describe groups of commutativity degree greater than or equal to 1
12

in terms of the solvability of the group.

3.1 Subgroups and Normal subgroups

Let G be a group, H ≤ G, and N � G. In this section, we find bounds on P (G)

in terms of P (H) and P (N) and then show the cases when P (G) = P (H). We will

also use these bounds to find additional bounds on specific types of groups. Most

of the propositions in this section appear or are referenced in multiple sources, each

crediting Gallagher [20] for the original result.

Proposition 3.1.1. Let H be a subgroup of G. Then

P (H)

[G : H]2
≤ P (G) ≤ P (H).

Proof. Let x ∈ G. Then H ∩ CG(x) = CH(x) and CH(x) ≤ CG(x). Suppose

|CG(x)/CH(x)| = m and let the distinct coset representatives of CH(x) in CG(x)

be {gi : 1 ≤ i ≤ m}. Consider the cosets giH and gjH in G. We claim that giH and

gjH are distinct cosets of H in G for i 6= j. Suppose not. Then gi = gjh for some

h ∈ H. Then

h = g−1
j gi ∈ CG(x) ∩H = CH(x),

and this implies giCH(x) = gjCH(x), a contradiction. Hence each distinct coset of

CH(x) is also a distinct coset of H in G. Therefore [CG(x) : CH(x)] ≤ [G : H].

Next, by Lagrange’s Theorem,

|CG(x)| = [CG(x) : CH(x)]|CH(x)|.

Then

|CG(x)| ≤ [G : H]|CH(x)|. (3.1)



50

Summing over G yields ∑
x∈G

|CG(x)| ≤ [G : H]
∑
x∈G

|CH(x)|. (3.2)

If x ∈ G and y ∈ CH(x) then yxy−1 = x and y ∈ H. In this case, xyx−1 = y so

x ∈ CG(y) and we may rewrite the righthand side of Equation 3.2 as follows:∑
x∈G

|CG(x)| ≤ [G : H]
∑
y∈H

|CG(y)|. (3.3)

Applying Equation 3.1 to Equation 3.3 yields∑
x∈G

|CG(x)| ≤ [G : H]2
∑
y∈H

|CH(y)|. (3.4)

Finally,

P (G) =

∑
x∈G |CG(x)|
|G|2

(3.5)

≤
[G : H]2

∑
y∈H |CH(y)|
|G|2

=
[G : H]2

∑
y∈H |CH(y)|

[G : H]2|H|2

= P (H).

Therefore P (G) ≤ P (H).

For each x ∈ G, |CH(x)| = |CG(x)| or CG(x) contains no elements of H. Thus

|CH(x)| ≤ |CG(x)| and

P (G) =

∑
x∈G |CG(x)|
|G|2

≥
∑

x∈G |CH(x)|
|G|2

≥
∑

x∈H |CH(x)|
|G|2

=
|H|2

∑
x∈H |CH(x)|
|H|2|G|2

=
1

[G : H]2
P (H).

Therefore, P (H)
[G:H]2

≤ P (G).
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Corollary 3.1.2. If H is Abelian then P (G) ≥ 1
[G:H]2

.

Proof. By Proposition 3.1.1,

P (G) ≥ P (H)

[G : H]2
=

1

[G : H]2
.

We will compare the lower bound of 1
|G′| from Proposition 2.2.1 to the bound 1

[G:H]2

from Corollary 3.1.2. If H is the largest Abelian subgroup of G, [G : H] is the smallest

index of an Abelian subgroup of G, and 1
[G:H]2

the largest possible lower bound of the

form 1
[G:H]2

. Recall G′ is the smallest subgroup such that G/G′ is Abelian. Hence if

|G′| is small relative to |G|, then the bound 1
|G′| is a larger bound, and if |G′| is large

relative to |G|, then the bound 1
[G:H]

becomes a better bound. To illustrate this, we

will use the dihedral groups.

Example 3.1.3. Let n > 4 and consider the dihedral group

Dn =< r, ρ : r2 = ρn = e, ρr = rρn−1 > .

Let H =< ρ >. Then H ≤ Dn, H is cyclic of order n, and [Dn : H] = 2. By Corollary

3.1.2

P (G) ≥ 1

[Dn : H]2
=

1

4
.

This is an appropriate lower bound for the dihedral groups because the asymptotic

commutativity degree of the dihedral groups is

lim
n→∞

P (Dn) =
1

4
,

which we will discuss and calculate in Section 4.1.2.

Since D′n =< ρ > as well, the bound 1
|G′| is

P (Dn) ≥ 1

D′n
=

1

n
.
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For n > 4, 1
n
< 1

4
. Further, as n → ∞ this bound approaches zero. notice that the

bound 1
[G:H]2

is a closer bound and |G′| = |Dn|
2

is large relative to |G|.

Next we address a normal subgroup N�G. We will find a lower and upper bound

on P (G) in terms of P (N). Using the upper bound, we will also describe the case

when P (G) = P (N) and then prove several corollaries.

Proposition 3.1.4. If N �G then k(G) ≥ k(N)/|G/N | and P (G) ≥ P (N)/|G/N |2.

Proof. Let N � G, g ∈ G and n ∈ N . Then gng−1 ∈ N , and the conjugacy classes

of G are partitioned into those contained in N and those disjoint from N . However,

two elements contained in N may be conjugates in G but not in N .

Suppose n1, n2 are conjugate in G and n1N = n2N . In G, [gn1g
−1] = [gn2g

−1].

Hence the number of G-conjugacy classes in N is at least k(N)
|G/N | , and then

k(G) ≥ k(N)

|G/N |
.

Thus

P (G) ≥ k(N)

|G||G/N |

=
k(N)

|N |
|N |2

|G|2

=
P (N)

[G : N ]2
.

Proposition 3.1.5. Let N / G. Then P (G) ≤ P (G/N)P (N). Equality holds if and

only if CG(x)N = CG(xN) for each x ∈ G and in the case of equality G/N is Abelian.

Proof. Let x ∈ G. By the diamond isomorphism theorem,

CG(x)

CN(x)
∼=
CG(x)N

N
⊆ CG/N(xN)
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Then

|CG(x)| ≤ |CG/N(xN)| · |CN(x)| (3.6)

In the case of CG(x)N = CG(xN),

CG(x)

CN(x)
∼=
CG(x)N

N
=
CG(xN)

N
= CG/N(xN)

and equality holds in Equation 3.6.

Summing over G yields

∑
x∈G

|CG(x)| ≤
∑
x∈G

|CG/N(xN)| · |CN(x)|. (3.7)

Let {xiN : 1 ≤ i ≤ r} be the set of distinct cosets of N . Since the disjoint union⋃r
i=1 xiN = G, summing over G is equivalent to summing over each coset, then

summing over the set of cosets. That is,

∑
x∈G

|CG(x)| ≤
∑

xN∈G/N

|CG/N(xN)|
∑
y∈xN

|CN(y)|. (3.8)

If y ∈ xN and z ∈ CN(y), then zyz−1 = y and z ∈ N . Equivalently, yzy−1 = z, so

y ∈ CN(z) ∩ xN = CxN(z). Hence we may rewrite the last term of Equation 3.8 as

follows: ∑
x∈G

|CG(x)| ≤
∑

xN∈G/N

|CG/N(xN)|
∑
z∈N

|CxN(z)| (3.9)

with equality holding the case of CG(x)N = CG(xN) in Equations 3.7, 3.8, and 3.9.

Next let z ∈ N and let xN be a coset of N . Define CxN(y) to be the set of elements

in the set xN that commute with y. Suppose that CxN(z) 6= ∅ and let a ∈ CxN(z).

Then a = xn for some n ∈ N , so xnz(xn)−1 = z. Then nzn−1 = x−1zx and x−1zx is

conjugate to z in N . Then nzn−1 ∈ [z] so n is in a coset of z in N . Hence CxN(z) is

a coset of CN(z) so that

|CxN(z)| =
{
|CN(z)| if CxN 6= ∅

0 if CxN(z) = ∅.
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Thus

|CxN(z)| ≤ |CN(z)|. (3.10)

Notice that CxN 6= ∅ for all x ∈ G when CG(x)N = CG(xN) and in this case equality

holds in Equation 3.10.

Rewriting the righthand side of Equation 3.9, we conclude that∑
x∈G

|CG(x)| ≤
∑

xN∈G/N

|CG/N(xN)|
∑
z∈N

|CN(z)| (3.11)

with equality holding the case of CG(x)N = CG(xN).

Finally, we apply the definition of commutativity degree:

P (G) =

∑
x∈G |CG(x)|
|G|2

≤
∑

xN∈G/N |CG/N(xN)|
∑

z∈N |CN(z)|
[G : N ]2|N |2

= P (G/N)P (N)

with equality holding the case of CG(x)N = CG(xN). Also, if P (G) = P (G/N)P (N),

then P (G/N) = 1 because P (G) ≤ P (N) by Proposition 3.1.1. Hence G/N is Abelian

in the case when CG(x)N = CG(xN).

We know that the commutativity degree of a group is less than or equal to the

commutativity degree of any of its subgroups. Next we describe the case of equality

in the commutativity degree of a group and subgroup. Then we address the commu-

tativity degree of a homomorphic image of a subgroup.

Corollary 3.1.6. If H ≤ G and P (G) = P (H) then H �G and G/H is Abelian.

Proof. Suppose that P (G) = P (H). Then equality holds through Equation 3.5 in

Proposition 3.1.1, and in particular∑
x∈G |CG(x)|
|G|2

=
[G : H]2

∑
y∈H |CH(y)|
|G|2

.
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Hence ∑
x∈G

|CG(x)| = [G : H]2
∑
y∈H

|CH(y)|, (3.12)

∑
x∈G

|CG(x)| = [G : H]
∑
y∈H

|CG(y)|, (3.13)

and ∑
x∈G

|CG(x)| = [G : H]
∑
x∈G

|CH(x)|. (3.14)

Note that Equations 3.12, 3.13, and 3.14 are the analogous cases of equality to Equa-

tions 3.4, 3.3, and 3.2 respectively. Equality must hold in each term of 3.14 (because

if one term was a strict inequality, the entire sum would be a strict inequality). Hence

for all x ∈ G

|CG(x)| = [G : H]|CH(x)|.

Then for each x ∈ H,

|CH(x)H| =
|CG(x)||H|
|CH(x)|

=
[G : H]|CH(x)||H|

|CH(x)|
= |G|.

Next let g ∈ G and x ∈ H. Then g = ch for some c ∈ CG(x) and h ∈ H. Then

g−1xg = h−1c−1xch = h−1xh ∈ H.

Hence H �G.

Next, since H�G, P (G) ≤ P (H)P (G/H) by Proposition 3.1.5. Then P (G/H) =

1 because P (G) = P (H).

Notice that if G = H×C for an Abelian subgroup C, then P (G) = P (H) trivially.

Next we provide a nontrivial example of the equality P (G) = P (H) for some subgroup

H of G.
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Example 3.1.7. Consider the class of groups

Gm =< a, b : a3 = b2
m

= 1, bab−1 = a−1 >

for m ∈ N. Notice that

G1 =< a, b : a3 = b2 = 1, , bab−1 = a−1 >∼= S3.

We will discuss properties of Gm groups in Section 4.1.2. We show that the com-

mutativity degree is P (Gm) = 1
2

for each Gm group. We also find that, for m > 1,

G1 ≤ Gm. By comparing the relations of G1 to S3, it is easy to see that G1
∼= S3.

Hence P (S3) = P (Gm) = 1
2

and S3
∼= G1 ≤ Gm for m > 1.

This example generalizes to Gm ≤ Gr with P (Gm) = P (Gr) if there is some n ∈ N

such that r = nm.

Several additional bounds result from the bound P (G) ≤ P (N)P (G/N) for N�G.

Let Y ≤ G, let Z � Y , and let X = Y/Z. Then X is called a section of G. The next

bound is written in terms of a section of G.

Corollary 3.1.8. Let X be a section of G. Then P (G) ≤ P (X).

Proof. Since Y ≤ G, P (G) ≤ P (Y ). Also, since Z � Y , P (G) ≤ P (Y/Z). Therefore,

P (G) ≤ P (Y/Z) = P (X).

Now we apply Proposition 3.1.5 to the composition series of a group to find another

upper bound.

Corollary 3.1.9. Let G be a group and let the set {Si : 1 ≤ i ≤ t} denote the

non-Abelian composition factors of G. Then P (G) ≤ Πt
i=1P (Si).

Proof. Since G is finite, there exists a normal series

G�N1 �N2 � ...�Nr = {e}
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with r ≥ t. By Proposition 3.1.5, P (G) ≤ P (N1)P (G/N1). Likewise, for i ≤ r,

P (Ni−1) = P (Ni)P (Ni−1/Ni). Hence

P (G) ≤ P (G/N1)P (N1/N2)...P (Nr−1/Nr).

Let S1, S2, ..St be the non-Abelian factors. Since P (Ni−1/Ni) = 1 when Ni−1/Ni is

Abelian,

P (G) ≤ Πt
i=1P (Si).

Next we apply Proposition 3.1.5 to semidirect products. To construct an external

direct product, let N and H be groups such that there is a homomorphism φ : H →

Aut(N). Then the external semidirect product is the set N ×H with multiplication

defined by

(n1, h1)(n2, h2) = (n1φ(h1)(n2), h1h2)

and is denoted by G = N oH.

A group G is called an internal semidirect product if N,H ≤ G and the following

conditions hold: N � G, N ∩ H = {e}, and NH = HN = G. Then there is a

homomorphism φ : G → Aut(N) satisfying φ(h)(n) = hnh−1 for all h ∈ H, and

G ∼= N oH.

Corollary 3.1.10. Let G = H oK. Then P (G) ≤ P (H)P (K).

Proof. Since H � G, by Proposition 3.1.5 P (G) ≤ P (G/H)P (H). Then since K ⊂

G/H,

P (G) ≤ P (K)P (H).
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Next we extend this result to a specific type of semidirect product, the wreath

product. Let H be a group and let N = H × H × ... × H be the direct product

of n copies of H. Let A ≤ Sn. Let σ ∈ A and suppose there is homomorphism

φ : G→ Aut(N) so that

φ(σ) · (h1, h2, ...hn) = (hσ(1), hσ(2), ...hσ(n)).

Then G is the semidirect product of N by A with multiplication as follows: Let

(n, σ) ∈ G and (n′, σ′) ∈ G. Then

(n, σ)(n′, σ′) = (nσ · n′, σσ′).

Then G is called the wreath product of N by A with respects to n and is denoted by

G = N Wr A. Notice that |G| = |N ||A| = |H|n|A|.

Corollary 3.1.11. Let N =
∏n

i=1H and let G be the wreath product of N by K with

respects to n. Then P (G) ≤ P (H)nP (K).

Proof. Since G = N oK, N �G. Then P (G) ≤ P (N)P (K) = P (H)nP (K).

It is not surprising that we only find a very general bound on the commutativity

degree of a semidirect product using these direct methods. Finding the number

of conjugacy classes, that is; the number of irreducible characters, of a semidirect

product is not an elementary question. In fact, it was not until 2004 that this question

was partially answered as the solution to the “k(GV ) problem”.

The “k(GV )-problem” was a conjecture that the number of distinct conjugacy

classes of a specific type of semidirect product, denoted GV , is bounded by the order

of the subgroup V . This means the commutativity degree is bounded by

P (GV ) ≤ |V |
|GV |

=
1

|G|
.
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The semidirect product in the conjecture is restricted to the case when an elementary

Abelian p-group V acts faithfully and irreducibly on a group G ≤ GL(V ). (G is

called a p′-group.) Knörr [29] proposed the “k(GV )-problem” in 1984 and used a

type of character called a generalized character to verify the existence of a bound on

a subclass of the semidirect products in question. Knörr’s “k(GV )-problem” was a

specific case of a series of more general questions stated by Brauer in the 1960s.

In 2004 Gluck, Magaard, Reise, and Schmid published the solution to the “k(GV )-

problem”, answering Knörr’s question affirmatively. Although the “k(GV )-problem”

was only a specific case of Brauer’s questions, the solution to Knörr’s problem is

significant in itself. As Knörr noted when he stated the problem, “an affirmative

answer would give information on all faithful (and irreducible) representations of

finite groups over nearly all finite fields ...”. ([29], 181). Notice that this solution,

which took twenty years to complete, only addresses bounds on the commutativity

degree of certain types of semidirect products.

3.2 Nilpotent Groups

In this section we show that 1
2

is an upper bound on the commutativity degree of non-

nilpotent groups. Then we show that this is the least upper bound by describing the

class of non-nilpotent groups having commutativity degree 1
2
. We also describe the

structure of groups with commutativity degree greater than 1
2
. Much of this section

appears in Lescot [31], [32], [33], and [34].

Lemma 3.2.1. Let G be a finite group. If |G′| = 2, then G′ ⊆ Z(G).

Proof. Let G′ = {e, a}. Suppose a /∈ Z(G). Let b ∈ G such that aba−1 = x with

x 6= b. Then

aba−1b−1 = xb−1 ∈ G′,
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so xb−1 ∈ {e, a}. If xb−1 = e, then a commutes with b, a contradiction. If xb−1 = a,

then aba−1b−1 = a. This implies bab−1 = e and it follows that a = e, another

contradiction. Therefore a ∈ Z(G) and G′ ⊆ Z(G).

Proposition 3.2.2. (Lescot [32]). (1.) If G is a group such that P (G) > 1
2
, then

|G′| < 3.

(2.) If G is a group such that P (G) > 1
2
, then G is nilpotent.

Proof. (1.) Suppose P (G) > 1
2
. By the upper degree equation bound on P (G),

1

2
< P (G) ≤ 1

4

(
1 +

3

|G′|

)
Solving this equation for |G′| yields |G′| < 3. This establishes (1).

(2.) If |G′| = 1 then G′ = {e}. Hence G is Abelian and nilpotent.

Assume |G′| = 2. By Lemma 3.2.1 G′ ⊆ Z(G). Hence G/Z(G) is Abelian, so the

upper central series terminates after two terms and G is nilpotent of nilpotence class

2. This establishes (2).

Proposition 3.2.3. If G is not nilpotent and P (G) = 1
2
, then

1. G/Z(G) ∼= S3.

2. If the order of Z(G) is odd, then G has a subgroup H ∼= S3 such that G =

H × Z(G).

Proof. 1. First let H = G/Z(G). Then by Proposition 3.1.5,

P (G) ≤ P (Z(G))P (H) = P (H).

Thus P (H) ≥ 1
2
. If P (H) > 1

2
then G is nilpotent.

Suppose that P (H) = 1
2
. Then equality holds in the result of Proposition 3.1.5.

Let g ∈ G. Then since Z(G) ⊆ CG(x),

CH(gZ(G)) = CG(g)Z(G)/Z(G) = CG(g)/Z(G).
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If gZ(G) ∈ Z(H), then

CH(gZ(G)) = H = CG(g)/Z(G).

It follows that G = CG(g) and g ∈ Z(G). Since Z(G) is the identity element in H,

Z(H) = e.

Next we will consider two cases. In the first case, suppose that |H| < 10. Observe

from Table 3.1 that H ∼= S3 since P (H) = 1
2
.

H P (G)

Zn (the cyclic group of order n) 1

V4
5
8

S3
1
2

D4
5
8

Q8
5
8

Z3 × Z3 1

Table 3.1: Commutativity Degrees for Groups of Order Less than 10

In the second case, suppose that |H| ≥ 10. By way of contradiction, let n = |H|,

let m = |{h ∈ H : |CH(h)| = n
2
}|, and let H0 = {h ∈ H : [H : CH(h)] ≥ 3}. Then

P (H) =
1

2
=
|H|2

2|H|2
=

n2

2|H|2
.

Hence

n2

2
= |H|2P (H)

n2

2
=

∑
h∈H

CG(h)

n2

2
≤ n+m(

n

2
) + (n−m− 1)(

n

3
)

n2

2
≤ n2

3
+
mn

6
+

2n

3
n2

6
≤ (

n

6
)(m+ 4).
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Hence m ≥ n − 4 and this means that there are at least n − 4 elements of H with

conjugacy class of order 2, {hi : |[hi]| = 2, 1 ≤ i ≤ n − 4}. Let T =
⋂n−4
i=1 CH(hi).

Then

CH(T ) ⊃ {hi : |[hi]| = 2, 1 ≤ i ≤ n− 4}.

It follows that

|CH(T )| ≥ n− 4 ≥ n

2
+ 1

because |H| ≥ 10. Thus [H : CH(T )] < 2 so CH(T ) = H. Hence T ⊆ Z(H) = {e}.

As CH(h1) 6= {e}, let j be the smallest positive integer such that

j⋂
i=1

CH(hi) = {e}

and let

A =

j−1⋂
i=1

CH(hi)

so that A∩CH(hj) = {e}. Then |A||CH(hj)| ≤ |H| and so |A| ≤ 2. By construction,

A 6= {e}, hence |A| = 2. Also, since A is the intersection of normal subgroups, A/H.

Then A ⊆ Z(H), a contradiction. Hence |H| < 10, and so H ∼= S3.

2. Suppose P (G) ≥ 1
2

and that G is not nilpotent. By the upper degree equation

bound,

1

2
≤ P (G) ≤ 1

4

(
1 +

3

|G′|

)
.

Again, solving for |G′| yields |G′| ≤ 3. Further, |G′| = 3 because G is not nilpotent.

Let < σ >= G′. Notice that equality holds in the result of Proposition 3.1.5.

Thus

< σZ(G) >= CG/Z(G)(σZ(G)) ∼= CG(σ)Z(G)/Z(G).

Let τ ∈ G be an element of order 2 in G. Then τ /∈ Z(G) because the order of

the center is odd. Therefore τZ(G) has order 2 in G/Z(G). Next, since G is not

nilpotent, G′ ∩ Z(G) = {e}. Then

τ /∈ Z(G) ∩ σZ(G) ∩ σ2Z(G) = CG(σ).
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Since < σ > �G, τστ−1σ−1 = σy ∈ G′ for some integer y. However τ and σ do

not commute, and neither element is the identity, so τστ−1 = σ2. Then < σ, τ >∼= S3

and we conclude that G =< σ, τ > Z(G). Further, < σ, τ > ∩Z(G) = {e} since

τ /∈ Z(G) and σ /∈ Z(G). Also, < σ > �G implies < σ, τ > �G. Therefore,

G =< σ, τ > ×Z(G) ∼= S3 × Z(G).

Proposition 3.2.4. If G is a non-Abelian group with P (G) > 1
2

then G = P0×P1×

P2× ..×Pk where P0 is a 2-group with |P ′0| = 2 and Pi an Abelian pi-Group for i > 0,

for some prime pi 6= 2.

Proof. Let G be a non-Abelian group with P (G) > 1
2
. By Proposition 3.2.2 (2), G

is nilpotent because P (G) > 1
2
. Then G is a direct product of p-Sylow subgroups.

Observe from Table 2.4 that, for P (G) > 1
2
, G has exactly one non-Abelian factor

and this factor must be a 2-Sylow subgroup. Let the 2-Sylow subgroup factor have

order 2n. Then G = P0 × P1 × P2 × ...× Ps with all Pi, 1 ≤ i ≤ s, Abelian factors.

Next, by Proposition 3.2.2 (1), |G′| = 2. Since P ′0 ⊆ G′, and P0 is non-Abelian,

|P ′0| = 2.

3.3 Solvable Groups

In this section, we provide two upper bounds on the commutativity degree of non-

solvable groups. Then we show that the lower of these two bounds, 1
12

, is realized by

the class of non-solvable groups of the form A5×C, where C is Abelian. We conclude

by describing all groups with commutativity degree in terms of the solvability of the

group. Much of this section is based on Lescot’s results in [31], [32],[33], and [34].

Lemma 3.3.1. If |G′| < 60, then G is solvable.
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Proof. Induct on |G′|. Suppose |G′| = 1. Then G is Abelian, and hence solvable.

Suppose |G′| < 60. Case by case application of the Sylow Theorems shows that G′

has a normal p-Sylow subgroup P . If P = G′, then G′ is a p-group. Then G′ is

nilpotent and solvable. If P 6= G then P �G′. Then there is a normal series

{e}� P �G′

with Abelian factors and G′ is solvable.

Since G′ is solvable and G/G′ is Abelian, G is solvable.

Proposition 3.3.2. If P (G) > 21
80

, then G is solvable.

Proof. Let P (G) > 21
80

. By the upper degree equation bound,

21

80
< P (G) ≤ 1

4

(
1 +

3

|G′|

)
.

Solving for |G′| yields |G′| < 60. Therefore, G is solvable by Lemma 3.3.1.

Proposition 3.3.2 provides a loose upper bound on the commutativity degree of

non-solvable groups. Using the classification of the classes of groups that embed in a

degree 2 or 3 representation, we will find a smaller upper bound of 1
12

. Then we will

show that 1
12

is the least upper bound by finding a non-Abelian simple group with

commutativity degree 1
12

.

Classification of these groups was first addressed in the 1890s when Jordan proved

that if G ≤ GLn(C), then there is a function f(n) such that G has a proper normal

Abelian subgroup, M , with index less than f(n). Historically, the known such f(n)

functions provided upper bounds on the index of a proper normal subgroup M but

were too large for meaningful application. In 2007, Collins [10] published a signifi-

cantly improved bound of (n+ 1)! on the index of a proper normal Abelian subgroup

of G for a group G with a faithful representation of degree n > 71. Collins credited

much of his work to the unpublished bounds developed by Weisfeiler in the mid 1980s.
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Collins also tabulated the index of a maximum proper normal Abelian subgroup for

select n. For n = 2, and n = 3, he showed that the maximal possible normal Abelian

subgroup has index at most 60 and 360, respectively.

To obtain the 1
12

bound, we will want to identify all simple groups that embed

in GL2(C) or GL3(C). Suppose that G is a simple group embedding in GL2(C)

or GL3(C). Then by Collins [10], G has a proper normal subgroup M such that

[G : M ] < 360. Since G is simple, M = {e} and |G| < 360. Hence if G is a simple

group with an image embedding in GL2(C) or GL3(C), |G| < 360. Then we will want

to find all simple groups of order less than 360. In 1893, Cole [8] and [9] classified

all simple groups of order less than or equal to 660 using the Sylow Theorems and

similar methods. His results include one simple group of order 60, one simple group

of order 168, and no other non-Abelian simple groups of order less than 360. The

groups of order 60 is A5 and the group of order 168 is PSL2(F7).

Alternately, we could use more recent classification results to find the relevant

simple groups with images that embed in GL2(C) or in GL3(C). In 1970, Dixon

[13] asked the same question by proposing a problem which required finding all non-

Abelian simple groups with P (G) ≥ 1
12

. He published a solution to his own problem in

[14] by showing that such a group must embed in GL2(C) or GL3(C), then appealing

to the classification of groups with representation of degree n = 2 or n = 3 by

Blichfeldt [7]. Dixon used the following theorem:

Theorem 3.3.3. (Blichfeldt) If G is a finite simple non-Abelian subgroup of GL2(C)

or GL3(C), then G ∼= A5, G ∼= A6, or G ∼= PSL2(F7).

The commutativity degree of all candidate groups from either method are: P (A5) =

1
12

, P (A6) = 7
360

and P (PSL2(F7)) = 1
28

. (Note that |A6| = 360.) We calculated these

values in GAP. Since P (PSL2(F7)) <
1
12

and P (A6) <
1
12

, the only non-Abelian simple

group with P (G) ≥ 1
12

is A5.
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Proposition 3.3.4. If P (G) > 1
12

then G is solvable. Further, the only simple non-

Abelian group with commutativity degree 1
12

is A5.

Proof. Suppose G is not solvable. We will show that P (G) ≤ 1
12

.

Since G is finite, G has a normal series

G = G0 �G1 � ...�Gr = {e}

with each Gi, 1 ≤ i ≤ r maximal normal in Gi−1. Then for some j, 1 ≤ j ≤ r,

Gj/Gj+1 is a non-Abelian factor because G is not solvable. Since Gj+1 is maximal in

Gj, Gj/Gj+1 is simple by the correspondence theorem.

By Proposition 3.1.5,

P (G) ≤ Πr−1
i=1P (Gi/Gi+1).

Hence P (G) ≤ P (Gj/Gj+1) and it is sufficient to assume that G is simple and non-

Abelian.

Next consider the degree equation for G,

|G| = [G : G′] +

k(G)∑
i=[G:G′]+1

n2
i ,

where ni ≥ 2. Since G is simple and non-Abelian, [G : G′] = 1. We will consider the

case when all ni ≥ 4 and the case when there is some ni < 4.

In the first case, when all ni ≥ 4, the degree equation yields the bound

|G| ≥ 1 + 16(k(G)− 1)

and solving for k(G) yields

k(G) ≤ |G|+ 15

16
.

Then

P (G) ≤ |G|+ 15

16|G|
=

1

16
+

15

16|G|
. (3.15)
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Since G is simple and non-Abelian, |G| ≥ 60. Then

P (G) ≤ 1

16
+

15

16 · 60
=

5

64
<

1

12
. (3.16)

In the second case, there is an irreducible representation of G with degree ni = 2 or

ni = 3, and this yields an embedding of G in GL2(C) or in GL3(C). To see this is true,

first suppose that G has a degree ni = 2 representation, φ : G→ GL2(C). Since G is

simple, ker(φ) = {e} so that φ is one to one and faithful. This means that an image

of G embeds in GL2(C). Likewise, if there is an ni = 3, then G ≤ GL3(C). Using

either Dixon’s solution or the elementary methods discussed prior to this proposition,

P (G) ≥ 1
12

implies G ∼= A5. Therefore, if P (G) > 1
12

, G is solvable and A5 is the

unique simple non-Abelian group with commutativity degree 1
12

.

Next we will show that all non-solvable groups of commutativity degree 1
12

are the

direct product of A5 and an Abelian group. Intuitively, this follows from the fact that

A5 is the unique finite simple non-solvable group with commutativity degree 1
12

, but

we require two definitions and two additional lemmas before our proof.

First, we say G is characteristic simple if there is no nontrivial proper characteristic

subgroup of G. Secondly, a group H is called a central extension of a group G if there

is a normal subgroup M �H such that M ≤ Z(H) and H/M ∼= G.

Lemma 3.3.5. If G is non-Abelian characteristic simple then there is a simple non-

Abelian group X so that G ∼= Xm for some m ≥ 1.

Proof. First suppose that G is simple. Then G = X1.

Then suppose that G is not simple. Let X be a minimal normal subgroup in G.

Since G is finite, |Aut(G)| = s for some s ∈ N. Let Aut(G) = {φi : 1 ≤ i ≤ s}.

Consider the set S of images of X under the automorphisms of G, S = {φi(X) : 1 ≤

i ≤ s}. Let φ1(X), φ2(X), . . . φt(X) be the distinct images of X.



68

Let M = Πt
i=1(φi(X)). Notice that M is a normal subgroup of G because each

φi(X) is a normal subgroup. For each i, φi(M) = M , so M is a characteristic subgroup

of G. Since G is characteristic simple, M = G. Hence G ∼= X ×X × ... ×X = Xm

for some m ≥ 1 . Further, X is simple because G is a direct product of copies of X.

Therefore, G ∼= Xm where X is a simple, non-Abelian group.

Lemma 3.3.6. If G is a non-solvable group with P (G) = 1
12

, then G has two char-

acteristic subgroups, M and N such that

1. N/M ∼= A5

2. G/N is Abelian, and

3. M ⊂ Z(N).

Proof. Since G is finite, G has a characteristic series

G = G0 char G1 char ... char Gr = {e}

with Gi maximal characteristic in Gi−1 for 1 ≤ i ≤ r. Since G is not solvable there is

a non-Abelian factor, Gj/Gj+1 for some j, 1 ≤ j ≤ r. By Proposition 3.1.5,

P (G) ≤
r−1∏
i=1

P (Gi/Gi+1).

Hence P (G) ≤ P (Gj/Gj+1). Since Gj+1 is maximal characteristic in Gj, Gj/Gj+1

has no characteristic subgroup by the correspondence theorem. Then Gj/Gj+1 is

also characteristic simple. By Lemma 3.3.5 Therefore, Gj/Gj+1
∼= Xm where X is a

simple, non-Abelian group. Thus |X| ≥ 60.

Hence P (X) ≤ 1
12

by Proposition 3.3.4, and

1

12
= P (G) ≤ P (Gj/Gj+1) ≤ P (X)m ≤

(
1

12

)m
.

Hence m = 1 and P (X) = 1
12

. Therefore, X ∼= A5.
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Let Gj = N and Gj+1 = M . We will show that N and M satisfy properties

(1) through (3). First note that M char G and N char G by construction. Also,

N/M ∼= A5 because P (N/M) = 1
12

and M/N is simple and non-solvable. This

satisfies Property (1). Next, by Proposition 3.1.5,

1

12
= P (G) ≤ P (G/N)P (N/M)P (M) ≤ P (N/M) =

1

12
.

Hence P (G/N) = P (M) = 1. Therefore G/N is Abelian, satisfying property (2).

Notice that M �N and since

1

12
= P (G) ≤ P (N) ≤ P (N/M)P (M) =

1

12
,

P (N) = P (M)P (N/M). By Proposition 3.1.5, this is equivalent to

CN/M(σM) = CN(σ)M/M

for all σ ∈ N . Let ρ ∈M . Since M is Abelian, M ⊆ CG(ρ). Thus CN(ρ) = CN(ρ)M .

Then

N/M = CN/M(ρM) = CN(ρ)/M

because M is the identity of N/M and M ⊆ CG(ρ). By the correspondence theorem

CN(ρ) = N . Therefore ρ ∈ Z(N) and M ⊆ Z(N), satisfying (3).

Proposition 3.3.7. If G is a non-solvable group with P (G) = 1
12

, then there is an

Abelian group C such that G ∼= A5 × C.

Proof. Let H be a non-solvable subgroup of minimal order in G. Then H = H ′. By

Proposition 3.1.1,

1

12
= P (G) ≤ P (H) ≤ 1

12

because H is non-solvable. Then P (G) = P (H). By Corollary 3.1.6 H �G and G/H

is Abelian.
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By Proposition 3.3.6 there exist characteristic subgroupsM char H andN char H,

such that M ⊆ Z(N), N/M ∼= A5, and H/N is Abelian. Since H = H ′, H = N

and H/M ∼= A5 . Also, M ⊆ Z(N), so H is a central extension of A5. By As-

chbacher [3], (170, 33.15(1)), H ∼= A5 or H ∼= SL2(F5). By calculation in GAP

P (SL2(F5)) = 3
40
< 1

12
, and P (A5) = 1

12
. Thus H ∼= A5.

Consider the centralizer CG(H). Recall from the proof of Corollary 3.1.6 that

P (G) = P (H) implies G = HCG(H). Let u ∈ CG(H) and let g ∈ G. Then for some

h ∈ H and u ∈ CG(H), g = hv. Also,

gvg−1 = h(vuv−1)h−1 ∈ CG(H)

so CG(H) � G. Hence both subgroups H and CG(H) are normal. Next, notice that

CG(H) commutes with H so

H ∩ CG(H) = Z(H) = Z(A5) = {e}.

Hence G = HCG(H) = H×CG(H). Finally, CG(H) ∼= G/H and so CG(H) is Abelian.

Therefore, G = H × CG(H) ∼= A5 × C with C Abelian.

A summary of the preceding propositions describes all groups with commutativity

degree greater than 3
40

in terms of the solvability of the group.

Corollary 3.3.8. Let P (G) > 3
40

. Then either

1. G is solvable or

2. G ∼= A5 × C for some Abelian group C and P (G) = 1
12

.

Proof. By Proposition 3.3.4, if P (G) > 1
12

, then G is solvable.

If P (G) = 1
12

and G is not solvable, then by Proposition 3.3.7, G ∼= A5 × C for

some Abelian group C.
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If P (G) < 1
12

and G is not solvable, there are two cases. For the first case, suppose

G has no irreducible representation of degree 3 or 2. In the proof of Proposition 3.3.4,

we show that P (G) ≤ 5
64
< 3

40
. (Equation 3.16). Secondly, suppose that G does have

an irreducible representation of degree 3 or 2. As in Proposition 3.3.7, by Theorem

3.3.3 (Blichfeldt) G ∼= A5, G ∼= A6, or G ∼= PSL2(F7). If G ∼= A6 or G ∼= PSL2(F7)

then P (G) < 3
40

. Otherwise, G ∼= A5 and P (G) = 1
12

.



Chapter 4: Calculations for Specific Groups

It is implied in our discussion of the “k(GV ) problem” in Section 3.1 that it is

beyond the scope of this thesis to attempt to find the commutativity degree for all

finite groups. However, we can look for insight by finding the commutativity degrees

of varying types of groups. First, we will explicitly calculate the conjugacy classes and

commutativity degree for classes of groups having a presentation with two generators

and an order reversing relation. Second, relying heavily on previous results, we will

find the commutativity degree of the symmetric group Sn and alternating group An

with small n. Then we will discuss a class of groups called the 4-property p-groups

in order to construct a group having commutativity degree 1
2

(
1 + 1

2m

)
for all m ∈ N.

We generalize this result to find a group with commutativity degree ps−1+p2+p
ps+1 for

any prime p and s ≥ 3. After that, we discuss wreath products and calculate the

commutativity degree for two specific types of wreath products.

4.1 Two Generated Groups with an Order Revers-

ing Relation

We say that a group G is a two generated group with an order reversing relation if

there is a presentation of G in which G is generated by two elements and in which

there is a relation of the form ab = bai for some i. The method we use to calculate

conjugacy classes for each class of two generated groups with an order reversing

relation is outlined in Section 4.1.1, and we use the Rusin pn-groups to demonstrate

this method. The conjugacy classes and related properties of the remaining classes

of groups are summarized in this section. Calculations for these groups appear in

72
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Appendix 6.2.

4.1.1 Calculation of Conjugacy Classes

If G is a two generated group with an order reversing relation, then any element in

the group can be written in the form aibj. In some cases, when o(b) = 2, it is more

convenient to work with two forms: ajb and ai. Before calculating conjugacy classes,

we first determine all possible values for i, j. For example, let Rpn =< a, b : ap =

bn = e, bab−1 = ar > such that p is prime, n|p − 1, and rj ≡ 1(mod p) if and only if

n|j. These conditions may seem restrictive, but such groups do exist. We construct

an example in Corollary 4.1.1. The Rpn groups were defined by Rusin [43] and we

will refer to them as Rusin pn-groups. Notice that any element in Rpn can be written

in the form aibj for some i and j, and, as a set,

Rpn = {aibj : 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ n− 1}.

Next we find the form of the inverse of an element by applying the order reversing

relation to the form aibj. (If both ai and ajb are used, we apply the relation to both

forms.) Continuing with the example of Rpn, apply the relation ba = arb to aibj as

follows:

(aibj)−1 = b−ja−i = a
−i
rj b−j. (4.1)

Then the inverse of any element aibj ∈ Rpn is a
−i
rj b−j. This will allow us to conjugate

elements by the form aibj.

Next we select elements of a specified form from G and conjugate each of them by

the form aibj (or ai and ajb) the find the conjugacy class of element of the specified

form. By process of elimination, we continue to conjugate additional elements of G

by the form aibj until all elements of the group are included in some conjugacy class.

For the Rpn groups, we first found conjugacy classes for elements of the form av with

1 ≤ v ≤ p− 1 and then for elements of the form bw with 1 ≤ w ≤ n− 1 as follows:
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Let 1 ≤ v ≤ p− 1. Then

φaibj(a
v) = aibjava

−i
rj b−j = ai+(v− i

rj
)(rj) = avr

j

.

Then for each v, 1 ≤ v ≤ p− 1, the conjugacy class of av is

[av] = {av, avr, avr2 , ..., avrn−1}.

This class has n elements. Further, the p− 1 elements of the form av are partitioned

into n element classes. Hence there as p−1
n

such classes.

Next let 1 ≤ w ≤ n− 1. Then

φaibj(b
w) = aibjbwa

−i
rj b−j = ai+(− i

rj
)(rj+w)bw = ai(1−r

w)bw.

Then for each w, 1 ≤ w ≤ n− 1, the conjugacy class of bw is

[bw] = {bw, a(1−rw)bw, a2(1−rw)bw, ..., a(p−1)(1−rw)bw}.

This class has p elements because rj ≡ 1(mod p). The p(n− 1) elements of the form

aibw with w 6= 0 are partitioned into p element conjugacy classes. Thus there are

n− 1 such classes.

All nonidentity elements are included in a class of the type [av] or [bw]. No further

computations are necessary, and we have completely determined the conjugacy classes

of the group.

4.1.2 Conjugation Tables and Commutativity Degrees

Rusin pn-groups

Let Rpn =< a, b : ap = bn = e, bab−1 = ar > such that p is prime, n|p − 1, and

rj ≡ 1(mod p) if and only if n|j. Then Rpn is a Rusin pn-group. We list properties

of Rpn-groups in Table 4.1 and we tabulate the conjugacy classes in Table 4.2.
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Presentation Rpn =< a, b : ap = bn = e, bab−1 = ar >

Order pn

Element(s) {aibj : 1 ≤ i ≤ p− 1, 1 ≤ j ≤ n− 1}
Inverse(s) (aibj)−1 = a

−i
rj
b−j

Center Z(Rpn) = {e}

Table 4.1: Rpn

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[av] = {av, avr2 , avr3 , ..., avrn} n p−1
n

[bw] = {bw, a(1−rw)bw, a2(1−rw)bw, ..., a(p−1)(1−rw)bw} p n− 1

Table 4.2: Conjugacy Classes for Rpn

The commutativity degree is

P (Rpn) =
k(Rpn)

|Rpn|
=

1 + p−1
n

+ n− 1

np
=
n2 + p− 1

n2p
. (4.2)

Corollary 4.1.1. The value 1
p−1

is the commutativity degree of some Rusin pn-group.

Proof. Let p be prime and let n = p − 1. Let (Z?p, ·) be the multiplicative group of

the field Zp; this group is cyclic. Let 1 ≤ r ≤ p − 1 be such that r is a generator of

(Z?p, ·). Then there is a Rusin pn-group Rp(p−1) since p − 1|p − 1 and rj ≡ 1(mod p)

if and only if n|j. By Equation 4.2 the commutativity degree of Rp,p−1 is

Rp(p−1) =
(p− 1)2 + p− 1

(p− 1)2p
=

1

p− 1
. (4.3)

A limit point of the set of commutativity degrees can be calculated by taking the

limit of the commutativity degrees of some infinite class of groups. When finding a

limit point by this method, we also refer to the limit of the commutativity degrees

of the class as the asymptotic commutativity degree of that particular class. For
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instance, we can find the asymptotic commutativity degree of the Rusin pn-groups as

follows: Fix a positive integer n. Dirchlet’s theorem states that there are infinitely

many primes of the form pi = 1 + in, i ∈ Z . Let r be selected such that r is

the generator of the cyclic group Z?pi . Then n|pi − 1 and there are infinitely many

Rusin pin-groups of the form Rpin =< a, b : api = bn = e, bab−1 = ar >. Then the

asymptotic commutativity degree of the Rusin pin-groups is

lim
i→∞

P (Rpin) = lim
i→∞

(
n2 + pi − 1

n2pi
) =

1

n2
.

Hence 1
n2 is a limit point of the set of commutativity degrees for each positive integer

n.

Dpq Groups

Let Dpq denote an Rpn group with n = q a prime. Then Dpq = Rpq =< a, b : ap =

bq = e, bab−1 = ar > such that p is prime, q|p − 1, and r has order q mod p. This

type of group is called a generalized dihedral group. We list properties of Dpq-groups

in Table 4.3, and we tabulate the conjugacy classes in Table 4.4.

Presentation Dpq =< a, b : ap = bq = e, bab−1 = ar >

Order pq

Element(s) {aibj : 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1}
Inverse(s) (aibj)−1 = a

−i
rj
b−j

Center Z(Dpq) = {e}

Table 4.3: Dpq
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Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[av] = {av, avr2 , avr3 , ..., avrn} q p−1
q

[bw] = {bw, a(1−rw)bw, a2(1−rw)bw, ..., a(p−1)(1−rw)bw} p q − 1

Table 4.4: Conjugacy Classes for Dpq

The commutativity degree is

P (Dpq) =
k(Dpq)

|Dpq|
=

1 + p−1
q

+ q − 1

qp
=
q2 + p− 1

q2p
.

Next we find the asymptotic commutativity degree of the Dpq groups. Let q be a

prime. Similar to the general case of Rpn groups, there are infinitely may primes of the

form pi = 1 + iq for some i ∈ Z . Again let r be selected such that r is the generator

of the cyclic group Z?pi . Then q|pi − 1 and there are infinitely many Dpiq groups of

the form Dpiq =< a, b : api = bq = e, bab−1 = ar >. The asymptotic commutativity

degree of the class of Dpiq groups is

lim
i→∞

P (Dpiq) = lim
i→∞

(
q2 + pi − 1

q2pi
) =

1

q2
.

Then 1
q2

is a limit point of the set of commutativity degrees for each prime q.

Tp,q,m,θ Groups

The Tp,q,m,θ groups are defined in Rusin [43] as follows: Let m ∈ N and let p and q

be primes so that q|p − 1. Then Tp,q,m,θ =< a, b : ap = bq
m

= e, bab−1 = aλ
θ
> such

that λ has order q mod p, and θ ∈ {1, 2, ..q− 1}. We list properties of Tp,q,m,θ groups

in Table 4.5, and we tabulate the conjugacy classes in Table 4.6.
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Presentation Tp,q,m,θ =< a, b : ap = bq
m

= e, bab−1 = aλ
θ
>

Order pqm

Element(s) {aibj : 1 ≤ i ≤ p− 1, 1 ≤ j ≤ qm − 1}
Inverse(s) (aibj)−1 = a

−i
λjθ b−j

Center Z(Tp,q,m,θ) =< bq >

G/Z(G) < a, b : āp = b̄q = e, b̄āb̄−1 = āλ
θ
>= Dpq with λθ = r

Table 4.5: Tp,q,m,θ

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[av] = {av, avλθ , avλ2θ
, ..., avλ

(p−1)θ} p− 1 1

[bw] = {bw, a(1−λwθ)bw, a2(1−λwθ)bw, ..., a(p−1)(1−λwθ)bw} p qm − qm−1

for q - w
[bw] = {bw} for q | w 1 qm−1 − 1

[avbw] = {avbw, avλθbw, avλ2θ
bw, ..., avλ

(p−1)θ
bw} p− 1 qm−1 − 1

for q | w

Table 4.6: Conjugacy Classes for Tp,q,m,θ

The commutativity degree is

P (Tp,q,m,θ) =
k(Tp,q,m,θ)

|Tp,q,m,θ|

=
1 + 1 + (qm − qm−1) + (qm−1 − 1) + (qm−1 − 1)

pqm

=
qm + qm−1

pqm

=
q + 1

pq
.

Again by Dirchlet’s theorem, for a fixed q, m, and θ there are infinitely many Tp,q,m,θ

with pi = 1 + iq and with λ a generator of Zpi , since q|pi − 1 for each i ∈ N. The

asymptotic commutativity degree of the class of Tp,q,m,θ groups is

lim
i→∞

(P (Tp,q,m,θ)) = lim
i→∞

(
q + 1

piq
) = 0.
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We will use the Tp,q,m,θ groups when finding the commutativity degree of groups

with |G/Z| < 12. Specifically, we will show in Proposition 5.2.13 that if G is a group

with G/Z(G) ∼= Dpq then there is some θ ∈ {1, 2, ..., q−1}, m ≥ 1, and Abelian group

A such that G ∼= Tp,q,m,θ × A.

Gm Groups

The Gm groups are a subclass of Tp,q,m,θ groups. Let p = 3, q = 2, θ = 1, and λ = −1.

Notice that −1 has order p− 1 mod p = 3, so λ = −1 is an acceptable λ value. Let

m ∈ N. Then T3,2,m,1 = Gm =< a, b : a3 = b2
m

= e, bab−1 = a−1 >. We list properties

of Gm-groups in Table 4.7, and we tabulate the conjugacy classes in Table 4.8.

Presentation Gm =< a, b : a3 = b2
m

= e, bab−1 = a−1 >

Order (3)(2m)

Element(s) {aibj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 2m − 1}
Inverse(s) (aibj)−1 = a

−i
2j b−j

Center Z(Gm) =< b2 >

Table 4.7: Gm

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[a] = {a, a2} 2 1

[bw] = {bw, abw, a2bw} 3 2m − 2m−1

for w odd

[bw] = {bw} 1 2m−1 − 1

for w even

[abw] = {abw, a2bw} 2 2m−1 − 1

for w even

Table 4.8: Conjugacy Classes for Gm
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The commutativity degree is

P (Gm) =
2m + 2m−1

(3)2m
=

1

2
.

The Gm groups will also be used when calculating the commutativity degrees

of groups with |G/Z| < 12. Notice that if m = 1 then G1 =< a, b : a3 = b2 =

1, bab−1 = a−1 >∼= S3. Further, in Proposition 5.2.14 we show that if G/Z(G) ∼= S3

then G ∼= Gm × A, with m ≥ 1 and A Abelian.

A Indecomposable Group with P (G) = 1
2

Examples of groups with commutativity degree 1
2

are easily constructed using di-

rect products. For example, recall that P (Gm) = 1
2
. Then for every m ∈ N and

for every nontrivial Abelian group A there is a group G ∼= Gm × A such that

P (G) = P (Gm)P (A) = 1
2
. In this section, we provide an example of a group G

with commutativity degree 1
2

that is not a direct product. We list properties of G in

Table 4.9, and we tabulate the conjugacy classes in Table 4.10. The commutativity

degree is

P (G) =
k(G)

|G|
=

1

2
.

This group has commutativity degree P (G) = 1
2

but it is not a direct product of a

nontrivial Abelian group with another group nor is it a Gm group. In this example,

Z(G) =< a3 > has even order. Recall that we showed in in Proposition 3.2.3 that if

G is nilpotent, |Z(G)| is odd, and P (G) = 1
2
, then G ∼= S3 × Z(G). The group G is

an example of a group with P (G) = 1
2

and Z(G) of even order that is not isomorphic

to S3 × Z(G).
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Presentation G =< a, b : a6 = e, b2 = a3, bab−1 = a−1 >

Order 12

Element(s) {aibj : 1 ≤ i ≤ 5, 1 ≤ j ≤ 1}
Inverse(s) (aibj)−1 = a

−i
5j b−j

Center Z(G) =< a3 >

Table 4.9: G

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[a] = {a, a5} 2 1

[a2] = {a2, a4} 2 1

[a3] = {a3} 1 1

[ab] = {ab, ab3, ab5} 3 1

and [a2b] = {b, a2b, a4b} 3 1

Table 4.10: Conjugacy Classes for G

Dicyclic Groups

Let m ∈ N. The general dicyclic group is defined by Dm =< a, b : a2m = b4 =

e, b−1ab = a−1, am = b2 >. The notation is similar to that used for the dihedral

groups, but the group in question should be clear by context. We list properties of

Dm-groups in Table 4.11, and we tabulate the conjugacy classes in Table 4.12. The

commutativity degree is

P (Dm) =
2 +m− 1 + 2

4m
=
m+ 3

4m
.

Also, the asymptotic commutativity degree for the class of Dm groups is

lim
m→∞

(
m+ 3

4m
) =

1

4
.
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Presentation Dm =< a, b : a2m = b4 = e, b−1ab = a−1, am = b2 >

Order 4m

Element(s) {ai, bai : 1 ≤ i ≤ 2m− 1}
Inverse(s) (ai)−1 = a−i and (bai)−1 = bai−m

Center Z(G) =< b2 >

Table 4.11: Dm

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[b2] 1 1

[at] = {at, a−t} 2 2m−2
2

= m− 1

[ba] = {ba, ba3, ..ba2m−1} m 1

[ba2] = {b, ba2, ..ba2m−2} m 1

Table 4.12: Conjugacy Classes for Dm

Generalized Quaternion Groups

Let n ∈ N. The generalized quaternion group Q2n+1 is defined to be the dicyclic group

with m = 2n−1. Then

Q2n+1 = D2n−1 =< a, b : a2n = b4 = e, b−1ab = a−1, a2n−1

= b2 > .

Notice that when n = 2, Q2n+1 = Q8 is the usual quaternion group. We list properties

of Q2n+1-groups in Table 4.13, and we tabulate the conjugacy classes in Table 4.14.

(The semidihedral group SDn is defined in Subsection 4.1.2.)
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Presentation Q2n+1 =< a, b : a2n = b4 = e, b−1ab = a−1, a2n−1
= b2 >

Order 2n+1

Element(s) {ai, bai : 1 ≤ i ≤ 2n − 1}
Inverse(s) (ai)−1 = a−i and (bai)−1 = bai−2n

Center Z(G) =< b2 >

G/Z SDn

Table 4.13: Q2n+1

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[b2] 1 1

[at] = {ht, h−t} 2 2n−2
2

= 2n−1 − 1

[ba] = {b, ba2, ..ba2n−2} 2n−1 1

[ba3] = {ba, ba3, ..ba2n−1} 2n−1 1

Table 4.14: Conjugacy Classes for Q2n+1

The commutativity degree is

P (Q2n+1) =
2 + 2n−1 − 1 + 2

2n+1
=

2n−1 + 3

2n+1
.

The asymptotic commutativity degree is

lim
n→∞

(
2n−1 + 3

2n+1
) =

1

4
.

Dihedral Groups

Let n ∈ N. The dihedral group, Dn =< r, ρ : r2 = e, ρn = e, ρr = rρn−1 > has a

different conjugacy class structure depending on whether n is even or odd. We will

tabulate the conjugacy classes separately for dihedral groups with even and odd n.

We list properties of Dn-groups in Table 4.15, and we tabulate the conjugacy classes

in Tables 4.16 and 4.17.
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Presentation Dn =< r, ρ : r2 = e, ρn = e, ρr = rρn−1 >

Order 2n

Element(s) {ρi, rρi : 1 ≤ i ≤ n− 1}
Inverse(s) (ρi)−1 = ρ−i and (rρi)−1 = rρi

Center Z(Dn) = {e} (n odd), and Z(Dn) =< ρ
n
2 > (n even)

Table 4.15: Dn

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[r] = {rρj : 0 ≤ j < n} n 1

[ρi] = {ρi, ρn−i} 2 n−1
2

Table 4.16: Conjugacy Classes for Dn with n Odd

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[r] = {rρ2j : 0 ≤ j ≤ n−1
2
} n

2
1

[r] = {rρ2j+1 : 0 ≤ j ≤ n and j odd } n
2

1

[ρi] = {ρi, ρn−i} 2 n−2
2

[ρ
n
2 ] = {ρn2 } 1 1

Table 4.17: Conjugacy Classes for Dn with n Even

The commutativity degree is

P (Dn) =
k(Dn)

|Dn|
=
n+ 3

4n
(n odd)

P (Dn) =
k(Dn)

|Dn|
=
n+ 6

4n
(n even).

It is interesting that if n is odd then

P (D2n) =
2n+ 6

4(2n)
=
n+ 3

4n
= P (Dn).
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The asymptotic commutativity degree is

lim
n→∞

P (Dn) = lim
n→∞

n+ 3

4n
=

1

4
(n odd)

lim
n→∞

P (Dn) = lim
n→∞

n+ 6

4n
=

1

4
(n even).

Semidihedral Groups and Quasidihedral Groups

The semidihedral groups

SDn =< a, b : a2n = b2 = e, ab = ba2n−1−1 >

and quasidihedral groups

QDn =< a, b : a2n = b2 = e, ab = ba2n−1+1 >

have similar relations but surprisingly different commutativity degrees. We list prop-

erties of SDn-groups and QDn-groups in Tables 4.18 and 4.19. We tabulate the

conjugacy classes in Tables 4.20 and 4.21. The commutativity degrees are

P (SDn) =
2n−1 + 3

2n+1

P (QDn) =
1 + 2n−1 − 1 + 2n−2 + 2n−1

2n+1
=

2n + 2n−2

2n+1
=

5

8
.

Notice that P (Q2n+1) = P (SDn) and Q2n+1/Z(Q2n+1) ∼= SDn. Also, we will show

in Section 5.2.2 that QDn/Z(QDn) =< a2 >∼= V4. The asymptotic commutativity

degree of SDn is

lim
n→∞

P (SDn) = lim
n→∞

2n−1 + 3

2n+1
=

1

4
.



86

Presentation SDn =< a, b : a2n = b2 = e, ab = ba2n−1−1 >

Order 2n+1

Element(s) {ai, bai : 0 ≤ i ≤ 2n − 1}
Inverse(s) (ai)−1 = a−i and (bai)−1 = ba(−i2n−1+i)

Center Z(SDn) =< a2n−1
>

Table 4.18: SDn

Presentation QDn =< a, b : a2n = b2 = e, ab = ba2n−1+1 >

Order 2n+1

Element(s) {ai, bai : 0 ≤ i ≤ 2n − 1}
Inverse(s) (ai)−1 = a−i and (bai)−1 = ba(−i2n−1−i)

Center Z(QDn) =< a2 >

Table 4.19: QDn

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[ai] = {ai, a−i} for i 6= 2n−1 2 2n−1 − 1

[a2n−1
] 1 1

[ba] = { bai : i odd } 2n−1 1

[ba2] = { bai : i even } 2n−1 1

Table 4.20: Conjugacy Classes for SDn

Conjugacy Class Type No. Elements No. Classes

[e] 1 1

[ai] = {ai} for i even 1 2n−1 − 1

[ai] = {ai, a2n−1+i for i odd} 2 2n−2

[bai] = { bai, ba2n−1+i} 2 2n−1

Table 4.21: Conjugacy Classes for QDn
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4.2 Symmetric Groups and Alternating Groups

To find the commutativity degree of Sn, we count the number of conjugacy classes

of the group. It is well known that two elements of Sn are conjugate if they have

the same cycle structure. Dummit and Foote [15] (4.3, Proposition 11) prove the

following theorem:

Theorem 4.2.1. Two elements of Sn are conjugate if and only if they have the same

cycle type. The number of conjugacy classes of Sn equals the number of partitions of

n.

Let p(n) denote the number of partitions of n. Hardy and Ramanujan proved

another well known result: the number of partitions of n is approximated by

p(n) ≈ 1

4n
√

3
e

2π
√
n√

3 .

Hence

P (Sn) =
p(n)

n!
≈ 1

4n
√

3n!
e

2π
√
n√

3 . (4.4)

and the asymptotic commutativity degree of Sn is limn→∞ P (Sn) = 0.

The following formula is given by Dénes, Erdös and Turán in [11]. It counts the

number of conjugacy classes of An in terms of p(n):

k(An) =
p(n)

2
+

3

2
(−1)n

∑
|r|<
√
n

(−1)rp

(
n

2
− 3r2 + r

4

)
≈ 1

8n
√

3n!
e

2π
√
n√

3

where the sum is restricted to r ≡ 2n or (2n+ 1) mod 4. Then

P (An) =
2k(An)

n!
.

Dénes, Erdös and Turán also show that k(An) ≈ p(n)
2

. Hence limn→∞ P (An) = 0,

and

lim
n→∞

P (Sn)

P (An)
= lim

n→∞

(
p(n)
n!

2k(An)
n!

)
≈ lim

n→∞

(
p(n)
n!

2p(n)
2n!

)
= 1.
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Table 4.22 tabulates k(Sn), k(An), P (Sn), P (An), and the ratio P (Sn)
P (An)

for small n,

rounded to four decimal places.

n k(Sn) k(An) P (Sn) P (An) Ratio
2 2 1 1 1 1.0000
3 3 3 0.5 1 0.5000
4 5 4 0.2083 0.3333 0.6250
5 7 5 0.0583 0.0833 0.7000
6 11 7 0.0153 0.0194 0.7858
7 15 9 0.0030 0.0036 0.8333

20 627 324 ≈ 0 ≈ 0 ≈ 1

Table 4.22: commutativity degree of Sn and An

4.3 4 Property p-Groups

In this section we will describe a class of groups which we call 4-property p-groups;

then we will use this class to construct an example of a group having commutativity

degree 1
2
(1 + 1

22m ) for each m ∈ N. We generalize the example to show that, for any

prime p, there is a group with commutativity degree ps−1+p2−1
ps+1 for s ≥ 3. Additionally,

we will use this class of groups to show that for all m ∈ N, the value 1
m

is a limit

point of the set of commutativity degrees.

We define a 4-property p-group Gn as a group satisfying the following four prop-

erties:

1. |Gn| = pn for some prime p

2. |G′n| = p, and G′n =< a > for some a ∈ G

3. Z(Gn) = G′n

4. Gn/Z(Gn) = Πj
i=1Zpi for some j ∈ N.
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Before constructing our example class of groups, we will compute the commuta-

tivity degree of a 4-property p-group.

Proposition 4.3.1. Let p be a prime and let Gn be a 4-property p-group with |Gn| =

pn. Then

P (Gn) =
1

p

[
1 +

1

pn−2
− 1

pn−1

]
.

Proof. Assume G′n =< a > for a ∈ Gn. Let b ∈ G and suppose b /∈ Z(Gn). Then

1 < |[b]| and there is some g ∈ Gn such that gbg−1 = x with x 6= b. Also

[g, b] = gbg−1b−1 = xb−1 = ai ∈ G′n (4.5)

for some i. Then x = aib. Since ap = e, there are at most p distinct possible values

for x. Hence b has at most p distinct conjugates and |[b]| ≤ p. Thus |[b]| = p.

Next we will the number of conjugacy classes in G. The center is partitioned

into |Z(Gn)| = p many conjugacy classes. The set of noncentral elements of G is

partitioned into conjugacy classes containing p elements each. There are

|Gn| − |Z(Gn)| = pn − p

noncentral elements in Gn. Hence the noncentral elements are partitioned into pn−p
p

many conjugacy classes. Then

k(Gn) = p+
pn − p
p

=
pn + p2 − p

p
,

and

P (Gn) =
pn + p2 − p

pn+1

=
1

p

[
1 +

1

pn−2
− 1

pn−1

]
. (4.6)
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For a given p the asymptotic commutativity degree of the Gn groups is

lim
n→∞

P (Gn) = lim
n→∞

(
1

p

[
1 +

1

pn−2
− 1

pn−1

])
=

1

p
.

We show in Example 4.3.6 that there are infinitely many Gn groups for each prime

p. Then we can generalize this result as follows:

Corollary 4.3.2. For each m ∈ N, the value 1
m

is a limit point for the set of com-

mutativity degrees.

Proof. Let m ∈ N and suppose m = p1p2..ps for (not necessarily distinct) primes pi,

1 ≤ i ≤ s. Let n ∈ N and let Gn =
∏s

i=1Gi where each Gi is a 4-property p-group

with |Gi| = pnii . By Proposition 1.2.3,

P (Gn) =
s∏
i=1

P (Gi),

and it follows that

P (Gn) ≤
s∏
i=1

(
1

pi

[
1 +

1

pn−2
i

− 1

pn−1
i

])
.

Then

lim
n→∞

P (Gn) = lim
n→∞

s∏
i=1

(
1

pi

[
1 +

1

pn−2
i

− 1

pn−1
i

])
=

k∏
i=1

(
1

pi
) =

1

m
.

Lemmas 4.3.3 and 4.3.4 are used in the construction of a class of groups with

commutativity degree P (G) = 1
2

+ 1
22m for m ∈ N.

Lemma 4.3.3. If Gn is a 4-property 2-group of order 2n then the commutativity

degree of Gn = 1
2
(1 + 1

22m ) for some m ∈ N.
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Proof. Let p = 2 so that |Gn| = 2n. Then by Equation 4.6,

P (Gn) =
1

2

[
1 +

1

2n−2
− 1

2n−1

]
=

1

2

[
1 +

2− 1

2n−1

]
=

1

2

(
1 +

1

2n−1

)
. (4.7)

The 4-property 2-group Gn has |Z(Gn)| = 2 and thus |Gn/Z(Gn)| = 2n−1. Addi-

tionally, Proposition 5.1.2 applies to the 4-property 2-groups so that

|Gn/Z(Gn)| =
r∏
i=1

(Z2 × Z2)i

for some r ∈ N. Then |Gn/Z(Gn)| = 22m for some m ∈ N. It follows that 22m = 2n−1

with m ∈ N and so n− 1 is even. Therefore,

P (G) =
1

2

(
1 +

1

22m

)
for some m ∈ N.

Lemma 4.3.4. Let G1 and G2 be 4-property p-groups such that |G1| = pn1, |G2| = pn2,

G′1 =< a1 >, and G′2 =< a2 >. Then the group G = G1 ×G2/ < (a1, a2) > is also a

4-property p-group.

Proof. Let < (a1, a2) >= N so that

G = (G1 ×G2)/ < (a1, a2) >= (G1 ×G2)/N.

We will show that G satisfies properties (1) through (4) of a 4-property p-group.

1. Property (1) : Clearly,

|G| = |G1||G2|
| < (a1, a2) > |

=
pn1pn2

p
= pn1+n2−1.

Hence G is a p-group.
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2. Property (2) : Let A = (u1, u2)N ∈ G′ and let B = (v1, v2)N ∈ G′. The

commutator of A and B is

[A,B] = ([u1, v1], [u2, v2])N = (ai1, a
j
2)N

for some ai1 ∈ G′1 and aj2 ∈ G′2 Then

[A,B] = (ai−j1 , e2)N = (e1, a
j−i
2 )N.

Hence G′ =< (a1, e2)N > and |G′| = | < (a1, e2)N > | = | < a1 > | = p.

3. Property (3) : First we will show that Z(G) ⊆ G′. Let A = (u, v)N ∈ Z(G) and

g ∈ G1. Then A commutes with all elements of G, specifically with (g, e2)N .

Then ugu−1g−1 = e1 = ap. Further,

[A, (g, e2)N ] = (ugu−1g−1, e2)N = N,

and so (ugu−1g−1, e2) ∈ N . This implies that (ugu−1g−1, e2) = (ai1, a
i
2) for

some i. Consequently, p/i, so ai1 = e1 and u ∈ Z(G1). Similarly, v ∈ Z(G2).

Therefore,

(u, v) = (ai1, a
j
2) ∈< (a1, e2)N >= G′

and Z(G) ⊆ G′.

Next we will show that G′ ⊆ Z(G). Let a ∈ G′. By the proof of property

(2), a ∈ G′ =< (a1, e2) > N where N =< (a1, a2) >. Then for some positive

integers i, l, s, t,

a = (ai1, e2)(a
s
1, a

t
2) = (al1, a

t
2) ∈ Z(G).

Hence G′ ⊆ Z(G) and we conclude that G′ = Z(G).

4. Property (4) : Since G/Z(G) = G/G′, G/Z(G) is Abelian. Also, |G/Z(G)| =

|G/G′| = pn1+n2−2 so G/Z(G) is a p-group. Hence G/Z(G) ∼= Πs
i=1Zpi for some

s ∈ N.
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Therefore, G satisfies the four properties of a 4-property p-group.

Finally, we are ready to construct our example of a group with commutativity

degree 1
2
(1 + 1

22m ) for m ∈ N.

Example 4.3.5. The class of Qs
8 groups. First we will verify that the quaternion

group,

Q8 =< a, b : a4 = b4 = e, a2 = b2, ba = ab3 >,

is a 4-property 2-group. Notice that |Q8| = 23. Also, Q′8 = Z(Q8) = {e, b2} ∼= Z2 and

so |Q′8| = 2. This verifies properties (1) through (3). In addition, Q8/Z(Q8) ∼= Z2×Z2.

This verifies property (4). Hence Q8 is a 4-property 2-group. By Equation 4.7 the

commutativity degree of Q8 is

P (Q8) =
1

2
(1 +

1

23−1
) =

5

8
.

(Note that this value is also calculated in Table 1.2.)

Next let < (b2, b2) >= N2 and then let Q2
8 = Q8×Q8/N2. By Lemma 4.3.4, Q2

8 is

a 4-property 2-group. Notice that |Q2
8| = 23·23

2
= 25.Then by Equation 4.7

P (Q2
8) =

1

2
(1 +

1

24
) =

17

32
.

Let j > 2 and assume that for i = 1, 2, ..j − 1, Qi
8 is a 4-property 2-group such that

|Qi
8| = pn with n− 1 even. Then set < (b2, N j−1) >= N j and define

Qj
8 = Q8 ×Qj−1

8 /N j.

Notice that

|Qj
8| =

|Q8| · |Qj−1
8 |

N j
=

23 · 2n

2
= 22+n

with n+ 1 even. By Lemma 4.3.4, Qj
8 is a 4-property 2-group and

P (Qj
8) =

1

2

(
1 +

1

2j−1

)
.
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By induction, for each odd integer s > 2, the group Qs
8 is a 4-property 2-group and

has commutativity degree

P (Qs
8) =

1

2

(
1 +

1

2s−1

)
.

Since s is odd, s− 1 = 2m for some m ∈ N, and

P (Qs
8) =

1

2

(
1 +

1

22m

)
.

Example 4.3.6. Generalization of the Qs
8 Groups To generalize the Qs

8 example to

any prime p > 2, we begin with an analogous group to Q8,

Qp3 =


 1 a b

0 1 c
0 0 1

 : a, b, c ∈ Zp

 .

Like Q8 this group is a 4-property p-group and Q′p3 =< b >. By Equation 4.6

P (Qp3) =
p2 + p− 1

p3
.

Like the Qs
8 example, it can be shown that Q2

p3 = Qp3 × Qp3/N2, where N2 =<

(b, b) >, is a 4-property p-group. Similarly, it can also be shown that for odd integers

s > 2, the group

Qs
p3 = Qp3 ×Qs−1

p3 / < (b,N s−1) >= Qp3 ×Qs−1
p3 /N s

has commutativity degree

P (Qp3) =
ps−1 + p2 − p

ps+1
.

4.4 Wreath Products

Let H be a group and let N = H ×H × ...×H be the product of n copies of H. Let

A ≤ Sn. Recall from Section 3.1 that the wreath product of N by A with respects to
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n is the semidirect product of N by A and is denoted G = N Wr A. Recall that the

order of G is |G| = |N ||A| = |H|n|A|.

We will calculate the commutativity degree for select types of wreath products.

We will also use a type of wreath product as an example showing that nilpotence

class is not a good measure of commutativity degree.

4.4.1 The Wreath Product of Πp
i=1Zq and a p-Cycle

Let q, p be primes, Zq the cyclic group of order q, and A be the subgroup of Sp

generated by a p-cycle. Let G = Πp
i=1Zq Wr A. We will compute the commutativity

degree of G using the class equation.

First we compute the inverse of an element. Let (n, σ) ∈ G and suppose that

(m, τ) = (n, σ)−1. Then

(e, e) = (n, σ)(m, τ) = (nσm, στ) (4.8)

so that m = σ−1n−1 and τ = σ−1. Hence (n, σ)−1 = (σ−1n−1, σ−1).

Next we find Z(G). Suppose that y = (n1, σ1) ∈ Z(G) such that n1 = (h1, h2, ..hp).

Let x = (n2, σ2) ∈ G so that n2 = (h′1, h
′
2...h

′
p). Then

yx = (n1σ1n2, σ1σ2)

xy = (n2σ2n1, σ2σ1),

and setting yx = xy yields

(n1σ1 · n2, σ1σ2) = (n2σ2n1, σ2σ1). (4.9)

Expanding the first coordinate of Equation 4.9,

(h1, h2, ..hp)(h
′
σ1(1), h

′
σ1(2), ...h

′
σ1(p)) = (h′1, h

′
2...h

′
p)(hσ2(1), hσ2(2)..., hσ2(p)). (4.10)
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Suppose that σ2 = e. Equating the entries in each coordinate in Equation 4.10

yields

hih
′
σ1(i) = h′ihi

for 1 ≤ i ≤ p. Then

h′σ1(i) = h′i

because N is Abelian. Hence σ1 = e.

Next suppose that σ2 = (1, 2, .., p). Again by equating the entries in the each

coordinate of Equation 4.10,

hih
′
i = h′ihi+1

for 1 ≤ i < p. Then

hi = hi+1

for 1 ≤ i < p, again because N is Abelian. (Similarly, if i = p then hp = h1). Thus

h1 = h2 = ... = hp.

Finally, if σ2 = (1, 2, .., p)s with 1 < s < p, then similar calculation yields that for

each i, 1 ≤ i ≤ p, there is a j 6= i, 1 ≤ j ≤ p, such that hih
′
i = h′ihj. Then σ2(hj) = hi

and it follows that h1 = h2 = h3 = .. = hp. Hence

Z(G) = {((h1, h2, ..hp), e) : h1 = h2 = ... = hp}

and |Z(G)| = q since there are q choices for h1.

As a side note, notice that

Z(N Wr A) = {((h1, h2, ..hp), e) : h1 = h2 = ... = hp}

whenever A ≤ Sn is a primitive subgroup of Sn. (A primitive subgroup has the

property that given 1 ≤ i ≤ j ≤ n, there is a σ ∈ A such that σ(i) = j).

Next we calculate the conjugacy class of a noncentral element that is in the sub-

group (N, e). Let (n, e) ∈ (N, e) such that (n, e) /∈ Z(G). Then

(N, e) ⊂ CG((n, e)) ( G,
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and

qp = |(N, e)| ≤ |CG((n, e))| < |G| = pqp.

Then qp = |CG((n, e))|. There is a conjugacy class [(n, e)] = [G : CG((n, e))] with

|[(n, e)]| = |G|
qp

= p for each such (n, e). There are qp − q elements in (N, e) that are

not in the center of G (because |Z(G)| = q and Z(G) ⊂ (N, e)). Then there are

qp − q
p

(4.11)

conjugacy classes of order p of this type.

All that remains is to partition the noncentral elements that are not in (N, e) into

conjugacy classes. Let (n, σ) ∈ G with n = (h1, h2, ..hp) such that (n, σ) /∈ (N, e) and

let (m, ρ) ∈ G with m = (a1, a2, ..ap). (Since Z(G) ⊂ (N, e), (n, σ) /∈ Z(G)). Then

φ(m,ρ)(n, σ) = (m, ρ)(n, σ)(ρ−1m−1, ρ−1)

= (mρn, ρσ)(ρ−1m−1, ρ−1)

= (mρnρσρ−1m−1, ρσρ−1)

= (mσm−1ρn, σ)

= ((a1, a2, .., ap)(a
−1
σ(1), a

−1
σ(2), .., a

−1
σ(p))ρn, σ).

Suppose ρ = e. Then

φ(m,ρ)(n, σ) = ((h1a1a
−1
σ(1), h2a2a

−1
σ(2), .., hpapa

−1
σ(p)), σ)

= ((h1y1, h2y2, ..., hpyp), σ) (4.12)

for some y1 ∈ N such that y1 = y−1
p y−1

p−1...y
−1
3 y−1

2 . Then 1 = y1y2...yp and

h1y1h2y2, ...hpyp = h1h2...hp,

since N is Abelian. There are qp−1 elements of the type described in Equation

4.12 because there are q choices for y2, ..., yp and once selected, these fix y1. Let
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M = {((h1y1, h2y2, h3y3..., hpyp), σ) : 1 = y1y2...yp}. Then [(n, σ)] ⊇ M . Let

M ′ = {((b1, b2, ..bp), σ) : b1b2...bp = h1h2...hp}. Then |M | = |M ′|, and it follows

that M = M ′.

Next suppose ρ 6= e. Then

φ(m,ρ)(n, σ) = ((hρ(1)a1a
−1
σ(1), hρ(2)a2a

−1
σ(2), .., hρ(p)apa

−1
σ(p)), σ)

= ((hρ(1)y1, hρ(2)y2, ..., hρ(p)yp), σ) (4.13)

for some y1 ∈ N such that y1 = y−1
p y−1

p−1...y
−1
3 y−1

2 . Then

hρ(1)y1hρ(2)y2...hρ(p)yp) = hρ(1)hρ(2)..hρ(p) = h1h2...hp

since N is Abelian. Then ((hρ(1)y1, hρ(2)y2, ..., hρ(p)yp), σ) ∈ M ′ and |[(n, σ)]| =

|M ′| = qp−1. There are

|G| − |N | = pqp − qp

noncentral elements of G that are not in N and we partition these into

|G| − |N |
qp−1

=
pqp − qp

qp−1
= qp− q

many conjugacy classes of this type. Summing the center, conjugacy classes contained

in N , and conjugacy classes disjoint from N yield the class equation:

|G| = q +

( q
p−q
p

)∑
i=1

p+

(qp−q)∑
j=1

qp−1.

Then the number of conjugacy classes is

k(G) = q +
qp − q
p

+ (qp− q),

and the commutativity degree is

P (G) =
k(G)

|G|
=
qp+ qp − q + qp2 − qp

p(pqp)

=
qp + qp2 − q
p(pqp)

=
qp−1 + p2 − 1

p2qp−1
.
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Therefore, for a wreath product of the type G = Πp
i=1Zq Wr A for primes p and q,

the commutativity degree is

P (G) =
qp−1 + p2 − 1

p2qp−1
. (4.14)

4.4.2 The Wreath Product of Πp
i=1Zp and a p-Cycle

In the case of q = p the wreath product,

G = Πp
i=1Zp Wr < (1, 2, ..p) >

is a p-group and hence nilpotent. By Equation 4.14, the commutativity degree is

P (G) =
pp−1 + p2 − 1

pp+1
. (4.15)

We also can calculate the asymptotic commutativity degree as follows:

lim
p→∞

pp−1 + p2 − 1

pp+1
= 0.

One might expect that, as the nilpotence class increases the commutativity degree of

the group decreases. To investigate this conjecture, we calculate the nilpotence class

of G.

Lemma 4.4.1. The commutator subgroup of G = Πp
i=1Zp Wr < (1, 2, .., p) > is

G′ = {((a1, a2, ..ap), e) : 1 = a1a2a3...ap} and |G′| = pp−1.

Proof. We will find the commutators of select elements of G, then show that this set

of commutators is the commutator subgroup. First suppose that n1, n2 ∈ N . Then

[(n1, e), (n2, e)] = (n1, e)(n2, e)(n
−1
1 , e)(n−1

2 , e)

= (n1n2n
−1
1 n−1

2 , e)

= (e, e)
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Next suppose σ = (1, 2, ..., p) and n1, n2 ∈ N . Then

[(n1, e), (n2, σ)] = (n1, e)(n2, σ)(n−1
1 , e)(σ−1n−1

2 , σ)

= (n1n2, σ)(n−1
1 σ−1n−1

2 , σ−1)

= (n1n2σn
−1
1 σ−1n−1

2 , σσ−1)

= (n1σ2n
−1
1 , e) (4.16)

where the last simplification occurs because N is Abelian. By expanding n1 =

(h1, h2, ..., hp) and n2 = (h−1
1 , h−1

2 , ..., h−1
p ), in Equation 4.16,

[(n1, e), (n2, σ)] = ((h1h
−1
2 , h2h

−1
3 , h3h

−1
4 ...hph

−1
1 ), e)

= ((a1, a2, a3...ap), e)

(4.17)

for some a1 ∈ N such that a1 = a−1
p a−1

p−1...a
−1
3 a−1

2 . Then 1 = a1a2...ap and there

are pp−1 elements of this type (as arbitrarily chosen a2, a3, ...ap determine a1). Let

M = {((a1, a2, a3...ap), e)}. Then G′ ⊇M . Next we claim that G′ = M . To verify the

claim, let (n, σ) ∈ G and (m, e) ∈M and then conjugate (m, e) by (n, σ) as follows:

(n, σ)(m, e)(σ−1n−1, σ−1) = (nσmσ−1n−1, e).

Since, σ−1 permutes the entries of n−1 and since N is Abelian

(nσmσ−1n−1, e) = (nσ−1n−1σm, e) = (σm, e).

Also, σm permutes the entries of m, so (σm, e) ∈ M . Thus M � G. Then, since

|M | = pp−1, |G/M | = p2 so G/M is Abelian. It follows that G′ ≤ M . Therefore,

G′ = M and

G′ = {((a1, a2, ..ap), e) : 1 = a1a2...ap}

where |G′| = pp−1.
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Proposition 4.4.2. The nilpotence class of G = Πp
i=1Zp Wr < (1, 2, .., p) > is p.

Proof. Recall that the lower central series of G is

G = L(0) � L(1) � L(2) � ...� L(n) = {e}

where L(i) = [G,L(i−1)] and n is the nilpotence class. First we find the maximal

possible nilpotence class of G. Since L(i) is a proper subgroup of L(i−1), |L(i)| ≤ |G(i−1)|
p

.

By Lemma 4.4.1 |L(1)| = |G′| = pp−1, so the maximal length of the lower descending

series is i = p. Hence the maximal possible nilpotence class is n = p.

Next we find an element in each L(i) for 2 ≤ i ≤ p. Let ((h−1, h, e, ..e), e) ∈ L(1)

and let (e, σ) ∈ G where σ = (1, 2..p). Then [(e, σ)((h−1, h, e, ..e), e)] ∈ L(2), and

[(e, σ)((h−1, h, e, ..e), e)] = (e, σ)((h−1, h, e, ..e), e)(e, σ−1)((h, h−1, e, ..e), e)

= (σ(h−1, h, e, ..e), σ)(σ−1(h, h−1, e, ..e), σ−1)

= ((e, h−1, h, e, ..e)(h, h−1, e, ..e), e)

= ((h, h−2, h, e, ..e), e). (4.18)

Then [(e, σ)((h−1, h, e, ..e), e)] 6= (e, e) and so L(2) 6= e. We can continue computing

a nonidentity element in each Li+1 for i+ 1 < p as follows. Let

(n, e) = ((h, h−C(i,1), h−C(i,2), ..., h−C(i,(i−1)), h, e, .., e), e) ∈ L(i).

a similar calculation to Equation 4.18 yields that

[(e, σ)(n, e)] = ((h, h−C(i+1,1), h−C(i+1,2), ..., h−C(i+1,(i−1)), h, e, .., e), e).

Hence the length of the lower central series is p and G has nilpotence class n = p.

As p increases, the commutativity degree asymptotically decreases like 1
p2

even

though the nilpotence class, which equals p, increases. This illustrates that the nilpo-

tence class of a group does not measure commutativity degree. Rather, notice the
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derived length of G is d = 2 since [G′, G′] = e. In this case the derived length may

be thought of as a measure of how fast the commutativity degree decreases, as d = 2

corresponds to the exponent of p in 1
p2

. In general, we use the derived length to

compute bounds on the commutativity degree, such as the derived length bounds in

Section 2.2.3 and the Pyber Bound. In this case ,perhaps the most we can say more

about the commutativity degree by using either the derived length or the nilpotence

class would be to compute bounds using the derived length.

4.4.3 Summary of Commutativity Degree Values for Groups
in Chapter 4

Tables 4.23 and 4.24 summarize the commutativity degree values computed in this

chapter.

Group Commutativity Degree

Symmetric Group Sn
p(n)
n!

4-Property p-group ps−1+p2−p
ps+1

Qs
8 groups 1

2
(1 + 1

22m )∏p
i=1 Zq Wr (1, 2...p) qp−1+p2−1

p2qp−1∏p
i=1 Zp Wr (1, 2...p) pp−1+p2−1

pp+1

Table 4.23: Commutativity Degree of Groups in Sections 4.2, 4.3 and 4.4
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Group/Presenation Commutativity Degree

Rusin pn-groups n2+p−1
n2p

Rpn =< a, b : ap = bn = e, bab−1 = ar >

Generalized Dihedral q2+p−1
q2p

Dpq = Rpq =< a, b : ap = bq = e, bab−1 = ar >

Tp,q,m,θ Groups q+1
pq

Tp,q,m,θ =< a, b : ap = bq
m

= e, bab−1 = aλ
θ
>

Gm groups 1
2

Gm =< a, b : a3 = b2
m

= e, bab−1 = a−1 >

Indecomposable Group with P (G) = 1
2

1
2

G =< a, b : a6 = e, b2 = a3, bab−1 = a−1 >

Dicyclic Groups m+3
4m

Dm =< a, b : a2m = b4 = e, b−1ab = a−1, am = b2 >

Generalized Quaternion Groups 2n−1+3
2n+1

Q2n+1 =< a, b : a2n = b4 = e, b−1ab = a−1, a2n−1
= b2 >

Dihedral Groups n+3
4n

n odd

Dn =< r, ρ : r2 = e, ρn = e, ρr = rρn−1 > n+6
4n

n even

Semidihedral Groups 2n−1+3
2n+1

SDn =< a, b : a2n = b2 = e, ab = ba2n−1−1 >

Quasidihedral Groups 5
8

QDn =< a, b : a2n = b2 = e, ab = ba2n−1+1 >

Table 4.24: Commutativity Degree of Order Reversing Groups



Chapter 5: Possible Values of Commutativity Degrees

In Chapter 3 we discussed commutativity degree in terms of the structure of a

group, and in Chapter 4 we built a library of commutativity degrees for given groups.

In this chapter, we will focus on the set of possible values of commutativity degree.

Perhaps the most straightforward, but computationally intense, way to explore

possible commutativity degrees is to calculate the commutativity of every group G

starting with |G| = 1 and continuing to |G| = n for some fixed integer n. In GAP, we

calculated the commutativity degree of all groups of order less than 101 by finding

the number of conjugacy classes of each group of each order. Tables 5.1 and 5.2 list

the possible commutativity degrees of groups of each order.

As expected, no values in Table 5.1 are in the interval (5
8
, 1). The only values

greater than 1
2

are 1, 5
8
, and 17

32
. What additional values of commutativity degree

greater than 1
2

are possible? Notice that 2
5

is the commutativity degree of a group

whose order is a multiple of 10. This occurs because, if |H| = 10 and P (H) = 2
5
, then

the direct product G = A×H, where A is Abelian, has P (G) = 2
5
. What can we say

about the commutativity degree of G if |G/Z| ∼= H? The values 1
2
, 1

3
,and 1

7
appear

in the Table. Given a prime p, can the value 1
p

always be realized? In this chapter,

we will investigate these types of questions.

5.1 Possible Values of P ∈ (1
2, 1)

Recall from Section 3.2 that all groups with P (G) > 1
2

are nilpotent. Also, if G is

a non-Abelian group with P (G) > 1
2

then G = P0 × P1 × P2 × .. × Pk where P0

is a 2-group with |P ′0| = 2 and, for each i > 0, Pi an Abelian pi-group for some

prime pi 6= 2 (Proposition 3.2.4). In this section we extend this result by showing

104
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|G| 6 8 10 12 14 16 18 20 21 22
1/2 5/8 2/5 1/2 5/14 5/8 1/2 2/5 5/21 7/22

1/3 7/16 1/3 1/4

|G| 24 26 27 28 30 32 34 36 38 39
5/8 4/13 11/27 5/8 1/2 5/8 5/17 1/2 11/38 7/39
1/2 5/14 2/5 17/32 1/3
3/8 3/10 7/16 1/4
1/3 11/32 1/6

7/24
5/24

|G| 40 42 44 46 48 50 52 54 55 56
5/8 1/2 7/22 13/46 5/8 2/5 4/13 1/2 7/55 5/8
2/5 5/14 1/2 7/25 7/52 11/27 5/14

13/40 2/7 7/16 1/3 17/56
1/4 5/21 3/8 5/18 1/7

1/6 1/3 5/27
5/16
7/24
1/4

5/24
1/6

|G| 57 58 60 62 63 64 66 68 70 72
3/19 8/29 1/2 17/62 5/21 5/8 1/2 5/17 2/5 5/8

2/5 17/32 7/22 2/17 5/14 1/2
1/3 7/16 3/11 19/70 3/8

3/10 25/64 1/3
1/4 11/32 7/24
1/5 19/64 1/4

3/10 1/4 5/24
1/12 13/64 1/6

1/32 1/8
1/12

Table 5.1: Commutativity Degrees of Groups of Order Less Than 101 (a)
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|G| 57 58 60 62 63 64 66 68 70
3/19 8/29 1/2 17/62 5/21 5/8 1/2 5/17 2/5

2/5 17/32 7/22 2/17 5/14
1/3 7/16 3/11 19/70

3/10 25/64
1/4 11/32
1/5 19/64

3/10 1/4
1/12 13/64

1/32

|G| 72 74 75 76 78 80 81 82 84
5/8 10/37 11/75 11/38 1/2 1/2 11/27 11/41 1/2
1/2 4/13 7/16 17/81 5/14
3/8 7/26 2/5 1/3
1/3 7/39 13/40 2/7

7/24 4/39 23/80 5/21
1/4 1/4 5/28

5/24 17/80 1/6
1/6 7/40 1/7
1/8

1/12

|G| 86 88 90 92 93 94 96 98 100
23/86 5/8 1/2 13/46 13/93 25/94 5/8,17/32 5/14 2/5

7/22 2/5 1/2,7/16 13/94 7/25
25/88 1/3 3/8,11/32 1/4

3/10 1/3,5/16 4/25
4/15 7/24,9/32 13/100

1/4, 7/32 1/10
5/24,19/96

3/16,1/6
7/48,13/96
1/8, 11/96

5/48

Table 5.2: Commutativity Degrees of Groups of Order Less Than 101 (b)



107

that if a commutativity degree is in the interval (1
2
, 1) then it equals 1

2
(1 + 1

22m ), for

some m ∈ N. Recall that in Section 4.3 we constructed a class of examples with

commutativity degree realizing the values 1
2
(1+ 1

22m ), for all m ∈ N. We conclude this

section by describing all groups with commutativity degree greater than or equal to

1
2
.

Lemma 5.1.1. Let a, b ∈ G, G′ ⊆ Z(G), and m ∈ Z. Then [am, b] = [a, b]m.

Proof. Let a, b ∈ G, G′ ⊆ Z(G), and m ∈ Z. Since [a, b] ∈ G′ ⊆ Z(G),

[am, b] = amba−mb−1

= am−1aba−1a−(m−1)b−1

= a(m−1)aba−1b−1ba−(m−1)b−1

= a(m−1)[a, b]ba−(m−1)b−1

= [a, b]am−1ba−(m−1)b−1

= [a, b][am−1, b].

Repeating this process m times yields

[am, b] = [a, b]m.

Proposition 5.1.2 (Rusin [43]). If H is a non-Abelian 2-group with H ′ = {e, c} for

some c ∈ H, then H/Z(H) ∼=
∏r−1

i=1 (Z2 × Z2)i for some r ∈ N.

Proof. By Lemma 3.2.1, H ′ ≤ Z(H) because |H ′| = 2. Then H/Z(H) is Abelian.

Then

H/Z(H) =< a1Z(H) > × < a2Z(H) > ×...× < arZ(H) >

where r is called the rank of the Abelian group H/Z(H) and indicates the number

of cyclic groups in the direct product. We will induct on the rank r of H/Z(H). If
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r = 0, then Z(H) = H and H is Abelian. If r = 1 then H/Z(H) would be cyclic,

which cannot happen.

Consider H/Z(H) =< a1Z(H) > × < a2Z(H) >. By definition, H ′ =< {[ai, aj] :

1 ≤ i, j ≤ r} > and by assumption, H ′ = {e, c}. Then without loss of generality, we

can assume that [a1, a2] = c. By Lemma 5.1.1, [a2
1, aj] = [a1, aj]

2 = e for all j. Hence

a2
1 ∈ Z(H), but a1 /∈ Z(H). Therefore, < a1 >∼= Z2. Similarly, [ai, a

2
2] = [ai, a2]

2 and

< a2 >∼= Z2. Then H/Z(H) ∼= Z2 × Z2.

Next let r > 2 and assume that the result is true for all ranks less than r.Then

suppose that H/Z(H) =< a1Z(H) > × < a2Z(H) > ×...× < arZ(H) >. Again

note that H ′ =< {[ai, aj] : 1 ≤ i, j ≤ r} > and H ′ = {e, c}. Since H ′ =< c >,

[ai, aj] = ceij . Let bi = aia
e1i
1 a−e1i2 for i > 2. Then since c ∈ Z(G),

[a1, bi] = a1bia
−1
1 b−1

i

= a1(aia
e1i
1 a−e1i2 )(a−1

1 )(aia
e1i
1 a−e1i2 )−1

= a1aia
e1i
1 (a−1

1 a1)a
−e1i
2 a−1

1 ae1i2 a−e1i1 (a1a
−1
1 )a−1

i

= a1aia
e1i
1 a−1

1 [a1, a
−e1i
2 ]a−e1i1 a1a

−1
1 a−1

i

= a1aia
e1i
1 a−1

1 c−e1ia−e1i1 a1a
−1
1 a−1

i

= c−e1ia1aia
e1i
1 a−1

1 a−e1i1 a1a
−1
1 a−1

i

= c−e1ia1ai[a
e1i
1 , a−1

1 ]a1a
−1
i

= c−e1ia1aiea
−1
1 a−1

i

= c−e1i[a1, ai]

= c−e1ice1i = e

Similarly, [a2, bi] = e. For i > 2, < ai > ∩ < a1, a2 >≤ Z(H), and |biZ(H)| =

|aiZ(H)|. Rewriting the partition yields

H/Z(H) =< a1Z(H) > × < a2Z(H) > × < b3Z(H) > ×...× < brZ(H) > .
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Next let K be the following subgroup of H:

K =< Z(H), b3, b4, ...br >

Clearly, Z(H) ⊆ Z(K). Also, since H =< K, a1, a2 > and [a1, bi] = [a2, bi] = e,

Z(K) ⊆ Z(H). Thus Z(K) = Z(H). The following properties of K allow us to apply

the inductive hypothesis on K:

1. K ′ ⊆ H ′, so K ′ is cyclic.

2. K ′ ⊆ H ′ ≤ Z(H) = Z(K)

3. Since K ≤ H, K is a 2-group.

4. K/Z(K) =< b3Z > × < b4Z > ×...× < brZ > has rank r − 2.

Then for H/Z(H) of rank r,

H/Z(H) = < a1Z(H) > × < a2Z(H) > × < b3Z > ×...× < brZ >

= (Z2 × Z2)×
r−2∏
i=1

(Z2 × Z2)i

=
r−1∏
i=1

(Z2 × Z2)i

by induction.

Proposition 5.1.3. If G is a non-Abelian group such that P (G) > 1
2
, then G has

commutativity degree P (G) = 1
2
(1 + 1

22m ) with m ∈ N.

Proof. By Proposition 3.2.4, P (G) > 1
2

implies that G = H ×A with A Abelian and

|H| = 2s, for some s ∈ N. Then P (G) = P (H)P (A) = P (H) and it suffices to show

that P (H) = 1
2
(1 + 1

2m
).

By Proposition 3.2.2, G′ = {e, a} for some a ∈ G. Then H ′ = {e, a} as well

because H is non-Abelian and H ′ ⊆ G′. Suppose xi ∈ H and xi /∈ Z(H). We will
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show that |[xi]| = 2. Since xi /∈ Z(H), |[xi]| ≥ 2. Then there is a h ∈ H such that

hxih
−1 = c and c 6= xi. Then hxih

−1x−1
i = cx−1

i ∈ G′. Since xi /∈ Z(H), cx−1
i = a

and so c = axi. Therefore [xi] = {xi, axi}. Then by the class equation

|H| = |Z(H)|+ 2(k(H)− |Z(H)|),

and solving for k(H),

k(H) =
|H|+ |Z(H)|

2
.

Therefore

P (H) =
|H|+ |Z(H)|

2|H|
=

1

2

(
1 +

1

|H/Z(H)|

)
.

Since H is a 2-group, |H ′| = 2, and H ′ ⊆ Z(H), H/Z(H) ∼=
∏r−1

i=1 (Z2 × Z2)i by

Proposition 5.1.2. Then

P (H) =
1

2

(
1 +

1

22m

)
. (5.1)

with m ∈ N.

5.1.1 Groups with Commutativity Degree P (G) ≥ 1
2

All possible values of commutativity degree greater than or equal to 1
2

are given by

P (G) = 1
2
, P (G) = 1 or P (G) = 1

2
(1 + 1

22m ), for some m ∈ N. In this section we

will describe all groups realizing these commutativity degrees. First, note that all

groups of the form G ∼= P0 × A where P0 is a 2-group, A Abelian, and |G′| = 2 are

classified by Blackburn in [6]. Also note that a Gm group is given by the presentation

Gm =< a, b : a3 = b2
m

= e, bab−1 = a−1 >. Recall that we showed P (Gm) = 1
2

for

m ≥ 1 in Section 4.1.2.

Proposition 5.1.4. A group G has P (G) ≥ 1
2

if and only if one of the following

conditions holds:

1. G is Abelian.
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2. G ∼= P0 × A where P0 is a 2-group, A is Abelian, and |G′| = 2.

3. G ∼= Gm × A, with m ≥ 1 and A Abelian.

Proof. Suppose P (G) ≥ 1
2
. By the upper degree equation bound,

P (G) ≤ 1

4

(
1 +

3

|G′|

)
. (5.2)

Solving this equation for |G′| yields |G′| ≤ 3. Consider the following cases:

1. |G′| = 1.

2. |G′| = 2.

3. |G′| = 3.

Case (1) corresponds to condition (1) in which G′ = {e} and G is Abelian.

In Case (2), G is non-Abelian and |G′| = 2. It follows that P (G) is strictly greater

than 1
2

by the upper degree equation bound (Equation 5.2). Further, by Proposition

3.2.4, G = P0 × A with P0 a 2-group and A Abelian. By Proposition 5.1.3, the

commutativity degree of G is P (G) = 1
2
(1 + 1

22m ), for some m ∈ N. As noted above,

this extensive collection of groups was classified by Blackburn in [6].

Next consider Case (3). First suppose G is nilpotent. Then G is the product of p-

Sylow subgroups. Observe from Table 2.4 that P (G) ≤ 1
2

implies G = H×P2×..×Ps,

such that for 2 ≤ i ≤ s, Pi is an Abelian p-group and H is a non-Abelian 2-group.

Then H ′ 6= {e}. Also, since H is a 2-group, |H ′| = 2t for some t, 1 < t ≤ s. However,

H ′ ≤ G′ and so |H ′| = 3, a contradiction. Hence G is not nilpotent.

Assume G is not nilpotent. By Proposition 3.2.3 G/Z(G) ∼= S3. It follows from

Corollary 5.2.14 that G ∼= Gm × A, which m ≥ 1 and A Abelian.
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5.2 Possible Values for Groups with |G/Z| < 12

If |G/Z| = n for a given integer n, then can we determine the possible commutativity

degrees of G from the commutativity degree of the groups of order n? We will

determine for which groups H, |H| < 12, it is possible for G/Z ∼= H for some

group G. We address |H| < 12 because of the increasing complexity and number

of groups with order 12. Then, with one exception, for those groups H we will find

the commutativity degree of all groups G with G/Z ∼= H. First we will address the

cases when H is Abelian. Then we will consider the remaining cases, when H is

non-Abelian.

5.2.1 Groups with G/Z Abelian

We begin with the simple, but important, result for the case when G/Z is cyclic.

Proposition 5.2.1. If G/Z is cyclic, then P (G) = 1.

Proof. Suppose G/Z is cyclic and generated by gZ. Let a, b ∈ G. Then a = giz1 and

b = gjz2, for some z1, z2 ∈ Z. Hence

ab = giz1g
jz2 = gigjz1z2 = gjgiz2z1 = gjz2g

iz1 = ba,

and G is Abelian.

Next we consider the case when |G/Z| ∼= V4, the Klein 4-group. This result is

referenced in a number of our sources, including [18], [21], [37], and [43]. Alternate

versions of our proof appear in Joseph [26]and Lescot [32].

Proposition 5.2.2. If G is a finite group, then P (G) = 5
8

if and only if G/Z(G) ∼=

V4,the Klein 4-group.
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Proof. Suppose G/Z(G) ∼= V4. Also suppose a ∈ G and a /∈ Z(G). Since Z(G) ⊆

CG(a) and a /∈ Z(G), Z(G) ( CG(a). Also, CG(a) ( G because a ∈ CG(a) but

a /∈ Z(G). Hence

|Z(G)| < |CG(a)| < |G|.

Also notice that |CG(a)| divides |G|. Thus |CG(a)| = 2|Z(G)|, and it follows that

|[a]| = [G : CG(a)] = 2.

Since |[xi]| = 2 for all xi /∈ Z(G) the class equation is

|G| = |Z(G)|+
k(G)∑

i=|Z(G)|+1

|[xi]|

= |Z(G)|+ 2(k(G)− |Z(G)|). (5.3)

Solving for k(G) yields

k(G) =
|G|+ |Z(G)|

2
,

and then

P (G) =
|G|+ |Z(G)|

2|G|
.

Finally,

P (G) =
4|Z(G)|+ |Z(G)|

8|Z(G)|
=

5

8
.

Conversely, assume P (G) = 5
8

and let |G/Z(G)| = l. Suppose a ∈ G and a /∈

Z(G). First we will show that |[a]| = 2. Suppose |[a]| > 2. Then [a] = [xi] for some

xi in the class equation, and

|G| = |Z(G)|+
k(G)∑

i=|Z(G)|+1

|[xi]|

> |Z(G)|+ 2(k(G)− |Z(G)|).

Solving for k(G) yields

k(G) <
|G|+ |Z(G)|

2
,
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and then

P (G) <
|G|+ |Z(G)|

2|G|
.

Since |G| = l|Z(G)|,

P (G) <
(l + 1)|Z(G)|

2l|Z(G)|
=
l + 1

2l
.

Since G/Z(G) is not cyclic, l = |G/Z(G)| ≥ 4. Also, the function f(l) = l+1
2l

is a

decreasing function. Consequently

P (G) <
l + 1

2l
≤ 5

8
,

a contradiction. Therefore if a /∈ Z(G), then |[a]| = 2.

Now we will show that G/Z ' V4. Since |[xi]| = 2 for all xi /∈ Z(G), the class

equation is

|G| = |Z(G)|+ 2(k(G)− |Z(G)|),

Solving for k(G) yields

k(G) =
|G|+ |Z(G)|

2
.

Then

5|G|
8

=
|G|+ |Z(G)|

2

because 5
8

= k(G)
|G| . Next, since |G| = l|Z(G)|,

5l|Z(G)| = 4l|Z(G)|+ 4|Z(G)|.

Finally, solving for l yields l = 4. Hence |G/Z(G)| = 4. Since G/Z(G) is not cyclic,

G/Z(G) ∼= V4.

Next recall the p-upper bound: if p is the smallest prime dividing |G/Z(G)|, then

P (G) ≤ p2+p−1
p3

. We generalize Proposition 5.2.2 to show that the p-upper bound is

realized when |G/Z(G)| = p2. An alternate proof also appears in Joseph [26].
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Proposition 5.2.3. Let p be the smallest prime dividing |G/Z(G)|. Then P (G) =

p2+p−1
p3

if and only if |G/Z(G)| = p2.

Proof. Suppose |G/Z(G)| = p2. Let x ∈ G such that x /∈ Z(G). Since x ∈ CG(x) and

x /∈ Z(G), CG(x) ( G. Also, Z(G) ( CG(x) because Z(G) ⊆ CG(x) but x /∈ Z(G).

Thus

|Z(G)| < |CG(x)| < |G|.

Then |CG(x)| = p|Z(G)| because |CG(x)| divides |G|. Therefore |[x]| = [G : CG(x)] =

p. Since |[xi]| = p for all xi /∈ Z(G), the class equation is

|G| = |Z(G)|+ p(k(G)− |Z(G)|).

Solving for k(G) yields

k(G) =
|G|+ (p− 1)|Z(G)|

p
.

Since |G| = p2|Z(G)|,

k(G) =
p2|Z(G)|+ p|Z(G)| − |Z(G)|

p
,

and

P (G) =
(p2 + p− 1)|Z(G)|

p3|Z(G)|
=
p2 + p− 1

p3
.

Conversely, assume that P (G) = p2+p−1
p3

and let |G/Z(G)| = l. Let a ∈ G. If

a /∈ Z(G), |[a]| ≥ p because |[a]| divides |G/Z|. Then the class equation yields

|G| ≥ |Z(G)|+ p(k(G)− |Z(G)|),

and solving for k(G),

k(G) ≤ |G|+ (p− 1)|Z(G)|
p

.
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The commutativity degree is

P (G) ≤ |G|+ (p− 1)|Z(G)|
p|G|

=
(p− 1)|Z(G)|+ l|Z(G)|

pl|Z(G)|

=
(p− 1) + l

pl
.

By assumption

p2 + p− 1

p3
≤ (p− 1) + l

pl
.

Then we solve for l in terms of p as follows

(p3 + p2 − p)l ≤ p4 − p3 + p3l

(p2 − p)l ≤ p4 − p3

l ≤ p4 − p3

p2 − p

l ≤ p2(p− 1)

(p− 1)

l ≤ p2.

Hence |G/Z(G)| ≤ p2. If |G/Z(G)| = q for some q such that p ≤ q < p2, then q = p

because p is the smallest prime dividing the order of G/Z(G). Then G/Z(G) is cyclic

and G is Abelian. Consequently, |G/Z(G)| = p2.

Corollary 5.2.4 describes the structure of a group having commutativity degree

p2+p−1
p3

.

Corollary 5.2.4. If P (G) = p2+p−1
p3

where p is the smallest prime dividing |G/Z(G)|,

then G ∼= P × A such that P is a p-group and A is Abelian.

Proof. Let p be the smallest prime dividing |G/Z(G)|. By Proposition 5.2.3 |G/Z(G)| =

p2, so G is nilpotent (of nilpotence degree 2). Then for some m,

G = P × P1 × P2 × ...× Pm
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where each Pi is a pi-Sylow subgroup of order pnii and P is a p-Sylow subgroup of

order pn. Since |G/Z(G)| = p2,

|Z(G)| = pn−2pn1
1 p

n2
2 ...p

nm
m .

Also, for each i, Pi ⊂ Z(G) and each pi-Sylow subgroup is Abelian. Therefore

G ∼= P × A

such that A = P1P2..Pm is Abelian.

Next we will find all groups H such that if H is two-generated and Abelian, then

it is possible for G/Z ∼= H for some group G. For each such two-generated group

H with |H| < 12, we will find the commutativity degree for those groups G with

G/Z ∼= H. We will apply the following theorem from Rusin (Proposition (2), [43])

which is a more general form of Proposition 5.1.2. The proof is similar and we omit

it here.

Theorem 5.2.5 (Proposition 2). If H is a p-group with H ′ ≤ Z(H) and H ′ cyclic

then H/Z ∼=
∏

i (Zpini × Zpini ) with n1 = k and all ni ≤ k (where |H| = pk). In

particular, H/Z is a square and is at least |H ′|2.

Additionally, the following two properties of commutators will be applied. First,

recall the definition that [a, b] = c if and only if ab = cba. We will use this to rewrite

group elements in a consistent form via a ”turn around rule”. Secondly, we will

calculate commutators of noncentral elements using the property that if z ∈ Z(G)

and a, b /∈ G then

[a, bz] = [az, b]aba−1b−1zz−1 = [a, b].

Lemma 5.2.6. Let G be a finite group and denote G/Z by Z.

(1) Suppose that G is generated by x0, x1, x2, . . . , xk such that [xi, xj] = x
nij
0 for 0 <
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i, j ≤ k. Then G′ is cyclic.

(2) Suppose that G/Z is two generated and Abelian. Then G′ is cyclic.

Proof. (1) Let G be generated by x0, x1, x2, . . . , xk such that [xi, xj] = x
nij
0 for 0 <

i, j ≤ k.

First we will show that

[xi, x
m
0 ] = xmni00 (5.4)

for each i ≤ k by inducting on m. Since [xi, x0] = xni00 , xix0 = xni00 x0xi . Then,

applying the ”turn around rule”,

xix
m
0 = xm−1

0 xni00 x0xi

= (xni00 )mxm0 xi

= (xmni00 )xm0 xi

with the last equation resulting from the induction hypothesis. Hence [xi, x
m
0 ] = xmni00 .

Next let a ∈ G. Then a = w1w2...wlaza with wj = xij for some ij and za ∈ Z(G).

For each i, 0 ≤ i ≤ k, we will show that [xi, a] ∈< x0 > by inducting on la. If la = 1,

then i = 0 and [xi, w1] = xni10 .Assume that, for la < k and for each i, [xi, a] = xnia0 for

some nia. Then, supposing la = k, recall

[xi, a] = [xi, w1w2...wlaza] = [xi, w1w2...wla ]

By the induction hypothesis and Equation 5.4

xiw1w2...wla = (xni10 w1xi)(w2...wla)

= xni10 w1(x
nia
0 )(w2...wlaxi)

= (xni10 xnia0 )w1w2...wlaxi.

Then by induction [xi, a] = xni1+nia
0 ∈< x0 >.
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Let b = w1w2...wlbzb ∈ G. By a second similar induction on lb, we can show that

[b, a] ∈< x0 >. Since G′ is generated by commutators, G′ ≤< x0 >. Therefore G′ is

cyclic.

(2) Let x1 and x2 be generators of G/Z and suppose [x1, x2] = x0. Since G/Z is

Abelian, x0 ∈ Z(G). Then all commutators of pairs of x1, x2, x0 are powers of x0 and

by (1) G′ is cyclic.

Proposition 5.2.7. Let G be a p-group and let G/Z(G) be a 2-generated Abelian

group. Then G/Z(G) ∼= Zpi × Zpi for some prime p.

Proof. Since G/Z(G) is Abelian, G is nilpotent and G′ ⊂ Z(G). By Lemma 5.2.6,

G′ is cyclic. Also, because G/Z(G) is two generated and Abelian, G/Z(G) is of the

form Zpn1
1
×Zpn2

2
for primes p1, p2. Hence by Theorem 5.2.5 (Rusin’s Proposition 2) ,

G/Z(G) ∼= Zpn × Zpn for some prime p and some n ∈ N.

Corollary 5.2.8. Let p be prime. Then G/Z ∼= Zp×Zp if and only if P (G) = p2+p−1
p3

where p is the smallest prime dividing |G/Z|.

Proof. Suppose P (G) = p2+p−1
p3

. By Corollary 5.2.4, G ∼= P ×A where P is a p-group

and A is Abelian so that P (G) = P (P ). Hence, with no loss of generality, assume G

is a p-group. Then G is nilpotent. It follows that G/Z =
∏n

i=1 Zp for some n ∈ N.

By Proposition 5.2.3, |G/Z| = p2, so G/Z ∼= Zp × Zp.

Conversely, by Proposition 5.2.3, since |G/Z| = p2 then P (G) = p2+p−1
p3

.

Corollary 5.2.9. If G/Z ∼= Z3 × Z3 then P (G) = 11
27

.

Proof. The result follows from Corollary 5.2.8.

Corollary 5.2.10. For a group G, G/Z cannot be isomorphic to any group of the

form Zpi × Zpj for a prime p and positive integers i 6= j.
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Proof. Suppose G/Z ∼= Zpi × Zpj and i 6= j. Then G is nilpotent and

G = P × P1 × P2 × ..× Pn

where P is a p-group and each Pi is a pi-group for some pi 6= p. Further each group

Pi ∈ Z(G), and the product P1×P2× ..×Pn is Abelian. Hence we may assume G is

a p-group with no loss of generality.

By Proposition 5.2.7, i = j, a contradiction. Therefore, there is no group G with

G/Z ∼= Zip × Zjp if i 6= j.

Corollary 5.2.11. There is no group G with G/Z isomorphic to Z2 × Z4.

Proof. Follows directly from Corollary 5.2.10.

For those groups G with |G/Z| < 12, there is only one group H such that if G/Z ∼=

H then the commutativity degree of G cannot be determined from H. This group is

H = Z2×Z2×Z2 We provide an example of two groups having G/Z ∼= Z2×Z2×Z2

but with different commutativity degrees.

Example 5.2.12. Two Groups with G/Z ∼= Z2 × Z2 × Z2.

In GAP, we identified all groups Gi with |Gi| = 64 satisfying the property that

|Gi/Z| = 8. We calculated Gi/Z for each such group Gi and found that Gi/Z ∼= D4

or Gi/Z ∼= Z2 × Z2 × Z2 for each group. We located these groups by comparing the

SmallGroup ID Tag of Gi/Z with the ID Tags of groups of order 8.

We began calculating the commutativity degree of each group satisfying Gi/Z ∼=

Z2×Z2×Z2 by reading the number of conjugacy classes from the Character Tables. By

systematically testing these groups, we found the ID Tags for two groups, G1 = [64, 75]

and G2 = [64, 63], with P (G1) = 11
32

and P (G2) = 7
16

. Presentations of G1 and G2 are:

G1 =< a, b, c : a2 = b2 = c4 = e, (ac−2)2 = (bc−2)2, (ac−1)4 = (bc−1)4,
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(bac−1)3 = ca−1b−1, (bab)−1 = ac2, (cbca)−1 = c−1bca >

and

G2 =< a, b, c : a4 = b4 = c4 = e, ab2 = b2a, ba2 = a2b, ac2 = c2a, ca2 = a2c, bc = cb,

abc−1 = bac, acb−1 = cab >.

For more information about GAP and descriptions of the methods and notation in

this example see Appendix 6.1.

5.2.2 Groups with non-Abelian G/Z

There are four non-Abelian groups of order less than 12. These groups are the sym-

metric group S3, the dihedral groups D4 and D5, and the quaternion group Q8. We

will show that if a group G has G/Z ∼= S3, then G can be written as a direct product

of S3 with an Abelian group and that P (G) = 1
2
. Then we will find a formula for a

group G with G/Z ∼= Dn for any n ∈ N. We will calculate the commutativity degree

of D4 and D5 from this formula. Finally, we will show that there is no group G with

G/Z ∼= Q8.

First, we address the case when |G/Z| ∼= S3. We begin with several definitions.

First, Taunt [47] defines an A-group as a solvable group whose Sylow subgroups are

all Abelian. He proved that if A is an A-group then A′ ∩Z(A) = {e}. Secondly, let q

be a prime and let G be a group such that G = Q×B for a q-group Q and subgroup

B such that q - |B|. Then we call the subgroup Q the qth-component q-group of G

and denoted it by Q = Gq. Also, B is called the q′th- component of G and is denoted

Gq′ . Hence G is the direct product G = Gq ×Gq′ .

Next, recall the following classes of groups discussed in Sections 4.1.2, 4.1.2, and

4.1.2. Let q and q be primes so that p is prime and q|p− 1 and let m ∈ N. A group

Dpq is called a generalized dihedral Group and has a presentation of

Dpq =< a, b : ap = bq = e, bab−1 = ar >
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where r has order q mod p. The group Tp,q,m,θ had a presentation

Tp,q,m,θ =< a, b : ap = bq
m

= e, bab−1 = aλ
θ

>

where λ has order q mod p and θ ∈ {1, 2, ..q − 1}. A subclass of the Tp,q,m,θ groups

are called the Gm groups. Each Gm group has the presentation

Gm = T3,2,m,1 =< a, b : a3 = b2
m

= e, bab−1 = a−1 > .

Proposition 5.2.13 (Lescot [35]). . If G is a group with G/Z(G) ∼= Dpq then there

is some θ ∈ {1, 2, ..., q − 1}, m ≥ 1, and Abelian group A such that G ∼= Tp,q,m,θ × A.

Proof. Let G be a group with G/Z(G) ∼= Dpq, let r be prime, and let R be an r-Sylow

subgroup of G. Then RZ(G)/Z(G) is a Sylow subgroup of G/Z(G) ∼= Dpq. If r 6= p, q

then R ≤ Z(G). The only nontrivial Sylow subgroups of Dpq are of order p or q

and hence cyclic, so RZ(G)/Z(G) is cyclic. It follows that R/R ∩ Z(G) is cyclic by

the diamond isomorphism theorem. Since R ∩ Z(G) ⊆ Z(R), R/Z(R) is also cyclic.

Therefore R is Abelian. Also note that there will be an Abelian Sylow subgroup for

primes r = p and r = q.

Next, Dpq is solvable by Burnside’s Theorem because |Dpq| = pq. Since G/Z(G) ∼=

Dpq and Dpq is solvable, G is also solvable.

As noted above, all Sylow subgroups of G are Abelian. Then G is an A-group

and by Taunt’s result G′ ∩ Z(G) = {e}. Applying Taunt’s result and the diamond

isomorphism theorem,

G′ =
G′

G′ ∩ Z(G)
∼=
G′Z(G)

Z(G)
= (

G

Z(G)
)′ ∼= (Dpq)

′ =< ā > .

Let a = aZ(G) for a ∈ G′. Since G′ ∩ Z(G) = e, |G′| = | < a > | = p = ◦(a).

Recall G′ =< a >. Then |G′| = | < a > | = | < ā > | = p.
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Next, let t ∈ G such that tat−1 6= a. Since < a >= G′ � G, tat−1 = an for some

n ∈ N, n 6≡ 1(mod p). Projecting to G/Z(G) = Dpq yields

t̄āt̄−1 = ān.

The conjugacy class of [ā] = {āλj : 0 ≤ j ≤ q − 1} in Dpq so n = λj and

tat−1 = an = aλ
j

with j > 0 (as j = 0 implies a ∈ Z(G)). Thus q - j. Let o(t) = qmγ, so that qm - γ

and qm and t are relatively prime. Then

(tγ)a(tγ)−1 = aλ
jγ

(5.5)

and jγ 6≡ 0(mod q). Let θ ≡ jγ(mod q) be the least residue of jγ and set tγ = b.

Then

bab−1 = aλ
θ

and o(b) = qm.

Next suppose m = 0. Then b = 1, a = aλ
θ
, and λθ ≡ 1(mod p). Then q|θ, a

contradiction. Therefore, m ≥ 1.

Select b ∈ G of order qm such that Equation 5.5 holds for the minimal possible

value of m. Then H =< a, b >∼= Tp,q,m,θ. Observe via the diamond isomorphism

theorem that

pq = |Dpq| = |
G

Z(G)
|

≥ |HZ(G)

Z(G)
| = | H

H ∩ Z(G)
| = | H

Z(H)
|| Z(H)

H ∩ Z(G)
|

= | Tp,q,m,θ
Z(Tp,q,m,θ)

|| Z(H)

H ∩ Z(G)
| = pq| Z(H)

H ∩ Z(G)
| ≥ pq

(5.6)
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Equality follows through all of Equation 5.6 so that G = HZ(G) and Z(H) = H ∩

Z(G). Since bq ∈ Z(H) as recorded in Table 4.5, bq ∈ Z(G). Also notice that

o(bq) = 1
q
o(b) = qm−1.

Next let R = Z(G)q be the qth component q-group of Z(G). By Lescot ([35],

Proposition 1.1), either

1. < bq > is a direct factor of Z(G)q or

2. for some v ∈ Z(G)q, o(b
qvq) < o(bq).

First suppose that the second case occurs. Then

o(bv) ≤ qo(bqvq) ≤ o(bq) = qm−1

and since R is a q-group, o(bv) = qy for 1 ≤ y ≤ m− 1. Then

(bv)a(bv)−1 = bab−1 = aλ
θ

since v ∈ Z(G). This contradicts the minimality of m because o(b) = qr and r < m.

Therefore, case (1) holds and Z(G)q =< bq > ×B for some Abelian group B.

Finally consider the generating factors of the group:

G = HZ(G)

= < H,Z(G) >

= < a, bZ(G)q, Z(G)q′ >

= < a, b, bq, B, Z(G)q′ >

= < a, b > ×B × Z(G)q′

∼= Tp,q,m,θ ×B × Z(G)q′

= Tp,q,m,θ × A

(5.7)

with A = B × Z(G)q′ Abelian.
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Corollary 5.2.14. If G/Z(G) ∼= S3 then G ∼= Gm × A, with m ≥ 1 and A Abelian.

Proof. We apply Proposition 5.2.13. Suppose

|G/Z| ∼= S3
∼= D3 = Dpq

with p = 3, q = 2. Then G ∼= T3,2,m,θ × A for some m ≥ 1,θ = 1, and an Abelian

group A by Proposition 5.2.13. Hence

G ∼= T3,2,m,1 × A ∼= Gm × A.

Corollary 5.2.15. If G/Z(G) ∼= S3, then P (G) = 1
2
.

Proof. By Corollary 5.2.14 G ∼= Gm × A for some m ≥ 1. Then

P (G) = P (Gm)P (A) =
1

2
.

Suppose G is a group such that G/Z ∼= Dn. Next we derive a formula for P (G).

Then we will use the formula to find the commutativity degree of the dihedral groups

D4 and D5.

Proposition 5.2.16. If G/Z(G) ' Dn then P (G) = n+3
4n

.

Proof. Suppose G/Z(G) ∼=< rZ, ρZ : r2Z = e, ρnZ = e, r−1ρrZ = rρn−1Z >. Then

we can partition G into cosets as follows:

G = Z ∪ rZ ∪ ρZ ∪ ρ2Z ∪ ..ρn−1Z ∪ rρZ ∪ rρ2Z ∪ .. ∪ rρn−1Z.

The strategy of this proof is to partition the cosets into conjugacy classes for Dn then

to count the conjugacy classes. We will consider the cases when n in odd and even

separately.
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First, if n is even or if n is odd, there are |Z| conjugacy classes in the coset Z.

Next, in order to partition cosets of the form ρiZ, we will find |[ρ]| for both n odd

and n even. Since CG(ρ) ⊇ {Z, ρ}, then CG(ρ) =< ρ > Z and |[ρ]| = [G : CG(ρ)] = 2.

Then [ρ] = {ρ, ρ−1u} for some u ∈ Z because [ρZ] = {ρZ, ρ−1Z}. To extend this

result, let z1 ∈ Z. Then [ρz1] = {ρz1, ρ
−1z1u} by the same reasoning. Additionally,

for 1 ≤ i < n, [ρiZ] = {ρi, ρ−iw} some w ∈ Z and [ρiz1] = {ρiz1, ρ
−iz1w} for each

z1 ∈ Z.

Now we will count the number of conjugacy classes in cosets of the form ρiZ for

odd and even n. If n is odd there are n − 1 cosets of the form ρiZ and these are

partitioned into two element conjugacy classes. Hence there are n−1
2
|Z| conjugacy

classes of this form for odd n. If n is even, the coset ρ
n−1

2 |Z| is partitioned into |Z|
2

conjugacy classes and the remaining n− 2 cosets of the form ρiZ (for 1 ≤ i < n and

i 6= n−1
2

) are partitioned into two element conjugacy classes. These remaining cosets

yield n−2
2
|Z| conjugacy classes. For n even, cosets of the form ρiZ are partitioned

into a total of n−2
2
|Z|+ |Z|

2
conjugacy classes.

Next, in order to partition cosets of the form rρiZ, we will find |[r]| for n odd and

n even. First suppose n is odd. Then CG(r) ⊇ {Z, r} and CG(r) =< r > Z. Hence

|[r]| = [G : CG(r)] = n. Since [rZ] = {rZ, rρZ, rρ2Z, ..rρn−1Z}, it follows that

[r] = {r, rρv1, rρ
2v2, ..rρ

n−1vn−1}

with vi ∈ Z. This result can be extended as follows. Let z1 ∈ Z. Then

[rz1] = {rz1, rρz1v1, rρ
2z1v2, ..rρ

n−1z1vn−1}.

For n odd, there are n cosets of the form rρiZ, 0 ≤ i < n partitioned into n element

conjugacy classes. There are n|Z|
n

= |Z| conjugacy classes of this form for n odd.

Next suppose n is even. Then CG(r) ⊇ {Z, r} and so CG(r) ⊆< r > Z. Since
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[rZ] = {rZ, rρ2Z, ..rρn−2Z}, it follows that

[r] ⊇ {r, rρ2v2, ..rρ
n−2vn−2}.

However, because ρ
n−1

2 Z ∈ Z(Z), conjugation by ρ2Z results in

ρ
n−1

2 Zrρ
n−1

2 Z = rZ,

and then for some z′ ∈ Z, rz′ ∈ [r]. Then each vi, rz
′vi ∈ [r], and

[r] = {r, rz′, rρ2v2, rρ
2z′v2, .., rρ

n−2vn−2, rρ
n−2z′vn−2}.

Before counting classes, notice that finding [rρ] for n even is similar to finding [r],

and

[rρ] = {rρ, rρz′, rρ3v3, rρ
3z′v3, .., rρ

n−1vn−1, rρ
n−1z′vn−1}.

Then |[r]| = |[rρ]| = n, and there are n cosets of the form rρiZ, 0 ≤ i < n parti-

tioned into n element conjugacy classes. These cosets are partitioned into n|Z|
n

= |Z|

conjugacy classes for n even.

Suppose n is odd. Then we add the conjugacy classes as follows:

k(G) = |Z|+ n− 1

2
|Z|+ |Z| = n+ 3

2
|Z|,

and since |G| = |Dn||Z|,

P (G) =
n+3

2
|Z|

2n|Z|
=
n+ 3

4n
.

Suppose n is even. Then

k(G) = |Z|+ n− 2

2
|Z|+ |Z|

2
+ |Z| = n+ 3

2
|Z|,

and since |G| = |Dn||Z|,

P (G) =
n+3

2
|Z|

2n|Z|
=
n+ 3

4n
.
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Notice that if G/Z ∼= Dn, then P (G) = n+3
4n

regardless of whether n is odd or

even. This is interesting because we showed in Section 4.1.2 that if G ∼= Dn then

P (G) = n+3
4n

if n is odd and P (G) = n+6
4n

if n is even.

Corollary 5.2.17. If G/Z ∼= D4 then P (G) = 7
16

and if G/Z ∼= D5 then P (G) = 2
5

Proof. The result follows from Proposition 5.2.16.

Finally, we will address the quaternion group Q8.

Proposition 5.2.18. There is no group G with G/Z ' Q8, the quaternion group.

Proof. Suppose G/Z =< aZ, bZ : a2Z = b2Z, a4Z = Z, baZ = ab3Z >. We will show

that a2 ∈ Z(G) by showing that a2 commutes with each element in the group. Notice

that G is generated by {Z, a, b}, so it suffices to show that Z, a and b commute with

a2. Clearly, if z ∈ Z then za = az and aa2 = a3 = a2a. Since a2Z = b2Z, a2 = b2z1

for some z1 ∈ Z. It follows that ba2 = b(b2z1) = (b2z1)b = a2b. Then a2 ∈ Z. This

contradicts the implicit assumption that a2 ∈ a2Z 6= Z. Therefore, there is no group

G with G/Z ' Q8.

We can generalize the result of Proposition 5.2.18 to the dicyclic groups. Let

m ∈ N. Recall that the dicyclic group Dm has the presentation

Dm =< a, b : a2m = b4 = e, b−1ab = a−1, am = b2 > .

Then there is no group G such that G/Z ∼= Dm for any m ∈ Z. The proof of this

generalization is similar to the proof in Proposition 5.2.18: because of the relation

am = b2, we can show that a ∈ Z which contradicts am ∈ amZ 6= Z.

5.2.3 Summary of Commutativity Degrees

The commutativity degrees of all groups G with |G/Z| < 12 are summarized in Table

5.3. In order to find the commutativity degree of groups with |G/Z| < 12, we have
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calculated formulas for the commutativity degree of a number of additional groups.

Table 5.4 summarizes the formula for the commutativity degree of each class of groups

discussed in this section.

G/Z P (G) G/Z P (G)

Z1 1 Z2 × Z2 × Z2 Not determined

Z2 1 Z2 × Z4 DNE

Z3 1 D4
7
16

Z4 1 Q8 DNE

V4
5
8

Z9 1

Z5 1 Z3 × Z3
11
27

Z6 1 Z10 1

S3
1
2

D5
2
5

Z7 1 Z11 1

Z8 1

Table 5.3: Commutativity Degrees for Groups with |G/Z| < 12

G/Z G (if avaliable) P (G)

Zn (cyclic, order n) 1

Zp × Zp P × A (|P | = pm and A Abelian) p2+p−1
p3

Dpq Tp,q,m,θ × A (A Abelian) qm+1+m(p−1)
pqm+1

Dn
n+3
4n

Table 5.4: Groups with Given G/Z
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5.3 On the Value 1
p, for a prime p

We show in Section 4.1.2 that the value 1
2

is realized as the commutativity degree by

the class of Gm groups. In Chapter 1, we found that P (A4) = 1
3
. In this section,

we will show that there is a group with commutativity degree 1
p

for every prime p.

Then we will extend the result to show there is a group with commutativity degree

1
n

for each n ∈ N. Although we do not know whether it is possible to construct

an indecomposable group with commutativity degree 1
p

for every prime p, we will

construct an example of an indecomposable group with commutativity degree 1
p

for

each Mersenne Prime, p. A Mersenne prime is a prime of the form p = 2k − 1 for

some k ∈ N.

We already know some types of groups that cannot have 1
p

as a commutativity

degree. Recall from Section 4.3 that for each prime pi, the value 1
pi

is a limit point

of the commutativity degrees of the class of 4-property pi-groups. However, no 4-

property pi-group has commutativity degree 1
pi

. In this section, we will also show

that if G is nilpotent, then P (G) 6= 1
p

for any prime p.

Proposition 5.3.1. Let p be prime. Then there is a group with commutativity degree

1
p
. This group is a direct product of solvable groups.

Proof. Let n be an odd positive integer and recall that the dihedral group Dn =<

r, ρ : r2 = ρn = e, ρr = rρn−1 > has commutativity degree P (Dn) = n+3
4n

. We induct

on p. Suppose p = 2. In Table 1.1, we showed by direct computation that P (D3) = 1
2
.

Suppose p = 3. In Table 1.3, we showed by direct computation that P (A4) = 1
3
. Next

assume that for all primes pi less than p, there is some product of solvable groups

Hi with P (Hi) = 1
pi

. Now consider the prime p (with p > 3). First suppose that

p ≡ 3(mod 4). Then p = 4m+ 3 for some m ∈ N, and

P (D3p) =
3(4m+ 3) + 3

4(3p)
=
m+ 1

p
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. Then m + 1 = p1p2...ps, with each pi < p. By the induction hypothesis and

Proposition 1.2.3, there is some group M =
∏s

i=1Hi with

P (M) = P

(
s∏
i=1

Hi

)
=

1

(p1p2..ps)
=

1

m+ 1
.

We will apply Proposition 1.2.3 once more to construct the group G = D3p×M . The

commutativity degree of G is

P (G) = P (D3p)P (M) =

(
m+ 1

p

)(
1

m+ 1

)
=

1

p
.

Secondly suppose that p ≡ 1(mod 4). Then p = 4m + 1 for some m ∈ N ∪ {0},

and

P (Dp) =
(4m+ 1) + 3

4(p)
=
m+ 1

p
.

If m = 0, we are done. Otherwise, notice that similar to the first case, there is a

group M =
∏s

i=1(Hi) with P (M) = 1
m+1

and we construct the group G = Dp ×M .

Again, the commutativity degree of G is

P (G) = P (Dp)P (M) =
1

p

.

Therefore, by induction, for every prime p there is a group G such that P (G) = 1
p
,

and G is a direct product of solvable groups.

Example 5.3.2. A group with Commutativity Degree 1
27109

. The prime 27109 =

4(6777) + 1. Then

P (D27109) =
6778

27109
=

(2)(3)(461)

27109
.

Recall that P (D3) = 1
2
. Since 3 = 4(0) + 3, P (D9) = 1

3
. Also, 461 = 4(115) + 1 , so

P (D461) =
116

461
=

(22)(29)

461
.
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Then

P (D27109 ×D3 ×D9 ×D461) =
(22)(29)

27109
.

Repeat the process again for 29 = 4(7) + 1:

P (D29) =
8

29
=

23

29
.

Then

P (D27109 ×D9 ×D461 ×D29 × (D3)
4) =

1

27109

Hence the group

G = D27109 ×D9 ×D461 ×D29 × (D3)
4

has commutativity degree 1
27109

.

Corollary 5.3.3. For each n ∈ N there is a solvable group G with commutativity

degree 1
n

.

Proof. Let n ∈ N. Then for 1 ≤ i ≤ r for some r, n = p1p2...pr for (not necessarily

distinct) primes pi. By Proposition 5.3.1 for each i there is a group Hi so that P (Hi) =

1
pi

and Hi is a direct product of solvable groups. Then the group G =
∏r

i=1 (Hi) has

commutativity degree P (G) = 1
n
.

Next we will show that if p is a prime of the form 2k−1 (a Mersenne prime), then

there is an indecomposable group G with P (G) = 1
p
.

Example 5.3.4. If p is a Mersenne prime, then there is an indecomposable group

G with P (G) = 1
p
. We will construct the group G and call this group a Mersenne

Group. Let p = 2k−1 be a Mersenne prime and let K =
∏k

i=1 Z2. Consider GLk(Z2).

To find |GLk(Z2)|, let Ri denote the number of possible combinations of entries in row

i of an invertible k×k matrix. (We count the rows in order; possible entries row Ri+1
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are counted after entries in row Ri are determined.) Then |GLk(Z2)| =
∏k

i=1(Ri).

There are R1 = 2k − 1 possible entries in the first row since a 0 or 1 may appear in

each entry and the zero vector is not allowed. Then the prime p = 2k − 1 divides

|GLk(Z2)| and there is an element of order 2k − 1 in GLk(Z2) by Cauchy’s Theorem.

Call this element p and let H =< p >. Then H acts on K because each element

in H is invertible and thus is an automorphism of K. Hence K oH is a semidirect

product. Let G be the semidirect product G = K oH.

Next we will show that P (G) = 1
p

by counting conjugacy class of G. Since H

is not normal in G, H is not a unique p-Sylow subgroup. Then H has 2k conjugate

Sylow subgroups, because the number of (2k − 1)-Sylow subgroups is equivalent to 1

mod 2k − 1. Thus each of the pk − 2 nonidentity elements of H has 2k conjugates;

one from each conjugate (2k − 1)-Sylow subgroup.

Notice that K is the unique 2-Sylow subgroup because it is normal in G. Consider

H acting on K as a set. Let v ∈ K and let Ov be the orbit of v and let Sv be the

stabilizer of v. Recall that |Ov| = [H : Sv]. Since Sv ⊂ H, Sv ⊂ K, and H ∩K = {e},

it follows that Sv = {e}. Hence |Ov| = p and so v has 2k − 1 conjugates. Then the

class equation is

|G| = 1 +
2k−2∑
i=1

2k + (2k − 1)

and there are k(G) = 1 + 2k − 2 + 1 = 2k conjugacy classes. Therefore, the commu-

tativity degree is

P (G) =
2k

2kp
=

1

p
.

We will use Lemmas 5.3.5 and 5.3.6 in order to prove that if G is a non-Abelian

nilpotent group, then P (G) 6= 1
p

for any prime p.

Lemma 5.3.5. If G is nilpotent with a non-Abelian p-Sylow subgroup for some prime

p, then P (G) < 1
p

except perhaps in the case when |G′| = p and there is exactly one

p-Sylow subgroup.
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Proof. Since G is nilpotent, G = P1 × P2 × .. × Ps for some s ∈ N such that each

factor Pi is a pi-Sylow subgroup.

If P1 is the unique non-Abelian Sylow subgroup and |G′| 6= p1, then |G′| ≥ p2
1. By

Proposition 2.2.3,

P (G) ≤ 1

d2
+

(
1− 1

d2

)(
1

p2
1

)
where d is the smallest degree of a nonlinear representation of G. Since d > 1 and d

divides |G|, d ≥ p1. Hence

P (G) ≤ 1

p2
1

+

(
1− 1

p2
1

)(
1

p2
1

)
≤ 2

p2
1

≤ 1

p1

.

Next suppose that for some r, 1 < r < s, P1, P2, ...Pr are non-Abelian Sylow

subgroups of G such that p1 < p2 < ... < pr. Then P (G) ≤ P (P1)P (P2)...P (Pr).

For each group Pi with 1 ≤ i ≤ r, P (Pi) < 1. Hence P (G) ≤ P (P1)P (Pr). Then by

Proposition 2.1.3,

P (G) ≤
(
p2

1 + p1 − 1

p3
1

)(
p2
r + pr − 1

p3
r

)
<

(
p2

1 + p1

p3
1

)(
p2
r + pr
p3
r

)
,

and since p1 ≥ 2,

P (G) ≤
(
p2
r + pr
p3
r

)(
5

8

)
=

5pr + 5

8p2
r

.

Finally since pr ≥ 3,

P (G) ≤ 18

24pr
<

1

pr
.

Therefore, for each pi, 1 ≤ i ≤ r,

P (G) <
1

pi
.

Lemma 5.3.6. Let p be prime. If G is nilpotent and |G′| = p, then P (G) > 1
p
.
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Proof. Let p be a prime. Assume |G′| = p. Since G is nilpotent, G = P ×
∏s

i=1 Pi for

some s ∈ N such that P is a p-Sylow subgroup and each factor Pi is a pi-Sylow sub-

group for some pi 6= p. Assume |P | = pm. Then G′ ⊆ P , and |G/G′| = pm−1|
∏s

i=1 Pi|.

by Lemma 2.3.5 k(G) ≥ |G/G′|. Since |G| − |G/G′| > 0, k(G) ≥ |G/G′|+ 1, and

P (G) ≥ pm−1|
∏s

i=1 Pi|+ 1

pm|
∏s

i=1 Pi|
>

1

p
.

Proposition 5.3.7. Let p be prime. If G is a non-Abelian nilpotent group, then

P (G) 6= 1
p
.

Proof. Since G is nilpotent G = P ×
∏s

i=1 Pi for some s ∈ N, where each factor Pi is

a pi-Sylow subgroup.

Suppose p divides |G|. Then p = pi for some i. If |G′| > p, then by Lemma 5.3.5,

P (G) < 1
p
. If |G′| = p, then by Lemma 5.3.6,P (G) > 1

p
.

Next assume that p does not divide |G|. Suppose that P (G) = 1
p
. Then

1

p
=
k(G)

|G|

and this implies that p divides |G|, a contradiction.

Therefore, for any prime p, P (G) 6= 1
p
.

5.4 Concluding Remarks and Additional Questions

There is a group G with commutativity degree P (G) =
(
1 + 1

22m

)
for all m ∈ N, and

all possible commutativity degrees in the interval (1
2
, 1) are of this form. If P (G) = 1

2

and G is not nilpotent, then G/Z ∼= Gm×C for a Gm group and some Abelian group

C. Further, 1
2

is the least upper bound on the commutativity degree of non-nilpotent

groups and 1
12

the least upper bound on the commutativity degree of non-solvable
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groups. If P (G) = 1
12

, then G ∼= A5 ×C for some Abelian group C. Rusin [43] found

all possible commutativity degrees greater than 11
32

, but all possible commutativity

degrees greater than 1
12

are unknown.

In general, it becomes more difficult to classify groups that have smaller commuta-

tivity degrees because fewer properties are known as the groups become less Abelian.

In light of this, rather than attempt to explicitly calculate the commutativity degree

of all groups, we would like to investigate properties of the set of possible commutativ-

ity degrees. For instance, gaps do occur in commutativity degree values, such as the

interval (7/16, 5/8). Are there gaps of arbitrarily small intervals in the set of possible

commutativity degrees as the values get close to 0? For all n ∈ N, 1
n

is a limit point

of the set of commutativity degrees. Does the set of commutativity degrees have any

irrational limit points? We proved inductively that there is a decomposable group

with commutativity degree 1
n

for all n ∈ N. For which m, m < n, can we find a group

with commutativity degree m
n

? We also showed that there are no nilpotent groups

with commutativity degree 1
p

for any prime p. Then we found an indecomposable

group with commutativity degree 1
p

for each prime of the form p = 2k − 1. Is there

an indecomposable group with commutativity degree 1
p

for every prime p?



Chapter 6: Appendices

6.1 Appendix A: Computations Using GAP

6.1.1 The Small Group Package, Conjugacy Class Computa-
tion, and Additional Commands

GAP stands for ”Groups, Algorithms, Programming” and is a program that runs in

D.O.S. that is used for computation in algebra. We used GAP and the Small Group

Library package available for GAP in Examples 2.1.6 and 5.2.12, Tables 5.1 and 5.2,

and Proposition 3.3.7.

The Small Groups Library in GAP was developed by Besche, Eick, and O’Brian.

The library classifies all groups of order less than 2000 (except order 1024). This GAP

package contains varying properties of the groups, depending on the classification and

complexity of the group. For more information, see the File [4]. This file also describes

how to get the package.

Each group in the Small Groups Library is given an ID Tag of the form [n, x]

where n is the order of the group and x, with 1 ≤ x ≤ m, is a reference number given

to each of m non-isomorphic groups of order n. Table 6.1 lists common commands

we used from the SmallGroups package in GAP.

We computed the number of conjugacy classes for a given group in GAP using two

different methods. We found the classes from the character table and computed the

classes directly. The second method is easier. The advantage of the first method is

that the class equation can easily be computed from the list of conjugacy class sizes.

Both methods are outlined in Table 6.2.

Table 6.3 lists additional commands that we found useful.
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COMMAND PURPOSE

G:=SmallGroup(n,x); Defines G as the small group [n, x].

H:=OneSmallGroup(n); Defines H as a small group of order n.

IdSmallGroup(G); Returns the ID Tag of Group G.

IdGroup(G); Returns the ID Tag of Group G.

NumberSmallGroups(n); Returns the number of Small Groups of order n.

SmallGroupsInformation(n); Returns a list of groups and properties

of groups of order n.

P:=PresentationViaCosetTable(G); Saves P as the presentation of

SmallGroup G.

SimplifyPresentation(P); Reduces the number of generators and/or

relations in the presentation P .

TzPrintRelators(P); Prints the generators and relations of P .

Table 6.1: The SmallGroup Package

COMMAND PURPOSE

c:=CharacterTable(G); Defines c as the character table for

group G. (For more information about character

tables in GAP, see [23]).

Display(c); Prints the character table c.

s:=SizesConjugacyClasses(c); Defines s as a list of the sizes of the

conjugacy classes of G

Size(s); Returns the number of conjugacy classes of G.

t:=ConjugacyClasses(G); Defines t as a list of conjugacy classes of group G.

Size(t); Returns the number of conjugacy classes of G.

Table 6.2: Finding the Number of Conjugacy Classes
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COMMAND PURPOSE

CyclicGroup(IsPermGroup, n); Returns the cyclic group

of order n.

DihedralGroup(IsPermGroup, n); Returns the Dihedral Group

of order n.

SymmetricGroup(n); Returns the symmetric Group of order n.

DirectProduct(G, H); Returns the direct product of groups

G and H.

Center(G); Returns the center of group G.

DerivedSubgroup(G); Returns the commutator subgroup of group G.

FactorGroup(G,H); Returns the quotient group G/H.

FactorGroup(G, Center(G)); Returns G/Z(G).

IsCyclic(G); Returns ”true” if group G is cyclic and

”false” if it is not.

IsAbelian(G); Returns ”true” is group G is Abelian and

”false” if it is not.

Size(L); Returns the number of entries in an object L.

Order(G); Returns the order of a group G.

Exponent(g); Returns the order of an element.

LogTo(”filename”); Saves a file.

LogTo(); Ends the file.

quit; Returns to GAP from a break.

Table 6.3: Common Groups and Commands in GAP.
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6.1.2 A Simple Sample Program

Note that before using a program, it must be read via the command: Read(“filename”);.

Often, rather than type a program in GAP, I created an empty file by typing the

command “ InputLogTo(”filename”); ”, and then immediately ending the file with

“ InputLogTo();”. then type the program in another editor. The following program

requires “noGroups”, the number of groups of order n, and the “order” n as input.

It loops though all groups of the given order and adds the ID Tags of all the groups

satisfying the property |G/Z| = 8 to a list. A copy of the program in included.

InputLogTo(”GZorder8”);

GZorder8:=function(order, noGroups)

local s,j,GZorder8;

GZorder8:=[];

s:=AllSmallGroups(order);

for j in [1..noGroups] do

if Size(FactorGroup(s[j],Center(s[j])))=8 then

Add(GZorder8,IdGroup(s[j]));

Add(GZorder8, IdGroup(FactorGroup(s[j],Center(s[j]))));

fi;

od;

return GZorder8;

end;

InputLogTO();
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6.2 Appendix B: Calculations of Inverse Elements

and Conjugacy Classes for Order Reversing

Groups

Rusin pn-groups

Calculations for the Rusin pn-groups are included in Section 4.1.1.

Dpq Groups

Since Dpq groups are a subclass of Rusin pn-groups, calculations are identical to those

for Rpn-groups.

Tp,q,m,θ Groups

Notice that, as a set

Tp,q,m,θ = {aibj : 0 ≤ i < p, 0 ≤ j < qm}.

To find the inverse of the form aibj, we apply the relation bab−1 = aλ
θ

as follows:

(aibj)−1 = b−ja−i

= a(−i)(λ−jθ)b−j

= a
−i
λjθ b−j.

Next we conjugate elements of Tp,q,m,θ by aibj to find the conjugacy classes. Let

1 ≤ v ≤ p− 1. Then

φaibj(a
v) = aibj(av)a

−i
λjθ b−j = ai+(v− i

λjθ
)(λjθ) = avλ

jθ

. (6.1)

Since o(a) = p, there are p− 1 elements in each class of the type [av]. There are p− 1

nonidentity elements in the subgroup < a > partitioned into this type of class. Hence

there is one conjugacy class [av] with p− 1 elements.



142

Let 1 ≤ w ≤ pm. Then

φaibj(b
w) = aibjbwa

−i
λjθ b−j = ai+(− i

λjθ
)(λ(j+w)θ)bw = ai−iλ

wθ

bw = ai(1−λ
wθ)bw. (6.2)

Notice that if q | w, for 1 ≤ w ≤ 2m, then (1− λwθ) ≡ 0(mod p), and

[bw] = {a0bw} = {bw}.

There are φ(qm) = qm − qm−1 choices for w that are relatively prime to qm. There

are qm− 1 nonidentity elements in < b >. Of these, there are qm− 1− φ(qm) = qm−1

choices for w such that q | w and [bw] = {bw}.

There are additional conjugacy classes containing elements of the form avbw in the

case that q | w and v 6= 0. In this case,

φaibj(a
vbw) = aibjavbwa

−i
λjθ b−j

= aiavλ
jθ

a( −i
λjθ

)(λ(j+w)(θ))bw

= ai(1−λ
w)+vλjθbw

= avλ
jθ

bw.

Since o(a) = p, there are p− 1 elements in each of these classes. There are qm − q =

qm−1 such classes because q | w.

If q - w, then

[bw] = {bw, a(1−λwθ)bw, a2(1−λwθ)bw, ..., a(p−1)(1−λwθ)bw}.

There are φ(qm) = qm − qm−1 such choices for w, partitioned into classes containing

p elements each. All nonidentity elements of Tp,q,m,θ are included in one of the classes

described above.

Gm Groups

Calculations are identical to those for the Tp,q,m,θ groups since Gm groups are subclass

of the Tp,q,m,θ groups.
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A Group with P (G) = 1
2
.

AS a set,

G = {aibj : 0 ≤ i ≤ 5, 0 ≤ j ≤ 1}.

To find the inverse of the form aibj, we apply the relation bab−1 = a−1 = a5 as follows:

(aibj)−1 = b−ja−i

= a(−i)(5−j)b−j

= a
−i
5j b−j.

Next we conjugate elements of G by aibj to find each conjugacy class. Let 1 ≤ v ≤ 5.

Then

φaibj(a
v) = aibj(av)a

−i
5j b−j = ai+(v− i

5j
)(5j) = av(5

j).

This yields that following conjugacy classes:

[a] = {a, a5}, [a2] = {a2, a4}, and [a3] = {a3}.

Next consider avb:

φaibj(a
vb) = aibjavba

−i
5j b−j = aiav(5

j)a(−i
5j

)(5j+1)b = a−4i+v(5j)b

This yields the following conjugacy classes:

[ab] = {ab, a3b, a5b}, and [a2b] = {b, a2b, a4b}.

All nonidentity elements are included in one of the classes listed above.

Dicyclic Groups

As set

Dm = {ai : 0 ≤ i ≤ 2m} ∪ {bai : 0 ≤ i ≤ 2m},

because of the relation am = b2.
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Now we find the inverse forms of the forms ai and bai. If ai ∈ Dm, then (ai)−1 =

a−i. Secondly, let bai ∈ Dm and apply the relation ab = ba−1 (ie. ab = ba2m−1) as

follows:

(bai)−1 = a−ib3

= a(−i+m)b

= ba(−i+m)(2m−1)

= bai−m.

Next we conjugate elements of each form by both aj and baj to find conjugacy

classes. First consider an element of the form at ∈ Dm. Then

φai(a
t) = at (6.3)

and

φbai(a
t) = baiatbai−m

= b2a(i+t)(2m−1)ai−m

= ama(−i−t)ai−m

= ama(−i−t)ai−m

= a−t.

If t = m, then [am] = [b2] = {b2} and this element is in the center. For t 6= m, the

conjugates yield the two element conjugacy class [at] = {at, a−t}. Hence there are

2m− 2 noncentral elements in < a > partitioned into two element conjugacy classes.

Next consider an element of the second form, bat ∈ Dm . Then

φai(ba
t) = aibata−i

= bai(2m−1)ata−i

= bat−2i,
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and

φbai(ba
t) = baibatbai−m

= b2ai(2m−1)atbai−m

= ama−iatbai−m

= ba(m−i+t)(2m−1)ai−m

= ba−m+i−t+i−m

= ba2i−t.

Then [ba] = {ba, ba3...ba2m−1} and [ba2] = {b, ba2...ba2m−2} are the two conjugacy

classes consisting of all elements of the type bat, with 0 ≤ t ≤ 2n− 1. All nonidentity

elements are included in one of the classes calculated above.

Generalized Quaternion Groups

Calculations for the generalized quaternions are identical to those for dicyclic qroups.

Dihedral Groups

First notice that as a set

Dn = {ρi : 0 ≤ i ≤ n− 1} ∪ {rρi : 0 ≤ i ≤ n− 1}.

First we find the inverses of the forms ρi and rρi. If ρi ∈ Dn, then (ρi)−1 = ρ−i.

Secondly, let rρi ∈ Dn and apply the relation ρr = rρn−1 as follows:

(rρi)−1 = ρ−ir−1

= r−1ρ−i(n−1)

= rρi.

Next we will conjugate elements of Dn by ρi and rρi to find the conjugacy classes.
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First notice that for 1 ≤ v < n, φρi(ρ
v) = ρv and φrρi(ρ

v) = ρ−v. If n is odd,

then the n−1 noncentral elements of < ρ > are partitioned into 2-element conjugacy

classes of the form {ρv, ρ−v}. If n is even, the [ρ
n
2 ] = {ρn2 } and the remaining n − 2

noncentral elements of < ρ > are partitioned into 2-element conjugacy classes of the

form {ρv, ρ−v}.

Next,

φρ−j(r) = ρ−jrρj = rρ−j(n−1)+j = rρ2j,

and conjugation of r by rρj produces no additional elements since

φrρj(r) = rρjr(rρj)−1 = rρjr(rρj) = rρ2j.

If n is odd then

< ρ2 >=< ρ >= {ρi : 1 ≤ i < n},

and it follows that

[r] = [rρ2j] = {rρj : 0 ≤ j < n}.

Hence [r] contains all n elements of the form rρj if n is odd. If n is even then

< ρ2 >= {ρ2i : 1 ≤ i <
n− 1

2
},

and then

[r] = [rρ2j] = {rρ2j : 0 ≤ j <
n− 1

2
}.

Thus [r] contains half of the elements of the form rρj if n is even. For even n, we will

find all additional conjugacy classes containing elements of the form rρj beginning

with [rρ]. Let 1 ≥ j < n− 1. Then

φρ−j(rρ) = ρ−jrρρj = rρ−j(n−1)+j+1 = rρ2j+1.

Conjugation of rρ by rρj produces no additional elements since

φrρj(rρ) = rρjrρ(rρj)−1 = rρjrρ(rρj) = rρj+(n−1)ρj = rρ2j+1.
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Since

< ρ2i+ 1 >= {ρi : 1 ≤ i < n and i is odd },

[rρ] = [rρ2j+1] = {rρj : 0 ≤ j < n and j is odd }.

Thus [rρ] contains the other half of the elements of the form rρi if n is even. We

have found all classes containing elements of the form rρj, with 0 ≤ j < n for both

even and odd n. All nonidentity elements of Dn are included in one of the classes

described above.

Semidihedral and Quasidihedral Groups

Because the relations are similar, we compute the different conjugacy classes similarly

for both groups. First notice that each element of SDn or QDn can be written in the

form ai or bai with 0 ≤ i ≤ 2n.

Next we find the inverse of both forms: If ai ∈ SDn or ai ∈ QDn, then (ai)−1 =

a−i. Secondly, let bai ∈ SDn and apply the relation ab = ba(2n−1−1) as follows:

(bai)−1 = a−ib = ba(−i2n−1+i).

Similarly, if bai ∈ QDn, then

(bai)−1 = ba(−i2n−1−i).

Next we conjugate elements of each form by both aj and baj to find conjugacy

classes. Suppose at ∈ SDn. Then

φai(a
t) = at (6.4)

and

φbai(a
t) = baiatba(−i2n−1+i)

= b2a(i+t)(2n−1−1)a(−i2n−1+i)

= a(i2n−1−i+t2n−1−t−i2n−1+i)

= at2
n−1−t.
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Likewise, if at ∈ QDn, then

φai(a
t) = at (6.5)

and

φbai(a
t) = at2

n−1+t. (6.6)

In SDn, if t is even then [at] = {at, a−t}, and if t is odd then [at] = {at, a2n−1−t}.

This counts the single element conjugacy class [a2n−1
] and |<a>|−2

2
= 2n−1−1 conjugacy

classes of order 2. (This does not count [e].)

In QDn, if t is even then [at] = {at}, and if t is odd then [at] = {at, a2n−1+t}. This

counts |<a>|
2
−1 = 2(n−1)−1 conjugacy classes of order 1 and |<a>|

22 = 2(n−2) conjugacy

classes of order 2. (This does not count [e].)

Next consider an element of the second form, bat ∈ SDn . Then

φai(ba
t) = aibata−i

= bai(2
n−1−1)+t−i

= bai2
n−1−2i+t

and

φbai(ba
t) = baibatba(−i2n−1+i)

= b2ai(2
n−1−1)atba(−i2n−1+i)

= ai2
n−1−i+tba(−i2n−1+i

= ba(i2(n−1)−i+t)(2(n−1)−1)a(−i2(n−1)+i)

= bai2
n−1−i2n−1+i+t2n−1−t−i2n−1+i

= ba(i+t)(2n−1)+2i−t.

Likewise, if at ∈ QDn, then

φai(ba
t) = bai2

n−1+t (6.7)
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and

φbai(a
t) = ba(i+t)(2n−1+t. (6.8)

In SDn,

[ba] = {ba, ba2n−1−1, ba−3, ba2n−1+3, ...} = {baj : j odd }

[ba2] = {ba2, ba2n−1−2, ba−4, ba2n−1+4, ...} = {baj : j even }.

There are 2 conjugacy classes with 2n−1 elements each.

In QDn, [bat] = {bat, ba2n−1+t}. There are 2n

2
conjugacy classes with 2 elements of

this type. All nonidentity elements are included in one of the classes listed above.
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