""" This submodule contains the tempalte for the `Model` object.
The available PySM models are subclasses of this template, and
when adding models to PySM it is advised that the user subclasses
this template, ensuring that the new subclass has the required
`get_emission` method.
Objects:
Model
"""
import warnings
import os.path
import numpy as np
import healpy as hp
from astropy.io import fits
from astropy.utils import data
from .. import utils
from .. import units as u
from ..constants import DATAURL
from .. import mpi
import gc
from unittest.mock import Mock
[docs]class Model:
""" This is the template object for PySM objects.
If a MPI communicator is passed as input and `pixel_indices` is None,
the class automatically distributes the maps across processes.
You can implement your own pixel distribution passing both a MPI
communicator and `pixel_indices`, however that won't support smoothing
with `libsharp`.
If `libsharp` is available, the rings are distributed as expected
by `libsharp` to perform distributed spherical harmonics transforms,
see :py:func:`pysm.mpi.distribute_rings_libsharp`, the `libsharp` grid
object is saved in `self.libsharp_grid`.
If libsharp is not available, pixels are distributed uniformly across
processes, see :py:func:`pysm.mpi.distribute_pixels_uniformly`"""
def __init__(self, nside, map_dist=None, dataurl=None):
"""
Parameters
----------
mpi_comm: object
MPI communicator object (optional, default=None).
nside: int
Resolution parameter at which this model is to be calculated.
smoothing_lmax : int
:math:`\ell_{max}` for the smoothing step, by default :math:`2*N_{side}`
"""
self.nside = nside
assert nside is not None
self.map_dist = map_dist
self.dataurl = dataurl
[docs] def read_map(self, path, unit=None, field=0):
"""Wrapper of the PySM read_map function that automatically
uses nside, pixel_indices and mpi_comm defined in this Model
"""
return read_map(
path,
self.nside,
unit=unit,
field=field,
map_dist=self.map_dist,
dataurl=self.dataurl,
)
[docs] def read_txt(self, path, **kwargs):
mpi_comm = None if self.map_dist is None else self.map_dist.mpi_comm
return read_txt(path, mpi_comm=mpi_comm, **kwargs)
[docs] @u.quantity_input
def get_emission(self, freqs: u.GHz, weights=None) -> u.uK_RJ:
""" This function evaluates the component model at a either
a single frequency, an array of frequencies, or over a bandpass.
Parameters
----------
freqs: scalar or array astropy.units.Quantity
Frequency at which the model should be evaluated, in a frequency
which can be converted to GHz using astropy.units.
If an array of frequencies is provided, integrate using trapz
with a equal weighting, i.e. simulate a top-hat bandpass.
weights: np.array, optional
Array of weights describing the frequency response of the instrument,
i.e. the bandpass. Weights are normalized and applied in Jy/sr.
Returns
-------
output : astropy.units.Quantity
Simulated map at the given frequency or integrated over the given
bandpass. The shape of the output is (3,npix) for polarized components,
(1,npix) for temperature-only components. Output is in `uK_RJ`.
"""
freqs = utils.check_freq_input(freqs)
weights = utils.normalize_weights(freqs, weights)
outputs = np.zeros((3, hp.nside2npix(self.nside)), dtype=np.float32)
return outputs << u.uK_RJ
def apply_normalization(freqs, weights):
""" Function to apply a normalization constraing to a set of weights.
This imposes the requirement that the integral of the weights over the
array `freqs` must equal unity.
Parameters
----------
freqs: ndarray
Array containing the domain over which to integrate.
weights: ndarray
Array containing the samples to integrate.
Returns
-------
tuple(ndarray)
Tuple containing the frequencies and weights. These are numpy arrays
of equal length.
"""
return freqs, weights / np.trapz(weights, freqs)
def extract_hdu_unit(path):
""" Function to extract unit from an hdu.
Parameters
----------
path: Path object
Path to the fits file.
Returns
-------
string
String specifying the unit of the fits data.
"""
hdul = fits.open(path)
try:
unit = hdul[1].header["TUNIT1"]
except KeyError:
# in the case that TUNIT1 does not exist, assume unitless quantity.
unit = ""
warnings.warn("No physical unit associated with file " + str(path))
return unit
[docs]def read_map(path, nside, unit=None, field=0, map_dist=None, dataurl=None):
"""Wrapper of `healpy.read_map` for PySM data. This function also extracts
the units from the fits HDU and applies them to the data array to form an
`astropy.units.Quantity` object.
This function requires that the fits file contains a TUNIT key for each
populated field.
Parameters
----------
path : object `pathlib.Path`, or str
Path of HEALPix map to be read.
nside : int
Resolution at which to return map. Map is read in at whatever resolution
it is stored, and `healpy.ud_grade` is applied.
Returns
-------
map : ndarray
Numpy array containing HEALPix map in RING ordering.
"""
mpi_comm = None if map_dist is None else map_dist.mpi_comm
pixel_indices = None if map_dist is None else map_dist.pixel_indices
if dataurl is None:
dataurl = DATAURL
# read map. Add `str()` operator in case dealing with `Path` object.
if os.path.exists(str(path)): # Python 3.5 requires turning a Path object to str
filename = str(path)
else:
with data.conf.set_temp("dataurl", dataurl), data.conf.set_temp(
"remote_timeout", 30
):
filename = data.get_pkg_data_filename(path)
# inmap = hp.read_map(filename, field=field, verbose=False)
if (mpi_comm is not None and mpi_comm.rank == 0) or (mpi_comm is None):
output_map = hp.read_map(filename, field=field, verbose=False, dtype=None)
dtype = output_map.dtype
# numba only supports little endian
if dtype.byteorder == ">":
dtype = dtype.newbyteorder()
# mpi4py has issues if the dtype is a string like ">f4"
if dtype == np.dtype(np.float32):
dtype = np.dtype(np.float32)
elif dtype == np.dtype(np.float64):
dtype = np.dtype(np.float64)
nside_in = hp.get_nside(output_map)
if nside < nside_in: # do downgrading in double precision
output_map = hp.ud_grade(output_map.astype(np.float64), nside_out=nside)
else:
output_map = hp.ud_grade(output_map, nside_out=nside)
output_map = output_map.astype(dtype, copy=False)
if unit is None:
unit = extract_hdu_unit(filename)
shape = output_map.shape
elif mpi_comm is not None and mpi_comm.rank > 0:
npix = hp.nside2npix(nside)
try:
ncomp = len(field)
except TypeError: # field is int
ncomp = 1
shape = npix if ncomp == 1 else (len(field), npix)
unit = ""
dtype = None
if mpi_comm is not None:
from mpi4py import MPI
dtype = mpi_comm.bcast(dtype, root=0)
unit = mpi_comm.bcast(unit, root=0)
node_comm = mpi_comm.Split_type(MPI.COMM_TYPE_SHARED)
mpi_type = MPI._typedict[dtype.char]
mpi_type_size = mpi_type.Get_size()
win = MPI.Win.Allocate_shared(
np.prod(shape) * mpi_type_size if node_comm.rank == 0 else 0,
mpi_type_size,
comm=node_comm,
)
shared_buffer, item_size = win.Shared_query(0)
assert item_size == mpi_type_size
shared_buffer = np.array(shared_buffer, dtype="B", copy=False)
node_shared_map = np.ndarray(buffer=shared_buffer, dtype=dtype, shape=shape)
# only the first MPI process in each node is in this communicator
rank_comm = mpi_comm.Split(0 if node_comm.rank == 0 else MPI.UNDEFINED)
if mpi_comm.rank == 0:
node_shared_map[:] = output_map
if node_comm.rank == 0:
rank_comm.Bcast(node_shared_map, root=0)
mpi_comm.barrier()
# code with broadcast to whole communicator
# if mpi_comm.rank > 0:
# output_map = np.empty(shape, dtype=dtype)
# mpi_comm.Bcast(output_map, root=0)
else: # without MPI node_shared_map is just another reference to output_map
node_shared_map = output_map
if pixel_indices is not None:
# make copies so that Python can release the full array
try: # multiple components
output_map = np.array(
[each[pixel_indices].copy() for each in node_shared_map]
)
except IndexError: # single component
output_map = node_shared_map[pixel_indices].copy()
if mpi_comm is not None:
del node_shared_map
del shared_buffer
win.Free()
gc.collect()
return u.Quantity(output_map, unit, copy=False)
def read_txt(path, mpi_comm=None, **kwargs):
"""MPI-aware numpy.loadtxt function
reads text file on rank 0 with np.loadtxt and broadcasts over MPI
Parameters
----------
path : str
path to fits file.
mpi_comm : mpi4py MPI Communicator.
Returns
-------
output : numpy.ndarray
data read with numpy.loadtxt
"""
if os.path.exists(str(path)):
filename = str(path)
else:
with data.conf.set_temp("dataurl", DATAURL), data.conf.set_temp(
"remote_timeout", 30
):
filename = data.get_pkg_data_filename(path)
if (mpi_comm is not None and mpi_comm.rank == 0) or (mpi_comm is None):
output = np.loadtxt(filename, **kwargs)
elif mpi_comm is not None and mpi_comm.rank > 0:
output = None
if mpi_comm is not None:
output = mpi_comm.bcast(output, root=0)
return output