
Package WOWA

for calculating weighted OWA functions and

extending bivariate means.

Version 1.0

User Manual

Gleb Beliakov
gleb@deakin.edu.au

Copyright Gleb Beliakov, 2021.

2

License agreement

WOWA is distributed under GNU LESSER GENERAL PUBLIC LICENSE.
The terms of the license are provided in the file ”copying” in the root direc-
tory of this distribution.

You can also obtain the GNU License Agreement from
http://www.gnu.org/licenses/licenses.html

Contents

1 Summary 5

2 Theoretical background 7
2.1 Means . 7
2.2 Multivariate extension of bivariate means 9
2.3 Binary tree construction . 10
2.4 Weighted Ordered Weighted Averaging (WOWA) 12

2.4.1 Weighted OWA approach by Torra 13
2.4.2 Interpolation of the RIM quantifier function 14
2.4.3 n-ary tree construction for OWA by Dujmovic and

Beliakov . 15
2.4.4 Implicit WOWA . 18

2.5 Methods implemented in wowa library 20

3 Description of the library 21
3.1 Installation . 21
3.2 Programming interface . 21
3.3 Description of the functions in WOWA 21

3.3.1 wowa.OWA . 21
3.3.2 wowa.ImplicitWOWA 22
3.3.3 wowa.WAn . 22
3.3.4 wowa.WOWATree . 24
3.3.5 wowa.weightedOWAQuantifier 24
3.3.6 wowa.weightedOWAQuantifierBuild 25
3.3.7 wowa.WAM . 26

3.4 Examples . 27
3.5 Where to get help . 28

3

4 CONTENTS

Chapter 1

Summary

This manual describes the package WOWA , which provides various tools for
calculating the Weighted Ordered Weighted Averaging (WOWA) functions.

Chapter 2 provides some background on weighted means and OWA func-
tions. In particular it details the binary tree extension of any bivariate mean
by Beliakov and Dujmovic, as well as three different approaches to adding
weighs to Yager’s OWA functions. A more detailed overview can be found
in [7, 8] and references therein. The description of the package WOWA and
its functions is given in Chapter 3. Examples of its usage are provided in
Section 3.4.

To cite WOWA package, use references [2–8].

5

6 CHAPTER 1. SUMMARY

Chapter 2

Theoretical background

2.1 Means

Aggregation functions play an important role in many applications includ-
ing decision making, fuzzy systems and image processing [4, 8]. Averaging
functions, aka mean, whose prototypical examples are the arithmetic mean
and the median, allow compensation between low values of some inputs and
high values of the others.

We consider weighting vectors w such that wi ≥ 0 and
∑

wi = 1 of
appropriate dimensions.

Definition 1 For a given generating function g : I → [−∞,∞], and a
weighting vector w, the weighted quasi-arithmetic mean is the function

Mw,g(x) = g−1

(
n∑

i=1

wig(xi)

)
. (2.1)

Definition 2 Let ϕ : I→ I be a bijection. The ϕ-transform of a function
f : In → I is the function fϕ(x) = ϕ−1 (f (ϕ(x1), ϕ(x2), ..., ϕ(xn))).

The weighted QAM is a ϕ-transform of the weighted arithmetic mean
with ϕ = g. The weighted arithmetic mean is therefore expression (2.1) with
g = Id. Many means belong to the class of QAM (harmonic, geometric,
quadratic, power means), but not all.

7

8 CHAPTER 2. THEORETICAL BACKGROUND

Definition 3 Let n = 2, x, y > 0, x 6= y and p ∈ [−∞,∞]. The generalized
logarithmic mean is the function

Lp(x, y) =



y−x
log y−log x , if p = −1,

1
e

(
yy

xx

)1/(y−x)
, if p = 0,

min(x, y), if p = −∞,
max(x, y), if p =∞,(

yp+1−xp+1

(p+1)(y−x)

)1/p
otherwise.

(2.2)

For x = y it is Lp(x, x) = x.

The generalized logarithmic mean is symmetric. The function L0(x, y) is
called the identric mean I; L−2(x, y) = G(x, y), the geometric mean G; L−1

is called the logarithmic mean L; L−1/2 is the power mean with p = −1/2; L1

is the arithmetic mean A. Only L−1/2, L−2 and L1 are the quasi-arithmetic
means.

Definition 4 Let us take two differentiable functions g, h : I→ R such that
g′ 6= 0 and g′

h′ is invertible. Then the Cauchy mean is given for x 6= y by

Cg,h(x, y) =

(
g′

h′

)−1(g(x)− g(y)

h(x)− h(y)

)
. (2.3)

For x = y, we set Cg,h(x, x) = x.

The Cauchy means are continuous, symmetric and strictly increasing.
The special case of h(t) = t is called the Lagrangean mean Lg . The gen-
eralized logarithmic means are Lagrangean means Lg with g(t) = tp+1, p 6∈
{−1, 0}, g(t) = log(t) for p = −1, and g(t) = t log t for p = 0. The Cauchy
mean Cg,h is a ϕ-transform of the Lagrangean mean Lg◦h−1

with ϕ = h.

Some Lagrangean (resp. Cauchy) means are quasi-arithmetic means
(e.g., the arithmetic and geometric means), but some are not. For instance
the harmonic mean is not Lagrangean, and the logarithmic mean is not
quasi-arithmetic. The Lagrangean mean generated by g(t) = tp+1 is called
Stolarsky mean. The Cauchy mean generated by two power functions g(t) =
tp, h(t) = ts is called the extended mean (sometimes also referred to as
Stolarsky mean). For more details about these means refer to [4].

Another bivariate mean which has attracted some attention recently is
the Heronian mean. In the bivariate case it is defined as follows.

2.2. MULTIVARIATE EXTENSION OF BIVARIATE MEANS 9

Definition 5 The Heronian mean is the function

Her(x, y) =
x + y +

√
xy

3
. (2.4)

Note that the Heronian mean can be written as

Her(x, y) =
G(x, y) + 2A(x, y)

3
. (2.5)

The notation x↘ denotes the vector obtained from x by arranging its
components in non-increasing order x(1) ≥ x(2) ≥ . . . ≥ x(n).

Definition 6 (OWA) For a given weighting vector w, wi ≥ 0,
∑

wi = 1,
the OWA function is given by

OWAw(x) =

n∑
i=1

wix(i) =< w,x↘ > . (2.6)

Calculation of the value of an OWA function involves using a sort()

operation.

2.2 Multivariate extension of bivariate means

The major class of averaging functions is the class of weighted quasi-arithmetic
means (QAM). These functions are well studied and are convenient to work
with as they have a natural definition for any number of arguments. Yet
there are many other means, that often generalize quasi-arithmetic means,
which are defined with respect to two arguments only, and do not offer a
straightforward multivariate extension. A basic example here is the loga-
rithmic mean [4]

L(x, y) =
x− y

lnx− ln y
,

which belongs to a rather broad class of Cauchy means. Cauchy means
are defined with respect to two differentiable generating functions g and h
such that h′ 6= 0, by the use the Cauchy mean value theorem. In turn,
Cauchy means have several prominent subclasses, such as the Lagrangean
mean, the generalized logarithmic mean, Stolarsky means, and also quasi-
arithmetic means. Frequently used members include the already mentioned
logarithmic means, the identric mean and the Stolarsky means.

Another class of bivariate means are the neo-Pythagorean means, which
are defined in terms of ratios between the inputs and the outputs. Here

10 CHAPTER 2. THEORETICAL BACKGROUND

again, no obvious multivariate extension is present. One particular case is
the Heronian mean.

In this contribution we use one generic approach for extending the bi-
variate means and incorporating weighting vectors based on repetitive ap-
plication of the given bivariate function, reported in [6, 10]. It does not
require knowledge of the properties of the bivariate function or its alter-
native representations, and is not based on an analytic formula but on an
efficient computational procedure. The approach we present here is a recur-
sive application of the bivariate function by constructing a binary tree with
a suitable number of levels, where at each node the bivariate function is ap-
plied to the arguments of the child nodes. By using the idempotency of the
means, we prune this tree to design a computationally efficient procedure.
On the other hand, we are able to incorporate the weighting vectors by re-
peating the arguments as needed, following the approach of Calvo, Mesiar
and Yager [9].

Our binary tree approach is generic in terms of the starting bivariate
idempotent function being used, but it is not exact, in the sense that it
is aimed at approximating a weighted multivariate mean (with any desired
accuracy). Indeed, the binary tree will not reproduce exactly the weighting
vectors with irrational coefficients, or coefficients that do not have finite
binary representation (e.g., w = (13 ,

1
3 ,

1
3)), in a finite number of iterations.

We argue, however, that for computational purposes this is not inferior than
even the explicit formulas: after all, all weighting vectors have finite binary
representation in machine arithmetic, which we can match exactly.

2.3 Binary tree construction

We want to construct a weighted n-variate idempotent function fn with the
weighting vector w, by using only an unweighted bivariate idempotent func-
tion f [6,10]. To introduce the weights we use the approach from [9] where
each argument xi is replicated a suitable number of times. That is, we con-
sider an auxiliary vector of arguments X = (x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn),
so that x1 is taken k1 times, x2 is taken k2 times and so on, and k1

2L
≈ w1,

k2
2L
≈ w2, . . ., and

∑
ki = 2L, where L ≥ 1 is a specified number of lev-

els of the binary tree shown in Figure 2.1. One way of doing so is to take
ki = bwi2

L + 1
2c, i = 1, . . . , n− 1 and kn = 2L − k1 − k2 − . . .− kn−1.

2.3. BINARY TREE CONSTRUCTION 11

Figure 2.1: Representation of a weighted arithmetic mean in a binary tree
construction. The tree on the right is pruned by using idempotency.

Next, let us build a binary tree presented in Figure 2.1, where at each
node a value is produced by aggregating the values of two children nodes
with the given bivariate symmetric idempotent function f (denoted by B on
the plot). We start from the leaves of the tree which contain the elements
of the vector X. The value y at the root node will be the desired output of
the n-variate weighted function.

A straightforward binary tree traversal algorithm for doing so, which
starts from the vector X computed as before, is as follows:

Aggregation by Levels (ABL) Algorithm

1. N := 2L;

2. Repeat L times:

(a) N := N/2;

(b) For i := 1 . . . N do X[i] := f(X[2i− 1], X[2i]);

3. return X[1].

Note that the bivariate function f is assumed to be symmetric (the
weights of the bivariate mean are symbolically denoted by 1

2 as shown in
Figure 2.1, although some symmetric means such as Logarithmic and Hero-
nian do not have visible weights). The algorithm is obviously terminating.
The runtime of the ABL algorithm is O(2L).

One practical disadvantage of the ABL algorithm is that its compu-
tational complexity is O(2L) in terms of the number of invocations of f .
However it is possible to appropriately prune the binary tree by relying on

12 CHAPTER 2. THEORETICAL BACKGROUND

idempotency of f , see Figures 2.1, 2.2. Indeed no invocation of f is nec-
essary if both of its arguments are equal. Such a pruning was presented
in [6]. Below we present a general algorithm for the n-variate case whose
(worst case) complexity is O(L(n−1)). This complexity is the lower bound,
as at each level of the binary tree one can get at most n − 1 nodes with
different values of the child nodes, so that pruning is impossible and f must
be executed. The first m levels of the binary tree have less than n−1 nodes
each, the total number of nodes for these m levels is

∑m
k=1 2m−1 = 2m − 1

nodes, hence f can be called at most 2m − 1 + (L−m)(n− 1) times, where
m = blog2(n)c.

The algorithm is recursive depth-first traversal of the binary tree. A
branch is pruned if it is clear that all its leaves have exactly the same value,
and by idempotency this is the value of the root node of that branch. The
complexity of this algorithm is linear in L and n.

A key property of the binary tree construction is the following.

Theorem 1 (The Inheritance Theorem) [6] The multivariate exten-
sion fn of a bivariate idempotent function f by the ABL algorithm preserves
the intrinsic properties of the parent function f as follows:

1. fn is idempotent since f is idempotent;

2. if f is monotone increasing then fn is monotone increasing;

3. if f is continuous then fn is continuous;

4. if f is convex (resp. concave) then fn is convex (resp. concave);

5. if f is homogeneous then fn is homogeneous;

6. if f is shift-invariant then fn is shift-invariant;

7. if f is averaging then fn is averaging;

8. fn has the same absorbing element as f (if any).

2.4 Weighted Ordered Weighted Averaging (WOWA)

The weights in weighted means and in OWA functions represent different
things. In weighted means wi reflects the importance of the i-th input,
whereas in the OWA, wi reflects the importance of the i-th largest input. We
now list some proposed frameworks for incorporating both types of weighting
schemes following [3].

2.4. WEIGHTED ORDERED WEIGHTED AVERAGING (WOWA) 13

2.4.1 Weighted OWA approach by Torra

In [11] Torra proposed a generalisation of both weighted means and OWA,
called WOWA. This aggregation function has two sets of weights w and p.
Vector p plays the same role as the weighting vector in weighted means, and
w plays the role of the weighting vector in OWA functions.

Definition 7 (Weighted OWA) Let w,p be two weighting vectors, wi, pi ≥
0,
∑

wi =
∑

pi = 1. The following function is called the Weighted OWA
function

WOWAw,p(x) =

n∑
i=1

uix(i),

where x(i) is the i-th largest component of x, and the weights ui are defined
as

ui = g

∑
j∈Hi

pj

− g

 ∑
j∈Hi−1

pj

 ,

where the set Hi = {j|xj ≥ xi} is the set of indices of the i largest elements
of x, and g is a monotone non-decreasing function with two properties:

1. g(i/n) =
∑

j≤iwj , i = 0, . . . , n (of course g(0) = 0);

2. g is linear if the points (i/n,
∑

j≤iwj) lie on a straight line.

Thus computation of WOWA involves a very similar procedure as that of
the OWA (i.e., sorting components of x and then computing their weighted
sum), but the weights ui are defined by using both vectors w,p, a special
monotone function g, and depend on the components of x as well. One can
see WOWA as an OWA function with the weights u.

In [11, 12], the weights were introduced through an auxiliary interpo-
lation function. It allows one to operate with two weighting vectors, one
vector p related to the inputs magnitude, another, w, related to the inputs
themselves.

Let us list some of the properties of the WOWA function.

• The weighting vector u satisfies ui ≥ 0,
∑

ui = 1.

• If wi = 1
n , then WOWAw,p(x) = WAMp(x), the weighted arithmetic

mean.

• If pi = 1
n , WOWAw,p(x) = OWAw(x).

14 CHAPTER 2. THEORETICAL BACKGROUND

• The WOWA is an idempotent aggregation function.

As noted, the weights u also depend on the generating function g. This
function can be chosen as a linear spline (i.e., a broken line interpolant),
interpolating the points (i/n,

∑
j≤iwj) (in which case it automatically be-

comes a linear function if these points are on a straight line), or as a mono-
tone quadratic spline, as was suggested in [11, 12], see also [1] where Schu-
maker’s quadratic spline algorithm was used, which automatically satisfies
the straight line condition when needed.

2.4.2 Interpolation of the RIM quantifier function

Let us now consider an alternative approach based on interpolating a RIM
quantifier function. Here we use a method from [9], in which the weights of
a function are computed by repeating the inputs a suitable number of times.
Consider an auxiliary vector of arguments X = (x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn),
so that x1 is taken k1 times and x2 is taken k2 times, and so on, so that
k1
M = p1,

k2
M = p2, . . ., and k1 + k2 + . . . + kn = M . We assume the weights

pi are rational numbers, which is not a strong restriction if we look at a
computer implementation of the method in finite precision arithmetics.

The approach from [9] consists in using the auxiliary vector X in a
strongly idempotent symmetric function (such as OWA induced by a quan-
tifier) whose output will be a weighted function of the inputs x.

In the case of OWA, in order to apply it to a larger dimensional aux-
iliary input vector X we need to produce the weighting vector w of the
corresponding dimension M , denoted here by u. We apply a similar ap-
proach to Torra’s construction, that is, we construct a generating function g
by interpolating the data g(i/n) =

∑
j≤iwj , i = 0, . . . , n and g(0) = 0, and

the straight line condition, that is, using the two conditions in Definition
7. The latter is necessary to obtain the standard weighted mean in case all
wi = 1

n .
Hence we can use a piecewise linear or piecewise quadratic interpolation

as in [1,11,12] to construct the RIM quantifier g. Now, in a way that differs
to Torra’s approach, we calculate the weighted OWA as

WOWAw,p(x) = OWAu(X) =

n∑
i=1

uiX(i),

where the weights ui are defined as

ui = g

(
i

M

)
− g

(
i− 1

M

)
, i = 1, . . . ,M.

2.4. WEIGHTED ORDERED WEIGHTED AVERAGING (WOWA) 15

If we compare both methods based on the generating RIM quantifier
function, we can see that both produce exactly the same WOWA function [3].
We conclude that Torra’s formula for the weights of WOWA can be seen
as an instance of the approach from [9] based on replicating the inputs,
although it obviously predates that work.

2.4.3 n-ary tree construction for OWA by Dujmovic and Be-
liakov

We apply the method of incorporating weights into any symmetric function
by using binary trees [6, 10]. We already saw this method in Section 2.3.

To introduce the weights into a symmetric function we use the approach
from [9], where each argument xi is replicated a suitable number of times.
We consider an auxiliary vector of arguments X = (x1, . . . , x1, x2, . . . , x2),
so that x1 is taken k1 times and x2 is taken k2 times, so that k1

2L
≈ p1,

k2
2L
≈ p2, and k1 + k2 = M = 2L. Here M is a power of two and L ≥ 1 is a

specified number of levels of the binary tree. One way of doing so is to take
k1 = bp12L + 1

2c and k2 = 2L − k1. The vector X needs to be sorted into
increasing or decreasing order.

Figure 2.2: Representation of a weighted 3-variate mean in a binary tree
construction. The tree on the right is pruned by using idempotency. The
weights w = (12 ,

3
8 ,

1
8) are matched exactly.

An efficient algorithm based on pruning the binary tree was presented
in [6]. The pruning of the binary tree is done by using the idempotency of

16 CHAPTER 2. THEORETICAL BACKGROUND

f . No invocation of f is necessary if both of its arguments are equal. A
branch is pruned if it is clear that all its leaves have exactly the same value,
and by idempotency this is the value of the root node of that branch. The
algorithm is recursive depth-first traversing of the binary tree. The pruned
tree algorithm has worst case complexity O(L), which makes it practically
applicable for large L.

The properties of the binary tree construction are listed in the Inher-
itance theorem 1 and include preservation of idempotency, monotonicity,
continuity, convexity (concavity), homogeneity and shift-invariance, due to
preservation of these properties in function composition. Furthermore, when
the weights are given in a finite binary representation (as is always the case
in machine arithmetic), the sequence of the outputs of the PTA algorithm
with increasing L = 2, 3, . . . ,etc., converges to a weighted mean with the
specified weights, and in fact L needs not exceed the number of bits in
the mantissa of the weights pi to match these weights exactly. When f is
a quasi-arithmetic mean, fp is a weighted quasi-arithmetic mean with the
same generator.

We now extend the algorithm PTA to n-variate OWA functions following
[2, 3]. Our goal here is to incorporate a vector p of non-negative weights
(which add to one) into a symmetric n-variate function, by replicating the
arguments a suitable number of times. As in the binary tree construction
we build an n-ary tree with L levels. As the base symmetric aggregator f
we take an OWA function OWAw with specified weights w (although the
origins of f are not important for the algorithm).

Let us create an auxiliary vector X = (x1, . . . , x1, x2, . . . , x2, . . . , xn, . . . , xn),
so that x1 is taken k1 times, x2 is taken k2 times, and so on, and k1

nL ≈ p1,
k2
nL ≈ p2, . . ., and

∑
ki = nL, where L ≥ 1 is a specified number of levels of

the tree. One way of doing so is to take ki = bpinL + 1
nc, i = 1, . . . , n − 1

and kn = nL − k1 − k2 − . . .− kn−1.

The algorithm PnTA works in the same way as the PTA algorithm for
binary trees. The function f is executed only when some of its arguments
are distinct, and since the elements of X are ordered, there are at most
n− 1 such possibilities at each level of the tree, hence the complexity of the
algorithm is O((n− 1)L).

Note that the complexity is linear in terms of L, as that of the PTA
algorithm, which means that the dimension of the base aggregator f does
not matter in this respect. Of course, nominally the n-ary tree is larger than
the binary tree, but since we only track the multiplicities of the arguments,
never creating the array X explicitly, memorywise the complexity of the

2.4. WEIGHTED ORDERED WEIGHTED AVERAGING (WOWA) 17

PnTA algorithm is the same as that of PTA.

Pruned n-Tree Aggregation (PnTA) Algorithm
function node(n,m,N,K, x)

1. If N [K] ≥ nm then do:

(a) N [K] := N [K]− nm;

(b) y := x[K];

(c) If N [K] = 0 then K := K + 1;

(d) return y;

else

2. for i := 1, . . . , n do

z[i] := node(n,m− 1, N,K, x)

3. return f(z).

function f n(n, x, p, L)

1. create the array N := (k1, k2, . . . , kn) by using
ki := bpinL + 1

nc, i = 1, . . . , n− 1, and kn := nL − k1 − . . .− kn−1;

2. K := 1;

3. return node(n,L,N,K, x).

The vector X needs to be sorted, which is equivalent to sorting the inputs
x jointly with the multiplicities of the inputs N (i.e., using the components of
x as the key), so the complexity of the sort operation is the same O(n log n)
as for OWA functions.

We list some useful properties of the function fp generated by the PnTA
algorithm established in [2]. They mimic those in Theorem 1.

Theorem 2 (The Inheritance Theorem) The weighted extension fp of
a function f by the PnTA algorithm preserves the intrinsic properties of the
parent function f as follows:

1. fp idempotent since f is idempotent;

2. if f is monotone increasing then fp is monotone increasing;

3. if f is continuous then fp is continuous;

18 CHAPTER 2. THEORETICAL BACKGROUND

4. if f is convex (resp. concave) then fp is convex (resp. concave);

5. if f is homogeneous then fp is homogeneous;

6. if f is shift-invariant then fp is shift-invariant;

7. fp has the same absorbing element as f (if any);

8. if f generates fp then a ϕ-transform of f generates the corresponting
ϕ-transform of fp.

The next results are applicable when an OWA function is taken as the
base aggregator f .

Theorem 3 Let f = OWAw. Then the algorithm PnTA generates the
weighted function fp which is the discrete Choquet integral (and is hence
homogeneous and shift-invariant).

2.4.4 Implicit WOWA

A different approach to introducing weights into averaging functions was re-
cently presented in [5] under the name of implicit averaging. Here, following
an analogy with weighted arithmetic means, which can be written in this
form

y ·

n∑
j=1

pj

n
=

n∑
i=1

pixi

n
, (2.7)

with y = WAM(x1, . . . , xn), we use the following equation to compute the
values of a weighted function fp from a symmetric mean M ,

C(M(p1, . . . , pn), fp(x)) = M(C(p1, x1), . . . , C(pn, xn)). (2.8)

Here M is a mean and C is a suitable bivariate operation such as a t-
norm. The motivation behind the study in [5] is to produce alternative ways
of incorporating weights p by replacing the product with another suitable
operation and replacing the arithmetic mean with an arbitrary mean M .
The function fp is given implicitly through solution to the algebraic equation
(2.8). This equation can be written in a compact form as

C(p̄, x̄p) = C(pi, xi),

where p̄ denotes the (unweighted) average weight, C(pi, xi) denotes the av-
erage value of C and y = f̄p(x) = x̄p is the weighted average of xi.

2.4. WEIGHTED ORDERED WEIGHTED AVERAGING (WOWA) 19

The work [5] established a number of useful theoretical properties of the
implicit averages, which also apply to the case of M = OWA. Instantiating
Equation (2.8) with C being the product and M being an OWA function
with weights w, we can resolve it explicitly and obtain

WOWAw,p(x) =
OWAw(p1x1, . . . , pnxn)

OWAw(p1, . . . , pn)
=

OWAw(px)

OWAw(p)
. (2.9)

Note that the weights pi are otherwise unrestricted (i.e., they need not
add to one) as the denominator in (2.9) will produce the required normalising
factor to ensure idempotency.

Special care should be taken when the denominator vanishes, as this
WOWA may be discontinuous or not well defined if we allow 0 weights. For
strictly positive weighting vectors w the proposed WOWA is well defined and
continuous. It is a piecewise linear, increasing, idempotent and homogeneous
function. However, unlike the other mentioned WOWA, this function is not
a discrete Choquet integral.

It is not difficult to see that the special case of equal weights pi = 1
n

corresponds to the unweighted OWA and wi = 1
n corresponds to the WAM.

However reversing the weights of OWA does not produce the dual of the
original function. The implicit WOWA in (2.9) is a valid alternative to the
existing WOWA where the arguments are weighted both according their
position and magnitude.

Example 1 Consider the Hurwitz operator M = H(x) = amax(x) + (1 −
a) min(x), a ∈]0, 1] and C =

∏
. We have

WOWA(a,1−a)(x) =
amax(px) + (1− a) min(px)

amax(p) + (1− a) min(p)
.

Let us consider a particular case where x = (x1, x2), a = 9
10 , p = (p1, p2) =

(13 ,
2
3), then

WOWAw,p(x) =
9
10 max(13x1,

2
3x2) + 1

10 min(13x1,
2
3x2)

9
10 max(13 ,

2
3) + 1

10 min(13 ,
2
3)

=
9 max(x1, 2x2) + min(x1, 2x2)

19
.

If we replace the products pixi with a more general function C, strictly
increasing on R++×]0, 1], we obtain a generalisation of the WOWA function.

Example 2 When C is replaced by the square of the product function in
Example 1, we have

GenWOWAw,p(x) =
[9

10
max(1

9
x2
1,

4
9
x2
2)+

1
10

min(1
9
x2
1,

4
9
x2
2)

9
10

max(1
9
, 4
9
)+ 1

10
min(1

9
, 4
9
)

]1/2
=
[
9max(x2

1,4x
2
2)+min(x2

1,4x
2
2)

37

]1/2
.

20 CHAPTER 2. THEORETICAL BACKGROUND

Therefore,

GenWOWAw,p(x) =

[
9 max(x21, 4x

2
2) + min(x21, 4x

2
2)

37

]1/2
.

Unlike Example 1, GenWOWA is not piecewise linear, yet it is strictly
increasing and idempotent.

2.5 Methods implemented in wowa library

This R library implements the following methods:

1. The weighted arithmetic mean function WAM. Section 3.3.7

2. The ordered weighted averaging function OWA. Section 3.3.1

3. The Implicit WOWA by Beliakov and Calvo ImplicitOWA. Section
3.3.2

4. The RIM quantifier based WOWA (same as Torra’s approach) Weighte-
dOWAQuantifier. Section 3.3.5

5. The PnTA tree-based WOWA by Beliakov and Dujmovic WOWATree.
Section 3.3.4

6. The binary tree weighted extension of bivariate means WAn. Section
3.3.3

In particular, the WAn method allows one to calculate the multivariate
weighted extensions of the Logaritmic, Cauchy, Lagrangean, Heronian and
other means with no obvious extensions, by providing the bivariate mean
coded in R. There are several examples illustrating this technique.

As implied by the name of the library three distinct weighted OWA
methods are also provided.

Chapter 3

Description of the library

3.1 Installation

Installation of WOWA package can be done from CRAN by following the usual
package install process. Installaction can also be done (Linux, OSX) by R

CMD INSTALL wowa.tar.gz, or an equivalent method for Windows. The
wowa.tar.gz contains the necessary files and will be expanded into a suit-
able directory.

3.2 Programming interface

The subroutines in WOWA are implemented in C++ language. They reside
in the file wowa.cpp. The files RcppExports.cpp and wowawrapper.cpp

provide wrapper functions between R and C++.

3.3 Description of the functions in WOWA

3.3.1 wowa.OWA

Ordered weigted average function.

Function for computing the ordered weigted averages Formula (2.6). See
Section 2.4.1 and Definition 7

wowa.OWA(n, x, w)

21

22 CHAPTER 3. DESCRIPTION OF THE LIBRARY

Argument Description

n Dimension of the array x
x Input array
w The OWA weights array

Example

n <- 4

OWA <- wowa.OWA(n, c(0.3,0.4,0.8,0.2), c(0.4,0.35,0.2,0.05))

3.3.2 wowa.ImplicitWOWA

Impicit Weighted OWA Computation Function.

Function for calculating Implicit Weighted OWA function presented in
Section 2.4.4

wowa.ImplicitWOWA(x, p, w, n,)

Argument Description

x Input array
p The weights array of input x. it should be non-negative.
w The OWA weights array
n Dimension of the array x, p and w

Example

n <- 4

example <- wowa.ImplicitWOWA(c(0.3,0.4,0.8,0.2), c(0.3,0.25,0.3,0.15),

c(0.4,0.35,0.2,0.05), n)

3.3.3 wowa.WAn

Extension of binary averaging.
Function for calculating a binary tree multivariate extension of a binary av-
eraging function in section 2.4.3

wowa.WAn(x, w, n, Fn, L)

3.3. DESCRIPTION OF THE FUNCTIONS IN WOWA 23

Argument Description

x Input array
w The OWA weights array
n Dimension of the array x and w
Fn Bivariate symmetric mean that is extended to n arguments
L The number of levels of the binary tree (see docs)

Example

Extending the bivariate arithmetic mean function to 4 arguments with
weights

Fn <- function(x, y) {
out <- (x+y)/2

return(out)

}
n <- 4

example <- wowa.WAn(c(0.3,0.4,0.8,0.2), c(0.4,0.3,0.2,0.1), n, Fn,

10)

Now extending the Heronian mean to 4 arguments with weights

Fn <- function(x, y) {
out <- (x+y+sqrt(x*y))/3

return(out)

}
n <- 4

example <- wowa.WAn(c(0.3,0.4,0.8,0.2), c(0.4,0.3,0.2,0.1), n, Fn,

10)

Now extending the Logarithmic mean function to 4 arguments with
weights

Fn <- function(x, y) {
if(x==y) out=x

else if(x>0 & y>0)

out <- (y-x)/(log(y) - log(x))

else out<-0;

return(out)

}
n <- 4

example <- wowa.WAn(c(0.3,0.4,0.8,0.2), c(0.4,0.3,0.2,0.1), n, Fn,

10)

24 CHAPTER 3. DESCRIPTION OF THE LIBRARY

3.3.4 wowa.WOWATree

Ordered weigted averages fuzzy system.
Function for order weigted averages presented in Section 2.4.3

wowa.WOWATree(x, p, w, n, Fn, L)

Argument Description

x Input array
p The weights array of input x.
w The OWA weights array
n Dimension of the array x, p and w
Fn Base n-variate symmetric function defined in R
L The number of levels of the binary tree (see docs)

Example

Fn <- function(n, x, w) {
out <- 0.0

for(i in 1:n){ out <- out + x[i]*w[i] }
return(out)

}

n <- 4

example <- wowa.WOWATree(c(0.3,0.4,0.8,0.2), c(0.3,0.25,0.3,0.15),

c(0.4,0.35,0.2,0.05), n, Fn, 10)

3.3.5 wowa.weightedOWAQuantifier

WOWA value computation.
Function for calculating the value of the quantifier-based WOWA function.
See section 2.4.2

wowa.weightedOWAQuantifier(x, p, w, n, spl)

Argument Description

x Input array
p The weights array of input x
w The OWA weights array
n The dimension of the arrays x, p and w
spl Structure that keeps the spline knots and coefficients

Example

3.3. DESCRIPTION OF THE FUNCTIONS IN WOWA 25

n <- 4

x <- c(0.3,0.4,0.8,0.2)

pweights <- c(0.3,0.25,0.3,0.15)

wweights <- c(0.4,0.35,0.2,0.05)

Create last argument called spl using weightedOWAQuantifierBuild func-
tion

tempspline <- wowa.weightedOWAQuantifierBuild(pweights, wweights,

n)

example <- wowa.weightedOWAQuantifier(x, pweights , wweights, n,

tempspline)

3.3.6 wowa.weightedOWAQuantifierBuild

RIM quantifier of the Weighted OWA Computation function.
Function for Building the RIM quantifier of the Weighted OWA

wowa.weightedOWAQuantifierBuild(p, w, n)

Argument Description

p The weights array of input x
w The OWA weights array
n Dimension of the array x and w

Example

n <- 4

x <- c(0.3,0.4,0.8,0.2)

pweights <- c(0.3,0.25,0.3,0.15)

wweights <- c(0.4,0.35,0.2,0.05)

weightedOWAQuantifierBuild function creates last argument called spl
for the weightedOWAQuantifier function

tempspline <- wowa.weightedOWAQuantifierBuild(pweights, wweights,

n)

example <- wowa.weightedOWAQuantifier(x, pweights , wweights, n,

tempspline)

26 CHAPTER 3. DESCRIPTION OF THE LIBRARY

3.3.7 wowa.WAM

WAM computation function.
Function for calculating the Weighted Arithmetic Mean function. See Defi-
nition 1 and 2

wowa.WAM(n, x, w)

Argument Description

n Dimension of the array x and w
x Input array
w The OWA weights array

Example
n <- 4

wowa.WAM(n, c(0.3,0.4,0.8,0.2), c(0.4,0.35,0.2,0.05))

3.4. EXAMPLES 27

3.4 Examples

OWA Section 3.3.1
n = 4

OWA <- wowa.OWA(n, c(0.3,0.4,0.8,0.2), c(0.4,0.35,0.2,0.05))

ImplicitWOWA Section 3.3.2
wowa.ImplicitWOWA(c(0.3,0.4,0.8,0.2), c(0.3,0.25,0.3,0.15), c(0.4,0.35,0.2,0.05),

n)

WAn Section 3.3.3

Extending the bivariate arithmetic mean function to 4 arguments with
weights (this is trivial, of course, just for the sake of familiar example)

Fn <- function(x, y)

out <- (x+y)/2

return(out)

n <- 4

wowa.WAn(c(0.3,0.4,0.8,0.2), c(0.4,0.3,0.2,0.1), n, Fn, 10)

Extending the Heronian mean to 4 arguments with weights (this is not
trivial, there is no obvious extension)

Fn <- function(x, y)

out <- (x+y+sqrt(x*y))/3

return(out)

n <- 4

wowa.WAn(c(0.3,0.4,0.8,0.2), c(0.4,0.3,0.2,0.1), n, Fn, 10)

Extending the Logarithmic mean function to 4 arguments with weights

Fn <- function(x, y) {
if(x==y) out=x

else if(x>0 & y>0)

out <- (y-x)/(log(y) - log(x))

else out<-0;

return(out)

}

n <- 4

wowa.WAn(c(0.3,0.4,0.8,0.2), c(0.4,0.3,0.2,0.1), n, Fn, 10)

28 CHAPTER 3. DESCRIPTION OF THE LIBRARY

WOWATree Section 3.3.4
Fn <- function(n, x, w)

out <- 0.0

for(i in 1:n)

out <- out + x[i]*w[i]

return(out)

Fn(n,x,w)

n <- 4

wowa.WOWATree(c(0.3,0.4,0.8,0.2), c(0.3,0.25,0.3,0.15), c(0.4,0.35,0.2,0.05),

n, Fn, 10)

weightedOWAQuantifier and weightedOWAQuantifierBuild
Section 3.3.5

x <- c(0.3,0.4,0.8,0.2)

pweights <- c(0.3,0.25,0.3,0.15)

wweights <- c(0.4,0.35,0.2,0.05)

create last argument called spl using weightedOWAQuantifierBuild function
spl <- wowa.weightedOWAQuantifierBuild(pweights, wweights, n)

wowa.weightedOWAQuantifier(x, pweights , wweights, n, spl)

WAM Section 3.3.7
WAM <- wowa.WAM(n, c(0.3,0.4,0.8,0.2), c(0.4,0.35,0.2,0.05))

3.5 Where to get help

The software library WOWA and its components, are distributed by G.Beliakov
AS IS, with no warranty, explicit or implied, of merchantability or fitness for
a particular purpose. G.Beliakov, at his sole discretion, may provide advice
to registered users on the proper use of WOWA and its components.

Any queries regarding technical information, sales and licensing should
be directed to gleb@deakin.edu.au. I am interested to learn about your
experiences using WOWA , bugs, suggestions, its usefulness, applying it in
practice and so on.

If you want to cite WOWA package, use references [2–8].

Bibliography

[1] G. Beliakov. Shape preserving splines in constructing WOWA opera-
tors: Comment on paper by V. Torra in Fuzzy Sets and Systems 113
(2000) 389-396. Fuzzy Sets and Systems, 121:549–550, 2001.

[2] G. Beliakov. A method of introducing weights into owa operators and
other symmetric functions. In V. Kreinovich, editor, Uncertainty Mod-
eling. Dedicated to B. Kovalerchuk. Springer, Berlin, Heidelberg, 2015.

[3] G. Beliakov. Comparing apples and oranges: the weighted OWA func-
tion. International Journal of Intelligent Systems, 33:1089–1108, 2018.

[4] G. Beliakov, H. Bustince, and T. Calvo. A Practical Guide to Averaging
Functions. Springer, New York, 2016.

[5] G. Beliakov, T. Calvo, and P. Fuster. Implicit averaging functions.
Information Sciences, 417:96–112, 2017.

[6] G. Beliakov and J.J. Dujmovic. Extension of bivariate means to
weighted means of several arguments by using binary trees. Information
Sciences, 331:137–147, 2016.

[7] G. Beliakov, S. James, and J.-Z. Wu. Discrete Fuzzy Measures: Com-
putational Aspects. Springer, Berlin, Heidelberg, 2019.

[8] G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide
for Practitioners. Springer, Berlin, Heidelberg, 2007.

[9] T. Calvo, R. Mesiar, and R.R. Yager. Quantitative weights and aggre-
gation. IEEE Transactions on Fuzzy Systems, 12:62–69, 2004.

[10] J.J. Dujmovic and G. Beliakov. Idempotent weighted aggregation based
on binary aggregation trees. International Journal of Intelligent Sys-
tems, 32:31–50, 2017.

29

30 BIBLIOGRAPHY

[11] V. Torra. The weighted OWA operator. International Journal of Intel-
ligent Systems, 12:153–166, 1997.

[12] V. Torra. The WOWA operator and the interpolation function W*:
Chen and Otto’s interpolation revisited. Fuzzy Sets and Systems,
113:389–396, 2000.

