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DOWNDATING THE SINGULAR VALUE DECOMPOSITION*

MING GUt AND STANLEY C. EISENSTAT:

Abstract. Let A be a matrix with known singular values and left and/or right singular vectors,
and let A be the matrix obtained by deleting a row from A. We present efficient and stable algorithms
for computing the singular values and left and/or right singular vectors of A We also show that
the problem of computing the singular values of A’ is well conditioned when the left singular vectors
of A are given, but can be ill conditioned when they are not. Our algorithms reduce the problem
to computing the eigendecomposition or singular value decomposition of a matrix that has a simple
structure, and solve the reduced problem via finding the roots of a secular equation. Previous
algorithms of this type can be unstable and always solve the ill-conditioned problem.

Key words, singular value decomposition, downdating, secular equation
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1. Introduction. Let

(1) A UVT

be the singular value decomposition (SVD) of a matrix A E Rren, where U Rmm
and V Rnn are orthogonal and ] Rmxn is zero except on the main diagonal,
which has nonnegative entries in nonincreasing order. The columns of U and V are
the left singular vectors and the right singular vectors of A, respectively, and the
diagonal entries of ] are the singular values of A.

In many least squares and signal processing applications (see [5], [21], and [27]
and the references therein) we repeatedly update A by appending a row or a column
or downdate A by deleting a row or a column. After each update or downdate we
must compute the SVD of the resulting matrix. We consider the updating problem
in [15] and [17]; here we consider the downdating problem.

Since deleting a column of A is tantamount to deleting a row of AT, we only
consider row deletions. Without loss of generality we further assume that the last row
is deleted. Thus we can write

(2) A= aT

where A’ E R(m-i)xn is the downdated matrix. Let the SVD of A’ be

(3) A’= U’tV’T,
where U’ E R(m- 1) X (m-- 1) and V’ E Rnxn are orthogonal and ]’ E R(m- 1) X n is zero
except on the main diagonal, which has nonnegative entries in nonincreasing order.
We would like to take advantage of our knowledge of the SVD of A when computing
the SVD of A’.
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794 M. GU AND S. C. EISENSTAT

We assume that m > n; the case m <_ n is similar and is treated in detail in [15]
and [16]. We write

0 =(el G) 0

where Ui E Rmxn, U2 E Rtax(m-n), U E R(m-i)xn, Ui E R(m-i)x(m-n-i), and
D, D’ E Rnxn are diagonal matrices. Then (1) and (3) can be rewritten as

A U’VT u1 U2 ( D ) VT
and

D’ ) v,T UD’V’TA’ V’.’V’T V U 0

There are three downdating problems to consider.
1. Given V, D, and a, compute V’ and
2. Given U (or U), V, and D, compute U’ (or U), Y’, and D’.
3. Given U (or U) and D, compute U’ (or U) and D’.

We assume that Problem 1 has a solution, i.e., that a is the last row of some
matrix A with singular value decomposition (4). Equations (1) and (2) imply that

A,TA V’D’2V’T V(D2 zzT)VT,

where z VTa E Rn. Thus the singular values of A’ can found by computing the
eigendecomposition D2-zzT S 2sT, where S Rnn is orthogonal and Rnn
is nonnegative and diagonal. The diagonal elements of D’ are the singular values.
The right singular vector matrix V’ can be computed as VS. We present Algorithm I
to solve Problem 1 stably in 2-3.

Since Problem 1 requires computing the eigendecomposition of D2 zzT, small
perturbations in V, D, and a can cause large perturbations in V’ and D’. We analyze
the ill-conditioning of the singular values in 6. Our perturbation results are similar
to those of Stewart [26] in the context of downdating the Cholesky/QR factorization.

Problems 2 and 3 always have a solution. We show that there exists a column
orthogonal matrix X R(m-1)xn such that

A’= XCVT,

where C Rnxn is given by

( ;),uu D,C= I
1+#

with ul a vector and # >_ 0 a scalar..The singular values of A’ can found by computing
the singular value decomposition C Q gt WT, where Q, W Rnn are orthogonal

We use the definition of stability in Stewart [25, pp. 75-76]. Let ’(A’) be a function of the input
data A’. We say that an algorithm for computing ’(A’) is stable if its output is a small perturbation
of ’(), where . is a small perturbation of A’. This notion of stability is similar to that of mixed
stability [2], [3] and is used in the context of downdating least squares solutions and Cholesky/QR
factorizations [2], [3], [{22], [26].
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 795

and gt E Rnn is nonnegative and diagonal. The diagonal elements of D’ fl are
the singular values. The left singular vector matrix U can be computed as XQ. The
right singular vector matrix V can be computed as VW. We present Algorithm II to
solve Problems 2 and 3 stably in 4-5.

For Problems 2 and 3 the singular values are well conditioned with respect to
perturbations in the input data, whereas the singular vectors can be very sensitive to
such perturbations (see 4.1).

Bunch and Nielsen [5] also reduce Problem 1 to computing the eigendecomposition
of D2 zzT but their scheme for finding this eigendecomposition is based on results
from [6] and [11] and can be unstable [5], [6]. They solve Problem 2 by reducing it
to Problem 1, which risks solving a well-conditioned problem using an ill-conditioned
process.

Algorithm I solves Problem 1 in O(n3) time, and Algorithm II solves Prob-
lems 2 and 3 in O(mn2) time when U1 is given. As with the SVD updating, algorithm
in [15] and [17], Algorithm I can be accelerated using the fast multipole method of
Carrier, Greengard, and aokhlin [7], [14] to solve Problem 1 in O(n2 log22 e) time, and
Algorithm II can be accelerated to solve Problems 2 and 3 in O(mn log22 e) time, where
e is the machine precision. This is an important advantage for large matrices. Since
the techniques are essentially the same as those in [15] and [17], we do not elaborate
on this issue.

We take the usual model of arithmetic:2

fl(a o ) (a o ) (1 + ),

where a and are floating point numbers; o is one of +, -, x, and +; fl(a o ) is the
floating point result of the operation o; and I[ <_ e. We also require that

fl(V/) V/ (I q- )

for any positive floating point number a. For simplicity we ignore the possibility of
overflow and underflow.

2. Solving Problem 1. From (2), (4), and (5) we have

A= aT -U
0

and At---U’ (D’) V’T
0

so that

VD2VT= ATA AtTA + acT= V’Dt2V’T + aaT.

Letting z VTa, this equation can be rewritten as

V’Dt2V’T Y (D2 zzT) YT.

Thus the eigenvalues of D2- ZZT are the diagonal elements of Dp2 and must be
nonnegative. If .’2sT is the eigendecomposition of D2 zzT, then V VS and
D .

2 This model excludes machines like the CRAY and CDC Cyber that do not have a guard digit.
Algorithms and II can easily be modified for such machines.
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796 M. GU AND S. C. EISENSTAT

Algorithm I uses the scheme in 3 to compute a numerical eigendecomposition
J’2T satisfying

=+O(e) and ’=J0’+O(ellD[12)
where the eigendecomposition

D2 22r D’2T

is exact and

D D + O(IIDII.) and 2 z + O(elIDII).

It then computes a right singular vector matrix satisfying

?’= vg +
Since V is orthogonal, the error in z can be attributed to an error in a:

Thus D and VS are the exact 8olution to Problem 1 with slightly perturbed input
data V, D, and , so that Algorithm I is stable.

Since small perturbation8 in D and a can cause large perturbations in D and S,
it follow8 that/ and can be very different from D and S, respectively. We analyze
the ill-conditioning of the singular value8 in 6.

The scheme in 3 takes O(n2) time, and computing VS takes O(n3) time. Thus
the total time for Algorithm I is O(n3).

Barlow, Zha, and Yoon [1] compute the eigendecomposition of D2 zzT by using
a variant of the LINPACK downdating procedure [10] to "reduce" D to bidiagonal
form and then solving the bidiagonal singular value problem. The total time appears
to be at least as large as that for Algorithm I.

3. Computing the eigendecomposition of D zzT. In this section we
present an algorithm for computing the eigendecomposition of D2 zzT, where D
diag(dl,...,dk), with dl _> _> dk >_ O, and z (l,...,k)T. In light of (6) we
assume that the eigenvalues of D2 zzT are nonnegative.

We further assume that D and z satisfy

(7) dk > O, d d+l >_ 9[[D[[2, and [1-> 9[[D[[2,

where 0 is a small multiple of e to be specified in 3.4. Any matrix of the form
D2 zzT can be stably reduced to one that satisfies these conditions by using the
deflation procedure described in 3.5.

3.1. Properties of the eigendecomposition. The following lemma charac-
terizes the eigenvalues and eigenvectors of D2 zzT.

LEMMA 3.1 (Bunch and Nielsen [5]). The eigenvalues ofD2-zzT are nonnegative

if and only if zTD-2z <_ 1.
Assume that zTD-2z

_
1. The the eigendecomposition of D2- zzT can be

written as S2T where S (sl,..., sk) and diag(wi,... ,w). The eigenvalues
2 k{wi }i=1 satisfy the secular equation

(8)
.= dj
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 797

and the interlacing property

(9) dl > wl > d2 > > d > wk > 0.

The eigenvectors are given by

(10) si d2-wi j=l

Conversely, given D and the eigenvalues of D2 T, we can reconstruct .
LEMMA 3.2. Given a diagonal matrix D diag(dl,..., dk) and a set of numbers
}=1 satisfying the interlacing property

dl > O1 > d2 > > dk > Ok >_ O,

there exists a vector (l,...,k)T such that the eigenvalues of D2 2T are

}=1" The components of are given by

where the sign of i can be chosen arbitrarily.
Proof. This is Lhwner’s construction [20] of 2 given -D2 and the eigenvalues of

(_D + SSr. n
3.2. Computing the eigenvectors. In practice we can only hope to compute

an approximation &i to wi. But problems can arise if we approximate si by

(1 __k )T/I^2 (d ^222 d w

(i.e., replace wi by &i in (10), as in [51). For even if &i is close to wi, the approximate
^2ratio Cj/(d-wi can still be very different from the exact ratio j/(d-w2), resulting

{wi}i=l are computed andin a unit eigenvector very different from si. After all the k

all the corresponding eigenvectors are approximated in this manner, the resulting
eigenvector matrix may not be orthogonal.

But Lemma 3.2 allows us to overcome this problem (cf. [18]). After we have
computed all the approximations k{wi}i=l, we find a new vector such that 2 k

are the exact eigenvalues of D2 ;;T and then use (10) to compute, the eigenvectors
of D2 T. Note that each difference

&y d/2 (&j di)(&j + di) and d d (dj di)(dj + di)

in (12) can be computed to high relative accuracy, as can each ratio and each product.
Thus Iil can be computed to high relative accuracy. We choose the sign of i to be the
sign of i. Substituting the exact eigenvalues {b2}k= and the computed into (10),
each eigenvector of D2 T can also be computed to componentwise high relative
accuracy. Consequently, after all the singular vectors of D2 T are computed, the
eigenvector matrix will be numerically orthogonal.
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798 M. GU AND S. C. EISENSTAT

To ensure the existence of , we need {i}/_.1 to satisfy the interlacing prop-
erty (11) But since k(wi}=l satisfy the same interlacing property (see (9)), this
is only an accuracy requirement on (&i}k= and is not an additional restriction on
D2 zzT.

We use the eigendecomposition of D2 22T as an approximation to the eigende-
composition of D2 zz This is stable as long 2 is close to z.

3.3. Finding the eigenvalues. To guarantee that 2 is close to z, we must ensure
that the approximations {&i}ki= to the singular values are sufficiently accurate. The
key is the stopping criterion for the root-finder, which requires a slight reformulation
of the secular equation (cf. [5], [18]).

Consider the root w (d+, d), for 1 k- 1; the root w [0, d) is treated
in a similar manner.

First sume that3 wi (di+ d+d+.) Let 5 d -di+ and let

and i() (j )(dj + di+l + )i()
(5i )(di + di+ + )

Setting w di+ + , we seek the root wi di+ (0, 5/2) of the reformulated
secular equation

gi() =- fl( -- di+l) -1 + i() + () 0.

Note that we can compute each ratio /((5j -)(dj + di+l + ()) in gi() to high
relative accuracy for any ( E (0, 5/2). Indeed, either 5j ( is a sum of negative terms
or I(I <- 15jl/2, and dj + di+l + is a sum Of positive terms. Thus, since both ()
and i(() are sums of terms of the same sign, we can bound the error in computing
gi(() by

+ +
where is a small multiple of e that is independent of k and (.

Next we assume that wi [d+2d+1, di). Let 5j dy di, and let

Y and ()= E (sj )(dj+d+)i() (5 )(dj + di + )j=l j=i+l

Setting w di + (, we seek the root i wi -di [5i+1/2, 0) of the equation

+ d,) -1 + + 0.

For any ( e [5i+/2, 0), we can compute each ratio /((hj ()(dj + di + ()) to
high relative accuracy (either 5j is a sum of positive terms or ( 5/2, and
dj +d+( dj + (di +(), where ( di/2), and we can bound the error in computing
gi(() before.

In practice a root-finder cannot make any progress at a point where it is im-
possible to determine the sign of gi(() numericMly. Thus we propose the stopping
criterion

(13)

This condition can easily be checked by computing fl ( di+di+l di+di+l
2 )" Iffl( 2 ) > O, then

di+di+l(di+l 2 ) otherwise 2
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 799

where, as before, the right-hand side is an upper bound on the round-off error in
computing gi(). Note that for each there is at least one floating point number that
satisfies this stopping criterion numerically, namely, fl().

We have not specified the scheme for finding the root of g(). We can use the
bisection method or the rational interpolation strategies in [4], [5], [13], and [19]. What
is most important is the stopping criterion and the fact that, with the reformulation
of the secular equation given above, we can find a that satisfies it.

3.4. Numerical stability. We now show that the vector defined in (12) is
close to z.

THEOIEM 3.3. /f 0 2v]k2 in (7) and each satisfies (13), then

The proof is nearly identical to that of the analogous result in [18]. As argued
there, the factor k2 in and (14) is likely to be O(k) in practice.

3.5. Deflation. We now show that we can stably reduce D2 zzT to a matrix
of the same form that further satisfies

dk > O, di-di+l >_ OIIDII2, and ]4il >_/IIDll2,

where is specified in 3.4. Similar reductions appear in [5] and [91.
Partition D and z as

( )D D1 and z

First assume that dk O. Since D2 zzT is nonnegative definite, its diagonal
elements must be nonnegative, so that d- >_ 0. Thus 0 and

0

The eigenvalue 0 can be deflated, and the matrix D Zl 2:17‘ has nonnegative eigen-
values and is of the same form but of smaller dimensions. This reduction is exact.

In the following reductions we assume that d > 0. Recall from Lemma a.1 that
the eigenvalues of D zz are nonnegative if and only if

Assume that Iil < OIIDll2 We illustrate the reduction for i- k. Changing k to
0 perturbs z by O(OllDII2). In the perturbed matrix

the eigenvalue d can be deflated, and the matrix D zlz satisfies (115) and is of
the same form but of smaller dimensions. This reduction is stable.

Now assume that d- d+ < OIIDIl. We illustrate the reduction for i k- 1.
Changing d to dk_ perturbs D by O(OIIDII). Let a be a Givens rotation in the
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800 M. GU AND S. C. EISENSTAT

(k- 1, k) plane such that (Gz)k O. Then when we symmetrically apply G to the
perturbed matrix, we get

dk-1
zl zl

d2k-1 )
(where 1 1,... ,k-2, -1 + The eigenvalue d_ can be deflated, and

the matrix O12 1T satisfies (15) and is of the same form but of smaller dimensions.
This reduction is also stable.

4. Solving Problems 2 and 3. In this section we present an algorithm that
solves Problems 2 and 3 by reducing them to the problem of finding the singular value
decomposition of a simple matrix.

4.1. The algorithm. Partition U1 and U2 as

and

where Ull E R(m-1)n, Ul E Rn, V12 R(m-1)(m-n), and u2 Rm-n. Then from
(2) and (4)we get

\/0
aT uT1DVT.

The decomposition of A’ in (16) is almost a singular value decomposition Ull
is close to being column orthogonal since it is obtained by deleting the last row from
U1. In the following we decompose Ull into a product of an (m- 1) x n column
orthogonal matrix and a simple n x n matrix. To this end we will need a scalar # > 0
and a vector x Rm-1 such that Ilulll 2 + 2 1 and the matrix

Uii

is column orthogonal. We show how to compute Y in 4.2.
Note that if # 1, then ul 0 and x 0, so that Ull is column orthogonal. In

general # 1, but we can orthogonally transform the rows of Y so that # 1. The
matrix

1 uluTH=
I- 1+---

-Ul
T

is orthogonal and (UlT, #)H (0,..., 0, 1)T. Since YH is column orthogonal, it follows
that

(18) YH Ull I
1 + 0 1

0 1

where

xX=Vll I-- 1+----
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 801

is column orthogonal.4 Thus

(Ull x) (V x) HHT (X O) HT X (I-
\

which implies that

Vii Z (I(i.)

Plugging (19) into (16), we get

( 1
(20) A’=X I

1+#uluT1) DVT :_ XCVT.

Let Q 2WT be the SVD of C, where Q, W E Rnn are orthogonal and F/E Rnn is
nonnegative and diagonal. Substituting into (20), we get

A’ XQ awTvT (XQ) gt (VW)T.(21)

Comparing with (5), we have U XQ, D’ , and V’ VW. We specify U
in 4.2.

Algorithm II computes a numerically column orthogonal matrix Y and a numer-
ical singular value decomposition ( T satisfying (see 4.2 and 5)

(22) ]Y / O(e),

where

Y= tilt #

is a column orthogonal matrix with

and

and

( 1 T)/ Qf’lWC-- I
1+/2

D D + O(ellDIl).

is an exact SVD with

Let

--Ull I
1+/2

Algorithm II then computes numerical approximations to U and V satisfying

O XQ + O(e), 0 + O(e), and IY’ VITV + O(e),(23)

4 Paige [22] has proven similar relations.
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802 M. GU AND S. C. EISENSTAT

where (XQ,) e R(m-1)x(m-1) is orthogonal (see 4.2). Since XQ, , and VI/V
solve Problems 2 and 3 exactly for slightly perturbed input data rl, D, and V,
Algorithm II is stable.

It is well known that the singular values of A’ are always well conditioned with
respect to perturbations in A’, but that the singular vectors of A’ can be very sensitive
to such perturbations [12], [25]. Since

A’= UllDVT ]IDVT + O(IIDII.) 20v + O(ellDIl.),

this guarantees that ’ ’ is close to D’. However, ( and can be very different
from Q and W, respectively, and thus/) and ’ can be very different from U and
V’, respectively.

Consider the case where U is given. It takes O(mn) time to compute / and
x (see 4.2), it. takes O(mn) time to compute X, it takes O(n2) time to compute
the SVD of C (see 5), and it takes O(mn2) and O(n3) time to compute XQ and
VW, respectively.. Algorithm II computes both XQ and VW for Problem 2 and
computes XQ for Problem 3. Thus the total times for solving Problems 2 and 3 are

O((m + n)n2) and O(mn2), respectively.

4.2. Computing Y. In this subsection we show how to compute the column
orthogonal matrix Y (see (17)).

First we assume that U2 is known. Let P be an orthogonal matrix such that
Pu2 [[u2[[2el, where e (1,0,...,0)T, and define (z2,X12) V12PT, where
z2 E Rm- and X12 E R(m-1)x(m-n-1). Since

u u pT uT I1  .11 0

is orthogonal, the matrix

is column orthogonal and + . Thus we set x = z2 and #--Ilull. It
takes O(m (m- n)) time to compute x and #. This computation is stable (see (22)).

From (18) we have

uT # 0 Im-n- 0 I 0

and thus (X, X2) e R(m-)(m-) is orthogonal. We set U X2 (see (5) and (21)).
It takes O(m (m-n)) time to compute X12. This computation is also stable (see (23)).

Next we assume that U2 is not known. Let u (xT,/) be the result of applying
the Gram-Schmidt procedure with reorthogonalization [8, 4] to orthonormalize e
(0,..., 0, l)T to the columns of U. If u 0, then

is column orthogonal and yyTen en, SO that

1 (yyTen)n uTuz + #2.
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 803

If u 0, then U1UTen en, so that 1 (UiUTen)n uTlu, and we get a nonzero u
by repeating the Gram-Schmidt procedure with a random unit vector in place of en
(note that in this case # 0).5 The time for computing x and # is O(lmn), where
is the number of reorthogonalization steps, which is a small constant in practice [8].
These computations are stable (see (22)).

4.3. Another perspective. In this subsection we present another derivation of
the decomposition A XCVT, which relates Algorithm II to a method for downdat-
lug the QR decomposition (cf. [23]).

Consider the augmented matrix

From (18), (17), and (16) we have

y (u D)(0 ViiD) (0 AtY)# 0 1 uTD 1 aTv

On the other hand, from (18) we get

p, 0 # 0 0 1 1 uTD 1 uT1 D

Thus AV XC, and the result follows.
Park and Van Huffel [24] downdate by using plane rotations to reduce Ji to a

matrix of the form

(0 .)
where B F’TA’VG is bidiagonal and F and G are orthogonal, and then solving
the bidiagonal singular value problem. The total time appears to be at least as large
as that for Algorithm II.

5. Computing the SVD of C. In this section we present an algorithm for
computing the singular value decomposition of the matrix C E Rkk given by

1 uuT)D,( 41 c I-
1

where D diag(d,... ,dk) with d > d2 > > dk > 0, ui (#1,... ,l-k)T with

Iluil12 _< 1, and #-- V/1- Iluill. For convenience we define dk+i 0 and #k+ #.
We assume that

(25) di- di+. > OliDII and I#il > 6,

where is a small multiple of e to be specified in 5.3. Any matrix of the form (24)
can be reduced to one that satisfies these conditions by using the deflation procedure
described in 5.4.

5 The same construction is used in downdating the QR decomposition [8].
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804 M. GU AND S. C. EISENSTAT

5.1. Properties of the SVD. In this subsection we establish some properties
of the singular value decomposition of C. The following lemma characterizes the
singular values and singular vectors.

LEMMA 5.1. Let Q ([2, O) WT be the SVD of C with

Q (ql,..., qk), f diag(wl,...,Wk), and W (Wl,... Wk).

Then the singular values k{03i}i=1 satisfy the secular equation

k+l 2

(26) f2(w) .= jd2-" #J_ w2 --0

and the interlacing property

(27) 031 > d2 > > dk > 03k > O.

The singular vectors are given by

(28)

2where i,j 03 + #d, and

(29)

Proof. Since # > 0 and dk > 0 (see (25)), C is nonsingular and 03k > 0. Since C
is square and CTC D(I uluT1)D, the squares of the singular values 2 k{03 }i=1 and
the right singular vectors {qi}k= are the eigenvalues and eigenvectors, respectively,
of n2 -(DUl)(Du)T. Relations (27) and (29) follow immediately from Lemma 3.1
with z Dul. Moreover, the singular values satisfy the secular equation

k )2 k+l k+l 2 2d)#j
03
2(30) 0 f() - + (’ ,+

j=l d 032
=1 = dj

k+l 2

j=l d _032’

which implies that they satisfy (26) as well.
From (29) we see that wi is a multiple of (D2 -032I)-1Dul. Since 03iqi Cwi, it

2i)-Du Simplifying,follows that qi is a multiple of C(D2
-03

2I)-1Dul2I)-IDu uT D(D2 032I)-1Dul D(D2 -03i ul(31) C(D2
03i 1+#

Because 03i satisfies (30), we have

k 2 2

uT D(D2 03I)-1Dul .= ddJ#- 032
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 805

Plugging this into (31), we have

1+#

Ignoring the first factor and normalizing, we get (28). D
The following lemma allows one to construct a matrix of the form (24) using D

and all the singular, values.
LEMMA 5.2. Given a diagonal matrix D diag(d,..., dk) and a set of numbers

{}= satisfying the interlacing property

(32)

there exists a vector f*l and a scalar fz > 0 with I1111 + P 1 such that i=1 are
the singular values of

1O= I-- 1+----
The vector fi: (/2x,... ,k)T and scalar/2 +1 are given by

(33) ifzil q - ffay -d fi ga -d 1<i<k+1,
j=l d d2i j--i d32"/1 d/2,

where the sign of f-zi can be chosen arbitrarily for 1 <_ <_ k.

Proof. The numbers {&i k}= satisfy the interlacing property (11). By Lemma 3.2
there exists a vector 2 (,... ,k)T satisfying (12) such that the eigenvalues of

^2 kD2 ;;T are {wi}i=. Defining 21 D-:2, it follows that /2i satisfies (33) for
1 <_ i _< k. The first result of Lemma 3.1 implies that fiTczl TD-2p. <_ 1, so that
we can define/2 _/k+x V/1- 112x1122 It then follows that

OTO D2 DIzT D D2 T,

so that k{wi}=x are the singular values of 7. Consequently,

,
( 1H &J det(() det I

1+----j=l

k

?1:) det(D) =/2 H dj,

and hence

k/l-- H -5J’j=l

which is (33) for i k + 1.
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806 M. GU AND S. C. EISENSTAT

5.2. Computing the singular vectors. In practice we can only hope to com-
pute an approximation &i to wi. Yet it is well known that equations similar to (28)
and (29) can be very sensitive to small errors in wi (see 3.2). Lemma 5.2 allows us to
overcome this problem. After we have computed all the approximate singular values

k(&i}il of C, we find a new matrix whose exact singular values are (wi}i= and
then compute the singular vectors of ( using Lemma 5.1. Note that each difference,
each product, and each ratio in (33) can be computed to high relative accuracy.6 Thus

Ifil can be computed to high relative accuracy. We choose the sign of ]2i to be the
sign of #. Substituting the computed and and the exact singular values {&}
into (28) and (29), each singular vector of 7 can also be computed to componentwise
high relative accuracy. Consequently, after all the singular vectors are computed, the
singular vector matrices of C will be numerically orthogonal.

To ensure the existence of , we need {&i k}i= to satisfy the interlacing prop-
erty (32). But since the exact singular values of C satisfy the same interlacing prop-
erty (see (27)), this is only an accuracy requirement on the computed singular values
and is not an additional restriction on C. We can use the SVD of as an approx-
imation to the SVD of C. This is stable as long as fi and are close to ul and #,
respectively.

5.3. Stably computing the singular values. To guarantee that and f are
close to u and #, respectively, we must ensure that the approximations (&i}ki=t to the
singular values are sufficiently accurate. As in 3.3, the key is the stopping criterion
for the root-finder, namely,

(34)

where the secular equation (26) has been reformulated as gi() i() + i() 0 in
the analogous manner.

THEOREM 5.3. /f ---2k2 in (25) and each satisfies (34), then

(35) Ifi- #i.I <- 4rik211ul12, 1

_ _
k + 1.

The proof is again nearly identical to that of the corresponding result in [18]. As
argued there, the factor k2 in and (35) is likely to be O(k) in practice.

We have been assuming that Ilu 112+#2 1. In practice this is not always true due
to round-off errors. However, since a vector with norm near unity is close to an exact
unit vector to componentwise high relative accuracy, in practice u and # are given
to componentwise high relative accuracy. This implies that each term in the secular
equation (26) is still computed to high relative accuracy after the reformulation. Hence
the stopping criterion (34) holds, and and are close to u and #, respectively.

5.4. Deflation. We now show that we can reduce C to a matrix of the same
form that further satisfies

where is specified in 5.3.

6 Note that k+l is not computed from f- V/1 -I11 1122, which might not give high relative

accuracy.
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 807

Assume that # #k+l < 0. Changing # to 0 perturbs # by 0(0). The perturbed
matrix

1 uu)D(I- 1+
h the same form but with 0. This reduction is stable (see 5.3).

Next sume that i} < for some i k. We illustrate the ce 1. Changing
1 to 0 perturbs u by O(). Partition Ul and D

(1) and D: ( dl )
Then in the perturbed matrix

(1 1 1)(d ) (dl)I
1+

the singular value d can be deflated, and is another matrix with the same form
but smaller dimensions. This reduction is also stable (see 5.3).

Now sume that di-di+l < 0llDll2 for some N k-1. We illustrate the reduction
for 1. Changing dl to d2 perturbs D by O(OllDII2). Let G be a Givens rotation
in the (1, 2) plane such that (Gu) 0, and let

, +,,,3,...,,k and diag(d2, d3,...,dk).

Then symmetrically applying G to the perturbed matrix, we get

G (I 1+# )) GT

1 GuluT1)GT(d2

0 0
T1=(I 1+

1
I- 1+

The singular value d2 can be deflated, and the remaining matrix has the same form
but smaller dimensions. This reduction is stable as well.

Finally assume that dk < OIIDII2 and d:-I- dk >_ OIIDII2. Changing dk to oIInl12
perturbs D by O(OIIDII2 ). Let

/ diag (dl,..., dk-2, dk-1, OIIDll2).

Then the perturbed matrix

1 lUlT ) /I--
1+-----

has the same form but with dk >_ 0llDlle. If the relation d:-i -dk >_ OIIDIIu no
longer holds, then we can apply the previous reduction to reduce the matrix size.
This reduction is again stable.
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808 M. GU AND S. C. EISENSTAT

6. Ill-conditioning of Problem 1. In this section we bound the effect of per-
turbations in a on the singular values of A. The effect of perturbations in V and D
is similar. We assume that D is nonsingular.

From (20) and the second relation in (16), we have A’ XCVT, where X is
column orthogonal and

C=D
1ulu’D,

1+#
2with Ul D-iVTa and

Let 5 be a vector slightly perturbed from a with IID-1VTs]I2 <_ 1, and let .’ be
the downdated matrix for the input data V, D, and 5. As before, we have ft XCVT,
where X is column orthogonal and

’--D 1
-fi tT D,1+#

with t D-IVT5 and
Let wi and i be the ith largest singular values of A and A, respectively. Since

the singular values of A and A are the singular values of C and C, respectively, we
have Ii- wil <_ IIC- CII2 (see [12, p. 428]).

Since

1 ul D-1VT(5 a),

we have

Similarly,

so that

Since

we have

(1 I1111) (1 IIlll)
x/i- II’all + x/1- Iluxll:

( + u)T ( u)
x/1- II’alll / V/1 Ilulll"

2- C 1--j---ulaTV 1--J---u15Tv
1+

(1 + p,)(1 +/9,) 1+/5,
(a- a)Tv,

I,z,- ’1-< I1’- cii2
Ilaxll2<

(1 + g)(1 + ,a) Ilall: + 1 + p i + ,a
<- IP gl I1’1-1: + I1 ux I1= I1’11: + Ila ,11=

4 max { lID-x I1. Ilall:, 1} Ila ’11:.<
v"i- I1111
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DOWNDATING THE SINGULAR VALUE DECOMPOSITION 809

When the factor IID-111211al12 is very large, or when Ilu1112 is near unity, we cannot
guarantee that is close to w. This result parallels that of Stewart [26, p. 205] in
the context of downdating the Cholesky/QR factorization.

To better explain the role of Ilu1112, Stewart [26] also shows that

Ilu ll > 1

(di/wi)2 + 1"

Thus if Ilux 112 is near unity, then Wn is close to zero and C (and hence A’) is close to
being singular. And if any di is reduced (to wi) by a large factor, then Ilu1112 is near
unity.
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