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Abstract: Many synoptic surveys are observing large parts of the sky multiple times. The resulting time series of light
measurements, called lightcurves, provide a wonderful window to the dynamic nature of the Universe. However, there are many
significant challenges in analyzing these lightcurves. We describe a modeling-based approach using Gaussian process regression
for generating critical measures for the classification of such lightcurves. This method has key advantages over other popular
nonparametric regression methods in its ability to deal with censoring, a mixture of sparsely and densely sampled curves, the
presence of annual gaps caused by objects not being visible throughout the year from a given position on Earth and known but
variable measurement errors. We demonstrate that our approach performs better by showing it has a higher correct classification
rate than past methods popular in astronomy. Finally, we provide future directions for use in sky-surveys that are getting even
bigger by the day. © 2016 Wiley Periodicals, Inc. Statistical Analysis and Data Mining: The ASA Data Science Journal 9: 1-11, 2016
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1. INTRODUCTION

In the last few decades, we have seen advances
in imaging technology, and the storage, transfer and
processing of data. As a result, astronomy has moved from
taking static, sporadic snapshots of the sky to obtaining
high-cadence, deep and large images, almost akin to making
digital movies of the sky. This, in turn, has resulted in
opening up the field of studying the dynamic nature of the
Universe, in particular, the cataloging of different types
of objects, both within our Galaxy, and all the way to
the early Universe. Cataloging goes well beyond stamp-
collecting, since it reveals the time scales over which
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various phenomena occur, directly relating to the physical
processes behind the brightness changes in astronomical
objects, and allowing us to connect the different families of
objects in various ways. A bonus is also the ability to look
for connections missing so far, as well as fringe members
of different classes.

Much of characterizion or classification for cataloging is
done, or at least begins, through the study of variability of
objects. Most astronomical objects, be they stars, planets
or galaxies, or any of their subclasses, vary in brightness
either intrinsically through some physical process such
as explosion, merging or infall of matter, or through
an extrinsic process such as eclipse or rotation. For a
small fraction of objects the variation can happen over a
fraction of a second to hundreds of days depending on the
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phenomenon. For a majority of objects, the changes are
much slower and smaller as the objects evolve through the
proverbial astronomical timescales. We can observe large
parts of the sky multiple times at different wavelengths,
yet these observations are far from continuous, all-sky, or
panchromatic. For each part of the sky, and in particular
for each object in the part of the sky we image, we get a
time series of flux. While all objects vary to an extent, for a
vast majority of objects, the variations are non-discernible
during the rather sparse sequence (tens to hundreds of
epochs) of short exposures (less than a minute) that we
have, and over the timescales over which observations
occur (a few years). That is precisely the reason, for
instance, that when we glance at the night sky we do not
find stars suddenly changing their brightness.

This leads to most astronomical objects seeming non-
variable. When we can discern the variability, e.g. a
periodic variation, or a stochastic variation, or even a single
sudden jump in brightness, the object could then be called
a variable. (Due to the somewhat different meanings of
the word ‘variable’ in the two fields, we refer to variables
in statistics and variables in astronomy.) This functional
definition would of course change based on many factors,
such as, total interval of observation, type of phenomena
involved, etc. An extreme case of a variable object is
a transient - the brightness of which varies by several
standard deviations in a short time, of the order of seconds
to minutes. It is the study of these types of objects that
has really become possible due to wide-field surveys that
contain many repeated observations.

In order to understand and classify transients, it is
important to understand variability at all levels, including
mostly non-variable astronomical sources. Past attempts
have included analyses for denser lightcurves from Kepler,
as in ref. [1,2] or using brighter objects as in ref. [3] and
general frameworks based on such approaches as in ref.
[4,5] as well as ref. [6—9]. It is important to design measures
that can isolate specific classes but which are also derivable
based on the available cadence of observations. Our aim is
to present new measures based on object lightcurves which
help in better discriminating between variables and non-
variables, and among the different transient types. See ref.
[10] for an application to larger datasets and ref. [11] for
use on specific classes.

Here we use data from the Catalina Real-time Transient
Survey (CRTS) [12] which is based on the Catalina Sky
Survey (CSS). CSS has been designed to look for near-
Earth asteroids. One way to look for asteroids is by looking
for the motion of the asteroids with the backdrop of mostly
nonmoving stars in the night sky. The cadence used for
this is four images taken 10 min apart. Thus, the CSS
lightcurves have four points obtained within 30 min. The
next such set could be the next night, the next week or
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Fig. 1 Fragment of a lightcurve. The solid dots represent
recorded observations and are plotted with error bars. The two
crosses represent times when an observation was attempted but
only an upper limit on the magnitude can be specified.

even a month later. The sparse and nonuniform nature of
the lightcurves presents classification challenges and also
allows development of new statistical techniques. The data
come from three sites: (i) Mt. Lemon (MLS) - this site
covers mainly a narrow region of the sky near the ecliptic,
(i1) Siding Spring (SSS) - this site covers the Southern
hemisphere, and (iii) Mt. Catalina - this covers the widest
area in the Northern hemisphere and also covers part of
the Southern hemisphere. About 75% of the sky is covered
by CRTS, with parts near the poles and near the plane of
our Galaxy excluded. CRTS concerns itself with real-time
detection of brightness variations based on the catalog of
astronomical sources. Here we have used data from just
the Mt. Catalina telescope, and excluded data from MLS
or SSS in the current study, but all methods are equally
applicable to them as well. Despite the relative sparsity
of the CRTS lightcurves, a strength of the survey is its
longevity - we have data where the epochs are spread over
10 years and hence there are parts of the sky with several
hundred observations, making CRTS one of the richest
synoptic datasets.

A small section of about 1 year of light curve observation
is shown in Figure 1. The magnitude is the negative
logarithm of flux so in keeping with standard practice, we
plot the magnitudes on a reversed scale because smaller
magnitudes represent brighter objects. There are six time
periods where observations are shown in the figure. There
are two times where multiple observations were recorded
within the typical ‘four observations in 30-minutes’ CSS
sequence, two times when only one reliable observation
was made and two other times (marked with a cross)
when the usual four observations were made, but there was
no reliable detection because the object was insufficiently
bright at that time. The magnitudes vary substantially
indicating a transient of some type to be determined.

Our method develops informative measures that can rep-
resent critical features of the different types of lightcurves,
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much like descriptors for an imaging analysis. We require
these measures to overcome the irregularities, such as
censoring, presence of gaps in observations and irregular
sampling of different density. This allows a massive and
essential reduction of the data as classification methods
cannot be directly applied to the data in the raw lightcurve
form. The measures can be computed rapidly and in par-
allel for classification purposes. The measures can also be
used for clustering but this is not explored here.

Our strategies in deriving these critical measures are
(1) selecting a collection of relatively balanced, represen-
tative lightcurves of various types and scales (Section
2); (ii) exploring the signatures of these lightcurves (also
in Section 2); (iii) developing a Gaussian process regres-
sion model for the lightcurves with appropriate priors
using astronomical information and an empirical Bayesian
approach (Section 3); and then (iv) deriving new mea-
sures representing characteristics of the lightcurves using
the posterior mean regression curve and residuals. These
model-based measures complement existing measures. To
examine the power of the new measures in classifying
lightcurves in comparison to existing measures, five popu-
lar classification procedures are used in five schemes of
classification problem in Section 4: Linear Discriminant
Analysis, Decision Trees, Support Vector Machines, Neu-
ral Networks, and Random Forests. The results show that
our measures perform better than the existing measures. A
discussion for why our approach works better is given in
Section 5. Although our modeling approach has been used
for an astronomy application, the method could be valuable
for other applications involving the classification of sparse,
irregularly sampled time series with missing data.

2. DATA

We have selected a sample of lightcurves with which to
illustrate our methods. The standard measures available for
each object are Right Acension (RA) and Declination (Dec)
which provide the position of the object on the sky, Epoch
as Julian Date, magnitude (negative logarithm of flux), and
an error estimate on the magnitude. The total number of
lightcurves considered is 3720. The selection is described
below and shown in Table 1.

We started with just the transients detected by CRTS in
real-time over about 5 years. These include Active Galactic
Nuclei (AGNS), Blazars, Cataclysmic Variables (CV), Flare
stars and Supernovae (SNe), representing five very different
types of lightcurves (e.g. [13]). We also included a set
of 15 random locations on the sky covered by the survey
and objects within 3’ of these locations. These objects are
assumed to be non-variables because any variables in there
would have been detected earlier. The transients tend to

Table 1. Number of lightcurves for variable, specifically tran-
sient and non-variable objects.

Transients

AGN Blazar CV Flare SNe CV Downes RR-Lyrae non-variable

Bright variable

140 124 461 66 536 376 292 1971

be fainter than typical objects (by definition - it is easier
to catch objects that are not normally seen but brighten
and become visible for a short duration). In order to offset
that, two classes of brighter variable objects were included
—CVs from the Downes set ([14]) and RR Lyrae which are
periodic variables with a period of approximately 1 day.
For the purposes of this article, we have one class called
non-variable and seven classes which we call variable:
AGN, Blazars, CV, Flares, SNe, CV Downes, and RR Lyrae
with first five also being transient. Note that among the
labeled types we have considered here, only the RR Lyrae
are periodic. There are methods for distinguishing periodic
objects from nonperiodic ones but these are not addressed
in this article.

Real-world data are much more assymetric and unbal-
anced than what we have considered here. If we used a
simple random sample, there would be very few transients.
Training on samples with enough representatives for all
classes would be an immense task. We include sufficient
non-variables to ensure that the dominant class is repre-
sented but not excessively so. In CRTS, the latest catalogs
are compared with individual as well as combined catalogs
from the archives. The objects that have changed in bright-
ness above a certain threshold (well over a magnitude, i.e.
approximately a factor of 2.5) are marked as transients.
Only a few are found each night compared to millions of
nearly non-variable objects.

The number of observations for each lightcurve varied
greatly with a maximum of 641. The median length was 52.
We excluded lightcurves with fewer than five observations
as these cannot reasonably be classified. The earliest date
for any of these lightcurves was 53464 Julian Day (JD) and
the latest was 56228, i.e. April 5, 2005 to October 28, 2012.
We have used 53464 as our zero-point and referred to all
dates as number of days beyond this. Our set spans 2764
days. More recent data are analyzed later.

**An examination of the data is helpful in deciding
which methods of analysis may be appropriate. In Figure 2,
we see four examples of lightcurves. The objects are
identified by their catalogue numbers for reference.

Understanding the pattern of measurement is crucial
to proper modeling of these curves. The AGN example
shows some gaps in an otherwise dense sequence of
measurements. No observations were taken during these
periods because the orbit of Earth precluded it. In the SN
example, there are no observations outside of a narrow
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Fig. 2 Examples of four lightcurves: (a) CSS071216:110407-045134, an AGN (b) CSS110405:141104+01115, a Supernova
(c) CSS111103:230309+40060, a Flare and (d) 301904800767, a non-variable. Note that the range of the vertical axis varies.

range. Observations were attempted at other times but the
object was too faint to be observed with a magnitude less
than the survey astronomical detection limit of around 20.5.
In the flare example, we are fortunate that the spike in
brightness was observed as this occurs during a brief period
of time. In the non-variable example, there are quite long
periods with no observations but it seems reasonable to
assume that no substantial variations in magnitude occurred
during these periods given the nearly constant values of
magnitude.

It would be useful to know exactly when observations
were attempted for given objects while below detection
limit. For the purposes of this analysis, we shall assume
that all the objects may be surveyed throughout the period
of the study but failures to observe have not been recorded.
It will be clear in Section 3 how this information could be
incorporated into our methods and that this would improve
our results.

3. METHODS

The nature of the data and the requirements of object
classification impose some constraints on what methods are

practical. The problem could be viewed as one of functional
data analysis (see ref. [15]). However, there are several
obstacles in pursuing this approach. The lightcurves are
very irregular, showing differences both in time and in
number of observations. There are methods for processing
with such data but there is a more serious obstacle in that
there is little sense in which the curves can be registered
or aligned. Excepting the rare case where objects are close
in the sky and measurements are likely to be correlated
due to atmospheric conditions, lightcurves are independent.
This prevents us from using the ‘borrowing of strength’ that
registration would allow.

This leads us to another style of analysis based on sample
statistics. Judgement is used to devise statistics that measure
various characteristics of the observed curves which we
believe important in distinguishing them. We prefer that
these measures be relatively simple so that they can be
applied quickly and automatically for both short and long
lightcurves.

About 20 measures are presented in ref. [3] that
are mostly derived from previous articles. They found
these various measures to be helpful in distinguishing
objects. Since these measures have been widely tested,
at least for brighter and less sparse data, we use these
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as a baseline for our analysis. Our objective is to
find additional measures that improve the classification
accuracy beyond this set. For ease of reference, we
will call this existing set the Richards measures. The
specific Richards measures we have used from Table 5
of [3] are moment-based measures: skew, kurtosis,
std and beyondlstd, and magnitude-based measures:
amplitude, maxslope, mad, medbuf, pairslope
and rcorbor, and percentile-based measures: fpr20,
fpr35, fpr50, £pr80, peramp and pdfp. We omitted
the linear trend measure as this was only large for
lightcurves with few observations so it becomes a substitute
for a short curve measure. As it happens, including it would
not make much difference to the results we present later.
We coded these measures from the definitions in ref. [3].
Although the Richards measures encompass a wide
variety of measures, they do not use any concept of
modeling the curves. The primary innovation of this paper
is to use such modeling to generate additional measures.
For lightcurve i, we posit a true underlying curve f;(¢) that
we would see if we could observe the object continuously
without error. However, we are able to observe the object
only at times t;; for j =1,...n;. Note that the times of
measurement may be almost the same for objects close in
the sky but quite different for objects which are farther
apart. We observe only y;; for j =1,...n;. We assume

yij = fi(tij) + €ijs 9]

where the errors ¢;; are normal with mean zero but will be
correlated.

We considered several methods for estimating f but
found that Gaussian process regression was the only
satisfactory solution compared to standard nonparametric
methods like smoothing splines, kernel smoothing or locally
weighted smoothing for the following reasons:

1. We have censored data - the lightcurve can fall
below the detection limit during the range of
observation. Standard methods do not deal with
this. They can fit curves where we have data
but they will not produce evaluable fitted curves
outside this range.

2. Sometimes we have only a handful of observa-
tions but for other curves we may have hundreds.
Simple parametric methods work well with small
datasets while larger datasets require the flexi-
bility of nonparametric methods. But Gaussian
process regression works well for both.

3. We know the variance of the measurement error.
This information is easily incorporated into the

Gaussian process regression but it is not obvious
how to take advantage of this information in the
standard methods.

3.1. Gaussian Process Regression

Ref. [16] provides a general introduction on Gaussian
Process Regression. The introductory article in ref. [17]
also has some lightcurve examples. This method requires
that we specify a prior for the Gaussian process: f(x) ~
GP (¥ (x), k(x, x")). We use the popular squared covariance
kernel:

N 2 _L . \2 2 Y
k(x,x)—afexp 212()6 X)) +o8(x—x), (2)

where §(x) is 0 when x %20 and 1 when x = 0. Other
reasonable choices of kernel are possible but we found
the results were similar (see online appendix for details).
One advantage of the Gaussian process approach is that an
explicit solution for the posterior is available that can be
rapidly calculated. We will need to classify large numbers
of future lightcurves as the measurements are collected so
we need efficient methods.

There are four components of the prior which must be
specified:

1. 0/% is the signal variance. A very large fraction of
objects to be classified in the future will be non-
variables. These non-variables vary in signal but
not very much. For this reason, we set o]% to be the
median observed variance in the non-variables.

2. o2 is the noise variance. Although it is uncommon
in other applications, for astronomical data we are
often able to estimate the measurement error. In
this example, the measurement error varies a little
from case to case. For simplicity, we take the
mean observed value of the measurement variance
for 2.

3. [ is sometimes called the length-scale. It controls
the amount of correlation and therefore the
amount of smoothness in the resulting posterior
fit. We use a value of 140 days as seen in Figure 3.
This choice is based on a subjective assessment
on how much smoothness should be expected in
these curves. Our classification performance is not
very sensitive to this choice.

4. Y (x) is the prior mean. This choice is challenging
and requires further discussion below. We take an
empirical Bayes approach.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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Fig. 3 Gaussian process regression fits to lightcurve data. (a) CSS071216:110407-045134, an AGN (b) CSS110405:141104+01115, a
Supernova (c) CSS111103:230309+40060, a Flare and (d) 301904800767, a non-variable. The solid line fit derives from a prior mean
set at the median magnitude while the dashed line fit corresponds to a prior set at a magnitude of 20.5.

We illustrate the issues in setting the prior mean in
Figure 3. What values are expected for the curve in regions
where there are no measurements? One answer is that
we might expect about the same magnitude as that seen
elsewhere for this object. This suggests setting the prior
to the median magnitude for the object. This choice can
be seen in the solid line fits in Figure 3. This works well
enough in three cases but fails for the supernova example
because we do not expect this curve to follow a similar
magnitude at other times. If it did, it would have been seen.
So an alternative approach is to set the prior to the detection
limit at a magnitude of 20.5. This gives the dashed line fits
as seen in Figure 3. This works well for the supernova case
but is problematic for the other three curves. In regions of
no measurement, the fitted curve is drawn down toward the
detection limit. We can counteract this by increasing the
length-scale (i.e. increasing the smoothness in the prior)
but this setting tends to attenuate real effects and still does
not work well for relatively sparsely measured curves (such
as the non-variable in this example).

Our solution is to use an adaptive prior. When there is
less than 1 year of observations, we use the detection limit,
otherwise we use the median magnitude. The choice of a
year is large enough that sparse but widely measured curves
such as the non-variable example in Figure 3 do not use
the detection limit. But the choice is small enough that the
detection limit is used in cases like the SN example. Using
the data to select the prior may make our method at least
partly empirical Bayes rather than pure Bayes, but we need
to judge the method by its classification performance which
is improved by this choice.

3.2. Curve Measures

A

Given the posterior mean f, we compute fitted curve
measures from f, for curve i computed on an evenly
spaced grid of values on the range of observation u; for
j=1,...,m =300. The italicized word is the name of
the variable for future reference:

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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o totvar total variation: 3" ; | fi(ui j41) — fi(uij)l/m

variation: Zj (fi(ui,j+1) —

e quadvar  quadratic

fituij)?/m
e famp amplitude of fitted function: max;, f, — min, f,

e fslope maximum derivative in the fitted curve:
max; | f/|

We also use the maximum in absolute value of the scaled
residuals from the fit, called outl, as a measure.

Another feature of this data is the clustering of times
of measurement which can occur in groups of up to four
observations that are spaced by 10 min within a 30-min
period. The Gaussian process regression is not able to
model the variation at this finer scale because setting the
length-scale / to a much smaller value would result in too
rough a fit overall. We need another set of measures to
capture the characteristics at this scale of measurement.

We compute the mean within each of these groups of up
to four observations as f; ; and then compute the following
measures:

e Isd: the log of the standard error, &, computed using
the residuals from these group mean fits.

e gtvar: The group total variation Zj| f (i, j+1) —
f@pl/ni

o gscore: Y, ((fij — f1)/5)/ni where ¢ is the
standard normal density, f is the mean of the fitted
group means.

The last measure is motivated by scoring methods used to
judge prediction performance.

There are also some gaps within the Richards measures
set of sample curve summary measures. We add the
following:

e shov: mean of absolute differences of successive
observed values:

2 i+ = yijl/mi

o maxdiff: the maximum difference of successive
observed values:

max; | y; j+1 — Yijl

° dscore:Nthe density score: quﬁ((yij — f,-)/sij))/ni
where f; is the median observed magnitude for curve
i and s;; is the observed measurement error at ;;.

There are other measures that may be informative for the
current data we are analyzing but may not have predictive
value in future examples. We have avoided using such
measures. They fall into three categories:

1. Measures based on the number of observations
in a lightcurve. Some phenomena, such as super-
novae, are not recurrent and subsequent obser-
vations may fall below the observable limit.
Lightcurves in such cases can be quite short but
this is known only in retrospect so this is not use-
fully predictive. The number of observations does
have some impact on the choice of prior and in
scaling some of the measures, but we refrain from
using this number (or anything closely related) as
a direct measure for classification purposes.

2. The classification of an object should be invariant
to the addition of a constant to the observed
magnitudes. But some biases in the way that our
example data was extracted would cause, say, the
mean magnitude, to be an effective discriminator
among the types. This mean magnitude will not
be reproducible in future samples so we do not
use this measure or anything related to it.

3. Location in the sky. The method of constructing
our example dataset would mean that location
would become useful discriminator. As it hap-
pens, location would provide some usable infor-
mation for classification as extra-Galactic objects
are more likely to appear away from the Galactic
plane but we refrain from using this information
here.

There is additional information such as the nearest radio
source or the nearest galaxy which could also be useful in
classification but we do not use this here. We experimented
with a larger set of additional measures (as can be seen in
the online appendix) but we have presented only those that
appear to have some additional value for classification.

Given this set of measures, we can use any number
of classification methods to distinguish objects using
lightcurves. We demonstrate the use of our measures using
five popular classification methods. We will generally
use the default choice of options for the particular
implementation in R. Our objective is to show that our
measures represent an improvement over using the Richards
measures alone. It is likely that the classification methods
could be better tuned to obtain a better result or that the
reader may favor another classification method. But that is
not the point of this article. We are not trying to claim one
classification method is better than another, just that our
measures are better.

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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The methods we have used are:

LDA Standard linear discriminant analysis method as
implemented in ref. [18].

TREE Recursive partitioning as implemented in the
rpart package by ref. [19].

SVM Support vector machines as implemented in the
kernlab package by ref. [20].

NN Neural network as implemented in the nnet package
by ref. [18]

RF Random forest ensemble implemented by the ran-
domForest package by ref. [21]

We log-transformed the measures that have extreme
skewness in order to improve classification performance.
The same transformations were used in all the comparisons
below. Without these transformations, both sets of measures
would perform less well in general for methods LDA, SVM
and NN. The partitioning-based methods, TREE and RF,
are invariant to monotone transformations. Explicit details
of the implementation can be found in the Appendix.

4. RESULTS

Classification methods usually do not perform as well as
expected when applied to new data. When the same data
are used to both fit and evaluate a method, the classification
rate is inflated. To avoid this problem, we randomly split
the data into two-third for training, that is used to develop
the classification rule, and one-third for testing, that is to
evaluate how well the rule performs. Since we are only
interested in the relative performance of the classification
measures and methods and because the sample size is
relatively large, we present only one random split. In the
online appendix, we repeat the calculations for 100 random
splits and the results are not qualitatively different.

4.1. Classification Performance

We considered four different types of classification
problem with bold labels used for future reference:

All The overall problem of classifying eight types the non-
variables and the seven variable types.

Variable or not Perhaps the first step in any lightcurve
classification process will be to determine which
objects are variable.

Variable only Having separated out the non-variables, the
next step might be to identify the type of the variable.
For this problem, we delete the non-variables from
both the test and training data.

Table 2. Percentage correctly classified in the test set using the
Richards measures as the first number of each pair and using our
measures in addition to the Richards set as the second number in
the pair.

LDA TREE SVM NN RF

All 56.7:76.0 58.6:71.9 66.1:80.2 63.3:79.6 67.3:80.5
Variable or not 74.7:90.4 79.5:88.4 81.0:92.0 75.2:91.6 82.5:91.8
Variable only ~ 54.5:70.1 58.9:65.1 64.4:74.3 60.1:72.3 62.9:74.2
Hierarchical 56.4:76.0 60.4:72.7 64.7:79.9 58.8:78.5 65.6:79.8

Hierarchical An alternative approach in classifying all
objects directly is to first classify objects into variable
or not variable, then if variable to classify among the
seven available types.

We show the percentages correctly classified in the test
set using the Richards measures and using our measures
(which incorporate the Richards measures) in Table 2.

The standard error for the classification rate is just less
than 1% which is helpful in judging which differences are
notable in these table. Table 2 shows that our measures
provide a significant improvement to the Richards measures
alone which might be regarded as the previous state of the
art. Of course, adding additional measures can only improve
the fit of a model, but we are using an independent test set
so we can be sure the improvement is more than illusory.
There is little to distinguish the hierarchical approach from
the one-step method although we would recommend the
hierarchical approach on an unbiased sample of lightcurves
because these would be dominated by non-variables. The
percentages are not estimates of how the methods will
perform on unidentified objects because we deliberately
overloaded the dataset with variable types for reasons
explained in Section 2. True and false positive rates can
be calculated based on assumptions about the frequency of
the object types within the Universe.

Table 3 shows the numbers of objects classified in the
test set into all eight types compared to their actual types.
We present only the random forest results as this was the
best performing method. The most noticeable differences
between the two sets of measures is that our method results
in classifications in all eight types while the older set fails to
classify any objects into four of the types. Since the Downes
set is just another form of CV, we are not so concerned
about a failure to distinguish these two. We can see that
Flares are hard to identify.

Variables constitute less than 1% of the population.
Hence, even a null method which classified randomly based
on prior proportions would achieve around 99% accuracy.
Certainly any sensible method will do even better than this
and it would take a very large random sample to distinguish
different methods. This explains why we have used a more
balanced, although non-proportional, representation of the
eight types to make an effective comparison of the measures
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Table 3. Confusion matrix showing numbers classified for the
test set using the Richards measures (first of pair) and our
measures (second of pair) with random forest classification of all
eight types. The rows are the predicted types while the columns
are the actual types. NV = non-variable.

Actual types

Predicted AGN Blazar CV Downes Flare NV  RR-Lyrae SNe
AGN 0:31 0:3 00 0:2 0:0 0:2 0:0 0:2
Blazar 0:0 0:27 0:3 0:7 0:0 0:0 0:0 0:0
(@)% 5:2 264 95:93 53:26 4.0 204 3:2 27:14
CV Downes 0:1 0:2 0:15 0:58 0:0 0:7 0:5 0:0
Flare 0:0 0:0 0:0 0:3 0:8 0:0 0:0 0:0
NT 31:8 7.0 26:9 73:25 16:15497:541 47:1 80:16
RR-Lyrae  0:0 I:1 20 37 00 12:0 53:95 3:0
SNe 8:2 512 2225 67 4:1 294 0:0  82:160

and classification methods. Similar strategies are used in
case-control studies.

Because these classification methods will be applied
to very large numbers of objects, even quite low error
rates will result in large numbers of misclassified objects,
resulting in wasted resources or missed opportunities. For
this reason, the primary classification into variable against
non-variable is particularly important. We can see our
proposed measures perform well in this respect, halving the
previous error rate, although there remains further room for
improvement.

4.2. Testing on Fresh Data

We verified the performance of our measures by applying
the methodology to two datasets distinct from the original
set used above. One focuses on more recently discovered
transients while the other consists of a very large sample
of unclassified objects. We assembled 574 transients that
have recently been manually classified, consisting of the
types AGN, Blazar, CV, Flare and SNe. This is a complete
set of CSS transients from 2013 where astronomers using
additional auxiliary data were reasonably confident of the
nature of the transient. We used all the objects of these
five types from the original set of data (updating them to
include more recently collected observations to match the
lightcurve durations) to train classification rules. We then
applied these rules to a test set formed from the recent
set of transients. The classification rates from this exercise
are shown in Table 4. The addition of our set of measures
results in an improved performance over the Richards set
alone.

We also assembled a large set of 100000 lightcurves
from CSS. Using the Stetson J (S;) measure (a weak
classifier defined in ref. [22]), we sampled 50000 objects
from 0 < §; < 0.01 and labeled these non-variables, and
50000 more from 0.5 < S; <1 which we labeled as
variable. Any labeling based on a single variable will

Table 4. Percentage of the new set of five transient types
correctly classified.

LDA TREE SVM NN RF
Richards 60.8 64.0 72.6 71.1 73.1
Ours+Richards 74.6 67.4 78.0 712 79.0

Table 5. Percentage of 50000 variables and non-variables
correctly classified.

LDA TREE SVM NN RF
Richards 75.5 79.4 85.3 76.8 85.5
Ours+Richards 97.5 89.2 98.4 98.3 96.8

not be entirely reliable so we have chosen ranges from
the extremes of S, to increase confidence that the labels
are correct. See ref. [23] for background. The lightcurves
in CSS are not in general labeled so the use of S;
for this purpose, which does not appear in our set of
measures, is artificial (and unavoidable) but is sufficient for
a comparison of classification performance between sets of
measures. Very few variables are likely to be transients
and most of them will be of types not already considered
earlier. We randomly divided the data into two equal parts.
One half was used to train classification rules and the other
half to test the performance. The classification rates are
shown in Table 5 where we see that the addition of our set
of measures to the Richards set greatly improves the rates.

4.3. Feature Selection

The random forest method provides a means of determin-
ing the worth of predictors. Suppose that within a particular
node, the proportion classified as type i is given by p;. The
Gini index is defined as 1 — ), pl.2 and can be used as a
measure of node impurity. It is minimized when only one
type is seen and maximized when each type is seen in equal
proportion. We can see how much the Gini index averaged
across nodes decreases when a measure is removed from
the current set. We remove the measure which leads to the
least decrease. We refit the model with the reduced set and
repeat the process until all measures have gone. The clas-
sification rate after each measure is removed is shown in
Figure 4 for the problem of classifying all eight types. See
also ref. [24] for similar procedures.

There is little difference in classification accuracy
between the training and test datasets which is a good
indication that we are not over-fitting. We see that this
recursive feature selection process removes most of the
older nonmodel-based measures without any noticeable
loss in classification accuracy. Our fitted curve measures
quadvar, famp, totvar and fslope are among the most useful
classification variables. Hence we can see that deriving
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Fig. 4 Recursive feature selection of measures. The classification rates (solid for the training set and dashed for test set) are shown after
the named measure is removed from the model. The order in which the measures are removed is determined by the least decrease in the

Gini index. Measures from the Richards set have the prefix rm.

measures based on our model is a good place to start and
not merely a way to supplement existing older measures.
The message from the other three classification problems
is similar. We do not propose that the older measures be
discarded as they are generally simple to compute and may
be useful in new situations.

5. DISCUSSION

We have presented two advances. In statistics, we have
shown how Gaussian process regression can be adapted
and the corresponding priors developed to deal with data of
varying sampling density, structures and scales. We are able
to deconvolute the underlying curves f; and measurement
noise ¢; to distinguish the objects rather than use summary
statistics that use samples y;; with mixed up noise and
signal. With some further effort we may be able to show that
the measures based on our estimated curves, under some
regularity conditions, would be consistent for the features of

the true underlying curves. An approach based on summary
statistics can be biased or inconsistent for these measures.
We believe that the modeling is the reason for our success
in classification. In astronomy, we have demonstrated a
new method of generating measures representing features of
lightcurves that are significantly better in classifying objects
than previous methods.

There is further scope for improvement in performance
by optimizing the classification using routine methods.
With more detailed information about when locations were
surveyed but no object observed, we can further refine our
priors to obtain superior results. The measures we have
developed are now being used for several purposes. We
can apply the method for new data where the location
has only been surveyed for a shorter period of time.
The measures can all be scaled appropriately. We have
experimented by taking time-wise subsets of this data and
have found that although the absolute performance drops
with shorter curves, the relative performance over the older
set of measures remains. Furthermore, the measures provide
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the means to detect objects of unknown type because our
measures are sufficiently informative to identify objects
that do not belong to known classes by using cluster
analysis. This can in turn lead to the discovery of newer
classes as well as rarer counterparts of known classes of
astronomical objects. CRTS images are available for the
entire dataset. When rare or unusual objects are found
these can be compared against the images to ensure that
no artifacts or spurious features have led to the object
being an outlier. The whole process can be automated
and human intervention required only at critical junctures
like spectroscopic confirmation. Thus, our technique can
scale to much larger datasets including the 500 million
lightcurves that CRTS now has. By adding a richer and
more powerful set of measures, we have increased the
potential for interesting discoveries. Some of our measures
have already been used in classifying new lightcurves.
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APPENDIX

Our data, code and detailed results are available as a
supplement to be found at
people.bath.ac.uk/jjf23/modlc
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