
AutoCoconut, a workflow recorder.
AutoCoconut is a tool that tracks simple mouse and keyboard events (such as
clicks, moves, key presses, etc.) and interprets them into meta events (mouse
drags, double clicks, combo presses). While taking the events, it also makes
screenshots that are connected to actual events. The recording can be then
saved as a json file or converted into a written procedure (a workflow report)
formatted as adoc, html, or pm (for OpenQA). Also, it can be used to open a
previously created json file and convert it into the procedure later.

Such workflow reports can be helpful when creating bug reproducers, tutorials, or test cases for
GUI testing frameworks, such as OpenQA and others.

Currently, the application only works correctly under X11. On Wayland, it only works for
applications using the XWayland protocol. There is intention to make it Wayland compatible, too,
once there are ways to get the necessary information from the system.

Development
Currently, the development has reached Phase 3.

Which means that the script is able:

• record various events, mouse buttons and actions (click, double click, drag, vertical scroll),
keyboard events (press and release)

• identify various types of keys (modifiers, special keys, character keys, etc.)

• find pre-defined patterns in single events and interpret them

• take screenshots to illustrate the workflow (or create needles for OpenQA)

• produce various output - raw file, json file, or a workflow description in adoc, html and pm.

• it has a GUI to make it easier to use

How does AutoCoconut work?
When the application starts, it is ready to record the mouse and keyboard events. The recording is
started using a stop key or a Start button (GUI). Then mouse and keyboard events are recorded
until the stop key or the Stop button are pressed again. The list of all recognized mouse and
keyboard events (in chronological order) forms a raw json.

Since this only contains single events without any relations between them, the data is not very
useful. Therefore, they are interpreted to find certain logical patterns and therefore merge some of
the single events into meta events.

These meta events bare the real meaning, such as mouse double clicks, mouse drags, wheel scrolls,

1



key combination, or even mouse and keyboard combinations. The meta events, also stored in a json
format, are then converted into a procedure in a selected format.

When recording events, the application also takes pictures of screens (screenshots) to capture the
situation on the screen at the time of the event. For most of the actions, two screenshots are taken: a
primary one and an alternative one. The primary screenshot is taken in the moment of the event,
the alternative screenshot is taken earlier (or later) according to a time_offset that a user can set
(CLI application only). By default the time_offset is 1 second.

How to use the application
AutoCoconut can be started as a CLI application or a GUI application.

As a CLI application, AutoCoconut makes a single recording pass and produces the chosen output.

As a GUI applications, it allows for more functionality. For example, you can:

• repeat the recording,

• review the recorded events,

• edit the events,

• create new events.

However, using the GUI will always produce some extra events at the beginning or at the end, when
users need to navigate to the application they want to test, so some later editting might be needed.

There is also an option to record the events using the CLI application and then use the GUI to make
the edits.

Using AutoCoconut as a CLI application.
This procedure shows the general use of the AutoCoconut CLI.

1. Start the script on a terminal.

2. Switch to a different application and prepare for the recording.

3. Press the stop key to start recording (F10 by default).

4. Perform your desired task.

5. Press the stop key again to stop recording.

6. You will receive the output according to your choice.

CLI arguments and their explanation
The script accepts various arguments to control the flow and the output:

2



-s, --stopkey The stop key is used to start and stop the recording. By default, it is F10. Using
this option, you can choose a stop key to your likings.

WARNING

If you choose a stop key that you want to use as a regular
key later in the process, pressing that key will terminate
the recording. If the F10 key does not fit into your
procedure, you can try the esc key.

-e, --offset Defines a time (in seconds) that the script uses as an offset time correction to
take the alternative screenshot. Usually, the application takes an earlier
screenshot for mouse actions to make sure the screenshot avoids hover-on
changes of the clicked item, and a later screenshot for keyboard actions to
show the result of such action.

NOTE

Recording applications with slower response, such as web
pages that need to load, it might be better to make the offset
higher, to give the later screenshot some time to wait for the
application to come to a desired state. The default is 1 second.

-o, --output You can choose one of several outputs. The raw output returns a json file with
all single events without interpretation. In this json file, all key presses and
releases are recorded separately, including the combinations. The json output
provides an interpreted list of super events organized in a json file. The adoc,
html, and openqa outputs produce a list of steps in that chosen format. The
openqa format lists the OpenQA test commands that can be used for OpenQA
scripts and also creates the needle files for the screenshots.

-f, --file If a filename is given, the output (including the screenshots) will be saved into
a file and all recording data will be moved to a new directory to protect them
from deleting when the scrit is run again. Without this option, the output is
only shown on a command line.

Examples
• To use the Esc key as a stop key use the -s argument.

$ ./autococonut.py -s esc

• To create the workflow in html format, use the -o argument.

$ ./autococonut.py -o html

• To save the workflow in an AsciiDoc file, use the -f and the -o arguments.

3



$ ./autococonut.py -o adoc -f <filename.adoc>

Using the GUI version of AutoCoconut
Using the GUI version of AutoCoconut has some advantages when compared to the CLI version,
however the GUI version does not allow users to set the amount of offset (see the CLI chapter)
which is always 1 second.

Use this command to start the GUI version of AutoCoconut:

$ ./autococonut-gui.py

The Status Info frame
AutoCoconut starts in the recording mode. In this mode, you can start and stop recording the
events, as well as inspect the recorded events.

[AutoCoconut - status screen] | ./images/autococonut_status.png

Figure 1. AutoCoconut - Status info panel

On the right side of the window, the Status info frame displays some useful information about the
current session:

Filename Shows the selected name of the output file. To set the file name, use
the File → New file menu item.

Format Shows the selected format. The format is selected when using the
File → New file menu item, but it can be overridden using one of
the Format menu items.

Action Shows the currently selected action.

Progress Shows if any changes have been made to the data.

Recorded raw events Shows the number of simple events recorded during the session.
This will only apply when you have actually recorded some data.
The field will not show any manual changes to the events.

Available clean events Shows the number of interpreted meta events in the recording or
the number of events in the current data.

Recording saved Shows if the current recording has been saved. If not saved is
shown, you need to save it if you want to keep the current data.

4



The Record screen
[AutoCoconut - Recording started] | ./images/autococonut_recording_started.png

Figure 2. AutoCoconut - Record screen

The Record screen is the AutoCoconut's default application screen. When on a different screen,
you can come back to this one using Actions → Record menu items.

Making the recording

In the GUI version of AutoCoconut, you can make any number of recordings without a need to
restart it. To make a recording:

1. Press the Start button.

NOTE
When the Start button is pressed, any following events will be recorded until
you press the Stop button.

2. Perform a procedure you want to record.

3. Press the Stop button.

Reviewing the recording

After you have made the recording, you can review the recorded data as raw json or json to see the
particular events. Alternatively, you can have the data translated into the formatted output which
will respect the selected format. buttons below the text field, where the data appear:

1. The Show raw button shows the raw json with all recorded events.

NOTE
When no recording has been made, because you have opened a previously
saved json file or you have created all events manually, the raw data will not be
available for reviewing.

2. The Show clean button shows the interpreted json with the meta events.

3. The Show formatted button shows the formatted workflow description in the selected format.

NOTE
If no format is selected (using the Format menu for instance), the clean json file
will be shown similarly to using the Show clean button.

Saving the recording

When you are satisfied with the recorded data, you can save the output:

1. Use File → New file to select the location and the output format. The selection will be indicated
in the Status Info.

WARNING
Selecting the new file will not actually save it. This action will only select
the output file and the file format.

2. Use File → Save file to save the output data. The data will be formatted according to the

5



selected format.

The Edit screen
[AutoCoconut - Edit screen] | ./images/autococonut_edit_event.png

Figure 3. AutoCoconut - Edit screen

The Edit screen allows you to edit or delete any existing meta event in the recording.

You can switch to this screen using the Actions → Edit menu items.

When you switch to this screen, the very first event will be displayed in the editation fields, if any
meta events exist. AutoCoconut will only allow to edit fields that are used by the certain event and
will not allow to add any other values to it in order to protect the recorded event from destroying it.

NOTE

Such behaviour has a good reason. If, for example, you want to edit a mouse click,
there is no need why you should add values for a key or a text event and vice versa.

Also, editting the time stamp is never allowed to maintain the chronological
continuity of the data.

Following buttons can be used on this screen:

Previous Moves backward in the sequence of events. If you reach the beginning of the
sequence, pressing the button will not have any effect.

Next Moves forward in the sequence of events. If you reach the end of the sequence,
pressing the button will not have any effect.

Update Updated the current event with the suggested changes.

Delete Deletes the current event from the sequence of events.

NOTE
Deleting an event may be actually very useful in situations when
you need to perform several steps after you have started the
recording and you do not want to keep them in your workflow.

WARNING
Updating or deleting an event will not save the changes to the disk. Save the
file, if you want to keep the changes.

Changes to the data will affect some of the values in the Status Info frame.

The Create screen
[AutoCoconut - Edit screen] | ./images/autococonut_add_event.png

Figure 4. AutoCoconut - Create screen

6



The Create screen allows you to create a new event, or a new sequence of events. Although you
could use it to create the whole recording manually, the purpose to have this option is to enable
corrections to the recording when an extra event would be useful.

You can get to this screen using the Actions → Create menu items.

Available entry fields

Event time stamp

Each event should have a time stamp which is used to maintain chronological order among the
data. You should be very careful if you want to add an event that will fit in between two existing
events. In that case, the new time stamp should be bigger than that of the first event and smaller
then of the second event. You are free to enter decimal values, too. If left out, the current time
will be filled in automatically, which makes the created event being the last in the data. Time
stamps provided by the event collector will always be in the Unix epoch format.

Event type

Each event must have this set. Refer to Quick overview of event features for available event
types.

Event subtype

Each event must have this set. Refer to Quick overview of event features for available event
subtypes.

Event action

Each event represents an action. Refer to Quick overview of event features for available event
actions.

Used button

Defines a mouse button clicked during this event. Refer to Quick overview of event features for
available buttons.

Used key

Defines a key that was pressed during this event. Refer to Keys for a list of key names.

Typed text

If this event should be a typed text, the string value is given here.

Start X and Y

Define the X and Y coordinates for any simple mouse click, but also the starting point
coordinates for a mouse drag.

End X and Y

Define the ending point coordinates for a mouse drag.

Vertical scroll

Defines the number of steps scrolled in the vertical direction. A positive value represents the
northern direction (up the screen) while the negative value represents the southern direction

7



(down the screen).

Horizontal scroll

Defines the number of steps scrolled in the horizontal direction. A positive value represents the
eastern direction (right) while the negative value represents the western direction (left). This is
not available on normal mice.

Combined with

Defines combination keys pressed during this event, such as the modifier keys (shift, ctrl, alt,
etc.).

Primary and secondary images

Define the names of the primary and secondary screenshots for this event.

WARNING

The application will not perform any checks whether the screenshots exist
or not. Usually, the recorded screenshots are placed in the working
directory and they are moved into a new location, when the project is saved
for the first time. The target location will correspond with the location of
the project file.

If you want to generate correct output from the saved files, make sure, you
have the screenshots in the same directory as the project file and that the
names do match.

When you are satisfied with the entered event, you can create it using the Create button.

NOTE
On this page, events only can be created! If you need to edit or delete them later,
switch to the Edit screen using Actions → Edit.

Key and event library
AutoCoconut recognizes presses and releases of most of the keyboard keys as well as the most
common mouse actions. Certain patterns are recognized in the sequence of events and merged into
meta events which are then stored in a json file. They inherit some of the features from the single
events, such as the coordinates of the mouse click point and so on.

When you want to manually enter events, you should not deliberately features, but you should only
add those that would be naturally present in the event created by the event collector. Also, when
you want to constitute an event where a key is involved, you should use the correct name for the
key.

This part is a collection of key names and event features for your reference.

Keys
Keys are divided into three main groups:

8



1. Modifiers

2. Special keys

3. Alpha-numeric keys

Modifiers

Modifiers are used to create key combinations. Usually, when a modifier is pressed for a first time,
it is remembered and all events that happen until the same modifier is released, they are recorded
as modified, i.e. they have this modifier in the Combined with field. You can use more than one
modifier at a time.

Shift is never recorded as a modifier when it comes with an alpha-numeric key. The capitalized
version is recorded instead.

Win key is problematic because it sometimes is returned as an empty key, therefore the application
tries to guess whether an empty key might actually be the Win key. It may not be always successful,
so you might want to revise carefuly in workflow which use this key.

Table 1. Recognized modifiers

Key Key type Key code AutoCoconut’s use

Alt modifier alt combination

Left Ctrl modifier ctrl combination

Right Ctrl modifier ctrl_r combination

Shift modifier shift combinations or capitalization

Win key modifier cmd combinations or standalone

Special keys

Non alpha-numeric keys are taken as special keys. They mostly have the same function as they
would have in the system, but they might have some effects on the interpretation when converting
single events into meta events. For example, a special key can be combined with a modifier, but
cannot be combined with mouse clicks.

Backspace is never recorded. It is always used to correct previously typed characters.

F10 is by default used as a stop key that starts and stops the recording when using the CLI version
of AutoCoconut. If your workflow requires pressing this key, you have to redefine it using the -s or
--stopkey option.

Table 2. Recognized special keys

Key Key type Key code

Menu key special key menu

Esc special key esc

Enter special key enter

9



Key Key type Key code

Backspace special key backspace

Insert special key insert

Home special key home

Page up special key page_up

Page down special key page_down

End special key end

Delete special key delete

Print Screen special key print_screen

Scroll Lock special key scroll_lock

Caps Lock special key caps_lock

Pause special key pause

Up special key up

Down special key down

Left special key left

Right special key right

F1 - F9 special keys f1 - f9

F10 stop key f10

F11 - F12 special keys f11 - f12

NOTE
To reduce the number of created pictures, modifiers and special keys are the only
keys that make the application to create a screenshot.

Mouse events
There are several mouse events recognized by AutoCoconut. Each of the events may be described
using certain features.

Mouse click

The mouse click occurs when a mouse button is clicked and released and when this event is not
followed by another click happening right after the first one and in the same location.

The typical mouse event looks like this:

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type mouse -

10



Key word Value More info

action click -

button left, right, middle indicates which button to press

start X positive number indicates the X coordinate of the click location

start Y positive number indicates the Y coordinate of the click location

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

Table 3. Example: Right mouse button click at 1000, 450 (not modified)

timestamp 1623421318.394444

type mouse

action click

button right

start X 1000

start Y 450

primary image click_start_button.png

alternative image before_click_start_button.png

combined with empty field

Mouse scroll

The mouse scroll is a situation when when a mouse wheel is scrolled in a certain direction.

The typical mouse scroll has the following features:

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type mouse -

action scroll -

start X positive number indicates the X coordinate of the mouse position

start Y positive number indicates the Y coordinate of the mouse position

horizontal number shows how many scroll steps were made in the
horizontal direction

vertical number shows how many scroll steps were made in the
vertical direction

11



Key word Value More info

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

Table 4. Example: Mouse scroll 28 steps southbound (down), not modified

timestamp 1623421318.394444

type mouse

action scroll

start X 1000

start Y 450

horizontal 0

vertical -28

primary image mouse_scroll.png

alternative image mouse_scroll_alt.png

combined with empty field

Mouse double click

The mouse double click occurs when a mouse button is clicked and released twice in a very short
time and in the same or a very near location.

The typical mouse double click like this:

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type mouse -

action doubleclick -

button left, right, middle indicates which button to press

start X positive number indicates the X coordinate of the click location

start Y positive number indicates the Y coordinate of the click location

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

12



Table 5. Example: Left mouse button doubleclick at 1000, 450 (not modified)

timestamp 1623421318.394444

type mouse

action doubleclick

button left

start X 1000

start Y 450

primary image double_clicked.png

alternative image double_clicked_alt.png

combined with empty field

Mouse drag

The mouse drag occurs when a mouse button is clicked and held, the mouse is moved and then the
button is released.

The typical mouse drag like this:

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type mouse -

action drag -

button left, right, middle indicates which button to press

start X positive number indicates the X coordinate of the click location

start Y positive number indicates the Y coordinate of the click location

end X positive number indicates the X coordinate of the release location

end Y positive number indicates the Y coordinate of the release location

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

Table 6. Example: Left mouse button drag from 1000, 450 to 1500, 650

timestamp 1623421318.394444

type mouse

action drag

13



button left

start X 1000

start Y 450

end X 1500

end Y 650

primary image mouse_dragged.png

alternative image mouse_dragged_alt.png

combined with empty field

Key events
Anytime a key is pressed, AutoCoconut records a key event which is later categorized into one of
the groups.

Key press

In AutoCoconut if an alpha-numeric key is pressed, it will be regarded as typing a text and not a
single key press. These are only reserved for special keys.

Special key press

A special key press is recorded any time such a key is pressed. The event uses the following features.

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type key -

subtype special -

action press -

key name of key indicates which key is pressed

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

Table 7. Example: F5 key press (not modified)

timestamp 1623421318.394444

type key

subtype special

14



action press

key f5

primary image f5_pressed.png

alternative image f5_pressed_alt.png

combined with empty field

Modifier press

A modifier press is recorded any time a modifier (see Modifiers) is pressed. Modifiers are mostly
used with other keys so each time a modifier is pressed, AutoCoconut records a key combination
even if the modifier is pressed alone. The behaviour of the modifiers also differs from the other
keys because they need to be properly released using a release event in order to tell the
application where to exit the modified context.

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type key combination -

subtype modifier -

action press -

key name of key indicates which key is pressed

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

Table 8. Example: CTRL key pressed.

timestamp 1623421318.394444

type key combination

subtype modifier

action press

key ctrl

primary image modifier_pressed.png

alternative image modifier_pressed_alt.png

combined with ctrl

Modifier release

A release is recorded any time a modifier (see Modifiers) is released. Releasing a modifier is a

15



crucial event that is used to exit the modified event and close a key combination. Whenever you use
a modifier press, you need to add the modified release as well as a rule.

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type key -

subtype modifier -

action release -

key name of key indicates which key is pressed

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

combined with empty or key name(s) indicates if the event is modified

Table 9. Example: CTRL key released.

timestamp 1623421318.394444

type key

subtype modifier

action release

key ctrl

primary image modifier_released.png

alternative image modifier_released_alt.png

combined with ctrl

Typing

Typing occurs any time an alpha-numeric key (or a sequence of these keys) is pressed.
AutoCoconut keeps recording alpha-numeric keys into a typing buffer until a mouse event, a
special key event, or a modifier event occurs, which terminates the typing sequence. The typing
sequence is than added as a single event which you might add, edit, or delete.

Typing sequences do not have any screenshots assigned, because alpha-numeric keys do not take
screenshots to save resources as there might be a lot of typing involved.

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type typing -

16



Key word Value More info

subtype text -

action type -

key name of key indicates which key was the last key of the
typing sequence

text string indicates the typed in string

primary image file name empty field

alternative image file name empty field

combined with empty or key name(s) empty field

Table 10. Example: A dangerous command typed.

timestamp 1623421318.394444

type typing

subtype text

action type

text rm -rf *

primary image -

alternative image -

combined with -

Key combo

A key combo is a situation when a modifier is pressed, then some other keys are pressed and then
the modifier is released again. Most of the time, the modifiers are combined with alpha-numeric
keys, but they also can be combined with special keys and mouse events (see Combined events).

The typical key combo has the following features:

Key word Value More info

timestamp positive (decimal)
number

usually an epoch number, e.g.
1623421318.394444

type key combination -

subtype modifier -

action press -

key name of key indicates which key is pressed

primary image file name indicates the image file used for the primary
image

alternative image file name indicates the image file used for the alternative
image

17



Key word Value More info

combined with empty or key name(s) indicates if the event is modified

Table 11. Example: CTRL-ALT-K key combo pressed.

timestamp 1623421318.394444

type key combination

subtype modifier

action press

key k

primary image key_combo_pressed.png

alternative image key_combo_pressed_alt.png

combined with ctrl-alt

NOTE
Remember that any key combo event is followed by a modifier release event. The
released modifier should be the very first modifier pressed in this combination.

Combined events
Combined evets are mouse events happening when one or more modifiers are pressed. To create or
edit them, do as if you wanted to create a mouse event and indicate the pressed modifier in the
Combined with field.

Modified click

Table 12. Example: Right mouse button click at 1000, 450 modified with CTRL

timestamp 1623421318.394444

type mouse

action click

button right

start X 1000

start Y 450

primary image click_start_button.png

alternative image before_click_start_button.png

combined with ctrl

Modified double click

Table 13. Example: Left mouse button doubleclick at 1000, 450 modified with ALT.

timestamp 1623421318.394444

18



type mouse

action doubleclick

button left

start X 1000

start Y 450

primary image double_clicked.png

alternative image double_clicked_alt.png

combined with alt

Modified scroll

Table 14. Example: Mouse scroll 28 steps southbound (down), modified with ALT-SHIFT

timestamp 1623421318.394444

type mouse

action scroll

start X 1000

start Y 450

horizontal 0

vertical -28

primary image mouse_scroll.png

alternative image mouse_scroll_alt.png

combined with alt-shift

Modified drag

Table 15. Example: Left mouse button drag from 1000, 450 to 1500, 650 combined with CTRL-ALT

timestamp 1623421318.394444

type mouse

action drag

button left

start X 1000

start Y 450

end X 1500

end Y 650

primary image mouse_dragged.png

alternative image mouse_dragged_alt.png

19



combined with ctrl-alt

Quick overview of event features

Feature Possible values Comment

type mouse, key, key combination,
typing

always required

subtype special, modifier, text required for key events

action click, drag, scroll, doubleclick
,press, type, release

always required

button left, middle, right required for click, doubleclick
and drag

key see Keys required for key events

text string required for typing events

vertical scroll number required for scrolls

horizontal scroll number required for scrolls

start X and Y positive numbers required for mouse events

end X and Y positive numbers required for mouse drags

combined with modifier(s), see Modifiers required for key combinations

primary and alternative image filename recommended for mouse
events, special keys, key
combinations

NOTE
Do not use any of the features in an event when they are not explicitely required,
except for screenshots.

20


	AutoCoconut, a workflow recorder.
	Development
	How does AutoCoconut work?
	How to use the application
	Using AutoCoconut as a CLI application.
	CLI arguments and their explanation
	Examples

	Using the GUI version of AutoCoconut
	The Status Info frame
	The Record screen
	The Edit screen
	The Create screen

	Key and event library
	Keys
	Mouse events
	Key events
	Combined events
	Quick overview of event features


