
HERA Monitor and Control Subsystem Definition

HERA Team

January 31, 2022

1 Introduction

HERA is an international experiment to detect and characterize the Epoch of Reionization (EOR). The
telescope is located at the South African SKA site in the Karoo Astronomy Reserve. This note summarizes
Monitor and Control (M&C) subsystem for HERA.

Monitor and Control has two main tasks: configuration management and real time metadata logging.
Configuration management involves tracking all the physical parts of the telescope and how they are all con-
nected. Real time metadata logging tracks the performance, settings and communications of the subsystems.

The M&C system is built around a database with a well documented table schema and a python software
layer to provide a simple developer framework. It also includes various online daemons for monitoring things,
and both a front end web-based user interface and a command-line interface to support analysis code.

Software is contained in the repository https://github.com/HERA-Team/hera mc.
The organization of this document is as follows: the high-level M&C requirements and the design spec-

ifications are in laid out in section 2, the configuration management is described in section 3, the database
tables are detailed in section 4 and future plans are sketched out in section 5.

2 Requirements and Specifications

2.1 Requirements

These were developed and established in early 2016 in discussions among the subsystem leads.

1. Ability to fully reconstruct the historical state of the system.

2. All interactions between subsystems must go through or be logged by M&C.

a. Both subsystems in an interaction are responsible for logging communications to M&C.

b. Subsystems in an interaction are responsible for logging communications to M&C.

3. Operational metadata (e.g. temperatures, correlator bit occupancies) must be logged to M&C.

4. High availability (M&C must not limit uptime of telescope).

5. M&C is a provider of information about observations to end-users and must be available to them

2.2 Design Specification

These were developed and established in 2016 based on the requirements.

1. SQL database

a. DB Design principle: every logical sub group has a group of tables. One adds tables to do more
things. E.g. different versions of subsystems add new tables. Operations reference which tables
they use.

b. This document (and appendices) will contain all table definitions.

1

c. Use careful dB design to avoid duplicated data, make table links/data relationships clear, use
many-to-one and many-to-many links.

d. Transactions must be used to ensure DB integrity.

e. Must be mirrored in some fashion to observer locations.

2. At least one SW interface layer will be provided.

a. It’s not required to interact with M&C.

b. Must support relational db (i.e. multiple column primary and foreign keys) and transactions.

3. Hardware

a. LOM capabilities

b. Multi-teraByte mirrored disk RAID

c. Backup machine available on site

3 Configuration Management

The HERA array/part configuration management database is a set of five tables within the larger hera mc
database, which is maintained on-site in the Karoo. The tables are detailed in the Appendix, but they are:

psql table in python file with class name
geo location hera mc/geo location.py GeoLocation
station type hera mc/geo location.py StationType
parts hera mc/cm part connect.py Parts
part info hera mc/cm part connect.py PartInfo
connections hera mc/cm part connect.py Connections
cm version hera mc/cm transfer.py CMVersion
apriori antenna hera mc/cm part connect.py AprioriAntenna
part rosetta hera mc/cm part connect.py PartRosetta

The databases are structured primarily around parts and connections. Parts are meant to be single items
that, in theory at least, are a thing that can be replaced as a unit. Connections define ports on a given part
and connect two ports together. By convention, HERA part numbers (hpn) are all upper case and ports are
all lower case.

All parts and connections are timed in that they have a start and stop time of operation. If stop is None,
then it is active (it is given a date in the relatively far future). There are currently two special parts (one at
each end of the signal chain) that are “geo located” parts and have entries in the geo location table: station
and node.

Parts are hooked together via connections of their ports, as defined in the connection table. For the
supporting code, architecture dependent parameters are set in the cm sysdef module.

To capture the known readiness of antennas, an a priori antenna table has been defined to facilitate a
work flow to incorporate new antennas into the array and capture and known recalcitrant antennas. The
table provides an enumerated readiness level for each antenna station.

3.1 Operation Workflow

The work flow in this context relates to antenna migration between one of the a priori status states above.
It is handled by the operations team, which will review the situation on a roughly monthly cadence. The
enumerated states are:

• dish maintenance: dish is either not completed or being repaired

• dish ok: dish is ready for use

• RF maintenance: receiver system is either not installed or being repaired

2

• RF ok: receiver system ready for use

• digital maintenance: digital system is either not installed or being repaired

• digital ok: digital system is ready for use

• calibration maintenance: calibration has not been conducted or current

• calibration ok: ready to use in analysis

• calibration triage: an issue is being worked on

3.2 Hookup Connections

Hookup connections are those that uniquely map the signal chain from the antenna to the node, including
the specific correlator input. These are the connections used to generate the correlator hookup. The signal
chain hookup for HERA is given below and shown in Fig. 1, shown in black. The list below describes the
hookup connections.

• Station: geo located position. See prefixes in table station type (e.g. HH for herahex)

• Antenna: This is also the correlator number which now matches station number. A{#}
• Feed: element feed (Vivaldi). FDV{#}
• FEM: front-end module. FEM{#}
• Node bulkhead plate: bulkhead plate on node. NBP{#}
• PAM: post-amp module in node. PAM{#}
• SNAP: digitizer/channelizer in node. SNP{#}
• Node: field-deployed node as a part N{#}
• Node: geo located position for node as a station ND{#}

3

Station
H[H,A,B]#[0-349]

Antenna
A#[0-349]

Feed
FDV#[0-349]ground><ground focus><input

input><terminals

Front-end
FEM#[000-349]

Post-amp
PAM#[000-349]
1 of 12/ chassis

PAM chassis
PCH#[00-29]

slot><slot#[1-12]

Node - N#[00-29] (part)

Node - ND#[00-29] (station)

rack><bottom

SNAP
SNP#[..]

1 of 4/node

rack><loc#[0-3]

e2><e
n0><n

e6>
n4>

n8>

FEM pwr
FPS#[00-29]

Node Ctrl
Module

NCM#[00-29]

rack><middle

rack><top

pwr><pwr#[1-12]

N
BP

#[
00

-2
9]

e#[1-12]>

n#[1-12] >

n>

e>

e><e#[1-12]

n><n#[1-12]

e10>

WR

mnt><mnt1

Arduino

mnt><mnt2

Figure 1: Block diagram of hookup. The line labels indicate the port names/connections. Black solid lines
are the signal chain.

3.3 Package Modules

This section provides a high-level overview of the python configuration management package modules within
hera mc that are called from scripts or used in interactive sessions.

4

geo location.py Defines station type and geo location. Provides update utility for
geo location. Contains is in geo location and is in connections.

geo handling.py Contains myriad defs that handle various geo functionalities.
cm partconnect.py Defines parts paper, part info, and connections. Provides update utilities

for parts paper and connections. Contains get part revisions.
cm table info.py Has mapping and order of tables and classes for initialization.
cm handling.py Defines the Handling class to handle various configuration management func-

tionalities.
cm active.py Contains modules that load parts/connections active for given date.
cm transfer.py Contains myriad defs that help package and initialize the cm tables.
cm revisions.py Contains myriad defs that deal with finding revision numbers etc.
cm hookup.py Defines the Hookup class to help determine and show the full part hookup.
cm dossier.py Contains classes for the part/connection cm information.
cm utils.py Contains various defs called by other modules.
cm redis corr.py Modules to get/read relevant cm info from/into redis.
cm sysutils.py Various system-wide modules
cm sysdef Architecture dependent definitions.

3.4 Scripts

This section provides a high-level overview of the high-level scripts: geo.py, dossier.py and hookup.py.

3.4.1 Geographical Information: geo.py fg action --arguments

Has various plotting/printing options for station information. fg action is the “foreground action”, that
is the locations that will get printed and shown on top if plotting. See geo.py -h for options. Available
foregrounds are (note you need the first letter only):

• a[ctive]: those antennas that are shown as fully hooked up through the correlator

• i[nstalled]: those antennas whose structure is installed

• p[osition] <csv-list>: specified antennas in csv-list (e.g. HH1,HH4)

• c[ofa]: the center-of-the-array

• s[ince]: antennas installed since date/time supplied in arguments

• n[one]: no foreground, will just show the background (or nothing if not plotting)

3.4.2 Part/Connection Information: dossier.py view --arguments

Has various printing options for part information (part info, connections, hookup, types, etc). The available
views are (first letter only needed): parts, connections, notes, revisions. See dossier.py -h for options.

3.4.3 Cascaded Connection Information: hookup.py --arguments

Displays the signal chain hookup information. See hookup.py -h for options.

5

4 Table Definitions

4.1 Observations . 8
4.1.1 hera obs . 8

4.2 Common tables . 8
4.2.1 server status (template) . 8
4.2.2 subsystem errors . 8
4.2.3 daemon status . 9

4.3 RTP Tables . 9
4.3.1 rtp server status . 9
4.3.2 rtp status . 9
4.3.3 rtp process events . 9
4.3.4 rtp task process events . 9
4.3.5 rtp task multiple process events . 10
4.3.6 rtp process record . 10
4.3.7 rtp task jobid . 10
4.3.8 rtp task resource record . 10
4.3.9 rtp task multiple track . 11
4.3.10 rtp task multiple jobid . 11
4.3.11 rtp task multiple resource record . 11
4.3.12 rtp launch record . 11

4.4 Librarian Tables . 12
4.4.1 lib server status . 12
4.4.2 lib status . 12
4.4.3 lib raid status . 12
4.4.4 lib raid errors . 12
4.4.5 lib remote status . 13
4.4.6 lib files . 13

4.5 Correlator Tables . 13
4.5.1 correlator config file . 13
4.5.2 correlator config params . 13
4.5.3 correlator config active snap . 14
4.5.4 correlator config input index . 14
4.5.5 correlator config phase switch index . 14
4.5.6 correlator config status . 14
4.5.7 correlator control state . 15
4.5.8 correlator control command . 15
4.5.9 correlator take data arguments . 15
4.5.10 correlator config command . 15
4.5.11 correlator software versions . 16
4.5.12 snap config version . 16
4.5.13 snap status . 16
4.5.14 antenna status . 16
4.5.15 hera autos . 17
4.5.16 node sensor . 17
4.5.17 node power status . 18
4.5.18 node power command . 18
4.5.19 node white rabbit status . 18
4.5.20 roach temperature (deprecated) . 19

4.6 QA Info Tables . 20
4.6.1 metric list . 20
4.6.2 ant metrics . 20
4.6.3 array metrics . 20

6

4.7 Site Info Tables . 20
4.7.1 weather data . 21

4.8 Configuration Management Tables . 21
4.8.1 geo location . 21
4.8.2 station type . 21
4.8.3 parts . 21
4.8.4 part info . 22
4.8.5 connections . 22
4.8.6 apriori antenna . 22
4.8.7 part rosetta . 23
4.8.8 cm version . 23

7

The formatting of the tables is as follows:

• Bold font = primary key

• Italics = foreign key.

• * = NotNull entries

4.1 Observations

4.1.1 hera obs

This is the primary observation definition table. It is written to by the correlator.

Column Type Description

obsid long integer start time in floor(GPS) seconds. GPS start adjusted to be within
1 second of LST to lock observations to LST for the night

starttime double start time in gps seconds. The start time to full accuracy of the
beginning of integration of first visibility

stoptime double stop time in gps seconds. The stop time to full accuracy of the
end of integration of last visibility

jd start double start time in JD. Calculated from starttime, provides a quick way
to filter on JD times.

lst start hr double decimal hours from start of sidereal day. Calculated from start-
time, provides a quick search for matching LSTs

4.2 Common tables

4.2.1 server status (template)

Common table structure for server status info. Note: There is no table named server status. This
is the structure used for several subsystem tables named <subsystem> server status.

Column Type Description

hostname string name of server
mc time long time report received by M&C in floor(gps seconds)
ip address* string IP address of server (how should we handle multiples?)
mc system timediff* float difference between M&C time and time report sent by server in

seconds
num cores* integer number of cores on server
cpu load pct* float CPU load percent = total load / num cores, 5 min average
uptime days* float server uptime in days
memory used pct* float percent of memory used, 5 min average
memory size gb* float amount of memory on server in GB
disk space pct* float percent of disk used
disk size gb* float amount of disk space on server in GB
network bandwidth mps* float Network bandwidth in MB/s, 5 min average. Can be null

4.2.2 subsystem errors

Subsystem errors/issues

8

Column Type Description

id long auto-incrementing error id
time* long error report time in floor(gps seconds)
subsystem* string name subsystem with error (e.g. ‘librarian’, ‘rtp’)
mc time* long time report received by M&C in floor(gps seconds)
severity* int integer indicating severity level, 1 is most severe
log* text TBD on format, either a message or a file with the log

4.2.3 daemon status

Status of M&C daemons that monitor various subsystems.

Column Type Description

name string daemon name
hostname string hostname where daemon is running (the same daemon can run on

multiple hosts)
jd integer Julian Date. This allows for some history without keeping all

history.
time* long most recent status report time in floor(gps seconds)
status* string most recent daemon status. One of ‘good’ or ‘errored’

4.3 RTP Tables

4.3.1 rtp server status

RTP version of the server status table, see 4.2.1.

4.3.2 rtp status

High level RTP status

Column Type Description

time long status time in floor(gps seconds)
status* string status string, options TBD (might become an enum)
event min elapsed* float minutes elapsed since last event
num processes* integer Number of processes running
restart hours elapsed* float hours elapsed since last restart

4.3.3 rtp process events

RTP Processing events (per obsid)

Column Type Description

time long event time in floor(gps seconds)
obsid long integer observation identifier, foreign key into hera obs table
event* string one of: queued, started, finished, error

4.3.4 rtp task process events

RTP Processing events (per task + per obsid)

9

Column Type Description

time long event time in floor(gps seconds)
obsid long integer observation identifier, foreign key into hera obs table
task name string name of specific task (e.g., OMNICAL)
event* string one of: started, finished, error

4.3.5 rtp task multiple process events

RTP Processing events that include multiple obsids (per task + per starting obsid)

Column Type Description

time long event time in floor(gps seconds)
obsid start long integer observation identifier for the first file in the task, foreign key into

hera obs table
task name string name of specific task (e.g., OMNICAL)
event* string one of: started, finished, error

4.3.6 rtp process record

RTP record of processed obsids (entry added when processing finished)

Column Type Description

time long record time in floor(gps seconds)
obsid long integer observation identifier, foreign key into hera obs table
pipeline list* text concatenated list of tasks
rtp git version* string git version of RTP code
rtp git hash* string git hash of RTP code
hera qm git version* string git version of hera qm code
hera qm git hash* string git hash of hera qm code
hera cal git version* string git version of hera cal code
hera cal git hash* string git hash of hera cal code
pyuvdata git version* string git version of pyuvdata code
pyuvdata git hash* string git hash of pyuvdata code

4.3.7 rtp task jobid

Holds the Slurm job id associated with each obsid/task so statistics can be associated with that obsid/task
after the run completes (to fill out the rtp task resource record table).

column type description

obsid long integer observation identifier, foreign key into hera obs table
task name string name of specific task (e.g., OMNICAL)
start time long start time of task in floor(gps seconds)
job id* long Slurm job ID for the obsid and task.

4.3.8 rtp task resource record

RTP record of start and stop times for a task (e.g., omnical) for an obsid, as well as CPU and memory used
(if available)

10

column type description

obsid long integer observation identifier, foreign key into hera obs table
task name string name of specific task (e.g., OMNICAL)
start time* long start time of task in floor(gps seconds)
stop time* long stop time of task in floor(gps seconds)
max mem float maximum memory, in MB, consumed by the task; nullable column
avg cpu load float average CPU load, in number of CPUs, for task (e.g., 2.00 means

2 CPUs used); nullable column

4.3.9 rtp task multiple track

A many to one mapping table that tracks which obsids are included in multiple obsid RTP tasks.

column type description

obsid start long integer First obsid in the set of obsids included in the task, foreign key
into hera obs table

task name string name of specific task (e.g., rfi_notebook)
obsid long integer observation identifier, foreign key into hera obs table

4.3.10 rtp task multiple jobid

Holds the Slurm job id associated with multiple obsid tasks so statistics can be associated with that obsid
set and task after the run completes (to fill out the rtp task multiple resource record table).

column type description

obsid start long integer First obsid in the set of obsids included in the task, foreign key
into hera obs table

task name string name of specific task (e.g., rfi_notebook)
start time long start time of task in floor(gps seconds)
job id* long Slurm job ID for the obsid set and task.

4.3.11 rtp task multiple resource record

RTP record of start and stop times for a multiple obsid task (e.g., rfi notebook), as well as CPU and memory
used (if available)

column type description

obsid start long integer First obsid in the set of obsids included in the task, foreign key
into hera obs table

task name string name of specific task (e.g., rfi_notebook)
start time* long start time of task in floor(gps seconds)
stop time* long stop time of task in floor(gps seconds)
max mem float maximum memory, in MB, consumed by the task; nullable column
avg cpu load float average CPU load, in number of CPUs, for task (e.g., 2.00 means

2 CPUs used); nullable column

4.3.12 rtp launch record

RTP record of the most recent time a particular observation was launched in RTP

11

column type description

obsid long integer observation identifier, foreign key into hera obs table
submitted time long integer record time in floor(gps seconds); should be NULL if job has not

yet been submitted to RTP
rtp attempts* long integer number of times the observation has been attempted in RTP;

should be 0 if submitted time is NULL

jd* long integer integer Julian Date of the observation
obs tag* string “observation tag” of the observation file, saved as the tag in the

metadata
filename* string the full filename of the observation file
prefix* string the prefix of the observation file, on qmaster

4.4 Librarian Tables

4.4.1 lib server status

Librarian version of the server status table, see 4.2.1.

4.4.2 lib status

High level Librarian status

Column Type Description

time long status time in floor(gps seconds)
num files* long total number of files in librarian
data volume gb* float total data volume in gigabytes
free space gb* float available space in gigabytes
upload min elapsed* float minutes elapsed since last file upload
num processes* integer number of running background tasks
git version* string git version of Librarian code
git hash* string git hash of Librarian code

4.4.3 lib raid status

RAID controller status

Column Type Description

time long status time in floor(gps seconds)
hostname string name of RAID server
num disks* int number of disks in RAID server
info* text TBD – various info from megaraid controller, may be several

columns

4.4.4 lib raid errors

RAID controller errors/issues

12

Column Type Description

id long auto-incrementing error id
time* long error report time in floor(gps seconds)
hostname* string name of RAID server with error
disk* string name of disk with error
log* text TBD on format, either a message or a file with the log

4.4.5 lib remote status

Network bandwidth/health to all remote librarians

Column Type Description

time long status time in floor(gps seconds)
remote name string name of remote librarian
ping time* float ping time in seconds
num file uploads* int number of files uploaded in last 15 minutes
bandwidth mps* float bandwidth to remote in Mb/s, 15 minute average

4.4.6 lib files

File creation log

Column Type Description

filename string name of file created
obsid long integer observation identifier, foreign key into hera obs table. Can be

null.
time* long file creation time in floor(gps seconds)
size gb* float file size in gigabytes

4.5 Correlator Tables

The correlator tables are not all defined yet. Notes on future plans are in section 5.1.

4.5.1 correlator config file

List of correlator config files, which specify detailed correlator settings. All files in this table are in the
Librarian.

Column Type Description

config hash string unique hash for the config
filename* string name of the config file in the Librarian

4.5.2 correlator config params

Parameters in the correlator configuration, parsed from the configuration file, excluding those specifically cap-
tured in the correlator config active snap, correlator config input index, and correlator config phase switch index
tables.

13

Column Type Description

config hash string hash for the config in use, foreign key into correlator config file
table.

parameter string Name of the the correlator configuration parameter.
value* string Value of the the correlator configuration parameter.

4.5.3 correlator config active snap

Active snaps in the correlator configuration, parsed from the configuration file.

Column Type Description

config hash string hash for the config in use, foreign key into correlator config file
table.

hostname string Hostname of the SNAP (typically e.g. heraNode1Snap2).

4.5.4 correlator config input index

Mapping of the correlator index to SNAP antenna position for the correlator configuration, parsed from the
configuration file.

Column Type Description

config hash string hash for the config in use, foreign key into correlator config file
table.

correlator index integer Correlator index value (in the range 0 - 349).
hostname* string Hostname of the SNAP (typically e.g. heraNode1Snap2).
antenna index position* integer Antenna index position within the SNAP (in the range 0 - 2).

4.5.5 correlator config phase switch index

Mapping of the phase switch index to SNAP antpol position for the correlator configuration, parsed from
the configuration file.

Column Type Description

config hash string hash for the config in use, foreign key into correlator config file
table.

hostname string Hostname of the SNAP (typically e.g. heraNode1Snap2).
phase switch index* integer Phase switch index value (in the range 1 - 24).
antpol index position* integer Antpol index position within the SNAP (in the range 0 - 5).

4.5.6 correlator config status

Config status of the correlator, i.e. which config file is being used by the correlator.

Column Type Description

time long time of the config status in floor(gps seconds)
config hash* string hash for the config in use, foreign key into correlator config file

table.

14

4.5.7 correlator control state

State of control knobs in correlator.

Column Type Description

time long time of the control state in floor(gps seconds)
state type string type of control state, one of: ‘taking data’, ‘phase switching’,

‘noise diode’.
state* boolean indicator of whether the state type is true or false

4.5.8 correlator control command

Commands issued to the correlator. If the command is ‘take data’ or ‘update config’, there will be a matching
row in the ‘correlator take data arguments’ table or the ‘correlator config command’ table respectively with
the values of the parameters in those commands.

Column Type Description

time long time the command was sent in floor(gps seconds)
command string command sent, one of: ‘take data’, ‘stop taking data’,

‘phase switching on’, ‘phase switching off’, ‘noise diode on’,
‘noise diode off’, ‘update config’.

4.5.9 correlator take data arguments

Records the arguments passed to the correlator ‘take data‘ command.

Column Type Description

time long time the command was sent in floor(gps seconds), foreign key into
correlator control command table

command string command sent, always ‘take data’, foreign key into correla-
tor control command table.

starttime* sec long time to start taking data in floor(gps seconds)
starttime ms* integer milliseconds to add to starttime sec to set correlator start time
duration* float duration to take data for in seconds. After this time, the correlator

will stop recording
acclen spectra* integer accumulation length in spectra
integration time* float accumulation length in seconds, converted from acclen spectra

(the conversion is non-trivial and depends on the correlator set-
tings)

tag* string tag which will end up in data files as a header entry, one of:
‘engineering’, ‘science’.

4.5.10 correlator config command

Records the config passed to the correlator ‘update config‘ command.

Column Type Description

time long time the command was sent in floor(gps seconds), foreign key into
correlator control command table

command string command sent, always ‘update config’, foreign key into correla-
tor control command table.

config hash* string hash for the config to use, foreign key into correlator config file
table.

15

4.5.11 correlator software versions

Software version numbers for correlator software packages and scripts.

Column Type Description

time long time of the version report in floor(gps seconds)
package string name of the correlator software module or 〈package〉:〈script〉

for daemonized processes (e.g. ‘hera corr cm’,
‘udpSender:hera node keep alive.py’).

version* string version string for this package or script

4.5.12 snap config version

SNAP initialization configuration and software versions.

Column Type Description

init time long time when the SNAPs were last initialized with the
‘hera snap feng init.py’ script in floor(gps seconds)

version* string version string for the hera corr f package
init args* string arguments passed to the initialization script at runtime
config hash* string unique hash for the config, foreign key into correlator config file

table

4.5.13 snap status

SNAP status information (reported via the correlator redis DB).

Column Type Description

time long status time in floor(gps seconds)
hostname string SNAP hostname
serial number string SNAP serial number
node int node number (derived from config. management tables using

SNAP serial number)
snap loc num int snap location number within the node (derived from config. man-

agement tables using SNAP serial number)
psu alert bool true if SNAP PSU (aka PMB) controllers have issued an alert,

false otherwise.
pps count long number of PPS pulses received since last programming cycle
fpga temp float reported temperature of FPGA in degrees C
uptime cycles long multiples of 500 · 106 ADC clocks since last programming cycle
last programmed time long last time this FPGA was programmed in floor(gps seconds)

4.5.14 antenna status

Antenna status information from the SNAP (reported via the correlator redis DB).

16

Column Type Description

time long status time in floor(gps seconds)
antenna number int antenna number
antenna feed pol string antenna feed polarization, either ‘e’ or ‘n’.
snap hostname string SNAP hostname
snap channel number int SNAP ADC channel number (0-7) to which this antenna is con-

nected.
adc mean float mean ADC value, in ADC units (raw ADC integer values between

-128 and +127). Typically ∼ -0.5.
adc rms float RMS ADC value, in ADC units (raw ADC integer values between

-128 and +127). Should be ∼ 10-20.
adc power float mean ADC power, in ADC units squared (raw ADC integer values

between -128 and +127, squared). Since mean should be close to
zero, this should just be adc rms2.

pam atten int PAM attenuation setting for this antenna, in dB
pam power float PAM power sensor reading for this antenna pol, in dBm.
pam voltage float PAM voltage sensor reading for this antenna pol, in Volts.
pam current float PAM current sensor reading for this antenna pol, in Amps.
pam id string Serial number of the PAM for this antenna pol.
fem voltage float FEM voltage sensor reading for this antenna pol, in Volts.
fem current float FEM current sensor reading for this antenna pol, in Amps.
fem id string Serial number of the FEM for this antenna pol.
fem switch string Switch state the FEM, one of ‘antenna’, ‘load’ or ‘noise’.
fem lna power boolean Power state of the FEM, ‘True’ means it is powered.
fem imu theta float IMU-reported theta, in degrees.
fem imu phi float IMU-reported phi, in degrees.
fem temp float EM temperature sensor reading for this FEM in degrees Celcius.
fft overflow boolean Indicator of an FFT overflow for this antenna pol, set to ‘True’ if

there was an overflow.
eq coeffs string digital EQ coefficients for this antenna, used for keeping the bit

occupancy in the correct range. list of floats (one per freq. chan-
nel) represented as a string. Note this these are not divided out
anywhere in the DSP chain (!).

histogram bin counts string ADC histogram bin counts, list of ints stored as a string.

4.5.15 hera autos

Antenna autocorrelation statistics (currently just the median over the frequency axis).

Column Type Description

time long status time in floor(gps seconds)
antenna number int antenna number
antenna feed pol string antenna feed polarization, either ‘e’ or ‘n’.
measurement type* string Currently can only be ‘median’.
value* float Measured value.

4.5.16 node sensor

Node temperature and humidity sensor readings

17

Column Type Description

time long measurement time in floor(gps seconds)
node int integer identifying the node
top sensor temp float temperature of top sensor reported by node in degrees C
middle sensor temp float temperature of middle sensor reported by node in degrees C
bottom sensor temp float temperature of bottom sensor reported by node in degrees C
humidity sensor temp float temperature of humidity sensor reported by node in degrees C
humidity float percent humidity measurement reported by node

4.5.17 node power status

Power status for SNAPs, FEMs and PAMs (monitored by nodes)

Column Type Description

time long measurement time in floor(gps seconds)
node int integer identifying the node
snap relay powered* bool power status of the snap relay, True = powered
snap0 powered* bool power status of the SNAP 0 board, True = powered
snap1 powered* bool power status of the SNAP 1 board, True = powered
snap2 powered* bool power status of the SNAP 2 board, True = powered
snap3 powered* bool power status of the SNAP 3 board, True = powered
fem powered* bool power status of the FEM, True = powered
pam powered* bool power status of the PAM, True = powered

4.5.18 node power command

Commands issued to change the power status for SNAPs, FEMs and PAMs (via the nodes).

Column Type Description

time long time the command was sent in floor(gps seconds)
node int integer identifying the node commanded
part string part commanded, one of ‘snap relay’, ‘snap0’, ‘snap1’, ‘snap2’,

‘snap3’, ‘pam’, ‘fem’.
command* string command sent, ‘on’ or ‘off’.

4.5.19 node white rabbit status

Node white rabbit status. There are a duplicate set of columns for the two ports which start with ‘port0’
and ‘port1’. We list them jointly below as ‘port[0,1]’.

18

Column Type Description

node time long time of the status reported by the node in floor(gps seconds)
node int integer identifying the node.
board info str string A raw string representing the WR-LEN’s response to the ‘ver‘

command. Relevant parts of this string are individually unpacked
in other entries.

aliases string Hostname aliases of this node’s WR-LEN (comma separated if
more than one).

ip string IP address of this node’s WR-LEN.
mode string WR-LEN operating mode (eg. ”WRC SLAVE WR0”).
serial string Canonical HERA hostname (related to serial number) of this

node’s WR-LEN.
temperature float WR-LEN temperature in degrees Celcius.
build date long Build date of WR-LEN software in floor(gps seconds).
gw date long WR-LEN gateware build date in floor(gps seconds).
gw version string WR-LEN gateware version number.
gw id string WR-LEN gateware ID number.
build hash string WR-LEN build git hash.
manufacture tag string Custom manufacturer tag.
manufacture device string Manufacturer device name designation.
manufacture date long Manufacturer invoice(?) date in floor(gps seconds).
manufacture serial string Manufacturer serial number.
manufacture vendor string Vendor name.
port[0,1] ad int Meaning unknown.
port[0,1] link asymmetry ps int Port [0,1] total link asymmetry in picosec.
port[0,1] manual phase ps int Not well understood, believed to be Port [0,1] manual phase ad-

justment in picosec.
port[0,1] clock offset ps int Port [0,1] clock offset in picosec.
port[0,1] cable rt delay ps int Port [0,1] cable round trip delay in picosec.
port[0,1] master slave delay ps int Port [0,1] master-slave delay in picosec.
port[0,1] master rx phy delay ps int Port [0,1] master RX PHY delay in picosec.
port[0,1] slave rx phy delay ps int Port [0,1] slave RX PHY delay in picosec.
port[0,1] master tx phy delay ps int Port [0,1] master TX PHY delay in picosec.
port[0,1] slave tx phy delay ps int Port [0,1] slave TX PHY delay in picosec.
port[0,1] hd int Meaning unknown.
port[0,1] link boolean Port [0,1] link up state.
port[0,1] lock boolean Port [0,1] timing lock state.
port[0,1] md int Meaning unknown.
port[0,1] rt time ps int Port [0,1] round-trip time in picosec.
port[0,1] nsec int Meaning unknown.
port[0,1] packets received int Port [0,1] number of packets received.
port[0,1] phase setpoint ps int Port [0,1] phase setpoint in picosec.
port[0,1] servo state string Port [0,1] servo state.
port[0,1] sv int Meaning unknown.
port[0,1] sync source string Port [0,1] source of synchronization (either ‘wr0’ or ‘wr1’).
port[0,1] packets sent int Port [0,1] number of packets transmitted.
port[0,1] update counter int Port [0,1] update counter.
port[0,1] time long Port [0,1] current time in GPS seconds. in floor(gps seconds).

4.5.20 roach temperature (deprecated)

Roach (correlator fpga board) temperatures (deprecated 8/2018)

19

Column Type Description

time long measurement time in floor(gps seconds)
roach string name of roach (correlator fpga board)
ambient temp float ambient temperature reported by the roach in degrees C
inlet temp float inlet temperature reported by the roach in degrees C
oulet temp float oulet temperature reported by the roach in degrees C
fpga temp float fpga temperature reported by the roach in degrees C
ppc temp float ppc temperature reported by the roach in degrees C

4.6 QA Info Tables

The QA tables are not all defined yet. Notes on future plans are in section 5.2.

4.6.1 metric list

List and descriptions of metrics used in antenna or array metrics.

Column Type Description

metric string name of metric
desc* string description of metric

4.6.2 ant metrics

Antenna metrics, by polarization and obsid. These are metrics, generally generated by hera qm, which are
keyed to individual antennas. For example, hera qm.ant metrics will flag individual antennas as bad.

Column Type Description

obsid long integer observation identifier, foreign key into hera obs table.
ant integer antenna number (≥ 0)
pol string polarization, ‘x’ or ‘y’
metric string name of metric, foreign key into metric list table.
mc time* long integer time report received by M&C in floor(gps seconds)
val* double value of metric

4.6.3 array metrics

Array metrics, by obsid. These are metrics, generally generated by hera qm, which are keyed to the overall
array. For example, hera qm.firstcal metrics generates an overall decision whether the firstcal solutions were
“good”.

Column Type Description

obsid long integer observation identifier, foreign key into hera obs table.
metric string name of metric, foreign key into metric list table.
mc time long integer time report received by M&C in floor(gps seconds)
val* double value of metric

4.7 Site Info Tables

The Site Info tables are not all defined yet.. Notes on future plans are in section 5.3.

20

4.7.1 weather data

Weather data from KAT sensors

Column Type Description

time long status time in floor(gps seconds)
variable string name of weather variable (e.g. wind speed, wind direction, tem-

perature)
value* float value of the variable at this time

4.8 Configuration Management Tables

As described in section 3, there are five tables in the configuration management section of the database:
(1) geo location, (2) station meta, (3) parts paper, (4) part info, (5) connections. The following tables
summarize them with the following key:

4.8.1 geo location

Column Type Description

station name* character
varying(64)

Name of position - never changes

station type name* character
varying(64)

Type of station

datum character
varying(64)

UTM datum

tile character
varying(64)

UTM tile

northing double preci-
sion

UTM coordinate

easting double preci-
sion

UTM coordinate

elevation double preci-
sion

Elevation

created gpstime* BigInt GPS second of creation.

4.8.2 station type

Column Type Description

station type name* character
varying(64)

Station type name

prefix* character
varying(64)

1-2 letter prefix for part station name

description character
varying(64)

Short description

plot marker character
varying(64)

Type of matplotlib marker

4.8.3 parts

21

Column Type Description
hpn* character

varying(64)
HERA part number

hpn rev* character
varying(32)

HPN revision letter (A-Z)

hptype* character
varying(64)

HPN part type category

manufacturer number character
varying(64)

Unique serial number for each part

start gpstime* BigInt GPS second when part/rev is activated.
stop gpstime BigInt GPS second when part/rev is de-activated

4.8.4 part info

Column Type Description
hpn* character

varying(64)
HERA part number

hpn rev* character
varying(32)

HPN revision letter (A-Z)

posting gpstime* BigInt GPS second information was posted
comment* character

vary-
ing(1024)

Comment

library file character
varying(256)

Librarian filename (how to get it there?)

4.8.5 connections

Column Type Description
upstream part* character

varying(64)
Hera part number of upstream connection

up part rev* character
varying(32)

Hera part revision of upstream connection

upstream output port* character
varying(64)

Output port on upstream part

downstream part* character
varying(64)

Hera part number of downstream connection

down part rev* character
varying(32)

Hera part revision of downstream connection

downstream input port* character
varying(64)

Input port on downstream part

start gpstime* BigInt GPS second when connection started
stop gpstime BigInt GPS second when connection ended

4.8.6 apriori antenna

Column Type Description
antenna* text antenna for which status holds
start gpstime* BigInt GPS second when status change becomes valid
stop gpstime BigInt GPS second at end of status. None for last
status* text status enum message, one of ’passed checks’, ’needs checking’,

’known bad’, ’not connected’

22

4.8.7 part rosetta

Column Type Description
hpn text HERA part number (e.g. SNPC000072)
syspn* text System-dependent part number (e.g. heraNode0Snap0)
start gpstime* BigInt GPS second when started
stop gpstime BigInt GPS second when stopped. None for last

4.8.8 cm version

Column Type Description
update time* BigInt GPS second when version set
git hash* character

varying(64)
git hash number for version

5 Future Plans

5.1 Correlator Table plans

The correlator tables are not all defined yet, the following are notes about suggestions and plans for correlator
tables. Most of the correlator data will be recorded in a Redis database (a rolling log, ephemeral), that info
needs to be grabbed and put in M&Ctables.

corr server status: Correlator version of the server status table, see 4.2.1, not yet implemented.

1. correlator on/off? **this is a control**

2. Bit statistics (overflows, ADC clipping, bit statistics after bit selects)

3. correlator network stats (dropped packets)

4. Firmware git hash

5. Fengine status

6. Xengine status (might be covered in corr server status)

7. Walsh on/off **this is a control** (correlator propagates to node)

8. Noise diode **this is a control** (correlator propagates to node)

9. correlator config (walsh patterns; scaling functions for FFT, bit selection)

10. Test mode outputs (results not control) – very notional

a. Fengine sync test

b. Xengine test

c. Do at beginning and end of night.

d. Analog tests

1. Noise diode status

2. Temperature (i2c device)

3. Walsh switching (on/off control. Make sure bit pattern is known and put into data set.)

11. SNAP information: all info reported through the correlator

a. Feed status

b. PAM status

23

12. Node information (from Arduino) (Dave, Jack, Zara, Matt Dexter (mdexter@berkeley.edu), Nima) All
node info will be reported through the correlator.

a. Clock status info – syncing

b. Temperatures (outside + inside, feed?)

c. Node M&Csoftware git hash

5.1.1 Correlator interfaces complete:

These are done:

1. M&Cinformation the correlator needs to get and write into files

a. Antenna positions

2. New info added to correlator files (recorded in hera obs table)

a. obsid

b. duration

3. Node information (from Arduino) (Dave, Jack, Zara, Matt Dexter (mdexter@berkeley.edu), Nima) All
node info will be reported through the correlator.

a. SNAP power states

b. Temperatures in nodes

c. Power PAM, FEM status (binary)

5.2 QA Future Plans

These are some suggestions for the future, things we might like to see.

1. RTP/online systems

a. RFI statistics/info (this might be in ant metrics and array metrics now)

b. Calibration statistics (this might be in ant metrics and array metrics now)

c. LST repeatability

d. TBD other things that come up

2. Offline codes (Major work on how to implement this!! Not on the critical path):

a. TBD from offline analysis codes

5.3 Site Info Future Plans

The following are suggestions for the future, things we might like to see.

1. site power

2. network status

5.4 Other Future Ideas

1. Basic ionospheric monitoring

2. RFI monitoring

24

	Introduction
	Requirements and Specifications
	Requirements
	Design Specification

	Configuration Management
	Operation Workflow
	Hookup Connections
	Package Modules
	Scripts
	Geographical Information: geo.py fg_action –arguments
	Part/Connection Information: dossier.py view –arguments
	Cascaded Connection Information: hookup.py –arguments

	Table Definitions
	Observations
	hera_obs

	Common tables
	server_status (template)
	subsystem_errors
	daemon_status

	RTP Tables
	rtp_server_status
	rtp_status
	rtp_process_events
	rtp_task_process_events
	rtp_task_multiple_process_events
	rtp_process_record
	rtp_task_jobid
	rtp_task_resource_record
	rtp_task_multiple_track
	rtp_task_multiple_jobid
	rtp_task_multiple_resource_record
	rtp_launch_record

	Librarian Tables
	lib_server_status
	lib_status
	lib_raid_status
	lib_raid_errors
	lib_remote_status
	lib_files

	Correlator Tables
	correlator_config_file
	correlator_config_params
	correlator_config_active_snap
	correlator_config_input_index
	correlator_config_phase_switch_index
	correlator_config_status
	correlator_control_state
	correlator_control_command
	correlator_take_data_arguments
	correlator_config_command
	correlator_software_versions
	snap_config_version
	snap_status
	antenna_status
	hera_autos
	node_sensor
	node_power_status
	node_power_command
	node_white_rabbit_status
	roach_temperature (deprecated)

	QA Info Tables
	metric_list
	ant_metrics
	array_metrics

	Site Info Tables
	weather_data

	Configuration Management Tables
	geo_location
	station_type
	parts
	part_info
	connections
	apriori_antenna
	part_rosetta
	cm_version

	Future Plans
	Correlator Table plans
	Correlator interfaces complete:

	QA Future Plans
	Site Info Future Plans
	Other Future Ideas

