
C interfaces to GALAHAD DPS

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Thu Jun 22 2023

i

1 GALAHAD C package dps 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 2

1.1.7 Call order . 3

1.1.8 Symmetric matrix storage formats . 3

1.1.8.1 Dense storage format . 3

1.1.8.2 Sparse co-ordinate storage format . 4

1.1.8.3 Sparse row-wise storage format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_dps.h File Reference . 7

3.1.1 Data Structure Documentation . 8

3.1.1.1 struct dps_control_type . 8

3.1.1.2 struct dps_time_type . 8

3.1.1.3 struct dps_inform_type . 9

3.1.2 Function Documentation . 9

3.1.2.1 dps_initialize() . 9

3.1.2.2 dps_read_specfile() . 10

3.1.2.3 dps_import() . 10

3.1.2.4 dps_reset_control() . 11

3.1.2.5 dps_solve_tr_problem() . 12

3.1.2.6 dps_solve_rq_problem() . 13

3.1.2.7 dps_resolve_tr_problem() . 14

3.1.2.8 dps_resolve_rq_problem() . 15

3.1.2.9 dps_information() . 16

3.1.2.10 dps_terminate() . 17

4 Example Documentation 19

4.1 dpst.c . 19

C interfaces to GALAHAD DPS GALAHAD 4.0

Chapter 1

GALAHAD C package dps

1.1 Introduction

1.1.1 Purpose

Given a real n by n symmetric matrix H , this package construct a symmetric, positive definite matrix M so that
H is diagonal in the norm ∥v∥M =

√
vTMv induced by M . Subsequently the package can be use to solve the

trust-region subproblem

(1) minimize q(x) =
1

2
xTHx+ cTx+ f subject to ∥x∥|M ≤ ∆

or the regularized quadratic problem

(2) minimize q(x) +
1

p
σ∥x∥|pM

for a real n vector c and scalars f , ∆ > 0, σ > 0 and p ≥ 2.

A factorization of the matrix H will be required, so this package is most suited for the case where such a factorization,
either dense or sparse, may be found efficiently.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

August 2011, C interface December 2021.

2 GALAHAD C package dps

1.1.4 Terminology

1.1.5 Method

The required solution x∗ necessarily satisfies the optimality condition Hx∗ + λ∗Mx∗ + c = 0, where λ∗ ≥ 0 is
a Lagrange multiplier that corresponds to the constraint ∥x∥M ≤ ∆ in the trust-region case (1), and is given by
λ∗ = σ∥x∗∥p−2 for the regularization problem (2). In addition H + λ∗M will be positive semi-definite; in most
instances it will actually be positive definite, but in special `‘hard’' cases singularity is a possibility.

The matrix H is decomposed as

H = PLDLTPT

by calling the GALAHAD package SLS. Here P is a permutation matrix, L is unit lower triangular and D is block di-
agonal, with blocks of dimension at most two. The spectral decomposition of each diagonal block of D is computed,
and each eigenvalue θ is replaced by max(|θ|, θmin), where θmin is a positive user-supplied value. The resulting
block diagonal matrix is B, from which we define the modified-absolute-value

M = PLBLTPT ;

an alternative due to Goldfarb uses instead the simpler

M = PLLTPT .

Given the factors of H (and M), the required solution is found by making the change of variables y = B1/2LTPTx
(or y = LTPTx in the Goldfarb case) which results in `‘diagonal’' trust-region and regularization subproblems,
whose solution may be easily obtained suing a Newton or higher-order iteration of a resulting `‘secular’' equation. If
subsequent problems, for which H and c are unchanged, are to be attempted, the existing factorization and solution
may easily be exploited.

The dominant cost is that for the factorization of the symmetric, but potentially indefinite, matrix H using the GALA-
HAD package SLS.

1.1.6 Reference

The method is described in detail for the trust-region case in

N. I. M. Gould and J. Nocedal (1998). The modified absolute-value factorization for trust-region minimization. In
`‘High Performance Algorithms and Software in Nonlinear Optimization’' (R. De Leone, A. Murli, P. M. Pardalos and
G. Toraldo, eds.), Kluwer Academic Publishers, pp. 225-241,

while the adaptation for the regularization case is obvious. The method used to solve the diagonal trust-region and
regularization subproblems are as given by

H. S. Dollar, N. I. M. Gould and D. P. Robinson (2010). On solving trust-region and other regularised subproblems
in optimization. Mathematical Programming Computation 2(1) 21-57

with simplifications due to the diagonal Hessian.

GALAHAD 4.0 C interfaces to GALAHAD DPS

1.1 Introduction 3

1.1.7 Call order

To solve a given problem, functions from the dps package must be called in the following order:

• dps_initialize - provide default control parameters and set up initial data structures

• dps_read_specfile (optional) - override control values by reading replacement values from a file

• dps_import - import control and matrix data structures

• dps_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• one of

– dps_solve_tr_problem - solve the trust-region problem (1)

– dps_solve_rq_problem - solve the regularized-quadratic problem (2)

• optionally one of

– dps_resolve_tr_problem - resolve the trust-region problem (1) when the non-matrix data has changed

– dps_resolve_rq_problem - resolve the regularized-quadratic problem (2) when the non-matrix data has
changed

• dps_information (optional) - recover information about the solution and solution process

• dps_terminate - deallocate data structures

See Section ?? for examples of use.

1.1.8 Symmetric matrix storage formats

The symmetric n by n coefficient matrix H may be presented and stored in a variety of convenient input formats.
Crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on or
below the leading diagonal).

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part Hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored
by rows, that is component i ∗ i/2 + j of the storage array val will hold the value Hij (and, by symmetry, Hji) for
0 ≤ j ≤ i ≤ n− 1.

C interfaces to GALAHAD DPS GALAHAD 4.0

4 GALAHAD C package dps

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value Hij , 0 ≤ j ≤ i ≤ n− 1, are stored as the l-th components of the integer arrays row and col and
real array val, respectively, while the number of nonzeros is recorded as ne = ne. Note that only the entries in the
lower triangle should be stored.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array ptr holds the position of the first entry
in this row, while ptr(n) holds the total number of entries. The column indices j, 0 ≤ j ≤ i, and values Hij of the
entries in the i-th row are stored in components l = ptr(i), . . ., ptr(i+1)-1 of the integer array col, and real array val,
respectively. Note that as before only the entries in the lower triangle should be stored. For sparse matrices, this
scheme almost always requires less storage than its predecessor.

GALAHAD 4.0 C interfaces to GALAHAD DPS

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_dps.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD DPS

Chapter 3

File Documentation

3.1 galahad_dps.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_sls.h"

Data Structures

• struct dps_control_type
• struct dps_time_type
• struct dps_inform_type

Functions

• void dps_initialize (void ∗∗data, struct dps_control_type ∗control, int ∗status)
• void dps_read_specfile (struct dps_control_type ∗control, const char specfile[])
• void dps_import (struct dps_control_type ∗control, void ∗∗data, int ∗status, int n, const char H_type[], int ne,

const int H_row[], const int H_col[], const int H_ptr[])
• void dps_reset_control (struct dps_control_type ∗control, void ∗∗data, int ∗status)
• void dps_solve_tr_problem (void ∗∗data, int ∗status, int n, int ne, real_wp_ H_val[], real_wp_ c[], real_wp_ f,

real_wp_ radius, real_wp_ x[])
• void dps_solve_rq_problem (void ∗∗data, int ∗status, int n, int ne, real_wp_ H_val[], real_wp_ c[], real_wp_

f, real_wp_ power, real_wp_ weight, real_wp_ x[])
• void dps_resolve_tr_problem (void ∗∗data, int ∗status, int n, real_wp_ c[], real_wp_ f, real_wp_ radius, real←↩

wp x[])
• void dps_resolve_rq_problem (void ∗∗data, int ∗status, int n, real_wp_ c[], real_wp_ f, real_wp_ power, real←↩

wp weight, real_wp_ x[])
• void dps_information (void ∗∗data, struct dps_inform_type ∗inform, int ∗status)
• void dps_terminate (void ∗∗data, struct dps_control_type ∗control, struct dps_inform_type ∗inform)

8 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct dps_control_type

control derived type as a C struct

Examples

dpst.c.

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error unit for error messages

int out unit for monitor output

int problem unit to write problem data into file problem_file

int print_level controls level of diagnostic output

int new_h how much of H has changed since the previous call.
Possible values are

• 0 unchanged

• 1 values but not indices have changed

• 2 values and indices have changed

int taylor_max_degree maximum degree of Taylor approximant allowed

real_wp_ eigen_min smallest allowable value of an eigenvalue of the block
diagonal factor of H

real_wp_ lower lower and upper bounds on the multiplier, if known

real_wp_ upper see lower

real_wp_ stop_normal stop trust-region solution when |||x||M − δ| ≤ max(
.stop_normal ∗ delta, .stop_absolute_normal)

real_wp_ stop_absolute_normal see stop_normal

bool goldfarb use the Goldfarb variant of the
trust-region/regularization norm rather than the
modified absolute-value version

bool space_critical if space is critical, ensure allocated arrays are no
bigger than needed

bool deallocate_error_fatal exit if any deallocation fails

char problem_file[31] name of file into which to write problem data

char symmetric_linear_solver[31] symmetric (indefinite) linear equation solver

char prefix[31] all output lines will be prefixed by
prefix(2:LEN(TRIM(.prefix))-1) where prefix contains
the required string enclosed in quotes, e.g. "string" or
'string'

struct sls_control_type sls_control control parameters for the Cholesky factorization and
solution

3.1.1.2 struct dps_time_type

time derived type as a C struct

GALAHAD 4.0 C interfaces to GALAHAD DPS

3.1 galahad_dps.h File Reference 9

Data Fields

real_wp_ total total CPU time spent in the package

real_wp_ analyse CPU time spent reordering H prior to factorization.

real_wp_ factorize CPU time spent factorizing H.

real_wp_ solve CPU time spent solving the diagonal model system.

real_wp_ clock_total total clock time spent in the package

real_wp_ clock_analyse clock time spent reordering H prior to factorization

real_wp_ clock_factorize clock time spent factorizing H

real_wp_ clock_solve clock time spent solving the diagonal model system

3.1.1.3 struct dps_inform_type

inform derived type as a C struct

Examples

dpst.c.

Data Fields

int status return status. See DPS_solve for details
int alloc_status STAT value after allocate failure.
int mod_1by1 the number of 1 by 1 blocks from the factorization of H that were

modified when constructing M

int mod_2by2 the number of 2 by 2 blocks from the factorization of H that were
modified when constructing M

real_wp_ obj the value of the quadratic function

real_wp_ obj_regularized the value of the regularized quadratic function

real_wp_ x_norm the M-norm of the solution

real_wp_ multiplier the Lagrange multiplier associated with the
constraint/regularization

real_wp_ pole a lower bound max(0,-lambda_1), where lambda_1 is the left-most
eigenvalue of (H,M)

bool hard_case has the hard case occurred?
char bad_alloc[81] name of array that provoked an allocate failure

struct dps_time_type time time information

struct sls_inform_type sls_inform information from SLS

3.1.2 Function Documentation

3.1.2.1 dps_initialize()

void dps_initialize (

void ∗∗ data,

C interfaces to GALAHAD DPS GALAHAD 4.0

10 File Documentation

struct dps_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see dps_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

dpst.c.

3.1.2.2 dps_read_specfile()

void dps_read_specfile (

struct dps_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNDPS.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/dps.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see dps_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 dps_import()

void dps_import (

struct dps_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

const char H_type[],

int ne,

const int H_row[],

const int H_col[],

const int H_ptr[])

Import problem data into internal storage prior to solution.

GALAHAD 4.0 C interfaces to GALAHAD DPS

3.1 galahad_dps.h File Reference 11

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
dps_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 1. The import was succesful, and the package is ready for the solve phase

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restriction n > 0 or requirement that type contains its relevant string
'dense', 'coordinate' or 'sparse_by_rows' has been violated.

in n is a scalar variable of type int, that holds the number of variables

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian. It should be one of 'coordinate', 'sparse_by_rows' or 'dense';
lower or upper case variants are allowed

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL

in H_col is a one-dimensional array of size ne and type int, that holds the column indices of the
lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense or diagonal storage schemes are
used, and in this case can be NULL

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H, as well as the total number of entries, in the
sparse row-wise storage scheme. It need not be set when the other schemes are used,
and in this case can be NULL

Examples

dpst.c.

3.1.2.4 dps_reset_control()

void dps_reset_control (

struct dps_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

C interfaces to GALAHAD DPS GALAHAD 4.0

12 File Documentation

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
dps_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 1. The import was succesful, and the package is ready for the solve phase

3.1.2.5 dps_solve_tr_problem()

void dps_solve_tr_problem (

void ∗∗ data,

int ∗ status,

int n,

int ne,

real_wp_ H_val[],

real_wp_ c[],

real_wp_ f,

real_wp_ radius,

real_wp_ x[])

Find the global minimizer of the trust-region problem (1).

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restriction n > 0 or requirement that type contains its relevant string
'dense', 'coordinate' or 'sparse_by_rows' has been violated.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -40. An error has occured when building the preconditioner.

GALAHAD 4.0 C interfaces to GALAHAD DPS

3.1 galahad_dps.h File Reference 13

Parameters

in n is a scalar variable of type int, that holds the number of variables

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in c is a one-dimensional array of size n and type double, that holds the linear term c in the
objective function. The j-th component of c, j = 0, ... , n-1, contains cj .

in f is a scalar variable pointer of type double, that holds the value of the holds the constant
term f in the objective function.

in radius is a scalar variable pointer of type double, that holds the value of the trust-region radius,
∆ > 0.

out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

Examples

dpst.c.

3.1.2.6 dps_solve_rq_problem()

void dps_solve_rq_problem (

void ∗∗ data,

int ∗ status,

int n,

int ne,

real_wp_ H_val[],

real_wp_ c[],

real_wp_ f,

real_wp_ power,

real_wp_ weight,

real_wp_ x[])

Find the global minimizer of the regularized-quadartic problem (2).

Parameters

in,out data holds private internal data

C interfaces to GALAHAD DPS GALAHAD 4.0

14 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restriction n > 0 or requirement that type contains its relevant string
'dense', 'coordinate' or 'sparse_by_rows' has been violated.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -40. An error has occured when building the preconditioner.

in n is a scalar variable of type int, that holds the number of variables

in ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in c is a one-dimensional array of size n and type double, that holds the linear term c in the
objective function. The j-th component of c, j = 0, ... , n-1, contains cj .

in f is a scalar variable pointer of type double, that holds the value of the holds the constant
term f in the objective function.

in weight is a scalar variable pointer of type double, that holds the value of the regularization
weight, σ > 0.

in power is a scalar variable pointer of type double, that holds the value of the regularization
power, p ≥ 2.

out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

3.1.2.7 dps_resolve_tr_problem()

void dps_resolve_tr_problem (

void ∗∗ data,

int ∗ status,

int n,

real_wp_ c[],

GALAHAD 4.0 C interfaces to GALAHAD DPS

3.1 galahad_dps.h File Reference 15

real_wp_ f,

real_wp_ radius,

real_wp_ x[])

Find the global minimizer of the trust-region problem (1) if some non-matrix components have changed since a call
to dps_solve_tr_problem.

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restriction n > 0 or requirement that type contains its relevant string
'dense', 'coordinate' or 'sparse_by_rows' has been violated.

• -16. The problem is so ill-conditioned that further progress is impossible.

in n is a scalar variable of type int, that holds the number of variables

in c is a one-dimensional array of size n and type double, that holds the linear term c in the
objective function. The j-th component of c, j = 0, ... , n-1, contains cj .

in f is a scalar variable pointer of type double, that holds the value of the constant term f in
the objective function.

in radius is a scalar variable pointer of type double, that holds the value of the trust-region radius,
∆ > 0.

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

Examples

dpst.c.

3.1.2.8 dps_resolve_rq_problem()

void dps_resolve_rq_problem (

void ∗∗ data,

int ∗ status,

int n,

real_wp_ c[],

real_wp_ f,

real_wp_ power,

C interfaces to GALAHAD DPS GALAHAD 4.0

16 File Documentation

real_wp_ weight,

real_wp_ x[])

Find the global minimizer of the regularized-quadartic problem (2) if some non-matrix components have changed
since a call to dps_solve_rq_problem.

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package.
Possible values are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -16. The problem is so ill-conditioned that further progress is impossible.

in n is a scalar variable of type int, that holds the number of variables

in c is a one-dimensional array of size n and type double, that holds the linear term c in the
objective function. The j-th component of c, j = 0, ... , n-1, contains cj .

in f is a scalar variable pointer of type double, that holds the value of the holds the constant
term f in the objective function.

in weight is a scalar variable pointer of type double, that holds the value of the regularization
weight, σ > 0.

in power is a scalar variable pointer of type double, that holds the value of the regularization
power, p ≥ 2.

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

3.1.2.9 dps_information()

void dps_information (

void ∗∗ data,

struct dps_inform_type ∗ inform,

int ∗ status)

Provides output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see dps_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully
GALAHAD 4.0 C interfaces to GALAHAD DPS

3.1 galahad_dps.h File Reference 17

Examples

dpst.c.

3.1.2.10 dps_terminate()

void dps_terminate (

void ∗∗ data,

struct dps_control_type ∗ control,

struct dps_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see dps_control_type)

out inform is a struct containing output information (see dps_inform_type)

Examples

dpst.c.

C interfaces to GALAHAD DPS GALAHAD 4.0

18 File Documentation

GALAHAD 4.0 C interfaces to GALAHAD DPS

Chapter 4

Example Documentation

4.1 dpst.c

This is an example of how to use the package.

/* dpst.c */
/* Full test for the DPS C interface using C sparse matrix indexing */
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_dps.h"
int main(void) {

// Derived types
void *data;
struct dps_control_type control;
struct dps_inform_type inform;
// Set problem data
int n = 3; // dimension of H
int m = 1; // dimension of A
int H_ne = 4; // number of elements of H
int H_dense_ne = 6; // number of elements of H
int H_row[] = {0, 1, 2, 2}; // row indices, NB lower triangle
int H_col[] = {0, 1, 2, 0};
int H_ptr[] = {0, 1, 2, 4};
real_wp_ H_val[] = {1.0, 2.0, 3.0, 4.0};
real_wp_ H_dense[] = {1.0, 0.0, 2.0, 4.0, 0.0, 3.0};
real_wp_ f = 0.96;
real_wp_ radius = 1.0;
real_wp_ half_radius = 0.5;
real_wp_ c[] = {0.0, 2.0, 0.0};
char st;
int status;
real_wp_ x[n];
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
for(int storage_type=1; storage_type <= 3; storage_type++){
// Initialize DPS

dps_initialize(&data, &control, &status);
// Set user-defined control options

control.f_indexing = false; // C sparse matrix indexing
strcpy(control.symmetric_linear_solver,"sytr ") ;
switch(storage_type){
case 1: // sparse co-ordinate storage

st = ’C’;
// import the control parameters and structural data
dps_import(&control, &data, &status, n,

"coordinate", H_ne, H_row, H_col, NULL);
// solve the problem
dps_solve_tr_problem(&data, &status, n, H_ne, H_val,

c, f, radius, x);
break;

case 2: // sparse by rows
st = ’R’;
// import the control parameters and structural data
dps_import(&control, &data, &status, n,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr);

20 Example Documentation

dps_solve_tr_problem(&data, &status, n, H_ne, H_val,
c, f, radius, x);

break;
case 3: // dense

st = ’D’;
// import the control parameters and structural data
dps_import(&control, &data, &status, n,

"dense", H_ne, NULL, NULL, NULL);
dps_solve_tr_problem(&data, &status, n, H_dense_ne, H_dense,

c, f, radius, x);
break;

}
dps_information(&data, &inform, &status);
printf("format %c: DPS_solve_problem exit status = %1i, f = %.2f\n",

st, inform.status, inform.obj);
switch(storage_type){

case 1: // sparse co-ordinate storage
st = ’C’;
// solve the problem
dps_resolve_tr_problem(&data, &status, n,

c, f, half_radius, x);
break;

case 2: // sparse by rows
st = ’R’;
dps_resolve_tr_problem(&data, &status, n,

c, f, half_radius, x);
break;

case 3: // dense
st = ’D’;
dps_resolve_tr_problem(&data, &status, n,

c, f, half_radius, x);
break;

}
dps_information(&data, &inform, &status);
printf("format %c: DPS_resolve_problem exit status = %1i, f = %.2f\n",

st, inform.status, inform.obj);
//printf("x: ");
//for(int i = 0; i < n+m; i++) printf("%f ", x[i]);
// Delete internal workspace
dps_terminate(&data, &control, &inform);

}
}

GALAHAD 4.0 C interfaces to GALAHAD DPS

	1 GALAHAD C package dps
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Symmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_dps.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct dps_control_type
	3.1.1.2 struct dps_time_type
	3.1.1.3 struct dps_inform_type

	3.1.2 Function Documentation
	3.1.2.1 dps_initialize()
	3.1.2.2 dps_read_specfile()
	3.1.2.3 dps_import()
	3.1.2.4 dps_reset_control()
	3.1.2.5 dps_solve_tr_problem()
	3.1.2.6 dps_solve_rq_problem()
	3.1.2.7 dps_resolve_tr_problem()
	3.1.2.8 dps_resolve_rq_problem()
	3.1.2.9 dps_information()
	3.1.2.10 dps_terminate()

	4 Example Documentation
	4.1 dpst.c

