
C interfaces to GALAHAD LSQP

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Thu Jun 22 2023

i

1 GALAHAD C package lsqp 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 3

1.1.7 Call order . 3

1.1.8 Unsymmetric matrix storage formats . 3

1.1.8.1 Dense storage format . 3

1.1.8.2 Sparse co-ordinate storage format . 4

1.1.8.3 Sparse row-wise storage format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_lsqp.h File Reference . 7

3.1.1 Data Structure Documentation . 7

3.1.1.1 struct lsqp_control_type . 7

3.1.1.2 struct lsqp_time_type . 11

3.1.1.3 struct lsqp_inform_type . 12

3.1.2 Function Documentation . 12

3.1.2.1 lsqp_initialize() . 12

3.1.2.2 lsqp_read_specfile() . 13

3.1.2.3 lsqp_import() . 13

3.1.2.4 lsqp_reset_control() . 14

3.1.2.5 lsqp_solve_qp() . 15

3.1.2.6 lsqp_information() . 17

3.1.2.7 lsqp_terminate() . 18

4 Example Documentation 19

4.1 lsqpt.c . 19

4.2 lsqptf.c . 20

C interfaces to GALAHAD LSQP GALAHAD 4.0

Chapter 1

GALAHAD C package lsqp

1.1 Introduction

1.1.1 Purpose

This package uses a primal-dual interior-point trust-region method to solve the linear or separable convex
quadratic programming problem

minimize
1

2

n∑
j=1

w2
j (xj − x0

j)
2 + gTx+ f

subject to the general linear constraints

cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
xl
j ≤ xj ≤ xu

j , j = 1, . . . , n,

where the vectors g, w, x0, cl, cu, xl, xu and the scalar f are given. Any of the constraint bounds cli, c
u
i , xl

j and
xu
j may be infinite. Full advantage is taken of any zero coefficients in the matrix A of vectors ai.

In the special case where w = 0, g = 0 and f = 0, the so-called analytic center of the feasible set will be found,
while linear programming, or constrained least distance, problems may be solved by picking w = 0, or g = 0 and
f = 0, respectively.

The more-modern GALAHAD package CQP offers similar functionality, and is often to be preferred.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England, and Philippe L. Toint, University of Namur, Belgium.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

October 2001, C interface January 2022.

2 GALAHAD C package lsqp

1.1.4 Terminology

The required solution x necessarily satisfies the primal optimality conditions

(1a) Ax = c

and

(1b) cl ≤ c ≤ cu, xl ≤ x ≤ xu,

the dual optimality conditions
(2a) W 2(x− x0) + g = AT y + z

where

(2b) y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(3) (Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the diagonal matrix W 2 has diagonal entries w2
j , j = 1, . . . , n, where the vectors y and z are known as

the Lagrange multipliers for the general linear constraints, and the dual variables for the bounds, respectively, and
where the vector inequalities hold component-wise.

1.1.5 Method

Primal-dual interior point methods iterate towards a point that satisfies these conditions by ultimately aiming to sat-
isfy (1a), (2a) and (3), while ensuring that (1b) and (2b) are satisfied as strict inequalities at each stage. Appropriate
norms of the amounts by which (1a), (2a) and (3) fail to be satisfied are known as the primal and dual infeasibil-
ity, and the violation of complementary slackness, respectively. The fact that (1b) and (2b) are satisfied as strict
inequalities gives such methods their other title, namely interior-point methods.

When w ̸= 0 or g ̸= 0, the method aims at each stage to reduce the overall violation of (1a), (2a) and (3), rather than
reducing each of the terms individually. Given an estimate v = (x, c, y, yl, yu, z, zl, zu) of the primal-dual variables,
a correction ∆v = ∆(x, c, y, yl, yuz, zl, zu) is obtained by solving a suitable linear system of Newton equations for
the nonlinear systems (1a), (2a) and a parameterized `‘residual trajectory’' perturbation of (3). An improved estimate
v+α∆v is then used, where the step-size α is chosen as close to 1.0 as possible while ensuring both that (1b) and
(2b) continue to hold and that the individual components which make up the complementary slackness (3) do not
deviate too significantly from their average value. The parameter that controls the perturbation of (3) is ultimately
driven to zero.

The Newton equations are solved by applying the GALAHAD matrix factorization package SBLS, but there are op-
tions to factorize the matrix as a whole (the so-called "augmented system" approach), to perform a block elimination
first (the "Schur-complement" approach), or to let the method itself decide which of the two previous options is more
appropriate. The "Schur-complement" approach is usually to be preferred when all the weights are nonzero or when
every variable is bounded (at least one side), but may be inefficient if any of the columns of A is too dense.

When w = 0 and g = 0, the method aims instead firstly to find an interior primal feasible point, that is to ensure
that (1a) is satisfied. One this has been achieved, attention is switched to mninizing the potential function

ϕ(x, c) =

m∑
i=1

log(ci − cli) +

m∑
i=1

log(cui − ci) +

n∑
j=1

log(xj − xl
j) +

n∑
j=1

log(xu
j − xj),

while ensuring that (1a) remain satisfied and that x and c are strictly interior points for (1b). The global minimizer
of this minimization problem is known as the analytic center of the feasible region, and may be viewed as a feasible
point that is as far from the boundary of the constraints as possible. Note that terms in the above sumations
corresponding to infinite bounds are ignored, and that equality constraints are treated specially. Appropriate "primal"
Newton corrections are used to generate a sequence of improving points converging to the analytic center, while
the iteration is stabilized by performing inesearches along these corrections with respect to ϕ(x, c).

In order to make the solution as efficient as possible, the variables and constraints are reordered internally by the
GALAHAD package QPP prior to solution. In particular, fixed variables, and free (unbounded on both sides) con-
straints are temporarily removed. Optionally, the problem may be pre-processed temporarily to eliminate dependent
constraints using the GALAHAD package FDC. This may improve the performance of the subsequent iteration.

GALAHAD 4.0 C interfaces to GALAHAD LSQP

1.1 Introduction 3

1.1.6 Reference

The basic algorithm is a generalisation of those of

Y. Zhang (1994), On the convergence of a class of infeasible interior-point methods for the horizontal linear comple-
mentarity problem, SIAM J. Optimization 4(1) 208-227,

with a number of enhancements described by

A. R. Conn, N. I. M. Gould, D. Orban and Ph. L. Toint (1999). A primal-dual trust-region algorithm for minimizing
a non-convex function subject to general inequality and linear equality constraints. Mathematical Programming 87
215-249.

1.1.7 Call order

To solve a given problem, functions from the lsqp package must be called in the following order:

• lsqp_initialize - provide default control parameters and set up initial data structures

• lsqp_read_specfile (optional) - override control values by reading replacement values from a file

• lsqp_import - set up problem data structures and fixed values

• lsqp_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• lsqp_solve_qp - solve the quadratic program

• lsqp_information (optional) - recover information about the solution and solution process

• lsqp_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

C interfaces to GALAHAD LSQP GALAHAD 4.0

4 GALAHAD C package lsqp

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 ≤ j ≤ n− 1, and values
Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1, 0 ≤ i ≤ m− 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

GALAHAD 4.0 C interfaces to GALAHAD LSQP

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_lsqp.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD LSQP

Chapter 3

File Documentation

3.1 galahad_lsqp.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_fdc.h"
#include "galahad_sbls.h"

Data Structures

• struct lsqp_control_type
• struct lsqp_time_type
• struct lsqp_inform_type

Functions

• void lsqp_initialize (void ∗∗data, struct lsqp_control_type ∗control, int ∗status)
• void lsqp_read_specfile (struct lsqp_control_type ∗control, const char specfile[])
• void lsqp_import (struct lsqp_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char A_type[],

int A_ne, const int A_row[], const int A_col[], const int A_ptr[])
• void lsqp_reset_control (struct lsqp_control_type ∗control, void ∗∗data, int ∗status)
• void lsqp_solve_qp (void ∗∗data, int ∗status, int n, int m, const real_wp_ w[], const real_wp_ x0[], const

real_wp_ g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], const real_wp_ c_l[], const real_wp_ c_←↩

u[], const real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_ c[], real_wp_ y[], real_wp_ z[], int
x_stat[], int c_stat[])

• void lsqp_information (void ∗∗data, struct lsqp_inform_type ∗inform, int ∗status)
• void lsqp_terminate (void ∗∗data, struct lsqp_control_type ∗control, struct lsqp_inform_type ∗inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct lsqp_control_type

control derived type as a C struct

Examples

lsqpt.c, and lsqptf.c.

8 File Documentation

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on
stream error

int out general output occurs on stream out

int print_level the level of output required is specified by
print_level

int start_print any printing will start on this iteration

int stop_print any printing will stop on this iteration

int maxit at most maxit inner iterations are allowed
int factor the factorization to be used. Possible values

are

• 0 automatic

• 1 Schur-complement factorization

• 2 augmented-system factorization

int max_col the maximum number of nonzeros in a
column of A which is permitted with the
Schur-complement factorization

int indmin an initial guess as to the integer workspace
required by SBLS

int valmin an initial guess as to the real workspace
required by SBLS

int itref_max the maximum number of iterative refinements
allowed

int infeas_max the number of iterations for which the overall
infeasibility of the problem is not reduced by
at least a factor .reduce_infeas before the
problem is flagged as infeasible (see
reduce_infeas)

int muzero_fixed the initial value of the barrier parameter will
not be changed for the first muzero_fixed
iterations

int restore_problem indicate whether and how much of the input
problem should be restored on output.
Possible values are

• 0 nothing restored

• 1 scalar and vector parameters

• 2 all parameters

GALAHAD 4.0 C interfaces to GALAHAD LSQP

3.1 galahad_lsqp.h File Reference 9

Data Fields

int indicator_type specifies the type of indicator function used.
Possible values are

• 1 primal indicator: constraint active if
and only if the distance to nearest
bound ≤ .indicator_p_tol

• 2 primal-dual indicator: constraint
active if and only if the distance to
nearest bound ≤ .indicator_tol_pd ∗
size of corresponding multiplier

• 3 primal-dual indicator: constraint
active if and only if the distance to the
nearest bound ≤ .indicator_tol_tapia ∗
distance to same bound at previous
iteration

int extrapolate should extrapolation be used to track the
central path? Possible values

• 0 never

• 1 after the final major iteration

• 2 at each major iteration (unused at
present)

int path_history the maximum number of previous path points
to use when fitting the data (unused at
present)

int path_derivatives the maximum order of path derivative to use
(unused at present)

int fit_order the order of (Puiseux) series to fit to the path
data: $ to fit all data (unused at present)

int sif_file_device specifies the unit number to write generated
SIF file describing the current problem

real_wp_ infinity any bound larger than infinity in modulus will
be regarded as infinite

real_wp_ stop_p the required accuracy for the primal
infeasibility

real_wp_ stop_d the required accuracy for the dual infeasibility

real_wp_ stop_c the required accuracy for the
complementarity

real_wp_ prfeas initial primal variables will not be closer than
prfeas from their bounds

real_wp_ dufeas initial dual variables will not be closer than
dufeas from their bounds

real_wp_ muzero the initial value of the barrier parameter. If
muzero is not positive, it will be reset to an
appropriate value

real_wp_ reduce_infeas if the overall infeasibility of the problem is not
reduced by at least a factor reduce_infeas
over .infeas_max iterations, the problem is
flagged as infeasible (see infeas_max)

C interfaces to GALAHAD LSQP GALAHAD 4.0

10 File Documentation

Data Fields

real_wp_ potential_unbounded if W=0 and the potential function value is
smaller than potential_unbounded ∗ number
of one-sided bounds, the analytic center will
be flagged as unbounded

real_wp_ pivot_tol the threshold pivot used by the matrix
factorization. See the documentation for
SBLS for details

real_wp_ pivot_tol_for_dependencies the threshold pivot used by the matrix
factorization when attempting to detect
linearly dependent constraints. See the
documentation for SBLS for details

real_wp_ zero_pivot any pivots smaller than zero_pivot in absolute
value will be regarded to zero when
attempting to detect linearly dependent
constraints

real_wp_ identical_bounds_tol any pair of constraint bounds (c_l,c_u) or
(x_l,x_u) that are closer tha
identical_bounds_tol will be reset to the
average of their values

real_wp_ mu_min start terminal extrapolation when mu reaches
mu_min

real_wp_ indicator_tol_p if .indicator_type = 1, a constraint/bound will
be deemed to be active if and only if the
distance to nearest bound $ ≤
.indicator_p_tol

real_wp_ indicator_tol_pd if .indicator_type = 2, a constraint/bound will
be deemed to be active if and only if the
distance to nearest bound $ ≤
.indicator_tol_pd ∗ size of corresponding
multiplier

real_wp_ indicator_tol_tapia if .indicator_type = 3, a constraint/bound will
be deemed to be active if and only if the
distance to nearest bound $ ≤
.indicator_tol_tapia ∗ distance to same bound
at previous iteration

real_wp_ cpu_time_limit the maximum CPU time allowed (-ve means
infinite)

real_wp_ clock_time_limit the maximum elapsed clock time allowed (-ve
means infinite)

bool remove_dependencies the equality constraints will be preprocessed
to remove any linear dependencies if true

bool treat_zero_bounds_as_general any problem bound with the value zero will be
treated as if it were a general value if true

bool just_feasible if .just_feasible is true, the algorithm will stop
as soon as a feasible point is found.
Otherwise, the optimal solution to the
problem will be found

bool getdua if .getdua, is true, advanced initial values are
obtained for the dual variables

bool puiseux If extrapolation is to be used, decide between
Puiseux and Taylor series.

bool feasol if .feasol is true, the final solution obtained
will be perturbed so tha variables close to
their bounds are moved onto these bounds

GALAHAD 4.0 C interfaces to GALAHAD LSQP

3.1 galahad_lsqp.h File Reference 11

Data Fields

bool balance_initial_complentarity if .balance_initial_complentarity is true, the
initial complemetarity is required to be
balanced

bool use_corrector if .use_corrector, a corrector step will be used

bool array_syntax_worse_than_do_loop if .array_syntax_worse_than_do_loop is true,
f77-style do loops will be used rather than
f90-style array syntax for vector operations

bool space_critical if .space_critical true, every effort will be
made to use as little space as possible. This
may result in longer computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any
array/pointer deallocation error will terminate
execution. Otherwise, computation will
continue

bool generate_sif_file if .generate_sif_file is .true. if a SIF file
describing the current problem is to be
generated

char sif_file_name[31] name of generated SIF file containing input
problem

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix
contains the required string enclosed in
quotes, e.g. "string" or 'string'

struct fdc_control_type fdc_control control parameters for FDC

struct sbls_control_type sbls_control control parameters for SBLS

3.1.1.2 struct lsqp_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total CPU time spent in the package

real_wp_ preprocess the CPU time spent preprocessing the problem

real_wp_ find_dependent the CPU time spent detecting linear dependencies

real_wp_ analyse the CPU time spent analysing the required matrices prior to factorization

real_wp_ factorize the CPU time spent factorizing the required matrices

real_wp_ solve the CPU time spent computing the search direction

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_preprocess the clock time spent preprocessing the problem

real_wp_ clock_find_dependent the clock time spent detecting linear dependencies

real_wp_ clock_analyse the clock time spent analysing the required matrices prior to factorization

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing the search direction

C interfaces to GALAHAD LSQP GALAHAD 4.0

12 File Documentation

3.1.1.3 struct lsqp_inform_type

inform derived type as a C struct

Examples

lsqpt.c, and lsqptf.c.

Data Fields

int status return status. See LSQP_solve for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an allocation/deallocation
error occurred

int iter the total number of iterations required

int factorization_status the return status from the factorization
int64_t factorization_integer the total integer workspace required for the factorization

int64_t factorization_real the total real workspace required for the factorization

int nfacts the total number of factorizations performed

int nbacts the total number of "wasted" function evaluations during the
linesearch

real_wp_ obj the value of the objective function at the best estimate of the
solution determined by LSQP_solve_qp

real_wp_ potential the value of the logarithmic potential function sum
-log(distance to constraint boundary)

real_wp_ non_negligible_pivot the smallest pivot which was not judged to be zero when
detecting linear dependent constraints

bool feasible is the returned "solution" feasible?
struct lsqp_time_type time timings (see above)

struct fdc_inform_type fdc_inform inform parameters for FDC

struct sbls_inform_type sbls_inform inform parameters for SBLS

3.1.2 Function Documentation

3.1.2.1 lsqp_initialize()

void lsqp_initialize (

void ∗∗ data,

struct lsqp_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see lsqp_control_type)

GALAHAD 4.0 C interfaces to GALAHAD LSQP

3.1 galahad_lsqp.h File Reference 13

Parameters

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

lsqpt.c, and lsqptf.c.

3.1.2.2 lsqp_read_specfile()

void lsqp_read_specfile (

struct lsqp_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNLSQP.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/lsqp.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see lsqp_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 lsqp_import()

void lsqp_import (

struct lsqp_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[])

Import problem data into internal storage prior to solution.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
lsqp_control_type)

C interfaces to GALAHAD LSQP GALAHAD 4.0

14 File Documentation

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal',
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in A_type is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate', 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can be
NULL.

Examples

lsqpt.c, and lsqptf.c.

3.1.2.4 lsqp_reset_control()

void lsqp_reset_control (

struct lsqp_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

GALAHAD 4.0 C interfaces to GALAHAD LSQP

3.1 galahad_lsqp.h File Reference 15

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
lsqp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 lsqp_solve_qp()

void lsqp_solve_qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

const real_wp_ w[],

const real_wp_ x0[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Solve the separable convex quadratic program.

Parameters

in,out data holds private internal data

C interfaces to GALAHAD LSQP GALAHAD 4.0

16 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in w is a one-dimensional array of size n and type double, that holds the values of the weights
w.

in x0 is a one-dimensional array of size n and type double, that holds the values of the shifts
x0.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

GALAHAD 4.0 C interfaces to GALAHAD LSQP

3.1 galahad_lsqp.h File Reference 17

Parameters

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl

j .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl

j .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, i = 0, ... , m-1, contains ci(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, i = 0, ... ,
m-1, contains yi.

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

out x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.

out c_stat is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

Examples

lsqpt.c, and lsqptf.c.

3.1.2.6 lsqp_information()

void lsqp_information (

void ∗∗ data,

struct lsqp_inform_type ∗ inform,

int ∗ status)

Provides output information.

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see lsqp_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

C interfaces to GALAHAD LSQP GALAHAD 4.0

18 File Documentation

Examples

lsqpt.c, and lsqptf.c.

3.1.2.7 lsqp_terminate()

void lsqp_terminate (

void ∗∗ data,

struct lsqp_control_type ∗ control,

struct lsqp_inform_type ∗ inform)

Deallocate all internal private storage.

Parameters

in,out data holds private internal data

out control is a struct containing control information (see lsqp_control_type)

out inform is a struct containing output information (see lsqp_inform_type)

Examples

lsqpt.c, and lsqptf.c.

GALAHAD 4.0 C interfaces to GALAHAD LSQP

Chapter 4

Example Documentation

4.1 lsqpt.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* lsqpt.c */
/* Full test for the LSQP C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_lsqp.h"
int main(void) {

// Derived types
void *data;
struct lsqp_control_type control;
struct lsqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
real_wp_ f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {0, 0, 1, 1}; // row indices
int A_col[] = {0, 1, 1, 2}; // column indices
int A_ptr[] = {0, 2, 4}; // row pointers
real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0}; // values
real_wp_ c_l[] = {1.0, 2.0}; // constraint lower bound
real_wp_ c_u[] = {2.0, 2.0}; // constraint upper bound
real_wp_ x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
real_wp_ w[] = {1.0,1.0,1.0};
real_wp_ x_0[] = {0.0,0.0,0.0};
// Set output storage
real_wp_ c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 3; d++){

// Initialize LSQP
lsqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage

20 Example Documentation

st = ’C’;
lsqp_import(&control, &data, &status, n, m,

"coordinate", A_ne, A_row, A_col, NULL);
lsqp_solve_qp(&data, &status, n, m, w, x_0, g, f,

A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
lsqp_import(&control, &data, &status, n, m,

"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
lsqp_solve_qp(&data, &status, n, m, w, x_0, g, f,

A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int A_dense_ne = 6; // number of elements of A
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
lsqp_import(&control, &data, &status, n, m,

"dense", A_dense_ne, NULL, NULL, NULL);
lsqp_solve_qp(&data, &status, n, m, w, x_0, g, f,

A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat);

break;
}

lsqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: LSQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
lsqp_terminate(&data, &control, &inform);

}
}

4.2 lsqptf.c

This is the same example, but now fortran-style indexing is used.

/* lsqptf.c */
/* Full test for the LSQP C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_lsqp.h"
int main(void) {

// Derived types
void *data;
struct lsqp_control_type control;
struct lsqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
real_wp_ f = 1.0; // constant term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {1, 1, 2, 2}; // row indices
int A_col[] = {1, 2, 2, 3}; // column indices
int A_ptr[] = {1, 3, 5}; // row pointers
real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
real_wp_ c_l[] = {1.0, 2.0}; // constraint lower bound
real_wp_ c_u[] = {2.0, 2.0}; // constraint upper bound
real_wp_ x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
real_wp_ w[] = {1.0,1.0,1.0};
real_wp_ x_0[] = {0.0,0.0,0.0};
// Set output storage
real_wp_ c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status

GALAHAD 4.0 C interfaces to GALAHAD LSQP

4.2 lsqptf.c 21

char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 3; d++){

// Initialize LSQP
lsqp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
lsqp_import(&control, &data, &status, n, m,

"coordinate", A_ne, A_row, A_col, NULL);
lsqp_solve_qp(&data, &status, n, m, w, x_0, g, f,

A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
lsqp_import(&control, &data, &status, n, m,

"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
lsqp_solve_qp(&data, &status, n, m, w, x_0, g, f,

A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int A_dense_ne = 6; // number of elements of A
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
lsqp_import(&control, &data, &status, n, m,

"dense", A_dense_ne, NULL, NULL, NULL);
lsqp_solve_qp(&data, &status, n, m, w, x_0, g, f,

A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat);

break;
}

lsqp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: LSQP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
lsqp_terminate(&data, &control, &inform);

}
}

C interfaces to GALAHAD LSQP GALAHAD 4.0

22 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD LSQP

	1 GALAHAD C package lsqp
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_lsqp.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct lsqp_control_type
	3.1.1.2 struct lsqp_time_type
	3.1.1.3 struct lsqp_inform_type

	3.1.2 Function Documentation
	3.1.2.1 lsqp_initialize()
	3.1.2.2 lsqp_read_specfile()
	3.1.2.3 lsqp_import()
	3.1.2.4 lsqp_reset_control()
	3.1.2.5 lsqp_solve_qp()
	3.1.2.6 lsqp_information()
	3.1.2.7 lsqp_terminate()

	4 Example Documentation
	4.1 lsqpt.c
	4.2 lsqptf.c

