
C interfaces to GALAHAD WCP

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Thu Jun 22 2023

i

1 GALAHAD C package wcp 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 2

1.1.3 Originally released . 2

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 3

1.1.7 Call order . 3

1.1.8 Unsymmetric matrix storage formats . 4

1.1.8.1 Dense storage format . 4

1.1.8.2 Sparse co-ordinate storage format . 4

1.1.8.3 Sparse row-wise storage format . 4

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_wcp.h File Reference . 7

3.1.1 Data Structure Documentation . 7

3.1.1.1 struct wcp_control_type . 7

3.1.1.2 struct wcp_time_type . 11

3.1.1.3 struct wcp_inform_type . 12

3.1.2 Function Documentation . 12

3.1.2.1 wcp_initialize() . 12

3.1.2.2 wcp_read_specfile() . 13

3.1.2.3 wcp_import() . 13

3.1.2.4 wcp_reset_control() . 14

3.1.2.5 wcp_find_wcp() . 15

3.1.2.6 wcp_information() . 17

3.1.2.7 wcp_terminate() . 18

4 Example Documentation 19

4.1 wcpt.c . 19

4.2 wcptf.c . 20

C interfaces to GALAHAD WCP GALAHAD 4.0

Chapter 1

GALAHAD C package wcp

1.1 Introduction

1.1.1 Purpose

This package uses a primal-dual interior-point method to find a well-centered interior point x for a set of general
linear constraints

(1) cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
(2) xl

j ≤ xj ≤ xu
j , j = 1, . . . , n,

where the vectors ai, cl, cu, xl and xu are given. More specifically, if possible, the package finds a solution to the
system of primal optimality equations

(3) Ax = c,

dual optimality equations
(4) g = AT y + z, y = yl + yu, and z = zl + zu,

and perturbed complementary slackness equations

(5) (ci − cli)y
l
i = (µl

c)i and (ci − cui)y
u
i = (µu

c)i, i = 1, . . . ,m,

and
(6) ((xj − xl

j)z
l
j = (µl

x)j and (xj − xu
j)z

u
j = (µu

x)j , j = 1, . . . , n,

for which
(7) cl ≤ c ≤ cu, xl ≤ x ≤ xu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0

Here A is the matrix whose rows are the aTi , i = 1, . . . ,m, µl
c, µu

c , µl
x and µu

x are vectors of strictly positive
{targets}, g is another given target vector, and (yl, yu) and (zl, zu) are dual variables for the linear constraints and
simple bounds respectively; c gives the constraint value Ax. Since (5)-(7) normally imply that

(8) cl < c < cu, xl < x < xu, yl > 0, yu < 0, zl > 0 and zu < 0

such a primal-dual point (x, c, yl, yu, zl, zl) may be used, for example, as a feasible starting point for primal-dual
interior-point methods for solving the linear programming problem of minimizing gTx subject to (1) and (2).

Full advantage is taken of any zero coefficients in the vectors ai. Any of the constraint bounds cli, c
u
i , xl

j and xu
j

may be infinite. The package identifies infeasible problems, and problems for which there is no strict interior, that is
one or more of (8) only holds as an equality for all feasible points.

2 GALAHAD C package wcp

1.1.2 Authors

C. Cartis and N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

July 2006, C interface January 2022.

1.1.4 Terminology

1.1.5 Method

The algorithm is iterative, and at each major iteration attempts to find a solution to the perturbed system (3), (4),

(9) (ci − cli + (θlc)i)(y
l
i + (θly)i) = (µl

c)i and (ci − cui − (θuc)i)(y
u
i − (θuy)i) = (µu

c)i, i = 1, . . . ,m,

(10) (xj − xl
j + (θlx)j)(z

l
j + (θlz)j) = (µl

x)j and (xj − xu
j − (θux)j)(z

u
j − (θuz)j) = (µu

x)j , j = 1, . . . , n,

and

(11) cl − θlc < c < cu + θuc , xl − θlx < x < xu + θux , yl > −θly, yu < θuy , zl > −θlz and zu < θuz ,

where the vectors of perturbations θlc, θuc , θlx, θux , θlx, θux , θly , θuy , θlz and θuz , are non-negative. Rather than solve
(3)-(4) and (9)-(11) exactly, we instead seek a feasible point for the easier relaxation (3)-(4) and

(12)

γ(µl
c)i ≤ (ci − cli + (θlc)i)(y

l
i + (θly)i) ≤ (µl

c)i/γ and
γ(µu

c)i ≤ (ci − cui − (θuc)i)(y
u
i − (θuy)i) ≤ (µu

c)i, /γ i = 1, . . . ,m, and
γ(µl

x)j ≤ (xj − xl
j + (θlx)j)(z

l
j + (θlz)j) ≤ (µl

x)j/γ and
γ(µu

x)j ≤ (xj − xu
j − (θux)j)(z

u
j − (θuz)j) ≤ (µu

x)j/γ, j = 1, . . . , n,

for some γ ∈ (0, 1] which is allowed to be smaller than one if there is a nonzero perturbation.

Given any solution to (3)-(4) and (12) satisfying (11), the perturbations are reduced (sometimes to zero) so as
to ensure that the current solution is feasible for the next perturbed problem. Specifically, the perturbation (θlc)i
for the constraint ci ≥ cli is set to zero if ci is larger than some given parameter ϵ > 0. If not, but ci is strictly
positive, the perturbation will be reduced by a multiplier ρ ∈ (0, 1). Otherwise, the new perturbation will be set to
ξ(θlc)i+(1−ξ)(cli−ci) for some factor ξ ∈ (0, 1). Identical rules are used to reduce the remaining primal and dual
perturbations. The targets µl

c, µu
c , µl

x and µu
x will also be increased by the factor β ≥ 1 for those (primal and/or

dual) variables with strictly positive perturbations so as to try to accelerate the convergence.

Ultimately the intention is to drive all the perturbations to zero. It can be shown that if the original problem (3)-(6)
and (8) has a solution, the perturbations will be zero after a finite number of major iterations. Equally, if there is
no interior solution (8) the sets of (primal and dual) variables that are necessarily at (one of) their bounds for all
feasible points—we refer to these as {implicit} equalities—will be identified, as will the possibility that there is no
point (interior or otherwise) in the primal and/or dual feasible regions.

Each major iteration requires the solution u = (x, c, zl, zu, yl, yu) of the nonlinear system (3), (4) and (9)-(11)
for fixed perturbations, using a minor iteration. The minor iteration uses a stabilized (predictor-corrector) Newton
method, in which the arc u(α) = u+αu̇+α2ü, α ∈ [0, 1], involving the standard Newton step u̇ for the equations

GALAHAD 4.0 C interfaces to GALAHAD WCP

1.1 Introduction 3

(3), (4), (9) and (10), optionally augmented by a corrector ü account for the nonlinearity in (9) and (10), is truncated
so as to ensure that

(ci(α)− cli+(θlc)i)(y
l
i(α)+(θly)i) ≥ τ(µl

c)i and (ci(α)− cui − (θuc)i)(y
u
i (α)− (θuy)i) ≥ τ(µu

c)i, i = 1, . . . ,m,

and

(xj(α)−xl
j+(θlx)j)(z

l
j(α)+(θlz)j) ≥ τ(µl

x)j and (xj(α)−xu
j−(θux)j)(z

u
j (α)−(θuz)j) ≥ τ(µu

x)j , j = 1, . . . , n,

for some τ ∈ (0, 1), always holds, and also so that the norm of the residuals to (3), (4), (9) and (10) is reduced
as much as possible. The Newton and corrector systems are solved using a factorization of the Jacobian of its
defining functions (the so-called `‘augmented system’' approach) or of a reduced system in which some of the
trivial equations are eliminated (the `‘Schur-complement’' approach). The factors are obtained using the GALAHAD
package SBLS.

In order to make the solution as efficient as possible, the variables and constraints are reordered internally by
the GALAHAD package QPP prior to solution. In particular, fixed variables, and free (unbounded on both sides)
constraints are temporarily removed. In addition, an attempt to identify and remove linearly dependent equality
constraints may be made by factorizing (

αI AT
E

AE 0

)
,

where AE denotes the gradients of the equality constraints and α > 0 is a given scaling factor, using the GALAHAD
package SBLS, and examining small pivot blocks.

1.1.6 Reference

The basic algorithm, its convergence analysis and results of numerical experiments are given in

C. Cartis and N. I. M. Gould (2006). Finding a point n the relative interior of a polyhedron. Technical Report
TR-2006-016, Rutherford Appleton Laboratory.

1.1.7 Call order

To solve a given problem, functions from the wcp package must be called in the following order:

• wcp_initialize - provide default control parameters and set up initial data structures

• wcp_read_specfile (optional) - override control values by reading replacement values from a file

• wcp_import - set up problem data structures and fixed values

• wcp_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• wcp_find_wcp - find a well-centered point

• wcp_information (optional) - recover information about the solution and solution process

• wcp_terminate - deallocate data structures

See Section 4.1 for examples of use.

C interfaces to GALAHAD WCP GALAHAD 4.0

4 GALAHAD C package wcp

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 ≤ j ≤ n− 1, and values
Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1, 0 ≤ i ≤ m− 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

GALAHAD 4.0 C interfaces to GALAHAD WCP

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_wcp.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD WCP

Chapter 3

File Documentation

3.1 galahad_wcp.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_fdc.h"
#include "galahad_sbls.h"

Data Structures

• struct wcp_control_type
• struct wcp_time_type
• struct wcp_inform_type

Functions

• void wcp_initialize (void ∗∗data, struct wcp_control_type ∗control, int ∗status)
• void wcp_read_specfile (struct wcp_control_type ∗control, const char specfile[])
• void wcp_import (struct wcp_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char A_type[],

int A_ne, const int A_row[], const int A_col[], const int A_ptr[])
• void wcp_reset_control (struct wcp_control_type ∗control, void ∗∗data, int ∗status)
• void wcp_find_wcp (void ∗∗data, int ∗status, int n, int m, const real_wp_ g[], int a_ne, const real_wp_ A_←↩

val[], const real_wp_ c_l[], const real_wp_ c_u[], const real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[],
real_wp_ c[], real_wp_ y_l[], real_wp_ y_u[], real_wp_ z_l[], real_wp_ z_u[], int x_stat[], int c_stat[])

• void wcp_information (void ∗∗data, struct wcp_inform_type ∗inform, int ∗status)
• void wcp_terminate (void ∗∗data, struct wcp_control_type ∗control, struct wcp_inform_type ∗inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct wcp_control_type

control derived type as a C struct

Examples

wcpt.c, and wcptf.c.

8 File Documentation

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on stream
error

int out general output occurs on stream out

int print_level the level of output required is specified by
print_level

int start_print any printing will start on this iteration

int stop_print any printing will stop on this iteration

int maxit at most maxit inner iterations are allowed
int initial_point how to choose the initial point. Possible values

are

• 0 the values input in X, shifted to be at
least prfeas from their nearest bound, will
be used

• 1 the nearest point to the "bound average"
0.5(X_l+X_u) that satisfies the linear
constraints will be used

int factor the factorization to be used. Possible values are

• 0 automatic

• 1 Schur-complement factorization

• 2 augmented-system factorization

int max_col the maximum number of nonzeros in a column
of A which is permitted with the
Schur-complement factorization

int indmin an initial guess as to the integer workspace
required by SBLS

int valmin an initial guess as to the real workspace
required by SBLS

int itref_max the maximum number of iterative refinements
allowed

int infeas_max the number of iterations for which the overall
infeasibility of the problem is not reduced by at
least a factor .required_infeas_reduction before
the problem is flagged as infeasible (see
required_infeas_reducti

GALAHAD 4.0 C interfaces to GALAHAD WCP

3.1 galahad_wcp.h File Reference 9

Data Fields

int perturbation_strategy the strategy used to reduce relaxed constraint
bounds. Possible values are

• 0 do not perturb the constraints

• 1 reduce all perturbations by the same
amount with linear reduction

• 2 reduce each perturbation as much as
possible with linear reduction

• 3 reduce all perturbations by the same
amount with superlinear reduction

• 4 reduce each perturbation as much as
possible with superlinear reduction

int restore_problem indicate whether and how much of the input
problem should be restored on output. Possible
values are

• 0 nothing restored

• 1 scalar and vector parameters

• 2 all parameters

real_wp_ infinity any bound larger than infinity in modulus will be
regarded as infinite

real_wp_ stop_p the required accuracy for the primal infeasibility

real_wp_ stop_d the required accuracy for the dual infeasibility

real_wp_ stop_c the required accuracy for the complementarity

real_wp_ prfeas initial primal variables will not be closer than
prfeas from their bound

real_wp_ dufeas initial dual variables will not be closer than
dufeas from their bounds

real_wp_ mu_target the target value of the barrier parameter. If
mu_target is not positive, it will be reset to an
appropriate value

real_wp_ mu_accept_fraction the complemtary slackness x_i.z_i will be
judged to lie within an acceptable margin around
its target value mu as soon as
mu_accept_fraction ∗ mu <= x_i.z_i <= (1 /
mu_accept_fraction) ∗ mu; the perturbations
will be reduced as soon as all of the
complemtary slacknesses x_i.z_i lie within
acceptable bounds. mu_accept_fraction will be
reset to ensure that it lies in the interval (0,1]

real_wp_ mu_increase_factor the target value of the barrier parameter will be
increased by mu_increase_factor for infeasible
constraints every time the perturbations are
adjusted

real_wp_ required_infeas_reduction if the overall infeasibility of the problem is not
reduced by at least a factor
required_infeas_reduction over .infeas_max
iterations, the problem is flagged as infeasible
(see infeas_max)

C interfaces to GALAHAD WCP GALAHAD 4.0

10 File Documentation

Data Fields

real_wp_ implicit_tol any primal or dual variable that is less feasible
than implicit_tol will be regarded as defining an
implicit constraint

real_wp_ pivot_tol the threshold pivot used by the matrix
factorization. See the documentation for SBLS
for details (obsolete)

real_wp_ pivot_tol_for_dependencies the threshold pivot used by the matrix
factorization when attempting to detect linearly
dependent constraints. See the documentation
for SBLS for details (obsolete)

real_wp_ zero_pivot any pivots smaller than zero_pivot in absolute
value will be regarded to zero when attempting
to detect linearly dependent constraints
(obsolete)

real_wp_ perturb_start the constraint bounds will initially be relaxed by
.perturb_start; this perturbation will
subsequently be reduced to zero. If
perturb_start < 0, the amount by which the
bounds are relaxed will be computed
automatically

real_wp_ alpha_scale the test for rank defficiency will be to factorize (
alpha_scale I A∧T) (A 0)

real_wp_ identical_bounds_tol any pair of constraint bounds (c_l,c_u) or
(x_l,x_u) that are closer tha
identical_bounds_tol will be reset to the average
of their values

real_wp_ reduce_perturb_factor the constraint perturbation will be reduced as
follows:

• - if the variable lies outside a bound, the
corresponding perturbation will be
reduced to reduce_perturb_factor ∗
current pertubation

– (1 - reduce_perturb_factor) ∗
violation

• - otherwise, if the variable lies within
insufficiently_feasible of its bound the
pertubation will be reduced to
reduce_perturb_multiplier ∗ current
pertubation

• - otherwise if will be set to zero

real_wp_ reduce_perturb_multiplier see reduce_perturb_factor

real_wp_ insufficiently_feasible see reduce_perturb_factor

real_wp_ perturbation_small if the maximum constraint pertubation is smaller
than perturbation_small and the violation is
smaller than implicit_tol, the method will deduce
that there is a feasible point but no interior

real_wp_ cpu_time_limit the maximum CPU time allowed (-ve means
infinite)

real_wp_ clock_time_limit the maximum elapsed clock time allowed (-ve
means infinite)

GALAHAD 4.0 C interfaces to GALAHAD WCP

3.1 galahad_wcp.h File Reference 11

Data Fields

bool remove_dependencies the equality constraints will be preprocessed to
remove any linear dependencies if true

bool treat_zero_bounds_as_general any problem bound with the value zero will be
treated as if it were a general value if true

bool just_feasible if .just_feasible is true, the algorithm will stop as
soon as a feasible point is found. Otherwise, the
optimal solution to the problem will be found

bool balance_initial_complementarity if .balance_initial_complementarity is .true. the
initial complemetarity will be balanced

bool use_corrector if .use_corrector, a corrector step will be used

bool space_critical if .space_critical true, every effort will be made
to use as little space as possible. This may
result in longer computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any
array/pointer deallocation error will terminate
execution. Otherwise, computation will continue

bool record_x_status if .record_x_status is true, the array
inform.X_status will be allocated and the status
of the bound constraints will be reported on exit.

bool record_c_status if .record_c_status is true, the array
inform.C_status will be allocated and the status
of the general constraints will be reported on
exit.

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix
contains the required string enclosed in quotes,
e.g. "string" or 'string'

struct fdc_control_type fdc_control control parameters for FDC

struct sbls_control_type sbls_control control parameters for SBLS

3.1.1.2 struct wcp_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total CPU time spent in the package

real_wp_ preprocess the CPU time spent preprocessing the problem

real_wp_ find_dependent the CPU time spent detecting linear dependencies

real_wp_ analyse the CPU time spent analysing the required matrices prior to factorization

real_wp_ factorize the CPU time spent factorizing the required matrices

real_wp_ solve the CPU time spent computing the search direction

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_preprocess the clock time spent preprocessing the problem

real_wp_ clock_find_dependent the clock time spent detecting linear dependencies

real_wp_ clock_analyse the clock time spent analysing the required matrices prior to factorization

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing the search direction

C interfaces to GALAHAD WCP GALAHAD 4.0

12 File Documentation

3.1.1.3 struct wcp_inform_type

inform derived type as a C struct

Examples

wcpt.c, and wcptf.c.

Data Fields

int status return status. See WCP_solve for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an allocation/deallocation
error occurred

int iter the total number of iterations required

int factorization_status the return status from the factorization
int64_t factorization_integer the total integer workspace required for the factorization

int64_t factorization_real the total real workspace required for the factorization

int nfacts the total number of factorizations performed

int c_implicit the number of general constraints that lie on (one) of their
bounds for feasible solutions

int x_implicit the number of variables that lie on (one) of their bounds for
all feasible solutions

int y_implicit the number of Lagrange multipliers for general constraints
that lie on (one) of their bounds for all feasible solutions

int z_implicit the number of dual variables that lie on (one) of their
bounds for all feasible solutions

real_wp_ obj the value of the objective function at the best estimate of the
solution determined by WCP_solve

real_wp_ mu_final_target_max the largest target value on termination

real_wp_ non_negligible_pivot the smallest pivot which was not judged to be zero when
detecting linear dependent constraints

bool feasible is the returned primal-dual "solution" strictly feasible?

struct wcp_time_type time timings (see above)

struct fdc_inform_type fdc_inform inform parameters for FDC

struct sbls_inform_type sbls_inform inform parameters for SBLS

3.1.2 Function Documentation

3.1.2.1 wcp_initialize()

void wcp_initialize (

void ∗∗ data,

struct wcp_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

GALAHAD 4.0 C interfaces to GALAHAD WCP

3.1 galahad_wcp.h File Reference 13

Parameters

in,out data holds private internal data

out control is a struct containing control information (see wcp_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

wcpt.c, and wcptf.c.

3.1.2.2 wcp_read_specfile()

void wcp_read_specfile (

struct wcp_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNWCP.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/wcp.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see wcp_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 wcp_import()

void wcp_import (

struct wcp_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[])

Import problem data into internal storage prior to solution.

C interfaces to GALAHAD WCP GALAHAD 4.0

14 File Documentation

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
wcp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal',
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in A_type is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate', 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can be
NULL.

Examples

wcpt.c, and wcptf.c.

3.1.2.4 wcp_reset_control()

void wcp_reset_control (

struct wcp_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

GALAHAD 4.0 C interfaces to GALAHAD WCP

3.1 galahad_wcp.h File Reference 15

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
wcp_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 wcp_find_wcp()

void wcp_find_wcp (

void ∗∗ data,

int ∗ status,

int n,

int m,

const real_wp_ g[],

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y_l[],

real_wp_ y_u[],

real_wp_ z_l[],

real_wp_ z_u[],

int x_stat[],

int c_stat[])

Find a well-centered point in the feasible region

Parameters

in,out data holds private internal data

C interfaces to GALAHAD WCP GALAHAD 4.0

16 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -4. The constraint bounds are inconsistent.

• -5. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -17. The step is too small to make further impact.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in g is a one-dimensional array of size n and type double, that holds the target vector g. The
j-th component of g, j = 0, ... , n-1, contains gj .

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl

j .

GALAHAD 4.0 C interfaces to GALAHAD WCP

3.1 galahad_wcp.h File Reference 17

Parameters

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl

j .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, i = 0, ... , m-1, contains ci(x).

in,out y_l is a one-dimensional array of size n and type double, that holds the values yl of the
Lagrange multipliers for the lower bounds on the general linear constraints. The j-th
component of y_l, i = 0, ... , m-1, contains yli.

in,out y_u is a one-dimensional array of size n and type double, that holds the values yu of the
Lagrange multipliers for the upper bounds on the general linear constraints. The j-th
component of y_u, i = 0, ... , m-1, contains yui .

in,out z_l is a one-dimensional array of size n and type double, that holds the values zl of the dual
variables for the lower bounds on the variables. The j-th component of z_l, j = 0, ... , n-1,
contains zlj .

in,out z_u is a one-dimensional array of size n and type double, that holds the values zu of the dual
variables for the upper bounds on the variables. The j-th component of z_u, j = 0, ... ,
n-1, contains zuj .

out x_stat is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.

out c_stat is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.

Examples

wcpt.c, and wcptf.c.

3.1.2.6 wcp_information()

void wcp_information (

void ∗∗ data,

struct wcp_inform_type ∗ inform,

int ∗ status)

Provides output information.

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see wcp_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

C interfaces to GALAHAD WCP GALAHAD 4.0

18 File Documentation

Examples

wcpt.c, and wcptf.c.

3.1.2.7 wcp_terminate()

void wcp_terminate (

void ∗∗ data,

struct wcp_control_type ∗ control,

struct wcp_inform_type ∗ inform)

Deallocate all internal private storage.

Parameters

in,out data holds private internal data

out control is a struct containing control information (see wcp_control_type)

out inform is a struct containing output information (see wcp_inform_type)

Examples

wcpt.c, and wcptf.c.

GALAHAD 4.0 C interfaces to GALAHAD WCP

Chapter 4

Example Documentation

4.1 wcpt.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* wcpf.c */
/* Full test for the WCP C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_wcp.h"
int main(void) {

// Derived types
void *data;
struct wcp_control_type control;
struct wcp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {0, 0, 1, 1}; // row indices
int A_col[] = {0, 1, 1, 2}; // column indices
int A_ptr[] = {0, 2, 4}; // row pointers
real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
real_wp_ c_l[] = {1.0, 2.0}; // constraint lower bound
real_wp_ c_u[] = {2.0, 2.0}; // constraint upper bound
real_wp_ x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
real_wp_ c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of wcp storage formats\n\n");
for(int d=1; d <= 3; d++){

// Initialize WCP
wcp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y_l[] = {0.0,0.0};
real_wp_ y_u[] = {0.0,0.0};
real_wp_ z_l[] = {0.0,0.0,0.0};
real_wp_ z_u[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;

20 Example Documentation

wcp_import(&control, &data, &status, n, m,
"coordinate", A_ne, A_row, A_col, NULL);

wcp_find_wcp(&data, &status, n, m, g, A_ne, A_val,
c_l, c_u, x_l, x_u, x, c, y_l, y_u, z_l, z_u,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
wcp_import(&control, &data, &status, n, m,

"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
wcp_find_wcp(&data, &status, n, m, g, A_ne, A_val,

c_l, c_u, x_l, x_u, x, c, y_l, y_u, z_l, z_u,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int A_dense_ne = 6; // number of elements of A
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
wcp_import(&control, &data, &status, n, m,

"dense", A_dense_ne, NULL, NULL, NULL);
wcp_find_wcp(&data, &status, n, m, g, A_dense_ne, A_dense,

c_l, c_u, x_l, x_u, x, c, y_l, y_u, z_l, z_u,
x_stat, c_stat);

break;
}

wcp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: WCP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
wcp_terminate(&data, &control, &inform);

}
}

4.2 wcptf.c

This is the same example, but now fortran-style indexing is used.

/* wcptf.c */
/* Full test for the WCP C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_wcp.h"
int main(void) {

// Derived types
void *data;
struct wcp_control_type control;
struct wcp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
int A_ne = 4; // Jacobian elements
int A_row[] = {1, 1, 2, 2}; // row indices
int A_col[] = {1, 2, 2, 3}; // column indices
int A_ptr[] = {1, 3, 5}; // row pointers
real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
real_wp_ c_l[] = {1.0, 2.0}; // constraint lower bound
real_wp_ c_u[] = {2.0, 2.0}; // constraint upper bound
real_wp_ x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
real_wp_ c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of wcp storage formats\n\n");

GALAHAD 4.0 C interfaces to GALAHAD WCP

4.2 wcptf.c 21

for(int d=1; d <= 3; d++){
// Initialize WCP
wcp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y_l[] = {0.0,0.0};
real_wp_ y_u[] = {0.0,0.0};
real_wp_ z_l[] = {0.0,0.0,0.0};
real_wp_ z_u[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
wcp_import(&control, &data, &status, n, m,

"coordinate", A_ne, A_row, A_col, NULL);
wcp_find_wcp(&data, &status, n, m, g, A_ne, A_val,

c_l, c_u, x_l, x_u, x, c, y_l, y_u, z_l, z_u,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
wcp_import(&control, &data, &status, n, m,

"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
wcp_find_wcp(&data, &status, n, m, g, A_ne, A_val,

c_l, c_u, x_l, x_u, x, c, y_l, y_u, z_l, z_u,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int A_dense_ne = 6; // number of elements of A
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
wcp_import(&control, &data, &status, n, m,

"dense", A_dense_ne, NULL, NULL, NULL);
wcp_find_wcp(&data, &status, n, m, g, A_dense_ne, A_dense,

c_l, c_u, x_l, x_u, x, c, y_l, y_u, z_l, z_u,
x_stat, c_stat);

break;
}

wcp_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: WCP_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
wcp_terminate(&data, &control, &inform);

}
}

C interfaces to GALAHAD WCP GALAHAD 4.0

22 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD WCP

	1 GALAHAD C package wcp
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_wcp.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct wcp_control_type
	3.1.1.2 struct wcp_time_type
	3.1.1.3 struct wcp_inform_type

	3.1.2 Function Documentation
	3.1.2.1 wcp_initialize()
	3.1.2.2 wcp_read_specfile()
	3.1.2.3 wcp_import()
	3.1.2.4 wcp_reset_control()
	3.1.2.5 wcp_find_wcp()
	3.1.2.6 wcp_information()
	3.1.2.7 wcp_terminate()

	4 Example Documentation
	4.1 wcpt.c
	4.2 wcptf.c

