
GALAHAD LSQP

USER DOCUMENTATION GALAHAD Optimization Library version 5.1

1 SUMMARY

This package uses an primal-dual interior-point method to solve the linear or separable convex quadratic program-

ming problem

minimize 1
2

n

∑
i=1

w2
i (xi − x0

i)
2 + gT x+ f

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the vectors w, g, x0, ai, cl , cu, xl , xu and the scalar f are given. Full advantage is taken of any zero coefficients

in the vectors ai. Any of the constraint bounds cl
i , cu

i , xl
j and xu

j may be infinite. In the special case where w = 0, g = 0

and f = 0, the so-called analytic center of the feasible set will be found, while linear programming, or constrained

least distance, problems may be solved by picking w = 0, or g = 0 and f = 0, respectively.

The more-modern GALAHAD package CQP offers similar functionality, and is often to be preferred.

ATTRIBUTES — Versions: GALAHAD LSQP single, GALAHAD LSQP double. Uses: GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPP, GALAHAD -

QPD, GALAHAD ROOTS, GALAHAD SBLS, GALAHAD FDC. Date: October 2001. Origin: N. I. M. Gould, Rutherford Apple-

ton Laboratory, and Ph. L. Toint, University of Namur, Belgium. Language: Fortran 95 + TR 15581 or Fortran 2003.

Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available with single, double and (if available) quadruple precision reals, and either 32-bit or 64-bit

integers. Access to the 32-bit integer, single precision version requires the USE statement

USE GALAHAD LSQP single

with the obvious substitution GALAHAD LSQP double, GALAHAD LSQP quadruple, GALAHAD LSQP single 64, GALA-

HAD LSQP double 64 and GALAHAD LSQP quadruple 64 for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

LSQP time type, LSQP control type, LSQP inform type and LSQP data type (Section 2.4) and the subroutines

LSQP initialize, LSQP solve, LSQP terminate, (Section 2.5) and LSQP read specfile (Section 2.7) must be

renamed on one of the USE statements.

2.1 Matrix storage formats

The constraint Jacobian A, that is, the matrix whose rows are the vectors aT
i , i = 1, . . . ,m, may be stored in one of

three input formats.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 1

LSQP GALAHAD

2.1.1 Dense storage format

The matrix is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored

in order within an appropriate real one-dimensional array. Component n ∗ (i− 1)+ j of the storage array A%val will

hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrix are stored. For the l-th entry of A, its row index i, column index j and value ai j

are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The order is

unimportant, but the total number of entries A%ne is also required.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions, DOUBLE PRECISION for the double precision cases

and quadruple-precision if 128-bit reals are available, and correspond to rp = real32, rp = real64 and rp =

real128 respectively as defined by the fortran iso fortran env module. The latter are default (32-bit) and long

(64-bit) integers, and correspond to ip = int32 and ip = int64, respectively, again from the iso fortran env

module.

2.3 Parallel usage

OpenMP may be used by the GALAHAD LSQP package to provide parallelism for some solvers in shared memory

environments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP

must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number

of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.4 The derived data types

Six derived data types are accessible from the package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrix A. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries ai j = a ji of a matrix A is represented as a single entry (see §2.1.1–2.1.3). Any

duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

new problem structure is a scalar variable of type default LOGICAL, that is .TRUE. if this is the first (or only)

problem in a sequence of problems with identical ”structure” to be attempted, and .FALSE. if a previous

problem with the same ”structure” (but different numerical data) has been solved. Here, the term ”structure”

refers both to the sparsity patterns of the Jacobian matrices A involved (but not their numerical values), to the

zero/nonzero/infinity patterns (a bound is either zero, ± infinity, or a finite but arbitrary nonzero) of each of

the constraint bounds, and to the variables and constraints that are fixed (both bounds are the same) or free (the

lower and upper bounds are ± infinity, respectively).

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

Hessian kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the weights w have special

or general values. Possible values for Hessian kind are:

0 In this case, w = 0, and an approximation to the analytic center (if gradient kind = 0, see below) or the

solution to the resulting linear program (if gradient kind 6= 0) will be computed.

1 In this case, wi = 1 for i = 1, . . . ,n.

6= 0,1 In this case, general values of w will be used, and will be provided by the user in the component WEIGHT.

WEIGHT is a rank-one allocatable array type REAL(rp), that must be allocated to have length n, and its j-th component

filled with the value wi for i = 1, . . . ,n, whenever Hessian kind 6= 0,1. If Hessian kind = 0, 1, WEIGHT need

not be allocated.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 3

LSQP GALAHAD

X0 is a rank-one allocatable array type REAL(rp), that must be allocated to have length n, and its j-th component

filled with the value x0
i for i = 1, . . . ,n, whenever Hessian kind 6= 0. If Hessian kind = 0, X0 need not be

allocated.

gradient kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, gi = 1 for i = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided by the user in the component G.

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of the linear term

of the quadratic objective function. The j-th component of G, j = 1, . . . ,n, contains g j. If gradient kind = 0,

1, G need not be allocated.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into A%type. For example, if prob is of derived type LSQP problem type and involves a Jacobian

we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in any of the storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other schemes are used.

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl

on the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed

by setting the corresponding components of C l to any value smaller than -infinity, where infinity is a

component of the control array control (see Section 2.4.3).

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed

by setting the corresponding components of C u to any value larger than infinity, where infinity is a

component of the control array control (see Section 2.4.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.4.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.4.3).

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j. The vector x0 will initially be specified in X.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j.

C is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values Ax of the

constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

2.4.3 The derived data type for holding control parameters

The derived data type LSQP control type is used to hold controlling data. Default values may be obtained by calling

LSQP initialize (see Section 2.5.1), while components may also be changed by calling GALAHAD LSQP read spec

(see Section 2.7.1). The components of LSQP control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in LSQP solve and LSQP terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in LSQP solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in LSQP solve. The default is maxit = 1000.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will occur

in LSQP solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will occur

in LSQP solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

infeas max is a scalar variable of type INTEGER(ip), that specifies the number of iterations for which the overall

infeasibility of the problem is not reduced by at least a factor reduce infeas before the problem is flagged

as infeasible (see reduce infeas). The default is infeas max = 200.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 5

LSQP GALAHAD

muzero fixed is a scalar variable of type INTEGER(ip), that specifies the number of iterations before the initial

barrier parameter (see muzero) may be altered. The default is muzero fixed = 1.

indicator type is a scalar variable of type INTEGER(ip), that specifies the type of indicator used to assess when a

variable or constraint is active. Possible values are:

1 a variable/constraint is active if and only if the distance to its neaerest bound is no larger than indicator-

tol p (see below).

2 a variable/constraint is active if and only if the distance to its neaerest bound is no larger than indicator-

tol pd (see below) times the magnitude of its corresponding dual variable.

3 a variable/constraint is active if and only if the distance to its neaerest bound is no larger than indicator-

tol tapia (see below) times the distance to the same bound at the previous iteration.

The default is indicator type = 3.

restore problem is a scalar variable of type INTEGER(ip), that specifies how much of the input problem is to be

retored on output. Possible values are:

0 nothing is restored.

1 the vector data w, g, cl , cu, xl , and xu will be restored to their input values.

2 the entire problem, that is the above vector data along with the Jacobian matrix A, will be restored.

The default is restore problem = 2.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

stop p is a scalar variable of type REAL(rp), that holds the required accuracy for the primal infeasibility (see Sec-

tion 4). The default is stop p = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD LSQP double).

stop d is a scalar variable of type default REAL(rp), that holds the required accuracy for the dual infeasibility

(see Section 4). The default is stop d = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD -

LSQP double).

stop c is a scalar variable of type default REAL(rp), that holds the required accuracy for the violation of comple-

mentarity slackness (see Section 4). The default is stop c = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD LSQP double).

prfeas is a scalar variable of type REAL(rp), that aims to specify the closest that any initial variable may be to

infeasibility. Any variable closer to infeasibility than prfeas will be moved to prfeas from the offending

bound. However, if a variable is range bounded, and its bounds are closer than prfeas apart, it will be moved

to the mid-point of the two bounds. The default is prfeas = 1.0.

dufeas is a scalar variable of type REAL(rp), that aims to specify the closest that any initial dual variable or Lagrange

multiplier may be to infeasibility. Any variable closer to infeasibility than prfeas will be moved to dufeas from

the offending bound. However, if a dual variable is range bounded, and its bounds are closer than dufeas apart,

it will be moved to the mid-point of the two bounds. The default is dufeas = 1.0.

muzero is a scalar variable of type REAL(rp), that holds the initial value of the barrier parameter. If muzero is not

positive, it will be reset automatically to an appropriate value. The default is muzero = -1.0.

reduce infeas is a scalar variable of type default REAL(rp), that specifies the least factor by which the overall

infeasibility of the problem must be reduced, over infeas max consecutive iterations, for it not be declared

infeasible (see infeas max). The default is reduce infeas = 0.99.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

potential unbounded is a scalar variable of type default REAL(rp), that specifies smallest value of the potential

function divided by the number of one-sided variable and constraint bounds that will be tolerated before the

analytic center is declared to be unbounded. The default is potential unbounded = -10.0.

identical bounds tol is a scalar variable of type REAL(rp). Every pair of constraint bounds (cl
i ,c

u
i) or (xl

j,x
u
j)

that is closer than identical bounds tol will be reset to the average of their values, 1
2 (c

l
i + cu

i) or 1
2 (x

l
j + xu

j)
respectively. The default is identical bounds tol = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GA-

LAHAD LSQP double).

indicator tol p is a scalar variable of type REAL(rp)that provides the indicator tolerance associated with the test

indicator type = 1. The default is indicator tol p = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD LSQP double).

indicator tol pd is a scalar variable of type REAL(rp)that provides the indicator tolerance associated with the test

indicator type = 2. The default is indicator tol pd = 1.0.

indicator tol tapia is a scalar variable of type REAL(rp)that provides the indicator tolerance associated with the

test indicator type = 3. The default is indicator tol tapia = 0.9.

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

clock time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted elapsed

system clock time. Any negative value indicates no limit will be imposed. The default is clock time limit =

- 1.0.

remove dependencies is a scalar variable of type default LOGICAL, that must be set .TRUE. if the algorithm is to

attempt to remove any linearly dependent constraints before solving the problem, and .FALSE. otherwise. We

recommend removing linearly dependencies. The default is remove dependencies = .TRUE..

treat zero bounds as general is a scalar variable of type default LOGICAL. If it is set to .FALSE., variables which

are only bounded on one side, and whose bound is zero, will be recognised as non-negativities/non-positivities

rather than simply as lower- or upper-bounded variables. If it is set to .TRUE., any variable bound xl
j or xu

j

which has the value 0.0 will be treated as if it had a general value. Setting treat zero bounds as general to

.TRUE. has the advantage that if a sequence of problems are reordered, then bounds which are “accidentally”

zero will be considered to have the same structure as those which are nonzero. However, GALAHAD LSQP is

able to take special advantage of non-negativities/non-positivities, so if a single problem, or if a sequence of

problems whose bound structure is known not to change, is/are to be solved, it will pay to set the variable to

.FALSE.. The default is treat zero bounds as general = .FALSE..

just feasible is a scalar variable of type default LOGICAL, that must be set .TRUE. if the algorithm should stop as

soon as a feasible point of the constraint set is found, and .FALSE. otherwise. The default is just feasible =

.FALSE..

getdua is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user-provided estimates of the dual

variables should be replaced by estimates whose aim is to try to balance the requirements of dual feasibility and

complementary slackness, and .FALSE. if users estimates are to be used. The default is getdua = .FALSE..

feasol is a scalar variable of type default LOGICAL, that should be set .TRUE. if the final solution obtained will be

perturbed so that variables close to their bounds are moved onto these bounds, and .FALSE. otherwise. The

default is feasol = .FALSE..

balance initial complentarity is a scalar variable of type default LOGICAL, that should be set .TRUE. if the ini-

tial complementarity is required to be balanced, and .FALSE. otherwise. The default is balance initial complentarity

= .FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 7

LSQP GALAHAD

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

FDC control is a scalar variable of type FDC control type whose components are used to control any detection

of linear dependencies performed by the package GALAHAD FDC. See the specification sheet for the package

GALAHAD FDC for details, and appropriate default values.

SBLS control is a scalar variable of type SBLS control type whose components are used to control factorizations

performed by the package GALAHAD SBLS. See the specification sheet for the package GALAHAD SBLS for details,

and appropriate default values.

2.4.4 The derived data type for holding timing information

The derived data type LSQP time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of LSQP time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

preprocess is a scalar variable of type REAL(rp), that gives the CPU time spent reordering the problem to standard

form prior to solution.

find dependent is a scalar variable of type REAL(rp), that gives the CPU time spent detecting and removing

linearly-dependent equality constraints

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing the required matrices prior

to factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent computing the search direction.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock preprocess is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent reordering

the problem to standard form prior to solution.

clock find dependent is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent de-

tecting and removing linearly-dependent equality constraints

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing the

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent computing the

search direction.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

2.4.5 The derived data type for holding informational parameters

The derived data type LSQP inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of LSQP inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

iter is a scalar variable of type INTEGER(ip), that gives the total number of iterations required.

factorization status is a scalar variable of type INTEGER(ip), that gives the return status from the matrix fac-

torization.

factorization integer is a scalar variable of type long INTEGER(ip), that gives the amount of integer storage

used for the matrix factorization.

factorization real is a scalar variable of type INTEGER(int64), that gives the amount of real storage used for the

matrix factorization.

nfacts is a scalar variable of type INTEGER(ip), that gives the total number of factorizations performed.

nbacts is a scalar variable of type INTEGER(ip), that gives the total number of backtracks performed during the

sequence of linesearches.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function at the best estimate of the

solution found.

potential is a scalar variable of type REAL(rp), that holds the value of the potential function at the best estimate

of the analytic center found in the special case when w = 0.

non negligible pivot is a scalar variable of type REAL(rp), that holds the value of the smallest pivot larger than

control%zero pivot when searching for dependent linear constraints. If non negligible pivot is close

to control%zero pivot, this may indicate that there are further dependent constraints, and it may be worth

increasing control%zero pivot above non negligible pivot and solving again.

feasible is a scalar variable of type default LOGICAL, that has the value .TRUE. if the output value of x satisfies the

constraints, and the value .FALSE. otherwise.

time is a scalar variable of type LSQP time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.4.4).

FDC inform is a scalar variable of type FDC inform type whose components are used to provide information about

any detection of linear dependencies performed by the package GALAHAD FDC. See the specification sheet for the

package GALAHAD FDC for details, and appropriate default values.

SBLS inform is a scalar variable of type SBLS inform type whose components are used to provide information

about factorizations performed by the package GALAHAD SBLS. See the specification sheet for the package GA-

LAHAD SBLS for details, and appropriate default values.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 9

LSQP GALAHAD

2.4.6 The derived data type for holding problem data

The derived data type LSQP data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of LSQP procedures. This data should be preserved, untouched, from the initial

call to LSQP initialize to the final call to LSQP terminate.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine LSQP initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine LSQP solve is called to solve the problem.

3. The subroutine LSQP terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by LSQP solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since LSQP initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONALarguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL LSQP initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type LSQP data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type LSQP control type (see Section 2.4.3). On exit, control

contains default values for the components as described in Section 2.4.3. These values should only be changed

after calling LSQP initialize.

inform is a scalar INTENT(INOUT) argument of type LSQP inform type (see Section 2.4.5). A successful call to

LSQP initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

2.5.2 The linear or separable convex quadratic programming problem solution subroutine

The constrained least-distance problem solution algorithm is called as follows:

CALL LSQP solve(p, data, control, inform[, C stat, B stat])

p is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.4.2). It is used to hold data

about the problem being solved. For a new problem, the user must allocate all the array components, and set

values for all components except p%C. p%new problem structure must be set .TRUE., but will have been reset

to .FALSE. on exit from LSQP solve. Users are free to choose whichever of the three matrix formats described

in Section 2.1 is appropriate for A for their application.

For a problem with the same structure as one that has just been solved, the user may set p%new problem str-

ucture to .FALSE., so long as LSQP terminate has not been called in the interim. The INTEGER(ip) com-

ponents must be unaltered since the previous call to LSQP solve, but the REAL(rp) may be altered to reflect

the new problem.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

The components p%X, p%Y and p%Z must be set to initial estimates, x0, of the primal variables, x, Lagrange

multipliers for the general constraints, y, and dual variables for the bound constraints, z, respectively. Inappro-

priate initial values will be altered, so the user should not be overly concerned if suitable values are not apparent,

and may be content with merely setting p%X=0.0, p%Y=0.0 and p%Z=0.0. The component p%C need not be set

on entry.

On exit, the components p%X, p%Y, p%Z and p%C will contain the best estimates of the primal variables x,

Lagrange multipliers for the general constraints y, dual variables for the bound constraints z, and values of the

constraints Ax respectively. What of the remaining problem data has been restored depends upon the input value

of the control parameter control%restore problem. The return format for a restored array component will be

the same as its input format. Restrictions: p%n > 0, p%m ≥ 0 and p%A ne ≥−2.

data is a scalar INTENT(INOUT) argument of type LSQP data type (see Section 2.4.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to LSQP initialize.

control is a scalar INTENT(IN) argument of type LSQP control type (see Section 2.4.3). Default values may be

assigned by calling LSQP initialize prior to the first call to LSQP solve.

inform is a scalar INTENT(INOUT) argument of type LSQP inform type (see Section 2.4.5). A successful call to

LSQP solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.6.

C stat is an OPTIONAL rank-one INTENT(OUT) array argument of dimension p%m and type INTEGER(ip), that if

PRESENT indicates which of the general linear constraints are likely in the optimal working set (that is a set of

active constraints with linearly independent gradients). Possible values for C stat(i), i= 1, . . . , p%m, and their

meanings are

<0 the i-th general constraint is in the working set, on its lower bound,

>0 the i-th general constraint is in the working set, on its upper bound, and

0 the i-th general constraint is not in the working set.

B stat is an OPTIONAL rank-one INTENT(OUT) array argument of dimension p%n and type INTEGER(ip), that that if

PRESENT indicates which of the simple bound constraints are likely in the optimal working set. Possible values

for B stat(j), j= 1, . . . , p%n, and their meanings are

<0 the j-th simple bound constraint is in the working set, on its lower bound,

>0 the j-th simple bound constraint is in the working set, on its upper bound, and

0 the j-th simple bound constraint is not in the working set.

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL LSQP terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type LSQP data type exactly as for LSQP solve, which must not have

been altered by the user since the last call to LSQP initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type LSQP control type exactly as for LSQP solve.

inform is a scalar INTENT(OUT) argument of type LSQP inform type exactly as for LSQP solve. Only the com-

ponent status will be set on exit, and a successful call to LSQP terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 11

LSQP GALAHAD

2.6 Warning and error messages

A negative value of inform%status on exit from LSQP solve or LSQP terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively. status is given by the value inform%alloc status.

-3. One of the restrictions prob%n > 0 or prob%m ≥ 0 or requirements that prob%A type contains its relevant string

’DENSE’, ’COORDINATE’ or ’SPARSE BY ROWS’ has been violated.

-4. The bound constraints are inconsistent.

-5. The constraints appear to have no feasible point.

-7. The problem is unbounded from below. This can only happen if one (or more) wi = 0 and its corresponding

gi 6= 0.

-8. The analytic center appears to be unbounded.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-11. The solution of a set of linear equations using factors from the factorization package failed; the return status

from the factorization package is given in the component inform%factor status.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type LSQP control type (see Section 2.4.3), by reading an appropriate data specification file using the

subroutine LSQP read specfile. This facility is useful as it allows a user to change LSQP control parameters without

editing and recompiling programs that call LSQP.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by LSQP read specfile must start with a ”BEGIN LSQP” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by LSQP_read_specfile ..)

BEGIN LSQP

keyword value

.......

keyword value

END

(.. lines ignored by LSQP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN LSQP” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN LSQP SPECIFICATION

and

END LSQP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN LSQP” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when LSQP read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by LSQP read specfile.

Control parameters corresponding to the components FDC control and SBLS control may be changed by includ-

ing additional sections enclosed by “BEGIN FDC” and “END FDC”, and “BEGIN SBLS” and “END SBLS”, respectively.

See the specification sheets for the packages GALAHAD FDC and GALAHAD SBLS for further details.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL LSQP_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type LSQP control type (see Section 2.4.3). Default values should

have already been set, perhaps by calling LSQP initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.3) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 13

LSQP GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-number-of-iterations %maxit integer

start-print %start print integer

stop-print %stop print integer

maximum-poor-iterations-before-infeasible %infeas max integer

barrier-fixed-until-iteration %muzero fixed integer

indicator-type-used %indicator type integer

restore-problem-on-output %restore problem integer

infinity-value %infinity real

primal-accuracy-required %stop p real

dual-accuracy-required %stop d real

complementary-slackness-accuracy-required %stop c real

mininum-initial-primal-feasibility %prfeas real

mininum-initial-dual-feasibility %dufeas real

initial-barrier-parameter %muzero real

poor-iteration-tolerance %reduce infeas real

minimum-potential-before-unbounded %potential unbounded real

identical-bounds-tolerance %identical bounds tol real

primal-indicator-tolerance %indicator tol p real

primal-dual-indicator-tolerance %indicator tol pd real

tapia-indicator-tolerance %indicator tol tapia real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

remove-linear-dependencies %remove dependencies logical

treat-zero-bounds-as-general %treat zero bounds as general logical

just-find-feasible-point %just feasible logical

get-advanced-dual-variables %getdua logical

move-final-solution-onto-bound %feasol logical

Table 2.1: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level= 1, a single line of output will be produced for each iteration of the process. This will

include values of the current primal and dual infeasibility, and violation of complementary slackness, the feasibility-

phase objective value, the current steplength, the value of the barrier parameter, the number of backtracks in the

linesearch and the elapsed clock time in seconds.

If control%print level ≥ 2 this output will be increased to provide significant detail of each iteration. This

extra output includes residuals of the linear systems solved, and, for larger values of control%print level, values

of the primal and dual variables and Lagrange multipliers.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: LSQP solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPP,

GALAHAD QPD, GALAHAD ROOTS, GALAHAD SBLS and GALAHAD FDC.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’}.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

W2(x− x0)+ g = AT y+ z, y = yl + yu and z = zl + zu, (4.3)

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

where the diagonal matrix W2 has diagonal entries w2
j , j = 1, . . . ,n, the vectors y and z are known as the Lagrange

multipliers for the general linear constraints, and the dual variables for the bounds, respectively, and where the vector

inequalities hold componentwise.

Primal-dual interior point methods iterate towards a point that satisfies these conditions by ultimately aiming

to satisfy (4.1), (4.3) and (4.5), while ensuring that (4.2) and (4.4) are satisfied as strict inequalities at each stage.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 15

LSQP GALAHAD

Appropriate norms of the amounts by which (4.1), (4.3) and (4.5) fail to be satisfied are known as the primal and dual

infeasibility, and the violation of complementary slackness, respectively. The fact that (4.2) and (4.4) are satisfied as

strict inequalities gives such methods their other title, namely interior-point methods.

When w 6= 0 or g 6= 0, the method aims at each stage to reduce the overall violation of (4.1), (4.3) and (4.5), rather

than reducing each of the terms individually. Given an estimate v = (x, c, y, yl , yu, z, zl , zu) of the primal-dual

variables, a correction ∆v = ∆(x, c, y, yl , yu, z, zl , zu) is obtained by solving a suitable linear system of Newton

equations for the nonlinear systems (4.1), (4.3) and a parameterized perturbation of (4.5). An improved estimate

v+α∆v is then used, where the stepsize α is chosen as close to 1.0 as possible while ensuring both that (4.2) and (4.4)

continue to hold and that the individual components which make up the complementary slackness (4.5) do not deviate

too significantly from their average value. The parameter that controls the perturbation of (4.5) is ultimately driven to

zero. The Newton equations are solved by applying the GALAHAD matrix factorization package GALAHAD SBLS, but

there are options to factorize the matrix as a whole (the so-called ”augmented system” approach), to perform a block

elimination first (the ”Schur-complement” approach), or to let the method itself decide which of the two previous

options is more appropriate. The ”Schur-complement” approach is usually to be prefered when all the weights are

nonzero or when every variable is bounded (at least one side), but may be inefficient if any of the columns of A is too

dense.

When w = 0 and g = 0, the method aims instead firstly to find an interior primal feasible point, that is to ensure

that (4.1) is satisfied. One this has been achieved, attention is switched to mninizing the potential function

φ(x, c) =−
m

∑
i=1

log(ci − cl
i)−

m

∑
i=1

log(cu
i − ci)−

n

∑
j=1

log(x j − xl
j)−

n

∑
j=1

log(xu
j − x j),

while ensuring that (4.1) remain satisfied and that x and c are strictly interior points for (4.2). The global minimizer of

this minimization problem is known as the analytic center of the feasible region, and may be viewed as a feasible point

that is as far from the boundary of the constraints as possible. Note that terms in the above sumations corresponding

to infinite bounds are ignored, and that equality constraints are treated specially. Appropriate ”primal” Newton cor-

rections are used to generate a sequence of improving points converging to the analytic center, while the iteration is

stabilized by performing linesearches along these corrections with respect to φ(x, c).

In order to make the solution as efficient as possible, the variables and constraints are reordered internally by the

GALAHAD package GALAHAD QPP prior to solution. In particular, fixed variables, and free (unbounded on both sides)

constraints are temporarily removed.

References:

The basic algorithm is that of

Y. Zhang (1994). On the convergence of a class of infeasible interior-point methods for the horizontal linear comple-

mentarity problem. SIAM J. Optimization 4 (1) 208-227,

with a number of enhancements described by

A. R. Conn, N. I. M. Gould, D. Orban and Ph. L. Toint (1999). A primal-dual trust-region algorithm for minimizing

a non-convex function subject to general inequality and linear equality constraints. Mathematical Programming 87

215-249.

5 EXAMPLE OF USE

Suppose we wish to find a point ”closest” to x0 = (−2,1,3)T that satisfies the general linear constraints 1≤ 2x1+x2 ≤
2, x2 + x3 = 2, and simple bounds −1 ≤ x1 ≤ 1 and x3 ≤ 2. Suppose furthermore, that we wish to measure ”closest”

using firstly the weights w = (0.1,1,2)T and secondly w = (1,1,1)T , and that we also wish to find the analytic center

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

of the feasible region. Then, on writing the data for this problem as

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, cu =

(

2

2

)

, xl =





−1

−∞
−∞



 and xu =





1

∞
2





we may use the following code—note that we ask for high accuracy when finding the analytic center by setting

control%stop c = 10−16 and control%itref max = 2:

! THIS VERSION: GALAHAD 2.2 - 23/04/2008 AT 16:30 GMT.

PROGRAM GALAHAD_LSQP_EXAMPLE

USE GALAHAD_LSQP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (LSQP_data_type) :: data

TYPE (LSQP_control_type) :: control

TYPE (LSQP_inform_type) :: inform

INTEGER, PARAMETER :: n = 3, m = 2, a_ne = 4

INTEGER :: i, s

! start problem data

ALLOCATE(p%X_l(n), p%X_u(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))

ALLOCATE(p%X(n), p%Y(m), p%Z(n))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%m = m ; p%f = 0.0_wp ! dimensions & objective constant

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%gradient_kind = 0

! sparse co-ordinate storage format: integer components

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%A%row = (/ 1, 1, 2, 2 /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! integer components complete

CALL LSQP_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

control%restore_problem = 1 ! Restore vector data on exit

! control%print_level = 1

! control%SBLS_control%symmetric_linear_solver = ’ma57’

! control%SBLS_control%print_level = 1

! control%FDC_control%print_level = 1

DO i = 0, 2

! DO i = 0, 1

p%X = (/ -2.0_wp, 1.0_wp, 3.0_wp /) ! set x0

p%Y = 0.0_wp ; p%Z = 0.0_wp ! start multipliers from zero

! sparse co-ordinate storage format: real components

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

! real components complete

p%Hessian_kind = 2 - i

IF (p%Hessian_kind == 0) THEN

control%stop_c = 10.0_wp ** (- 12) ; control%itref_max = 2

END IF

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 17

LSQP GALAHAD

IF (p%Hessian_kind == 2) THEN

ALLOCATE(p%WEIGHT(n)) ; p%WEIGHT = (/ 0.1_wp, 1.0_wp, 2.0_wp /)

ALLOCATE(p%X0(n))

END IF

IF (p%Hessian_kind /= 0) p%X0 = p%X

CALL LSQP_solve(p, data, control, inform) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

IF (p%Hessian_kind == 0) THEN

WRITE(6, "(’ Eg ’, I1, I6, ’ iterations. Optimal potential value =’,&

& ES12.4, /, ’ Analytic center = ’, (5ES12.4))") &

i + 1, inform%iter, inform%potential, p%X

ELSE

WRITE(6, "(’ Eg ’, I1, I6, ’ iterations. Optimal objective value =’,&

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

i + 1, inform%iter, inform%obj, p%X

END IF

ELSE ! Error returns

WRITE(6, "(’ LSQP_solve exit status = ’, I6) ") inform%status

END IF

END DO

CALL LSQP_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_LSQP_EXAMPLE

This produces the following output:

Eg 1 6 iterations. Optimal objective value = 2.5313E+00

Optimal solution = 5.0022E-01 4.1431E-07 2.0000E+00

Eg 2 8 iterations. Optimal objective value = 2.7500E+00

Optimal solution = -4.9773E-01 2.4977E+00 2.0000E+00

Eg 3 7 iterations. Optimal potential value = 7.1493E-01

Analytic center = -3.7381E-01 2.3013E+00 -3.0132E-01

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format: integer components

...

! integer components complete

by

! sparse row-wise storage format: integer components

CALL SMT_put(p%A%type, ’SPARSE_BY_ROWS’) ! Specify sparse-by-row storage

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%A%col = (/ 1, 2, 2, 3 /) ! Jacobian A

p%A%ptr = (/ 1, 3, 5 /) ! Set row pointers

! integer components complete

and

! sparse co-ordinate storage format: real components

...

! real components complete

by

! sparse row-wise storage format: real components

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

! real components complete

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 LSQP (November 29, 2024) GALAHAD

GALAHAD LSQP

or using a dense storage format with the replacement lines

! dense storage format: integer components

CALL SMT_put(p%A%type, ’DENSE’) ! Specify dense storage for A

ALLOCATE(p%A%val(n * m))

! integer components complete

and

! dense storage format: real components

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian

! real components complete

respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSQP (November 29, 2024) 19

