
C interfaces to GALAHAD CRO

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Thu Jun 22 2023

i

1 GALAHAD C package cro 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 1

1.1.3 Originally released . 1

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 3

1.1.7 Call order . 3

1.1.8 Array indexing . 3

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 galahad_cro.h File Reference . 7

3.1.1 Data Structure Documentation . 7

3.1.1.1 struct cro_control_type . 7

3.1.1.2 struct cro_time_type . 8

3.1.1.3 struct cro_inform_type . 9

3.1.2 Function Documentation . 9

3.1.2.1 cro_initialize() . 9

3.1.2.2 cro_read_specfile() . 10

3.1.2.3 cro_crossover_solution() . 10

3.1.2.4 cro_terminate() . 12

4 Example Documentation 15

4.1 crot.c . 15

4.2 crotf.c . 16

C interfaces to GALAHAD CRO GALAHAD 4.0

Chapter 1

GALAHAD C package cro

1.1 Introduction

1.1.1 Purpose

Provides a crossover from a solution to the convex quadratic programming problem

minimize q(x) =
1

2
xTHx+ gTx+ f

subject to the general linear constraints

cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
xl
j ≤ xj ≤ xu

j , j = 1, . . . , n,

found by an interior-point method to one in which the matrix of defining active constraints/variables is of full
rank. Here, the n by n symmetric, positive-semi-definite matrix H , the vectors g, ai, cl, cu, xl, xu, the scalar f
are given. In addition a solution x along with optimal Lagrange multipliers y for the general constraints and dual
variables z for the simple bounds must be provided (see Section∼galmethod}). These will be adjusted as necessary.
Any of the constraint bounds cli, c

u
i , xl

j and xu
j may be infinite. Full advantage is taken of any zero coefficients in

the matrix H or the matrix A of vectors ai.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

August 2010, C interface January 2022.

2 GALAHAD C package cro

1.1.4 Terminology

Any required solution x necessarily satisfies the primal optimality conditions

(1a) Ax = c

and

(1b) cl ≤ c ≤ cu, xl ≤ x ≤ xu,

the dual optimality conditions

(2a) Hx+ g = AT y + z

where

(2b) y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(3) (Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual
variables for the bounds, respectively, and where the vector inequalities hold component-wise.

1.1.5 Method

Denote the active constraints by AAx = cA and the active bounds by IAx = xA. Then any optimal solution
satisfies the linear system  H −AT

A −ITA
AA 0 0
IA 0 0

 x
yA
zA

 =

 −g
cA
xA

 .

where yA and zA are the corresponding active Lagrange multipliers and dual variables respectively. Consequently
the difference between any two solutions (∆x,∆y,∆z) must satisfy

(4)

 H −AT
A −ITA

AA 0 0
IA 0 0

 ∆x
∆yA
∆zA

 = 0.

Thus there can only be multiple solution if the coefficient matrix K of (4) is singular. The algorithm used in CRO
exploits this. The matrix K is checked for singularity using the GALAHAD package ULS. If K is non singular, the
solution is unique and the solution input by the user provides a linearly independent active set. Otherwise K is
singular, and partitions AT

A = (AT
B AT

N) and ITA = (ITB ITN) are found so that H −AT
B −ITB

AB 0 0
IB 0 0


is non-singular and the non-basic constraints AT

N and ITN are linearly dependent on the basic ones (AT
B ITB). In

this case (4) is equivalent to

(5)

 H −AT
B −ITB

AB 0 0
IB 0 0

 =

 AT
N

0
0

∆yN +

 ITN
0
0

∆zN

Thus, starting from the user's (x, y, z) and with a factorization of the coefficient matrix of (5) found by the GALA-
HAD package SLS, the alternative solution (x+αx, y+αy, z+αz), featuring (∆x,∆yB ,∆zB) from (5) in which
successively one of the components of ∆yN and ∆zN in turn is non zero, is taken. The scalar α at each stage
is chosen to be the largest possible that guarantees (2.b); this may happen when a non-basic multiplier/dual vari-
able reaches zero, in which case the corresponding constraint is disregarded, or when this happens for a basic
multiplier/dual variable, in which case this constraint is exchanged with the non-basic one under consideration and
disregarded. The latter corresponds to changing the basic-non-basic partition in (5), and subsequent solutions may
be found by updating the factorization of the coefficient matrix in (5) following the basic-non-basic swap using the
GALAHAD package SCU.

GALAHAD 4.0 C interfaces to GALAHAD CRO

1.1 Introduction 3

1.1.6 Reference

1.1.7 Call order

To solve a given problem, functions from the cro package must be called in the following order:

• cro_initialize - provide default control parameters and set up initial data structures

• cro_read_specfile (optional) - override control values by reading replacement values from a file

• cro_crossover_solution - move from a primal-dual soution to a full rank one

• cro_terminate - deallocate data structures

See Section ?? for examples of use.

1.1.8 Array indexing

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; add 1 to input integer arrays if fortran-style indexing is used, and
beware that return integer arrays will adhere to this.

C interfaces to GALAHAD CRO GALAHAD 4.0

4 GALAHAD C package cro

GALAHAD 4.0 C interfaces to GALAHAD CRO

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_cro.h . 7

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD CRO

Chapter 3

File Documentation

3.1 galahad_cro.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_sls.h"
#include "galahad_sbls.h"
#include "galahad_uls.h"
#include "galahad_ir.h"
#include "galahad_scu.h"

Data Structures

• struct cro_control_type
• struct cro_time_type
• struct cro_inform_type

Functions

• void cro_initialize (void ∗∗data, struct cro_control_type ∗control, int ∗status)
• void cro_read_specfile (struct cro_control_type ∗control, const char specfile[])
• void cro_crossover_solution (void ∗∗data, struct cro_control_type ∗control, struct cro_inform_type ∗inform,

int n, int m, int m_equal, int h_ne, const real_wp_ H_val[], const int H_col[], const int H_ptr[], int a_ne, const
real_wp_ A_val[], const int A_col[], const int A_ptr[], const real_wp_ g[], const real_wp_ c_l[], const real←↩

wp c_u[], const real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_ c[], real_wp_ y[], real_wp_
z[], int x_stat[], int c_stat[])

• void cro_terminate (void ∗∗data, struct cro_control_type ∗control, struct cro_inform_type ∗inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct cro_control_type

control derived type as a C struct

Examples

crot.c, and crotf.c.

8 File Documentation

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on stream
error

int out general output occurs on stream out

int print_level the level of output required is specified by
print_level

int max_schur_complement the maximum permitted size of the Schur
complement before a refactorization is performed

real_wp_ infinity any bound larger than infinity in modulus will be
regarded as infinite

real_wp_ feasibility_tolerance feasibility tolerance for KKT violation

bool check_io if .check_io is true, the input (x,y,z) will be fully
tested for consistency

bool refine_solution if .refine solution is true, attempt to satisfy the
KKT conditions as accurately as possible

bool space_critical if .space_critical is true, every effort will be made
to use as little space as possible. This may result
in longer computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution.
Otherwise, computation will continue

char symmetric_linear_solver[31] indefinite linear equation solver

char unsymmetric_linear_solver[31] unsymmetric linear equation solver

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix
contains the required string enclosed in quotes,
e.g. "string" or 'string'

struct sls_control_type sls_control control parameters for SLS

struct sbls_control_type sbls_control control parameters for SBLS

struct uls_control_type uls_control control parameters for ULS

struct ir_control_type ir_control control parameters for iterative refinement

3.1.1.2 struct cro_time_type

time derived type as a C struct

Data Fields

real_sp_ total the total CPU time spent in the package

real_sp_ analyse the CPU time spent reordering the matrix prior to factorization

real_sp_ factorize the CPU time spent factorizing the required matrices

real_sp_ solve the CPU time spent computing corrections

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_analyse the clock time spent analysing the required matrices prior to factorizat

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing corrections

GALAHAD 4.0 C interfaces to GALAHAD CRO

3.1 galahad_cro.h File Reference 9

3.1.1.3 struct cro_inform_type

inform derived type as a C struct

Examples

crot.c, and crotf.c.

Data Fields

int status return status. See CRO_solve for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an allocation/deallocation error
occurred

int dependent the number of dependent active constraints

struct cro_time_type time timings (see above)

struct sls_inform_type sls_inform information from SLS

struct sbls_inform_type sbls_inform information from SBLS

struct uls_inform_type uls_inform information from ULS

int scu_status information from SCU
struct scu_inform_type scu_inform see scu_status

struct ir_inform_type ir_inform information from IR

3.1.2 Function Documentation

3.1.2.1 cro_initialize()

void cro_initialize (

void ∗∗ data,

struct cro_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see cro_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The initialization was succesful.

Examples

crot.c, and crotf.c.

C interfaces to GALAHAD CRO GALAHAD 4.0

10 File Documentation

3.1.2.2 cro_read_specfile()

void cro_read_specfile (

struct cro_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNCRO.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/cro.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see cro_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 cro_crossover_solution()

void cro_crossover_solution (

void ∗∗ data,

struct cro_control_type ∗ control,

struct cro_inform_type ∗ inform,

int n,

int m,

int m_equal,

int h_ne,

const real_wp_ H_val[],

const int H_col[],

const int H_ptr[],

int a_ne,

const real_wp_ A_val[],

const int A_col[],

const int A_ptr[],

const real_wp_ g[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Crosover the solution from a primal-dual to a basic one.

GALAHAD 4.0 C interfaces to GALAHAD CRO

3.1 galahad_cro.h File Reference 11

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures
(see cro_control_type). The parameter .status is as follows:

in,out data holds private internal data.

out inform is a struct containing output information (see cro_inform_type). The component
.status gives the exit status from the package. Possible values are:

• 0. The crossover was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m >= m_equal >= 0 has been violated.

• -4 the bound constraints are inconsistent.

• -5 the general constraints are likely inconsistent.

• -9 an error has occured in SLS_analyse.

• -10 an error has occured in SLS_factorize.

• -11 an error has occured in SLS_solve.

• -12 an error has occured in ULS_factorize.

• -14 an error has occured in ULS_solve.

• -16 the residuals are large; the factorization may be unsatisfactory.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in m_equal is a scalar variable of type int, that holds the number of general linear equality
constraints. Such constraints must occur first in A.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of type double, that holds the values of the entries of the
lower triangular part of the Hessian matrix H . The entries are stored by consecutive
rows, the order within each row is unimportant.

in H_col is a one-dimensional array of type int, that holds the column indices of the lower
triangular part of H , in the same order as those in H_val.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H . The n+1-st component holds the total
number of entries (plus one if fortran indexing is used).

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint
Jacobian matrix A.

in A_val is a one-dimensional array of type double, that holds the values of the entries of the
constraint Jacobian matrix A. The entries are stored by consecutive rows, the order
within each row is unimportant. Equality constraints must be ordered first.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of
A in the same order as those in A_val.

C interfaces to GALAHAD CRO GALAHAD 4.0

12 File Documentation

Parameters

in A_ptr is a one-dimensional array of size m+1 and type int, that holds the starting position of
each row of A. The m+1-st component holds the total number of entries (plus one if
fortran indexing is used).

in g is a one-dimensional array of size n and type double, that holds the linear term g of
the objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl

on the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl

on the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl

on the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl
j .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl

on the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl
j .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

in,out c is a one-dimensional array of size m and type double, that holds the residual
c(x) = Ax. The i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0,
... , n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the
dual variables. The j-th component of z, j = 0, ... , n-1, contains zj .

in,out x_stat is a one-dimensional array of size n and type int, that must be set on entry to give the
status of the problem variables. If x_stat(j) is negative, the variable xj is active on its
lower bound, if it is positive, it is active and lies on its upper bound, and if it is zero, it is
inactiive and lies between its bounds. On exit, the j-th component of x_stat is -1 if the
variable is basic and active on its lower bound, -2 it is non-basic but active on its lower
bound, 1 if it is basic and active on its upper bound, 2 it is non-basic but active on its
upper bound, and 0 if it is inactive.

in,out c_stat is a one-dimensional array of size m and type int, that must be set on entry to give the
status of the general linear constraints. If c_stat(i) is negative, the constraint value
aTi x is active on its lower bound, if it is positive, it is active and lies on its upper bound,
and if it is zero, it is inactiive and lies between its bounds. On exit, the i-th component
of x_stat is -1 if the constraint is basic and active on its lower bound, -2 it is non-basic
but active on its lower bound, 1 if it is basic and active on its upper bound, 2 it is
non-basic but active on its upper bound, and 0 if it is inactive.

Examples

crot.c, and crotf.c.

3.1.2.4 cro_terminate()

void cro_terminate (

void ∗∗ data,

struct cro_control_type ∗ control,

struct cro_inform_type ∗ inform)

Deallocate all internal private storage

GALAHAD 4.0 C interfaces to GALAHAD CRO

3.1 galahad_cro.h File Reference 13

Parameters

in,out data holds private internal data

out control is a struct containing control information (see cro_control_type)

out inform is a struct containing output information (see cro_inform_type)

Examples

crot.c, and crotf.c.

C interfaces to GALAHAD CRO GALAHAD 4.0

14 File Documentation

GALAHAD 4.0 C interfaces to GALAHAD CRO

Chapter 4

Example Documentation

4.1 crot.c

This is an example of how to use the package.

/* crot.c */
/* Full test for the CRO C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_cro.h"
int main(void) {

// Derived types
void *data;
struct cro_control_type control;
struct cro_inform_type inform;
// Set problem dimensions
int n = 11; // dimension
int m = 3; // number of general constraints
int m_equal = 1; // number of equality constraints
// describe the objective function
int H_ne = 21;
real_wp_ H_val[] = {1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,

1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0};
int H_col[] = {0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10};
int H_ptr[] = {0,1,3,5,7,9,11,13,15,17,19,21};
real_wp_ g[] = {0.5,-0.5,-1.0,-1.0,-1.0, -1.0,-1.0,-1.0,-1.0,-1.0,-0.5};
// describe constraints
int A_ne = 30;
real_wp_ A_val[] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};

int A_col[] = {0,1,2,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9,10,
1,2,3,4,5,6,7,8,9,10};

int A_ptr[] = {0,11,20,30};
real_wp_ c_l[] = {10.0,9.0,-INFINITY};
real_wp_ c_u[] = {10.0,INFINITY,10.0};
real_wp_ x_l[] = {0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};
real_wp_ x_u[] = {INFINITY,INFINITY,INFINITY,INFINITY,INFINITY,INFINITY,

INFINITY,INFINITY,INFINITY,INFINITY,INFINITY};
// provide optimal variables, Lagrange multipliers and dual variables
real_wp_ x[] = {0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0};
real_wp_ c[] = {10.0,9.0,10.0};
real_wp_ y[] = { -1.0,1.5,-2.0};
real_wp_ z[] = {2.0,4.0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5};
// provide interior-point constraint and variable status
int c_stat[] = {-1,-1,1};
int x_stat[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};
// Set output storage
char st;
int status;
printf(" C sparse matrix indexing\n\n");
// Initialize CRO
cro_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// crossover the solution

16 Example Documentation

cro_crossover_solution(&data, &control, &inform,
n, m, m_equal,
H_ne, H_val, H_col, H_ptr,
A_ne, A_val, A_col, A_ptr,
g, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

printf(" CRO_crossover exit status = %1i\n", inform.status);
// Delete internal workspace
cro_terminate(&data, &control, &inform);

}

4.2 crotf.c

This is the same example, but now fortran-style indexing is used.

/* crotf.c */
/* Full test for the CRO C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_cro.h"
int main(void) {

// Derived types
void *data;
struct cro_control_type control;
struct cro_inform_type inform;
// Set problem dimensions
int n = 11; // dimension
int m = 3; // number of general constraints
int m_equal = 1; // number of equality constraints
// describe the objective function
int H_ne = 21;
real_wp_ H_val[] = {1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,

1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0};
int H_col[] = {1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11};
int H_ptr[] = {1,2,4,6,8,10,12,14,16,18,20,22};
real_wp_ g[] = {0.5,-0.5,-1.0,-1.0,-1.0, -1.0,-1.0,-1.0,-1.0,-1.0,-0.5};
// describe constraints
int A_ne = 30;
real_wp_ A_val[] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};

int A_col[] = {1,2,3,4,5,6,7,8,9,10,11,3,4,5,6,7,8,9,10,11,
2,3,4,5,6,7,8,9,10,11 };

int A_ptr[] = {1,12,21,31};
real_wp_ c_l[] = {10.0,9.0,-INFINITY};
real_wp_ c_u[] = {10.0,INFINITY,10.0};
real_wp_ x_l[] = {0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};
real_wp_ x_u[] = {INFINITY,INFINITY,INFINITY,INFINITY,INFINITY,INFINITY,

INFINITY,INFINITY,INFINITY,INFINITY,INFINITY};
// provide optimal variables, Lagrange multipliers and dual variables
real_wp_ x[] = {0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0};
real_wp_ c[] = {10.0,9.0,10.0};
real_wp_ y[] = { -1.0,1.5,-2.0};
real_wp_ z[] = {2.0,4.0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5};
// provide interior-point constraint and variable status
int c_stat[] = {-1,-1,1};
int x_stat[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};
// Set output storage
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
// Initialize CRO
cro_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// crossover the solution
cro_crossover_solution(&data, &control, &inform,

n, m, m_equal,
H_ne, H_val, H_col, H_ptr,
A_ne, A_val, A_col, A_ptr,
g, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

printf(" CRO_crossover exit status = %1i\n", inform.status);
// Delete internal workspace
cro_terminate(&data, &control, &inform);

}

GALAHAD 4.0 C interfaces to GALAHAD CRO

	1 GALAHAD C package cro
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Array indexing

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_cro.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct cro_control_type
	3.1.1.2 struct cro_time_type
	3.1.1.3 struct cro_inform_type

	3.1.2 Function Documentation
	3.1.2.1 cro_initialize()
	3.1.2.2 cro_read_specfile()
	3.1.2.3 cro_crossover_solution()
	3.1.2.4 cro_terminate()

	4 Example Documentation
	4.1 crot.c
	4.2 crotf.c

