C interfaces to GALAHAD EQP

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Thu Jun 22 2023

1 GALAHAD C package eqp 1
1.1 Introduction L e e e e e 1
T11PUpose e 1

112 AUthOrs . . L L 1

1.1.3 Originally released e 1
1.1.4Terminology o e 2
1.1.5Method L e 2

1.1.6 Reference L 2

1. 1.7 Callorder . . . 3

1.1.8 Unsymmetric matrix storage formats L L o 3

1.1.8.1 Dense storage format L 3

1.1.8.2 Sparse co-ordinate storage format oL Lo 3

1.1.8.3 Sparse row-wise storage formato 4

1.1.9 Symmetric matrix storage formats L oL 4

1.1.9.1 Dense storage format 4

1.1.9.2 Sparse co-ordinate storage format Lo 4

1.1.9.3 Sparse row-wise storage formato 4

1.1.9.4 Diagonal storage format 4

1.1.9.5 Multiples of the identity storage format 4

1.1.9.6 The identity matrixformat L 4

2 File Index 5
21 File List o e 5

3 File Documentation 7
3.1 galahad_eqgp.h File Reference 7
3.1.1 Data Structure Documentation 8

3.1.1.1 structegp_control_type 8
3.1.1.2structeqp_time_type 10
3.1.1.3structeqp_inform_type 10

3.1.2 Function Documentation 11

3.1.21 egp_initialize()o 11
3.1.22eqp_read specfile() 11

3.1.23 eqp_import() 11

3.1.24 eqgp_reset_control() 13
3.1.25eqgp_solve gp() - . - . o i 14

3.1.26 eqgp_solve_sldap() . . - 16
3.1.27egp_resolve_gp() . - e 18

3.1.28 eqgp_information() 19
3.1.29eqp_terminate() 20

4 Example Documentation 21
41 egpt.C . . L e 21

C interfaces to GALAHAD EQP GALAHAD 4.0

4.2 eqptf.c

23

GALAHAD 4.0

C interfaces to GALAHAD EQP

Chapter 1

GALAHAD C package eqgp

1.1 Introduction

1.1.1 Purpose

This package uses an iterative method to solve the equality-constrained quadratic programming problem
1
minimize ¢(z) = §xTH:v +glz+ f

subject to the linear constraints
(1) Az +c¢=0,

where the n by n symmetric matrix H, the m by n matrix A, the vectors g and ¢ Full advantage is taken of any zero
coefficients in the matrices H and A.

The package may alternatively be used to minimize the (shifted) squared- least-distance objective
n

> wi(a; —af)? +gTe + f,

j=1

subject to the linear constraint (1), for given vectors w and 2.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.
C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

March 2006, C interface January 2021.

2 GALAHAD C package eqp

1.1.4 Terminology

The required solution = necessarily satisfies the primal optimality conditions
(2) Ax+¢=0
and the dual optimality conditions
Hx+g— ATy =0 (or W?(z — 2% + g — ATy = 0 for the shifted-least-distance type objective)

where the diagonal matrix W2 has diagonal entries wjz, 7 = 1,...,n, and where the vector y is known as the
Lagrange multipliers for the linear constraints.

1.1.5 Method

A solution to the problem is found in two phases. In the first, a point xr satisfying (2) is found. In the second, the
required solution z = x + s is determined by finding s to minimize ¢(s) = +s” Hs + ghs + fr subject to the
homogeneous constraints As = zero, where grp = Hzp + g and frp = %x%HxF + gTxr + f. The required
constrained minimizer of ¢(s) is obtained by implictly applying the preconditioned conjugate-gradient method in the
null space of A. Any preconditioner of the form

G AT
ke= (50)

is suitable, and the GALAHAD package SBLS provides a number of possibilities. In order to ensure that the
minimizer obtained is finite, an additional, precautionary trust-region constraint ||s|| < A for some suitable positive
radius A is imposed, and the GALAHAD package GLTR is used to solve this additionally-constrained problem.

1.1.6 Reference

The preconditioning aspcets are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. **On implicit-factorization constraint preconditioners”. In Large
Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its
Applications, Vol. 83, Springer Verlag (2006) 61-82

and

H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen ‘On iterative methods and implicit-factorization
preconditioners for regularized saddle-point systems”. SIAM Journal on Matrix Analysis and Applications, 28(1)
(2006) 170-189,

while the constrained conjugate-gradient method is discussed in

N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint, Solving the trust-region subproblem using the Lanczos method.
SIAM Journal on Optimization 9:2 (1999), 504-525.

GALAHAD 4.0 C interfaces to GALAHAD EQP

1.1 Introduction 3

1.1.7 Call order

To solve a given problem, functions from the egp package must be called in the following order:

+ eqgp_initialize - provide default control parameters and set up initial data structures

» eqgp_read_specfile (optional) - override control values by reading replacement values from a file

* eqp_import - set up problem data structures and fixed values

» eqp_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
* solve the problem by calling one of

— eqp_solve_gp - solve the quadratic program

— eqp_solve_sldgp - solve the shifted least-distance problem

- eqgp_resolve_gp (optional) - resolve the problem with the same Hessian and Jacobian, but different g, f and/or
C

» egp_information (optional) - recover information about the solution and solution process

» egp_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and t rue for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n *x ¢ + j of the storage
array A_val will hold the value A;; for0 <i <m —-1,0<j<n—1.

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the [-th entry, 0 < [< ne — 1, of A, its row index i, column
index j and value A4;;, 0 < i <m —1,0 < j <n — 1, are stored as the [-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

C interfaces to GALAHAD EQP GALAHAD 4.0

4 GALAHAD C package eqp

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 < 7 < n — 1, and values
A;; of the nonzero entries in the i-th row are stored in components | = A_ptr(i), ..., A_ptr(i+1)-1,0 < i < m — 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

1.1.9 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H may be presented and stored in a variety of formats.
But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on
or below the leading diagonal).

1.1.9.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part h;; for 0 < j < ¢ < n — 1) need be held. In this case the lower triangle should be stored by
rows, that is component i * i/2 + j of the storage array H_val will hold the value h;; (and, by symmetry, h;;) for
0<j<i<n—1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the I-th entry, 0 < | < ne — 1, of H, its row index i, column
index j and value h;;, 0 < j < i < n — 1, are stored as the I-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries. The column indices j, 0 < j < ¢, and values h;;
of the entries in the i-th row are stored in components | = H_ptr(i), .. ., H_ptr(i+1)-1 of the integer array H_col, and
real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse
matrices, this scheme almost always requires less storage than its predecessor.

1.1.9.4 Diagonal storage format

If H is diagonal (i.e., H;; = O forall0 < ¢ # j < n — 1) only the diagonals entries H;;, 0 < i < n — 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

1.1.9.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = al where I is the n by n identity matrix and « is a scalar), it
suffices to store «v as the first component of H_val.

1.1.9.6 The identity matrix format

If H is the identity matrix, no values need be stored.

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_eqgp.h L

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 3

File Documentation

3.1 galahad_eqp.h File Reference

#include <stdbool.h>

#include <stdint.h>

#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_fdc.h"
#include "galahad_sbls.h"
#include "galahad_gltr.h"

Data Structures

« struct eqp_control_type
« struct eqp_time_type
« struct eqp_inform_type

Functions

« void eqgp_initialize (void xxdata, struct eqp_control_type xcontrol, int xstatus)

 void egp_read_specfile (struct eqp_control_type xcontrol, const char specfile[])

« void egp_import (struct eqp_control_type xcontrol, void *xdata, int xstatus, int n, int m, const char H_type[],
int H_ne, const int H_row[], const int H_col[], const int H_ptr[], const char A_type[], int A_ne, const int
A_row[], const int A_col[], const int A_ptr[])

« void eqp_reset_control (struct eqp_control_type xcontrol, void *xdata, int xstatus)

 void eqp_solve_gp (void xxdata, int xstatus, int n, int m, int h_ne, const real_wp_ H_val[], const real_wp_
g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], real_wp_ c[], real_wp_ x[], real_wp_ y[])

« void eqp_solve_sldgp (void *xdata, int xstatus, int n, int m, const real_wp_ w[], const real_wp_ x0[], const
real_wp_ g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], real_wp_ c[], real_wp_ x[], real_wp_ y[])

+ void eqp_resolve_gp (void xxdata, int xstatus, int n, int m, const real_wp_ g[], const real_wp__f, real_wp_ c[],
real_wp_ x[], real_wp_ y[])

+ void eqp_information (void *xdata, struct eqp_inform_type *xinform, int xstatus)
« void eqgp_terminate (void *xdata, struct eqp_control_type *control, struct eqp_inform_type *inform)

8 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct eqp_control_type

control derived type as a C struct

Examples

eqpt.c, and eqptf.c.

Data Fields
bool | f_indexing use C or Fortran sparse matrix indexing
int | error error and warning diagnostics occur on stream error
int | out general output occurs on stream out
int | print_level the level of output required is specified by print_level
int | factorization the factorization to be used. Possible values are /i 0

automatic /li 1 Schur-complement factorization /li 2
augmented-system factorization (OBSOLETE)

int | max_col the maximum number of nonzeros in a column of A
which is permitted with the Schur-complement
factorization (OBSOLETE)

int | indmin an initial guess as to the integer workspace required
by SBLS (OBSOLETE)

int | valmin an initial guess as to the real workspace required by
SBLS (OBSOLETE)

int | len_ulsmin an initial guess as to the workspace required by ULS
(OBSOLETE)

int | itref_max the maximum number of iterative refinements allowed
(OBSOLETE)

int | cg_maxit the maximum number of CG iterations allowed. If

cg_maxit < 0, this number will be reset to the
dimension of the system + 1

int | preconditioner the preconditioner to be used for the CG. Possible
values are

« 0 automatic

* 1 no preconditioner, i.e, the identity within full
factorization

« 2 full factorization
« 3 band within full factorization

+ 4 diagonal using the barrier terms within full
factorization (OBSOLETE)

» 5 optionally supplied diagonal, G = D

int | semi_bandwidth the semi-bandwidth of a band preconditioner, if
appropriate (OBSOLETE)

int | new_a how much has A changed since last problem solved:
0 = not changed, 1 = values changed, 2 = structure
changed

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference

Data Fields

int | new_h

how much has H changed since last problem solved:
0 = not changed, 1 = values changed, 2 = structure
changed

int | sif _file_device

specifies the unit number to write generated SIF file
describing the current problem

real_wp_ | pivot_tol

the threshold pivot used by the matrix factorization.
See the documentation for SBLS for details
(OBSOLETE)

real_wp_ | pivot_tol_for_basis

the threshold pivot used by the matrix factorization
when finding the ba See the documentation for ULS
for details (OBSOLETE)

real_wp_ | zero_pivot

any pivots smaller than zero_pivot in absolute value
will be regarded to zero when attempting to detect
linearly dependent constraints (OBSOLETE)

real_wp_ | inner_fraction_opt

the computed solution which gives at least
inner_fraction_opt times the optimal value will be
found (OBSOLETE)

real_wp_ | radius

an upper bound on the permitted step (-ve will be
reset to an appropriat large value by egp_solve)

real_wp_ | min_diagonal

diagonal preconditioners will have diagonals no
smaller than min_diagonal (OBSOLETE)

real_wp_ | max_infeasibility_relative

if the constraints are believed to be rank defficient and
the residual at a "typical” feasible point is larger than
max(max_infeasibility_relative * norm A,
max_infeasibility_absolute) the problem will be
marked as infeasible

real_wp_ | max_infeasibility_absolute

see max_infeasibility_relative

real_wp_ | inner_stop_relative

the computed solution is considered as an acceptable
approximation to th minimizer of the problem if the
gradient of the objective in the
preconditioning(inverse) norm is less than max(
inner_stop_relative * initial preconditioning(inverse)
gradient norm, inner_stop_absolute)

real_wp_ | inner_stop_absolute

see inner_stop_relative

real_wp_ | inner_stop_inter

see inner_stop_relative

bool | find_basis_by_transpose

if .find_basis_by_transpose is true, implicit
factorization precondition will be based on a basis of A
found by examining A's transpose (OBSOLETE)

bool | remove_dependencies

if .remove_dependencies is true, the equality
constraints will be preprocessed to remove any linear
dependencies

bool | space_critical

if .space_critical true, every effort will be made to use
as little space as possible. This may result in longer
computation time

bool | deallocate_error_fatal

if .deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution. Otherwise,
computation will continue

bool | generate_sif file

if .generate_sif_file is .true. if a SIF file describing the
current problem is to be generated

char | sif file_name[31]

name of generated SIF file containing input problem

C interfaces to GALAHAD EQP

GALAHAD 4.0

10

File Documentation

Data Fields
char | prefix[31] all output lines will be prefixed by

.prefix(2:LEN(TRIM(.prefix))-1) where .prefix contains
the required string enclosed in quotes, e.g. "string" or
'string’

struct fdc_control_type | fdc_control control parameters for FDC

struct sbls_control_type | sbls_control control parameters for SBLS

struct gltr_control_type | gltr_control control parameters for GLTR

3.1.1.2 struct eqp_time_type

time derived type as a C struct

Data Fields
real_wp_ | total the total CPU time spent in the package
real_wp_ | find_dependent the CPU time spent detecting linear dependencies
real_wp_ | factorize the CPU time spent factorizing the required matrices
real_wp_ | solve the CPU time spent computing the search direction
real_wp_ | solve_inter see solve
real_wp_ | clock_total the total clock time spent in the package
real_wp_ | clock_find_dependent | the clock time spent detecting linear dependencies
real_wp_ | clock_factorize the clock time spent factorizing the required matrices
real_wp_ | clock_solve the clock time spent computing the search direction

3.1.1.3 struct eqp_inform_type

inform derived type as a C struct

Examples

eqpt.c, and eqptf.c.

Data Fields
int | status return status. See EQP_solve for details
int | alloc_status the status of the last attempted allocation/deallocation
char | bad_alloc[81] the name of the array for which an allocation/deallocation
error occurred
int | cg_iter the total number of conjugate gradient iterations required
int | cg_iter_inter see cg_iter
int64_t | factorization_integer | the total integer workspace required for the factorization
int64_t | factorization_real the total real workspace required for the factorization
real_wp_ | obj the value of the objective function at the best estimate of the
solution determined by QPB_solve
struct eqp_time_type | time timings (see above)
struct fdc_inform_type | fdc_inform inform parameters for FDC
e ggls_inform_type sbls_inform inform parameters for SBLS C interfaces to GALAHAD EQP
struct gltr_inform_type | gltr_inform return information from GLTR

3.1 galahad_eqp.h File Reference

11

3.1.2 Function Documentation

3.1.2.1 eqp_initialize()

void egp_initialize

(

void *x data,

struct egp_control_type x control,

int * status)

Set default control values and initialize private data

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see eqp_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
* 0. The import was succesful.
Examples

eqpt.c, and eqptf.c.

3.1.2.2 eqp_read_specfile()

void eqp_read_specfile (

struct egp_control_type x control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNEQP.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $§GALAHAD/doc/eqp.pdf for a list of keywords that may

be set.

Parameters
in, out | control | is a struct containing control information (see eqp_control_type)
in specfile | is a character string containing the name of the specification file

3.1.2.3 eqp_import()

void eqgp_import (

C interfaces to GALAHAD EQP

GALAHAD 4.0

12

File Documentation

struct egp_control_type x control,

void % data,

int * status,

int n,

int m,

const char H _typel],

int H_ne,

const int H_row/[],

const int H col[],

const int H ptr[],

const char A typel],

int A _ne,

const int A _row/[],

const int A col/[],

const int A ptr[])

Import problem data into internal storage prior to solution.

Parameters

in

control

is a struct whose members provide control paramters for the remaining prcedures (see
eqgp_control_type)

in, out

data

holds private internal data

in, out

status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 0. The import was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’,
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

» -23. An entry from the strict upper triangle of H has been specified.

in

is a scalar variable of type int, that holds the number of variables.

in

is a scalar variable of type int, that holds the number of general linear constraints.

in

H_type

is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H. It should be one of 'coordinate’, 'sparse_by_rows', 'dense’,

'diagonal’, 'scaled_identity', 'identity', 'zero' or 'none’, the latter pair if H = 0; lower or
upper case variants are allowed.

in

H_ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in

H_row

is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in

H_col

is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

GALAHAD 4.0

C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 13

Parameters

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H, as well as the total number of entries, in the
sparse row-wise storage scheme. It need not be set when the other schemes are used,
and in this case can be NULL.

in A _type | is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate’, 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A _ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A _row | is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can be
NULL.

Examples

egpt.c, and eqptf.c.

3.1.2.4 eqp_reset_control()

void eqgp_reset_control (
struct eqgp_control_type * control,
void =% data,

int * status)

Reset control parameters after import if required.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
eqgp_control_type)
in,out | data holds private internal data

in, out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

* 0. The import was succesful.

C interfaces to GALAHAD EQP GALAHAD 4.0

14

File Documentation

3.1.2.5 eqp_solve_qp()

void eqgp_solve_gp (

Solve the quadratic program when the Hessian H is available.

Parameters

void *x data,

int * status,

int n,

int m,

int h_ne,

const real_wp_ H val[],
const real_wp_ g[],
const real _wp_ f,

int a_ne,

const real_wp_ A vall],
real_wp_ c[],

real_wp_ x[],

real_wp_ y[])

in, out ‘ data ‘ holds private internal data

GALAHAD 4.0

C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 15

Parameters

in, out | status | is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

* 0. The run was succesful.

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’, 'scaled_identity’,
'identity’, 'zero' or 'none' has been violated.

+ -7. The constraints appear to have no feasible point.

+ -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.
» -17. The step is too small to make further impact.

+ -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

* -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

« -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables
in m is a scalar variable of type int, that holds the number of general linear constraints.
in h_ne | is a scalar variable of type int, that holds the number of entries in the lower triangular

part of the Hessian matrix H.

in H_val | is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, =0, ... , n-1, contains g;.

in f is a scalar of type double, that holds the constant term f of the objective function.

in a ne | is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val | is a one-dimensional array of size a_ne and type double, that holds the values of the

entries of the constraint Jacobian matrix A in any of the available storage schemes.

C interfaces to GALAHAD EQP GALAHAD 4.0

16 File Documentation
Parameters
in c is a one-dimensional array of size m and type double, that holds the linear term c in the
constraints. The i-th component of ¢, i =0, ... , m-1, contains c¢;.
in,out | x is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains ;.
in,out | y is a one-dimensional array of size n and type double, that holds the values ¥ of the
Lagrange multipliers for the linear constraints. The j-th component of y, i =0, ... , m-1,
contains ;.
Examples

egpt.c, and eqptf.c.

3.1.2.6 eqp_solve_sldqgp()

void eqgp_solve_sldgp (

void xx data,

int * status,

int n,

int m,

const real_wp_ w(],
const real_wp_ x0[],
const real_wp_ g[],
const real_wp_ f,
int a_ne,

const real_wp_ A vall],
real_wp_ c[],
real_wp_ x[],

real_wp_ y[])

Solve the shifted least-distance quadratic program

Parameters

in, out ‘ data ‘ holds private internal data

GALAHAD 4.0

C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference 17

Parameters

in, out | status | is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’, 'scaled_identity’,
'identity’, 'zero' or 'none' has been violated.

+ -7. The constraints appear to have no feasible point.

+ -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.
» -17. The step is too small to make further impact.

+ -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

* -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

« -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in w is a one-dimensional array of size n and type double, that holds the values of the weights
w.

in x0 is a one-dimensional array of size n and type double, that holds the values of the shifts

0

X,

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j =0, ... , n-1, contains g;.

in f is a scalar of type double, that holds the constant term f of the objective function.

in a ne | is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val | is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c is a one-dimensional array of size m and type double, that holds the linear term c in the
constraints. The i-th component of ¢, i = 0, ... , m-1, contains c¢;.

C interfaces to GALAHAD EQP GALAHAD 4.0

18 File Documentation

Parameters
in,out | x is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains x ;.
in,out | y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the linear constraints. The j-th componentofy, i =0, ... , m-1,
contains y;.
Examples

egpt.c, and eqptf.c.

3.1.2.7 eqp_resolve_qp()

void eqgp_resolve_gp (
void xx data,
int % status,
int n,
int m,
const real_wp_ g[],
const real_wp_ f,
real_wp_ c[],
real_wp_ x/[],
real_wp_ y[])

Resolve the quadratic program or shifted least-distance quadratic program when some or all of the data g, f and ¢
has changed

Parameters

in, out ‘ data ‘ holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD EQP

3.1 galahad_eqp.h File Reference

Parameters

in, out

status | is a scalar variable of type int, that gives the entry and exit status from the package.

Possible exit are:

0. The run was succesful.

-1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

-3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’, 'scaled_identity’,
'identity’, 'zero' or 'none' has been violated.

-7. The constraints appear to have no feasible point.

-11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

-16. The problem is so ill-conditioned that further progress is impossible.
-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

-19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

-23. An entry from the strict upper triangle of H has been specified.

in

n is a scalar variable of type int, that holds the number of variables

in

is a scalar variable of type int, that holds the number of general linear constraints.

in

g is a one-dimensional array of size n and type double, that holds the linear term g of the

objective function. The j-th component of g, j =0, ... , n-1, contains g;.

in

f is a scalar of type double, that holds the constant term f of the objective function.

in

c is a one-dimensional array of size m and type double, that holds the linear term c in the

constraints. The i-th component of ¢, i =0, ... , m-1, contains c¢;.

in, out

X is a one-dimensional array of size n and type double, that holds the values z of the

optimization variables. The j-th component of x, j =0, ... , n-1, contains ;.

in, out

y is a one-dimensional array of size n and type double, that holds the values ¥ of the

Lagrange multipliers for the linear constraints. The j-th component of y, i =0, ... , m-1,
contains ;.

3.1.2.8 eqp_information()

void egp_information (

void % data,

C interfaces to GALAHAD EQP

GALAHAD 4.0

19

20 File Documentation

struct egp_inform_type % inform,

int % status)

Provides output information

Parameters

in,out | data holds private internal data

out inform | is a struct containing output information (see eqp_inform_type)

out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

+ 0. The values were recorded succesfully

Examples

eqpt.c, and eqptf.c.

3.1.2.9 eqp_terminate()

void egp_terminate (
void x*x data,
struct eqgp_control_type * control,

struct egp_inform_type * inform)

Deallocate all internal private storage

Parameters
in, out | data holds private internal data
out control | is a struct containing control information (see egp_control_type)
out inform | is a struct containing output information (see eqp_inform_type)
Examples

egpt.c, and eqptf.c.

GALAHAD 4.0 C interfaces to GALAHAD EQP

Chapter 4

Example Documentation

4.1 eqpt.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexingto false.
/% egpt.c */
/% Full test for the EQP C interface using C sparse matrix indexing =/
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_egp.h"
int main(void) {
// Derived types
void xdata;
struct egp_control_type control;
struct eqp_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne 3; // Hesssian elements

int H_row[] {0, 1, 2 }; // row indices, NB lower triangle
int H_col[] = {0, 1, 2}; // column indices, NB lower triangle
int H_ptr[] = {0, 1, 2, 3}; // row pointers

real_wp_ H_val[] = {1.0, 1.0, 1.0 }; // values

real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
real wp_ £ = 1.0; // constant term in the objective

int A_ne = 4; // Jacobian elements

int A_row[] = {0, 0, 1, 1}; // row indices

int A_col[] = {0, 1, 1, 2}; // column indices

int A_ptr[] = {0, 2, 4}; // row pointers

real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values

real_wp_ c[] = {3.0, 0.0}; // rhs of the constraints

// Set output storage
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf (" basic tests of gp storage formats\n\n");
for(int d=1; d <= 6; d++){
// Initialize EQP
egp_initialize(&data, &control, &status);
// Set user-defined control options

control.f_indexing = false; // C sparse matrix indexing
control.fdc_control.use_sls = true ;

strcpy (control.fdc_control.symmetric_linear_solver, "sytr ") ;
strcpy (control.sbls_control.symmetric_linear_solver, "sytr ") ;
strcpy (control.sbls_control.definite_linear_solver, "sytr ") ;

// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};

22 Example Documentation

real_wp_ y[] = {0.0,0.0};

1(d) {

se 1: // sparse co-ordinate storage

st = 'C’;

egp_import (&control, &data, &status, n, m,
"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

eqgqp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, %, Y)i

break;
printf (" case %1i break\n",d);
2: // sparse by rows
st = 'R’;

egp_import (&control, &data, &status, n, m,
"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, x, Yy);

break;

case 3: // dense
st = 'D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
real_wp_ H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};

egp_import (&control, &data, &status, n, m,
"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);
egp_solve_gp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c, X, V);

break;
case 4: // diagonal
st = 'L";

egp_import (&control, &data, &status, n, m,
"diagonal", H_ne, NULL, NULL, NULL,
"sparse_pby_rows", A_ne, NULL, A_col, A_ptr);
egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A _val, c, %, Y);

break;
ase 5: // scaled identity
st = ’s’;

egp_import (&control, &data, &status, n, m,
"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr

egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, x, y);

break;
6: // identity

st = "17;

egp_import (&control, &data, &status, n, m,
"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, x, v);

break;
case 7: // zero
st = 'z’

egp_import (&control, &data, &status, n, m,
"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A val, c, %, Y);
break;
}

egp_information(&data, &inform, &status);

if(inform.status == 0) {
printf("$c:%$6i cg iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.cg_iter, inform.obj, inform.status);
telsef
printf ("$c: EQP_solve exit status = %1i\n", st, inform.status);
}
//printf ("x: ");
//for(int i = 0; 1 < n; i++) printf("$f ", x[i]);
//printf ("\n");
//printf ("gradient: ");
//for(int i = 0; 1 < n; i++) printf("$£f ", glil);

//printf ("\n");
// Delete internal workspace
egp_terminate (&data, &control, &inform);
}
// test shifted least-distance interface
for(int d=1; d <= 1; d++){
// Initialize EQP
egp_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
control.fdc_control.use_sls = true ;

GALAHAD 4.0 C interfaces to GALAHAD EQP

4.2 eqgptf.c

23

strcpy (control.fdc_control.symmetric_linear_solver,
strcpy (control.sbls_control.symmetric_linear_solver,
strcpy (control.sbls_control.definite_linear_solver,
// Start from 0

real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ vI[] = {0.0,0.0};
// Set shifted least-distance data
real_wp_ w([] = {1.0,1.0,1.0};
real_wp_ x_0[] = {0.0,0.0,0.0};
E ceh(d) |
se 1: // sparse co-ordinate storage
st = "W ;

egp_import (&control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL, NULL,

"coordinate", A_ne, A_row, A_col,

"sytr ")

"sytr ")

"sytr ")

NULL) ;

egp_solve_sldgp(&data, &status, n, m, w, x 0, g, f,

A_ne, A_val, ¢, x, y);

break;
}
egp_information(&data, &inform, &status);
if(inform.status == 0) {

printf ("%$c:%6i cg iterations. Optimal objective value =
st, inform.cg_iter, inform.obj, inform.status);

e

}

//printf ("x: ");
//for(int i =
//printf ("\n");
//printf ("gradi
//for(int i =
//printf ("\n");
// Delete internal workspace
egp_terminate (&data, &control, &inform);

;1 < n; i++) printf("$f ", x[1]);

ent: ");
0; 1 < n; i++) printf("sf ", glil);

4.2 eqptf.c

printf ("$c: EQP_solve exit status = %li\n", st, inform.status);

This is the same example, but now fortran-style indexing is used.

/* egptf
/* Full

#include
#include
#include
#include
#include
#include
int main

// D

.co*/

test for the EQP C interface using Fortran sparse matrix indexing =*/

<stdio.h>

<math.h>

<string.h>
"galahad_precision.h"
"galahad_cfunctions.h"
"galahad_eqgp.h"

(void) |

erived types

void xdata;

stru
stru
// S
int
int
int

real
real
// S
int

int

char
int

prin
prin
for (

ct egp_control_type control;

ct egp_inform_type inform;

et problem data

n = 3; // dimension

m = 2; // number of general constraints

tf (" basic tests of gp storage formats\n\n");
int d=1; d <= 6; d++){

// Initialize EQP

egp_initialize(&data, &control, &status);
// Set user-defined control options

H_ne = 3; // Hesssian elements
H_row[] = {1, 2, 3 }; // row indices, NB lower triangle
H_col[] = {1, 2, 3}; // column indices, NB lower triangle
H_ptr[] = {1, 2, 3, 4}; // row pointers
wp_ H_val[] = {1.0, 1.0, 1.0 }; // values
wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
wp_ f = 1.0; // constant term in the objective
A_ne = 4; // Jacobian elements
A_row([] = {1, 1, 2, 2}; // row indices
A_col[] = {1, 2, 2, 3}; // column indices
A_ptr([] = {1, 3, 5}; // row pointers
wp A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
wp c[] = {3.0, 0.0}; // rhs of the constraints
et output storage
%x_stat[n]; // variable status
c_stat[m]; // constraint status
st;
status;
tf (" Fortran sparse matrix indexing\n\n");

%$5.2f status

C interfaces to GALAHAD EQP

GALAHAD 4.0

24 Example Documentation

control.f_indexing = true; // Fortran sparse matrix indexing
control.fdc_control.use_sls = true ;

strcpy (control.fdc_control.symmetric_linear_solver, "sytr ") ;
strcpy (control.sbls_control.symmetric_linear_solver, "sytr ") ;
strcpy (control.sbls_control.definite_linear_solver, "sytr ")

// Start from 0

real wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
S 1(d) {
se 1: // sparse co-ordinate storage

st = ’c’;
egp_import (&control, &data, &status, n, m,
"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);
egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, vy);

break;
printf (" case %$1i break\n",d);
case 2: // sparse by rows

st = 'R’;

egp_import (&control, &data, &status, n, m,
"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, x, vy);

break;
3: // dense
st = 'D’";

int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
real_wp_ H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
real_wp_ A _dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
egp_import (&control, &data, &status, n, m,
"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);
egp_solve_gp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c, X, YV);

break;
ase 4: // diagonal
st = "1

egp_import (&control, &data, &status, n, m,
"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, y);
break;
5: // scaled identity
st = '8’;
egp_import (&control, &data, &status, n, m,
"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c, x, v);

break;
case 6: // identity
st = "17;

egp_import (&control, &data, &status, n, m,
"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A val, c, %, Y);

reak;

7: // zero

st = "72";

egp_import (&control, &data, &status, n, m,
"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

egp_solve_gp(&data, &status, n, m, H_ne, H_val, g, f,

A_ne, A_val, c, x, y);

break;

}

egp_information(&data, &inform, &status);

if (inform.status == 0) {
printf("$c:%6i cg iterations. Optimal objective value = %5.2f status = %$1i\n",

st, inform.cg_iter, inform.obj, inform.status);

}else(

printf ("%c: EQP_solve exit status = %li\n", st, inform.status);
}
//printf ("x: ");
//for(int i =
//printf("\n");
//printf ("gradi
//for(int i =
//printf ("\n");
// Delete internal workspace
egp_terminate (&data, &control, &inform);

;1 < n; i++) printf("s$f ", x[i]);

ent: ");
0; 1 < n; i++) printf("sf ", glil);

GALAHAD 4.0 C interfaces to GALAHAD EQP

4.2 eqgptf.c

25

}
/]t
for(

est shifted least-distance interface

int d=1; d <= 1; d++){

// Initialize EQP

egp_initialize(&data, &control, &status);
control.fdc_control.use_sls = true ;

strcpy (control.fdc_control.symmetric_linear_solver,
strcpy (control.sbls_control.symmetric_linear_solver,
strcpy (control.sbls_control.definite_linear_solver,
// Set user-defined control options

control.f_indexing = true; // Fortran sparse matrix indexing

// Start from 0

real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};

real_wp_ z[] = {0.0,0.0,0.0};

// Set shifted least-distance data
real wp_ w([] = {1.0,1.0,1.0};

real_wp_ x_0[] = {0.0,0.0,0.0};
v 1 (d) {

se 1: // sparse co-ordinate storage

st = "W ;

egp_import (&control, &data, &status, n, m,

"shifted_least_distance", H_ne, NULL,

"coordinate", A_ne, A_row, A_col,

A_ne, A_val, ¢, x, y);
break;

}
egp_information(&data, &inform, &status);
if(inform.status == 0) {
printf ("%$c:%61i cg iterations. Optimal objective
st, inform.cg_iter, inform.obj, inform.status);

}else(

printf ("$c: EQP_solve exit status = %li\n", st, inform.status);

}

//printf ("x: ");
//for(int i =
//printf ("\n");
//printf ("gradi
//for(int i =
//printf ("\n");
// Delete internal workspace
egp_terminate (&data, &control, &inform);

; 1 < n; i++) printf("s$f ", x[i]);

ent: ");
0; 1 < n; i++) printf("$Ef ", gli]);

"sytr ")

"sytr ")

"sytr ")

value =

7

7

NULL,
NULL) ;
egp_solve_sldgp(&data, &status, n, m, w, x_0, g, f,

%$5.2f status

C interfaces to GALAHAD EQP

GALAHAD 4.0

26 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD EQP

	1 GALAHAD C package eqp
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format
	1.1.9.4 Diagonal storage format
	1.1.9.5 Multiples of the identity storage format
	1.1.9.6 The identity matrix format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_eqp.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct eqp_control_type
	3.1.1.2 struct eqp_time_type
	3.1.1.3 struct eqp_inform_type

	3.1.2 Function Documentation
	3.1.2.1 eqp_initialize()
	3.1.2.2 eqp_read_specfile()
	3.1.2.3 eqp_import()
	3.1.2.4 eqp_reset_control()
	3.1.2.5 eqp_solve_qp()
	3.1.2.6 eqp_solve_sldqp()
	3.1.2.7 eqp_resolve_qp()
	3.1.2.8 eqp_information()
	3.1.2.9 eqp_terminate()

	4 Example Documentation
	4.1 eqpt.c
	4.2 eqptf.c

