
C interfaces to GALAHAD QPA

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Thu Jun 22 2023

i

1 GALAHAD C package qpa 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 2

1.1.3 Originally released . 2

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 4

1.1.7 Call order . 4

1.1.8 Unsymmetric matrix storage formats . 4

1.1.8.1 Dense storage format . 4

1.1.8.2 Sparse co-ordinate storage format . 5

1.1.8.3 Sparse row-wise storage format . 5

1.1.9 Symmetric matrix storage formats . 5

1.1.9.1 Dense storage format . 5

1.1.9.2 Sparse co-ordinate storage format . 5

1.1.9.3 Sparse row-wise storage format . 5

1.1.9.4 Diagonal storage format . 5

1.1.9.5 Multiples of the identity storage format . 6

1.1.9.6 The identity matrix format . 6

1.1.9.7 The zero matrix format . 6

2 File Index 7

2.1 File List . 7

3 File Documentation 9

3.1 galahad_qpa.h File Reference . 9

3.1.1 Data Structure Documentation . 10

3.1.1.1 struct qpa_control_type . 10

3.1.1.2 struct qpa_time_type . 13

3.1.1.3 struct qpa_inform_type . 13

3.1.2 Function Documentation . 14

3.1.2.1 qpa_initialize() . 14

3.1.2.2 qpa_read_specfile() . 15

3.1.2.3 qpa_import() . 15

3.1.2.4 qpa_reset_control() . 17

3.1.2.5 qpa_solve_qp() . 17

3.1.2.6 qpa_solve_l1qp() . 19

3.1.2.7 qpa_solve_bcl1qp() . 22

3.1.2.8 qpa_information() . 25

3.1.2.9 qpa_terminate() . 25

4 Example Documentation 27

C interfaces to GALAHAD QPA GALAHAD 4.0

ii

4.1 qpat.c . 27

4.2 qpatf.c . 29

GALAHAD 4.0 C interfaces to GALAHAD QPA

Chapter 1

GALAHAD C package qpa

1.1 Introduction

1.1.1 Purpose

This package uses a working-set method to solve the ℓ1 quadratic programming problem

(1) minimize
x∈IRn

q(x) + ρgvg(x) + ρbvb(x)

involving the quadratic objective

q(x) =
1

2
xTHx+ gTx+ f

and the infeasibilities

vg(x) =

m∑
i=1

max(cli − aTi x, 0) +

m∑
i=1

max(aTi x− cui , 0)

and

vb(x) =

n∑
j=1

max(xl
j − xj , 0) +

n∑
j=1

max(xj − xu
j , 0),

where the n by n symmetric matrix H , the vectors g, ai, cl, cu, xl, xu and the scalar f are given. Any of the
constraint bounds cli, c

u
i , xl

j and xu
j may be infinite. Full advantage is taken of any zero coefficients in the matrix H

or the matrix A of vectors ai.

The package may also be used to solve the quadratic programming problem

(2) minimize q(x) =
1

2
xTHx+ gTx+ f

subject to the general linear constraints

(3) cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
(4) xl

j ≤ xj ≤ xu
j , j = 1, . . . , n,

by automatically adjusting ρb in (1).

Similarly, the package is capable of solving the bound-constrained ℓ1 quadratic programming problem

(5) minimize
x∈IRn

q(x) + ρgvg(x),

subject to the simple bound constraints (4), by automatically adjusting ρb in (1).

If the matrix H is positive semi-definite, a global solution is found. However, if H is indefinite, the procedure may
find a (weak second-order) critical point that is not the global solution to the given problem.

N.B. In many cases, the alternative GALAHAD quadratic programming package QPB is faster, and thus to be
preferred.

2 GALAHAD C package qpa

1.1.2 Authors

N. I. M. Gould and D. P. Robinson, STFC-Rutherford Appleton Laboratory, England, and Philippe L. Toint, University
of Namur, Belgium.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

October 2001, C interface January 2022.

1.1.4 Terminology

The required solution x to (2)-(4) necessarily satisfies the primal optimality conditions

(1a) Ax = c

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu,

the dual optimality conditions

Hx+ g = AT y + z

where

y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual
variables for the bounds, respectively, and where the vector inequalities hold component-wise.

1.1.5 Method

At the k-th iteration of the method, an improvement to the value of the merit function m(x, ρg, ρb) = q(x) +
ρgvg(x) + ρbvb(x) at x = x(k) is sought. This is achieved by first computing a search direction s(k), and then
setting x(k+1) = x(k)+α(k)s(k), where the stepsize α(k) is chosen as the first local minimizer of ϕ(α) = m(x(k)+
αs(k), ρg, ρb) as α incesases from zero. The stepsize calculation is straightforward, and exploits the fact that ϕ(α)
is a piecewise quadratic function of α.

The search direction is defined by a subset of the "active" terms in v(x), i.e., those for which aTi x = cli or cui (for
i = 1, . . . ,m) or xj = xl

j or xu
j (for {j=1,\ldots ,n}). The "working" set W (k) is chosen from the active terms, and is

such that its members have linearly independent gradients. The search direction s(k) is chosen as an approximate
solution of the equality-constrained quadratic program

(6) minimize
s∈IRn

q(x(k) + s) + ρgl
(k)
g (s) + ρbl

(k)
b (s),

GALAHAD 4.0 C interfaces to GALAHAD QPA

1.1 Introduction 3

subject to

(7) aTi s = 0, i ∈ {1, . . . ,m} ∩W (k), and xj = 0, i ∈ {1, . . . , n} ∩W (k),

where

l(k)g (s) = −
m∑
i=1

aT
i x<cli

aTi s +

m∑
i=1

aT
i x>cui

aTi s

and

l
(k)
b (s) = −

n∑
j=1

xj<xl
j

sj +

n∑
j=1

xj>xu
j

sj .

The equality-constrained quadratic program (6)-(7) is solved by a projected preconditioned conjugate gradient
method. The method terminates either after a prespecified number of iterations, or if the solution is found, or if
a direction of infinite descent, along which q(x(k) + s) + ρgl

(k)
g (s) + ρbl

(k)
b (s) decreases without bound within the

feasible region (7), is located. Succesively more accurate approximations are required as suspected solutions of (1)
are approached.

Preconditioning of the conjugate gradient iteration requires the solution of one or more linear systems of the form

(8)

(
M (k) A(k)T

A(k) 0

)(
p
u

)
=

(
g
0

)
,

where M (k) is a "suitable" approximation to H and the rows of A(k) comprise the gradients of the terms in the
current working set. Rather than recomputing a factorization of the preconditioner at every iteration, a Schur com-
plement method is used, recognising the fact that gradual changes occur to successive working sets. The main
iteration is divided into a sequence of "major" iterations. At the start of each major iteration (say, the overall iteration
l), a factorization of the current "reference" matrix, that is the matrix

(9)

(
M (l) A(l)T

A(l) 0

)
is obtained using the GALAHAD matrix factorization package SLS. This reference matrix may be factorized as
a whole (the so-called "augmented system" approach), or by performing a block elimination first (the "Schur-
complement" approach). The latter is usually to be preferred when a (non-singular) diagonal preconditioner is
used, but may be inefficient if any of the columns of A(l) is too dense. Subsequent iterations within the current
major iteration obtain solutions to (8) via the factors of (9) and an appropriate (dense) Schur complement, obtained
from the GALAHAD package SCU. The major iteration terminates once the space required to hold the factors of the
(growing) Schur complement exceeds a given threshold.

The working set changes by (a) adding an active term encountered during the determination of the stepsize, or (b)
the removal of a term if s = 0 solves (6)-(7). The decision on which to remove in the latter case is based upon the
expected decrease upon the removal of an individual term, and this information is available from the magnitude and
sign of the components of the auxiliary vector u computed in (8). At optimality, the components of u for ai terms will
all lie between 0 and ρg—and those for the other terms between 0 and ρb—and any violation of this rule indicates
further progress is possible. The components of u corresonding to the terms involving aTi x are sometimes known
as Lagrange multipliers (or generalized gradients) and denoted by y, while those for the remaining xj terms are
dual variables and denoted by z.

To solve (2)-(4), a sequence of problems of the form (1) are solved, each with a larger value of ρg and/or ρb than its
predecessor. The required solution has been found once the infeasibilities vg(x) and vb(x) have been reduced to
zero at the solution of (1) for the given ρg and ρb.

In order to make the solution as efficient as possible, the variables and constraints are reordered internally by
the GALAHAD package QPP prior to solution. In particular, fixed variables and free (unbounded on both sides)
constraints are temporarily removed.

C interfaces to GALAHAD QPA GALAHAD 4.0

4 GALAHAD C package qpa

1.1.6 Reference

The method is described in detail in

N. I. M. Gould and Ph. L. Toint (2001). `‘An iterative working-set method for large-scale non-convex quadratic
programming’'. Applied Numerical Mathematics 43 (1-2) (2002) 109–128.

1.1.7 Call order

To solve a given problem, functions from the qpa package must be called in the following order:

• qpa_initialize - provide default control parameters and set up initial data structures

• qpa_read_specfile (optional) - override control values by reading replacement values from a file

• qpa_import - set up problem data structures and fixed values

• qpa_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved

• solve the problem by calling one of

– qpa_solve_qp - solve the quadratic program (2)-(4)

– qpa_solve_l1qp - solve the l1 quadratic program (1)

– qpa_solve_bcl1qp - solve the bound constrained l1 quadratic program (4)-(5)

• qpa_information (optional) - recover information about the solution and solution process

• qpa_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

GALAHAD 4.0 C interfaces to GALAHAD QPA

1.1 Introduction 5

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 ≤ j ≤ n− 1, and values
Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1, 0 ≤ i ≤ m− 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

1.1.9 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H may be presented and stored in a variety of formats.
But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on
or below the leading diagonal).

1.1.9.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored by
rows, that is component i ∗ i/2 + j of the storage array H_val will hold the value hij (and, by symmetry, hji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value hij , 0 ≤ j ≤ i ≤ n − 1, are stored as the l-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries. The column indices j, 0 ≤ j ≤ i, and values hij

of the entries in the i-th row are stored in components l = H_ptr(i), . . ., H_ptr(i+1)-1 of the integer array H_col, and
real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse
matrices, this scheme almost always requires less storage than its predecessor.

1.1.9.4 Diagonal storage format

If H is diagonal (i.e., Hij = 0 for all 0 ≤ i ̸= j ≤ n − 1) only the diagonals entries Hii, 0 ≤ i ≤ n − 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

C interfaces to GALAHAD QPA GALAHAD 4.0

6 GALAHAD C package qpa

1.1.9.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = αI where I is the n by n identity matrix and α is a scalar), it
suffices to store α as the first component of H_val.

1.1.9.6 The identity matrix format

If H is the identity matrix, no values need be stored.

1.1.9.7 The zero matrix format

The same is true if H is the zero matrix.

GALAHAD 4.0 C interfaces to GALAHAD QPA

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_qpa.h . 9

8 File Index

GALAHAD 4.0 C interfaces to GALAHAD QPA

Chapter 3

File Documentation

3.1 galahad_qpa.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_sls.h"

Data Structures

• struct qpa_control_type
• struct qpa_time_type
• struct qpa_inform_type

Functions

• void qpa_initialize (void ∗∗data, struct qpa_control_type ∗control, int ∗status)
• void qpa_read_specfile (struct qpa_control_type ∗control, const char specfile[])
• void qpa_import (struct qpa_control_type ∗control, void ∗∗data, int ∗status, int n, int m, const char H_type[],

int H_ne, const int H_row[], const int H_col[], const int H_ptr[], const char A_type[], int A_ne, const int
A_row[], const int A_col[], const int A_ptr[])

• void qpa_reset_control (struct qpa_control_type ∗control, void ∗∗data, int ∗status)
• void qpa_solve_qp (void ∗∗data, int ∗status, int n, int m, int h_ne, const real_wp_ H_val[], const real_wp_

g[], const real_wp_ f, int a_ne, const real_wp_ A_val[], const real_wp_ c_l[], const real_wp_ c_u[], const
real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_ c[], real_wp_ y[], real_wp_ z[], int x_stat[], int
c_stat[])

• void qpa_solve_l1qp (void ∗∗data, int ∗status, int n, int m, int h_ne, const real_wp_ H_val[], const real_wp_
g[], const real_wp_ f, const real_wp_ rho_g, const real_wp_ rho_b, int a_ne, const real_wp_ A_val[], const
real_wp_ c_l[], const real_wp_ c_u[], const real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_
c[], real_wp_ y[], real_wp_ z[], int x_stat[], int c_stat[])

• void qpa_solve_bcl1qp (void ∗∗data, int ∗status, int n, int m, int h_ne, const real_wp_ H_val[], const real←↩

wp g[], const real_wp_ f, const real_wp_ rho_g, int a_ne, const real_wp_ A_val[], const real_wp_ c_l[],
const real_wp_ c_u[], const real_wp_ x_l[], const real_wp_ x_u[], real_wp_ x[], real_wp_ c[], real_wp_ y[],
real_wp_ z[], int x_stat[], int c_stat[])

• void qpa_information (void ∗∗data, struct qpa_inform_type ∗inform, int ∗status)
• void qpa_terminate (void ∗∗data, struct qpa_control_type ∗control, struct qpa_inform_type ∗inform)

10 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct qpa_control_type

control derived type as a C struct

Examples

qpat.c, and qpatf.c.

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int error error and warning diagnostics occur on stream
error

int out general output occurs on stream out

int print_level the level of output required is specified by
print_level

int start_print any printing will start on this iteration

int stop_print any printing will stop on this iteration

int maxit at most maxit inner iterations are allowed
int factor the factorization to be used. Possible values

are 0 automatic 1 Schur-complement
factorization 2 augmented-system factorization

int max_col the maximum number of nonzeros in a column
of A which is permitted with the
Schur-complement factorization

int max_sc the maximum permitted size of the Schur
complement before a refactorization is
performed

int indmin an initial guess as to the integer workspace
required by SLS (OBSOLETE)

int valmin an initial guess as to the real workspace
required by SLS (OBSOLETE)

int itref_max the maximum number of iterative refinements
allowed (OBSOLETE)

int infeas_check_interval the infeasibility will be checked for
improvement every infeas_check_interval
iterations (see infeas_g_improved_by_factor
and infeas_b_improved_by_factor below)

int cg_maxit the maximum number of CG iterations
allowed. If cg_maxit < 0, this number will be
reset to the dimension of the system + 1

int precon the preconditioner to be used for the CG is
defined by precon. Possible values are 0
automatic 1 no preconditioner, i.e, the identity
within full factorization 2 full factorization 3
band within full factorization 4 diagonal using
the barrier terms within full factorization

int nsemib the semi-bandwidth of a band preconditioner,
if appropriate

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 11

Data Fields

int full_max_fill if the ratio of the number of nonzeros in the
factors of the reference matrix to the number
of nonzeros in the matrix itself exceeds
full_max_fill, and the preconditioner is being
selected automatically (precon = 0), a banded
approximation will be used instead

int deletion_strategy the constraint deletion strategy to be used.
Possible values are: 0 most violated of all 1
LIFO (last in, first out) k LIFO(k) most violated
of the last k in LIFO

int restore_problem indicate whether and how much of the input
problem should be restored on output.
Possible values are 0 nothing restored 1 scalar
and vector parameters 2 all parameters

int monitor_residuals the frequency at which residuals will be
monitored

int cold_start indicates whether a cold or warm start should
be made. Possible values are 0 warm start -
the values set in C_stat and B_stat indicate
which constraints will be included in the initial
working set. 1 cold start from the value set in
X; constraints active at X will determine the
initial working set. 2 cold start with no active
constraints 3 cold start with only equality
constraints active 4 cold start with as many
active constraints as possible

int sif_file_device specifies the unit number to write generated
SIF file describing the current problem

real_wp_ infinity any bound larger than infinity in modulus will
be regarded as infinite

real_wp_ feas_tol any constraint violated by less than feas_tol
will be considered to be satisfied

real_wp_ obj_unbounded if the objective function value is smaller than
obj_unbounded, it will be flagged as
unbounded from below.

real_wp_ increase_rho_g_factor if the problem is currently infeasible and
solve_qp (see below) is .TRUE. the current
penalty parameter for the general constraints
will be increased by increase_rho_g_factor
when needed

real_wp_ infeas_g_improved_by_factor if the infeasibility of the general constraints has
not dropped by a fac of
infeas_g_improved_by_factor over the
previous infeas_check_interval iterations, the
current corresponding penalty parameter will
be increase

real_wp_ increase_rho_b_factor if the problem is currently infeasible and
solve_qp or solve_within_boun (see below) is
.TRUE., the current penalty parameter for the
simple boun constraints will be increased by
increase_rho_b_factor when needed

C interfaces to GALAHAD QPA GALAHAD 4.0

12 File Documentation

Data Fields

real_wp_ infeas_b_improved_by_factor if the infeasibility of the simple bounds has not
dropped by a factor of
infeas_b_improved_by_factor over the
previous infeas_check_interval iterations, the
current corresponding penalty parameter will
be increase

real_wp_ pivot_tol the threshold pivot used by the matrix
factorization. See the documentation for SLS
for details (OBSOLE

real_wp_ pivot_tol_for_dependencies the threshold pivot used by the matrix
factorization when attempting to detect linearly
dependent constraints.

real_wp_ zero_pivot any pivots smaller than zero_pivot in absolute
value will be regarded to zero when attempting
to detect linearly dependent constraints
(OBSOLE

real_wp_ inner_stop_relative the search direction is considered as an
acceptable approximation to the minimizer of
the model if the gradient of the model in the
preconditioning(inverse) norm is less than
max(inner_stop_relative ∗ initial
preconditioning(inverse) gradient norm,
inner_stop_absolute)

real_wp_ inner_stop_absolute see inner_stop_relative

real_wp_ multiplier_tol any dual variable or Lagrange multiplier which
is less than multiplier_t outside its optimal
interval will be regarded as being acceptable
when checking for optimality

real_wp_ cpu_time_limit the maximum CPU time allowed (-ve means
infinite)

real_wp_ clock_time_limit the maximum elapsed clock time allowed (-ve
means infinite)

bool treat_zero_bounds_as_general any problem bound with the value zero will be
treated as if it were a general value if true

bool solve_qp if solve_qp is .TRUE., the value of prob.rho_g
and prob.rho_b will be increased as many
times as are needed to ensure that the output
solution is feasible, and thus aims to solve the
quadratic program (2)-(4)

bool solve_within_bounds if solve_within_bounds is .TRUE., the value of
prob.rho_b will be increased as many times as
are needed to ensure that the output solution
is feasible with respect to the simple bounds,
and thus aims to solve the bound-constrained
quadratic program (4)-(5)

bool randomize if randomize is .TRUE., the constraint bounds
will be perturbed by small random quantities
during the first stage of the solution process.
Any randomization will ultimately be removed.
Randomization helps when solving
degenerate problems

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 13

Data Fields

bool array_syntax_worse_than_do_loop if .array_syntax_worse_than_do_loop is true,
f77-style do loops will be used rather than
f90-style array syntax for vector operations
(OBSOLETE)

bool space_critical if .space_critical true, every effort will be made
to use as little space as possible. This may
result in longer computation time

bool deallocate_error_fatal if .deallocate_error_fatal is true, any
array/pointer deallocation error will terminate
execution. Otherwise, computation will
continue

bool generate_sif_file if .generate_sif_file is .true. if a SIF file
describing the current problem is to be
generated

char symmetric_linear_solver[31] indefinite linear equation solver

char sif_file_name[31] definite linear equation solver name of
generated SIF file containing input problem

char prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix
contains the required string enclosed in
quotes, e.g. "string" or 'string'

bool each_interval component specifically for parametric
problems (not used at present)

struct sls_control_type sls_control control parameters for SLS

3.1.1.2 struct qpa_time_type

time derived type as a C struct

Data Fields

real_wp_ total the total CPU time spent in the package

real_wp_ preprocess the CPU time spent preprocessing the problem

real_wp_ analyse the CPU time spent analysing the required matrices prior to factorizatio

real_wp_ factorize the CPU time spent factorizing the required matrices

real_wp_ solve the CPU time spent computing the search direction

real_wp_ clock_total the total clock time spent in the package

real_wp_ clock_preprocess the clock time spent preprocessing the problem

real_wp_ clock_analyse the clock time spent analysing the required matrices prior to factorizat

real_wp_ clock_factorize the clock time spent factorizing the required matrices

real_wp_ clock_solve the clock time spent computing the search direction

3.1.1.3 struct qpa_inform_type

inform derived type as a C struct

C interfaces to GALAHAD QPA GALAHAD 4.0

14 File Documentation

Examples

qpat.c, and qpatf.c.

Data Fields

int status return status. See QPA_solve for details
int alloc_status the status of the last attempted allocation/deallocation

char bad_alloc[81] the name of the array for which an allocation/deallocation
error occurred

int major_iter the total number of major iterations required

int iter the total number of iterations required

int cg_iter the total number of conjugate gradient iterations required

int factorization_status the return status from the factorization
int64_t factorization_integer the total integer workspace required for the factorization

int64_t factorization_real the total real workspace required for the factorization

int nfacts the total number of factorizations performed

int nmods the total number of factorizations which were modified to
ensure that th matrix was an appropriate preconditioner

int num_g_infeas the number of infeasible general constraints

int num_b_infeas the number of infeasible simple-bound constraints

real_wp_ obj the value of the objective function at the best estimate of the
solution determined by QPA_solve

real_wp_ infeas_g the 1-norm of the infeasibility of the general constraints

real_wp_ infeas_b the 1-norm of the infeasibility of the simple-bound constraints

real_wp_ merit the merit function value = obj + rho_g ∗ infeas_g + rho_b ∗
infeas_b

struct qpa_time_type time timings (see above)

struct sls_inform_type sls_inform inform parameters for SLS

3.1.2 Function Documentation

3.1.2.1 qpa_initialize()

void qpa_initialize (

void ∗∗ data,

struct qpa_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see qpa_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.
GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 15

Examples

qpat.c, and qpatf.c.

3.1.2.2 qpa_read_specfile()

void qpa_read_specfile (

struct qpa_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNQPA.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/qpa.pdf for a list of keywords that may
be set.

Parameters

in,out control is a struct containing control information (see qpa_control_type)

in specfile is a character string containing the name of the specification file

3.1.2.3 qpa_import()

void qpa_import (

struct qpa_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char H_type[],

int H_ne,

const int H_row[],

const int H_col[],

const int H_ptr[],

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[])

Import problem data into internal storage prior to solution.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
qpa_control_type)

in,out data holds private internal data

C interfaces to GALAHAD QPA GALAHAD 4.0

16 File Documentation

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal',
'scaled_identity', 'identity', 'zero' or 'none' has been violated.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H . It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', 'identity', 'zero' or 'none', the latter pair if H = 0; lower or
upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or (scaled) identity
storage schemes are used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H , as well as the total number of entries, in the
sparse row-wise storage scheme. It need not be set when the other schemes are used,
and in this case can be NULL.

in A_type is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate', 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 17

Parameters

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can be
NULL.

Examples

qpat.c, and qpatf.c.

3.1.2.4 qpa_reset_control()

void qpa_reset_control (

struct qpa_control_type ∗ control,

void ∗∗ data,

int ∗ status)

Reset control parameters after import if required.

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures (see
qpa_control_type)

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful.

3.1.2.5 qpa_solve_qp()

void qpa_solve_qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

int h_ne,

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

C interfaces to GALAHAD QPA GALAHAD 4.0

18 File Documentation

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Solve the quadratic program (2)-(4).

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 19

Parameters

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl

j .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl

j .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0, ... ,
n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

in,out x_stat is a one-dimensional array of size n and type int, that gives the current status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds. On entry, if control.cold_start = 0, x_stat should be set as above to provide a
guide to the initial working set.

in,out c_stat is a one-dimensional array of size m and type int, that gives the current status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds. On entry, if control.cold_start = 0, c_stat should be set as above to
provide a guide to the initial working set.

Examples

qpat.c, and qpatf.c.

3.1.2.6 qpa_solve_l1qp()

void qpa_solve_l1qp (

void ∗∗ data,

C interfaces to GALAHAD QPA GALAHAD 4.0

20 File Documentation

int ∗ status,

int n,

int m,

int h_ne,

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

const real_wp_ rho_g,

const real_wp_ rho_b,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Solve the l_1 quadratic program (1).

Parameters

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 21

Parameters

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in rho←↩

_g
is a scalar of type double, that holds the parameter ρg associated with the linear
constraints.

in rho←↩

_b
is a scalar of type double, that holds the parameter ρb associated with the simple bound
constraints.

C interfaces to GALAHAD QPA GALAHAD 4.0

22 File Documentation

Parameters

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl

j .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl

j .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0, ... ,
n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

in,out x_stat is a one-dimensional array of size n and type int, that gives the current status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds. On entry, if control.cold_start = 0, x_stat should be set as above to provide a
guide to the initial working set.

in,out c_stat is a one-dimensional array of size m and type int, that gives the current status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds. On entry, if control.cold_start = 0, c_stat should be set as above to
provide a guide to the initial working set.

Examples

qpat.c, and qpatf.c.

3.1.2.7 qpa_solve_bcl1qp()

void qpa_solve_bcl1qp (

void ∗∗ data,

int ∗ status,

int n,

int m,

int h_ne,

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 23

const real_wp_ rho_g,

int a_ne,

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[],

int x_stat[],

int c_stat[])

Solve the bound-constrained l_1 quadratic program (4)-(5)

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

• 0. The run was succesful.

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows', 'diagonal', 'scaled_identity',
'identity', 'zero' or 'none' has been violated.

• -5. The simple-bound constraints are inconsistent.

• -7. The constraints appear to have no feasible point.

• -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

• -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

• -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

• -16. The problem is so ill-conditioned that further progress is impossible.

• -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

• -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

• -23. An entry from the strict upper triangle of H has been specified.

C interfaces to GALAHAD QPA GALAHAD 4.0

24 File Documentation

Parameters

in n is a scalar variable of type int, that holds the number of variables

in m is a scalar variable of type int, that holds the number of general linear constraints.

in h_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in rho←↩

_g
is a scalar of type double, that holds the parameter ρg associated with the linear
constraints.

in a_ne is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl on
the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl on
the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl on
the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl

j .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl on
the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl

j .

in,out x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the residual c(x). The
i-th component of c, j = 0, ... , n-1, contains cj(x).

in,out y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, j = 0, ... ,
n-1, contains yj .

in,out z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z, j = 0, ... , n-1, contains zj .

in,out x_stat is a one-dimensional array of size n and type int, that gives the current status of the
problem variables. If x_stat(j) is negative, the variable xj most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds. On entry, if control.cold_start = 0, x_stat should be set as above to provide a
guide to the initial working set.

in,out c_stat is a one-dimensional array of size m and type int, that gives the current status of the
general linear constraints. If c_stat(i) is negative, the constraint value aTi x most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds. On entry, if control.cold_start = 0, c_stat should be set as above to
provide a guide to the initial working set.

Examples

qpat.c, and qpatf.c.

GALAHAD 4.0 C interfaces to GALAHAD QPA

3.1 galahad_qpa.h File Reference 25

3.1.2.8 qpa_information()

void qpa_information (

void ∗∗ data,

struct qpa_inform_type ∗ inform,

int ∗ status)

Provides output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see qpa_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

Examples

qpat.c, and qpatf.c.

3.1.2.9 qpa_terminate()

void qpa_terminate (

void ∗∗ data,

struct qpa_control_type ∗ control,

struct qpa_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see qpa_control_type)

out inform is a struct containing output information (see qpa_inform_type)

Examples

qpat.c, and qpatf.c.

C interfaces to GALAHAD QPA GALAHAD 4.0

26 File Documentation

GALAHAD 4.0 C interfaces to GALAHAD QPA

Chapter 4

Example Documentation

4.1 qpat.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* qpat.c */
/* Full test for the QPA C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_qpa.h"
int main(void) {

// Derived types
void *data;
struct qpa_control_type control;
struct qpa_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {0, 1, 2 }; // row indices, NB lower triangle
int H_col[] = {0, 1, 2}; // column indices, NB lower triangle
int H_ptr[] = {0, 1, 2, 3}; // row pointers
real_wp_ H_val[] = {1.0, 1.0, 1.0 }; // values
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
real_wp_ f = 1.0; // constant term in the objective
real_wp_ rho_g = 0.1; // penalty paramter for general constraints
real_wp_ rho_b = 0.1; // penalty paramter for simple bound constraints
int A_ne = 4; // Jacobian elements
int A_row[] = {0, 0, 1, 1}; // row indices
int A_col[] = {0, 1, 1, 2}; // column indices
int A_ptr[] = {0, 2, 4}; // row pointers
real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
real_wp_ c_l[] = {1.0, 2.0}; // constraint lower bound
real_wp_ c_u[] = {2.0, 2.0}; // constraint upper bound
real_wp_ x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
real_wp_ c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 7; d++){

// Initialize QPA
qpa_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0

28 Example Documentation

real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
qpa_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
qpa_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
real_wp_ H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
qpa_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);

qpa_solve_qp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat);

break;
case 4: // diagonal

st = ’L’;
qpa_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 5: // scaled identity

st = ’S’;
qpa_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 6: // identity

st = ’I’;
qpa_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 7: // zero

st = ’Z’;
qpa_import(&control, &data, &status, n, m,

"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
}

qpa_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: QPA_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace

GALAHAD 4.0 C interfaces to GALAHAD QPA

4.2 qpatf.c 29

qpa_terminate(&data, &control, &inform);
}
printf("\n basic tests of l_1 qp storage formats\n\n");
qpa_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
// solve the l_1qp problem
qpa_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

qpa_solve_l1qp(&data, &status, n, m, H_ne, H_val, g, f, rho_g, rho_b,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

qpa_information(&data, &inform, &status);
if(inform.status == 0){

printf("%s %6i iterations. Optimal objective value = %5.2f status = %1i\n",
"l1qp ", inform.iter, inform.obj, inform.status);

}else{
printf("%c: QPA_solve exit status = %1i\n", st, inform.status);

}
// Start from 0
for(int i=0; i <= n-1; i++) x[i] = 0.0;
for(int i=0; i <= m-1; i++) y[i] = 0.0;
for(int i=0; i <= n-1; i++) z[i] = 0.0;
// solve the bound constrained l_1qp problem
qpa_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

qpa_solve_bcl1qp(&data, &status, n, m, H_ne, H_val, g, f, rho_g,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

qpa_information(&data, &inform, &status);
if(inform.status == 0){

printf("%s %6i iterations. Optimal objective value = %5.2f status = %1i\n",
"bcl1qp", inform.iter, inform.obj, inform.status);

}else{
printf("%c: QPA_solve exit status = %1i\n", st, inform.status);

}
// Delete internal workspace
qpa_terminate(&data, &control, &inform);

}

4.2 qpatf.c

This is the same example, but now fortran-style indexing is used.

/* qpatf.c */
/* Full test for the QPA C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_qpa.h"
int main(void) {

// Derived types
void *data;
struct qpa_control_type control;
struct qpa_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints
int H_ne = 3; // Hesssian elements
int H_row[] = {1, 2, 3 }; // row indices, NB lower triangle
int H_col[] = {1, 2, 3}; // column indices, NB lower triangle
int H_ptr[] = {1, 2, 3, 4}; // row pointers
real_wp_ H_val[] = {1.0, 1.0, 1.0 }; // values
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
real_wp_ f = 1.0; // constant term in the objective
real_wp_ rho_g = 0.1; // penalty paramter for general constraints
real_wp_ rho_b = 0.1; // penalty paramter for simple bound constraints
int A_ne = 4; // Jacobian elements
int A_row[] = {1, 1, 2, 2}; // row indices
int A_col[] = {1, 2, 2, 3}; // column indices
int A_ptr[] = {1, 3, 5}; // row pointers
real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values
real_wp_ c_l[] = {1.0, 2.0}; // constraint lower bound
real_wp_ c_u[] = {2.0, 2.0}; // constraint upper bound

C interfaces to GALAHAD QPA GALAHAD 4.0

30 Example Documentation

real_wp_ x_l[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
real_wp_ c[m]; // constraint values
int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 7; d++){

// Initialize QPA
qpa_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
qpa_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
qpa_import(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = 6; // number of elements of H
int A_dense_ne = 6; // number of elements of A
real_wp_ H_dense[] = {1.0, 0.0, 1.0, 0.0, 0.0, 1.0};
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};
qpa_import(&control, &data, &status, n, m,

"dense", H_ne, NULL, NULL, NULL,
"dense", A_ne, NULL, NULL, NULL);

qpa_solve_qp(&data, &status, n, m, H_dense_ne, H_dense, g, f,
A_dense_ne, A_dense, c_l, c_u, x_l, x_u,
x, c, y, z, x_stat, c_stat);

break;
case 4: // diagonal

st = ’L’;
qpa_import(&control, &data, &status, n, m,

"diagonal", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 5: // scaled identity

st = ’S’;
qpa_import(&control, &data, &status, n, m,

"scaled_identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 6: // identity

st = ’I’;
qpa_import(&control, &data, &status, n, m,

"identity", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

break;
case 7: // zero

st = ’Z’;
qpa_import(&control, &data, &status, n, m,

"zero", H_ne, NULL, NULL, NULL,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);

qpa_solve_qp(&data, &status, n, m, H_ne, H_val, g, f,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

GALAHAD 4.0 C interfaces to GALAHAD QPA

4.2 qpatf.c 31

break;
}

qpa_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);

}else{
printf("%c: QPA_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
qpa_terminate(&data, &control, &inform);

}
printf("\n basic tests of l_1 qp storage formats\n\n");
qpa_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
// solve the l_1qp problem
qpa_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

qpa_solve_l1qp(&data, &status, n, m, H_ne, H_val, g, f, rho_g, rho_b,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

qpa_information(&data, &inform, &status);
if(inform.status == 0){

printf("%s %6i iterations. Optimal objective value = %5.2f status = %1i\n",
"l1qp ", inform.iter, inform.obj, inform.status);

}else{
printf("%c: QPA_solve exit status = %1i\n", st, inform.status);

}
// Start from 0
for(int i=0; i <= n-1; i++) x[i] = 0.0;
for(int i=0; i <= m-1; i++) y[i] = 0.0;
for(int i=0; i <= n-1; i++) z[i] = 0.0;
// solve the bound constrained l_1qp problem
qpa_import(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL,
"coordinate", A_ne, A_row, A_col, NULL);

qpa_solve_bcl1qp(&data, &status, n, m, H_ne, H_val, g, f, rho_g,
A_ne, A_val, c_l, c_u, x_l, x_u, x, c, y, z,
x_stat, c_stat);

qpa_information(&data, &inform, &status);
if(inform.status == 0){

printf("%s %6i iterations. Optimal objective value = %5.2f status = %1i\n",
"bcl1qp", inform.iter, inform.obj, inform.status);

}else{
printf("%c: QPA_solve exit status = %1i\n", st, inform.status);

}
// Delete internal workspace
qpa_terminate(&data, &control, &inform);

}

C interfaces to GALAHAD QPA GALAHAD 4.0

32 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD QPA

	1 GALAHAD C package qpa
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format
	1.1.9.4 Diagonal storage format
	1.1.9.5 Multiples of the identity storage format
	1.1.9.6 The identity matrix format
	1.1.9.7 The zero matrix format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_qpa.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct qpa_control_type
	3.1.1.2 struct qpa_time_type
	3.1.1.3 struct qpa_inform_type

	3.1.2 Function Documentation
	3.1.2.1 qpa_initialize()
	3.1.2.2 qpa_read_specfile()
	3.1.2.3 qpa_import()
	3.1.2.4 qpa_reset_control()
	3.1.2.5 qpa_solve_qp()
	3.1.2.6 qpa_solve_l1qp()
	3.1.2.7 qpa_solve_bcl1qp()
	3.1.2.8 qpa_information()
	3.1.2.9 qpa_terminate()

	4 Example Documentation
	4.1 qpat.c
	4.2 qpatf.c

