C interfaces to GALAHAD RQS

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Thu Jun 22 2023

1 GALAHAD C package rqgs 1
1.1 Introduction L e e e e e 1
111 PUrPOSE o e e 1

1. 1.2Authors o 1

—_

1.1.3 Originally released
1.1.4Method L e
1.1.5Reference L
1.1.6Callorder e
1.1.7 Unsymmetric matrix storage formats Lo
1.1.71 Dense storageformat
1.1.7.2 Sparse co-ordinate storage formato
1.1.7.3 Sparse row-wise storage format Lo
1.1.8 Symmetric matrix storage formats L L
1.1.8.1 Dense storageformat L
1.1.8.2 Sparse co-ordinate storage format oL Lo

1.1.8.3 Sparse row-wise storage format Lo

A A DN W OW W W WWN NN

1.1.8.4 Diagonal storage format

2 File Index

21 File List o e e
3 File Documentation 7
3.1 galahad_rgs.h File Reference e 7
3.1.1 Data Structure Documentation 8
3.1.1.1 structrgs_control_type 8
3.1.1.2structrgs_time_type 9
3.1.1.3 structrgs_history_type 10
3.1.1.4 structrgs_inform_type 10
3.1.2 Function Documentation 11
3.1.21rgs_initialize() 11
3.1.2.2rgs_read_specfile() 11
3.1.23rgs_import() e 11
3.1.24rgs_import_m() e 13
3.1.25rgs_import_a() 14
3.1.26rgs_reset_control() 15
3.1.2.7rgs_solve_problem() 15
3.1.2.8rgs_information() 17
3.1.29rgs_terminate() L L 17
4 Example Documentation 19
T o] e 19
4.21gstf.C L L e e 22

C interfaces to GALAHAD RQS GALAHAD 4.0

Chapter 1

GALAHAD C package rgs

1.1 Introduction

1.1.1 Purpose

Given real n by n symmetric matrices H and M (with M diagonally dominant), another real m by n matrix A, a
real n vector ¢ and scalars 0 > 0, p > 2 and f, this package finds an approximate minimizer of the regularised
quadratic objective function ;u" Hx + ¢z + f + Lo||z[|}, where the vector = may additionally be required

to satisfy Az = 0, and where the M-norm of x is ||z|ay = Va©TMz. This problem commonly occurs as a
subproblem in nonlinear optimization calculations. The matrix M need not be provided in the commonly-occurring
{5-regularisation case for which M = I, the n by n identity matrix.

Factorization of matrices of the form H + A\AM—or

T
) (H—i—A)\M ,%)

in cases where Az = 0 is imposed—for a succession of scalars A will be required, so this package is most suited
for the case where such a factorization may be found efficiently. If this is not the case, the GALAHAD package
GLRT may be preferred.

1.1.2 Authors

N. I. M. Gould and H. S. Thorne, STFC-Rutherford Appleton Laboratory, England, and D. P. Robinson, Oxford
University, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

November 2008, C interface December 2021.

2 GALAHAD C package rgs

1.1.4 Method

The required solution . necessarily satisfies the optimality condition Hz,. + .Mz, + ATy, +c = 0and Az, = 0,
where A\, = o||x. ||1"2 is a Lagrange multiplier corresponding to the regularisation and y.. are Lagrange multipliers
for the linear constraints Az = 0, if any. In addition in all cases, the matrix H + A\, M will be positive semi-definite
on the null-space of A; in most instances it will actually be positive definite, but in special “‘hard”" cases singularity
is a possibility.

The method is iterative, and proceeds in two phases. Firstly, lower and upper bounds, Ay, and Ay, on A, are
computed using Gershgorin's theorems and other eigenvalue bounds. The first phase of the computation proceeds
by progressively shrinking the bound interval [\r,, Ar/] until a value A for which [|z(\)||ar > ol|z(\)|/%, 2 is found.
Here z()\) and its companion y(A) are defined to be a solution of

@) (H+AM)xz(\) + ATy(\) = —cand Az(\) = 0.

Once the terminating A from the first phase has been discovered, the second phase consists of applying Newton or
higher-order iterations to the nonlinear “‘secular” equation ||z:(\)||as = o||z(A\)[[5; > with the knowledge that such
iterations are both globally and ultimately rapidly convergent. It is possible in the “*hard” case that the interval in the
first-phase will shrink to the single point A, and precautions are taken, using inverse iteration with Rayleigh-quotient
acceleration to ensure that this too happens rapidly.

The dominant cost is the requirement that we solve a sequence of linear systems (2). In the absence of linear
constraints, an efficient sparse Cholesky factorization with precautions to detect indefinite H + AM is used. If
Ax = 0 is required, a sparse symmetric, indefinite factorization of (1) is used rather than a Cholesky factorization.

1.1.5 Reference

The method is described in detail in

H. S. Dollar, N. I. M. Gould and D. P. Robinson. On solving trust-region and other regularised subproblems in
optimization. Mathematical Programming Computation 2(1) (2010) 21-57.

1.1.6 Call order

To solve a given problem, functions from the rgs package must be called in the following order:

* rqgs_initialize - provide default control parameters and set up initial data structures

* rgs_read_specfile (optional) - override control values by reading replacement values from a file

* rgs_import - set up problem data structures and fixed values

* rgs_import_m - (optional) set up problem data structures and fixed values for the scaling matrix M, if any

- rgs_import_a - (optional) set up problem data structures and fixed values for the constraint matrix A, if any

* rqgs_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
» rgs_solve_problem - solve the regularised quadratic problem

* rgs_information (optional) - recover information about the solution and solution process

* rgs_terminate - deallocate data structures

See Section 4.1 for examples of use.

GALAHAD 4.0 C interfaces to GALAHAD RQS

1.1 Introduction 3

1.1.7 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and t rue for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.7.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n *x ¢ + j of the storage
array A_val will hold the value A;; for0 <i<m —1,0<j<n—1

1.1.7.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the I-th entry, 0 < I < ne — 1, of A, its row index i, column
index j and value Aij, 0<i<m-—1,0<j <n-—1, are stored as the I-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.7.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 < j5 < n — 1, and values
Aij of the nonzero entries in the i-th row are stored in components | = A_ptr(i), .. ., A_ptr(i+1)-1,0 < ¢ < m — 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

1.1.8 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H and scaling matrix M may be presented and stored in
a variety of formats. But crucially symmetry is exploited by only storing values from the lower triangular part (i.e,
those entries that lie on or below the leading diagonal). In what follows, we refer to H but this applies equally to M.

1.1.8.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part h;; for 0 < j < ¢ < n — 1) need be held. In this case the lower triangle should be stored by
rows, that is component i * i /2 + j of the storage array H_val will hold the value h;; (and, by symmetry, h;;) for
0<j<i<n—1.

C interfaces to GALAHAD RQS GALAHAD 4.0

4 GALAHAD C package rgs

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the [-th entry, 0 < [< ne — 1, of H, its row index i, column
index j and value h;;, 0 < j < i < n — 1, are stored as the I-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries. The column indices j, 0 < j < ¢, and values h;;
of the entries in the i-th row are stored in components | = H_ptr(i), .. ., H_ptr(i+1)-1 of the integer array H_col, and
real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse
matrices, this scheme almost always requires less storage than its predecessor.

1.1.8.4 Diagonal storage format

If H is diagonal (i.e., H;; = O forall0 < i # j < n — 1) only the diagonals entries H;;, 0 < i < n — 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

GALAHAD 4.0 C interfaces to GALAHAD RQS

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_rgs.h L

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD RQS

Chapter 3

File Documentation

3.1 galahad_rqgs.h File Reference

#include <stdbool.h>

#include <stdint.h>

#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_sls.h"
#include "galahad_ir.h"

Data Structures

« struct rgs_control_type
« struct rgqs_time_type

« struct rgs_history_type
« struct rgs_inform_type

Functions

« void rgs_initialize (void *xdata, struct rgs_control_type xcontrol, int xstatus)

« void rgs_read_specfile (struct rgs_control_type *control, const char specfile[])

« void rgs_import (struct rqs_control_type xcontrol, void *xdata, int xstatus, int n, const char H_type[], int H_ne,
const int H_row[], const int H_col[], const int H_ptr[])

« void rgs_import_m (void *xx*data, int xstatus, int n, const char M_type[], int M_ne, const int M_row[], const int
M_col[], const int M_ptr[])

« void rgs_import_a (void sxdata, int xstatus, int m, const char A_type[], int A_ne, const int A_row[], const int
A_col[], const int A_ptr[])

« void rgs_reset_control (struct rqs_control_type xcontrol, void xxdata, int xstatus)

« void rgs_solve_problem (void sxdata, int xstatus, int n, const real_wp_ power, const real_wp_ weight, const
real_wp_ f, const real_wp_ c[], int H_ne, const real_wp_ H_val[], real_wp_ x[], int M_ne, const real_wp_
M_val[], int m, int A_ne, const real_wp_ A_val[], real_wp_ y[])

+ void rgs_information (void *xdata, struct rgs_inform_type xinform, int xstatus)

« void rgs_terminate (void *xdata, struct rqs_control_type xcontrol, struct rgqs_inform_type xinform)

File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct rqs_control_type

control derived type as a C struct

Examples

rgst.c, and rgstf.c.

Data Fields
bool | f_indexing use C or Fortran sparse matrix indexing
int | error unit for error messages
int | out unit for monitor output
int | problem unit to write problem data into file problem_file
int | print_level controls level of diagnostic output
int | dense_factorization should the problem be solved by dense
factorization? Possible values are
+ 0 sparse factorization will be used
* 1 dense factorization will be used
« other the choice is made automatically
depending on the dimension and sparsity
int | new_h how much of H has changed since the previous call.
Possible values are
» 0 unchanged
+ 1 values but not indices have changed
+ 2 values and indices have changed
int | new_m how much of M has changed since the previous
call. Possible values are
+ 0 unchanged
+ 1 values but not indices have changed
2 values and indices have changed
int | new_a how much of A has changed since the previous call.
Possible values are 0 unchanged 1 values but not
indices have changed 2 values and indices have
changed
int | max_factorizations the maximum number of factorizations (=iterations)
allowed. -ve implies no limit
int | inverse_itmax the number of inverse iterations performed in the
"maybe hard" case
int | taylor_max_degree maximum degree of Taylor approximant allowed
real_wp_ | initial_multiplier initial estimate of the Lagrange multipler
real_wp_ | lower lower and upper bounds on the multiplier, if known
real_wp_ | upper see lower
GALAHAD 4.0 C interfaces to GALAHAD RQS

3.1 galahad_rgs.h File Reference

Data Fields
real_wp_ | stop_normal stop when |||z|| — (multiplier/o)1/(p — 2))| <
stop_normal * max
(|||, (multiplier /o)1/(p — 2))) REAL (KIND =
wp) :: stop_normal = epsmch *x 0.75
real_wp_ | stop_hard stop when bracket on optimal multiplier <=
stop_hard * max(bracket ends) REAL (KIND = wp
) :: stop_hard = epsmch *x 0.75
real_wp_ | start_invit_tol start inverse iteration when bracket on optimal
multiplier <= stop_start_invit_tol * max(bracket
ends)
real_wp_ | start_invitmax_tol start full inverse iteration when bracket on multiplier
<= stop_start_invitmax_tol x max(bracket ends)
bool | use_initial_multiplier ignore initial_multiplier?
bool | initialize_approx_eigenvector | should a suitable initial eigenvector should be
chosen or should a previous eigenvector may be
used?
bool | space_critical if space is critical, ensure allocated arrays are no
bigger than needed
bool | deallocate_error_ fatal exit if any deallocation fails
char | problem_file[31] name of file into which to write problem data
char | symmetric_linear_solver[31] | symmetric (indefinite) linear equation solver
char | definite_linear_solver[31] definite linear equation solver
char | prefix[31] all output lines will be prefixed by
prefix(2:LEN(TRIM(.prefix))-1) where prefix contains
the required string enclosed in quotes, e.g. "string"
or 'string’
struct sls_control_type | sls_control control parameters for the Cholesky factorization and
solution (see sls_c documentation)
struct ir_control_type | ir_control control parameters for iterative refinement (see ir_c
documentation)

3.1.1.2 struct rqs_time_type

time derived type as a C struct

Data Fields
real_wp_ | total total CPU time spent in the package
real_wp_ | assemble CPU time spent building H + A\M.
real_wp_ | analyse CPU time spent reordering H + AM prior to factorization.
real_wp_ | factorize CPU time spent factorizing H + A\M.
real_wp_ | solve CPU time spent solving linear systems inolving H + AM..
real_wp_ | clock_total total clock time spent in the package
real_wp_ | clock_assemble | clock time spent building H + AM
real_wp_ | clock_analyse clock time spent reordering H + AM prior to factorization
real_wp_ | clock_factorize | clock time spent factorizing H + AM
real_wp_ | clock_solve clock time spent solving linear systems inolving H + AM

C interfaces to GALAHAD RQS

GALAHAD 4.0

10

File Documentation

3.1.1.3 struct rqs_history_type

history derived type as a C struct

Data Fields
real_ wp_ | lambda | the value of A
real_wp_ | x_norm | the corresponding value of ||z(\)||as

3.1.1.4 struct rqs_inform_type

inform derived type as a C struct

Examples

rgst.c, and rgstf.c.

Data Fields
int | status reported return status:
* 0 the solution has been found
» -1 an array allocation has failed
+ -2 an array deallocation has failed
» -3 n and/or sigma is not positive and/or p <=2
+ -9 the analysis phase of the factorization of H + AM
failed
* -10 the factorization of H + AM failed
+ -15 M does not appear to be strictly diagonally
dominant
 -16 ill-conditioning has prevented furthr progress
int | alloc_status STAT value after allocate failure.
int | factorizations the number of factorizations performed
int64_t | max_entries_factors | the maximum number of entries in the factors
int | len_history the number of (||z||as, A) pairs in the history
real_wp_ | obj the value of the quadratic function
real_wp_ | obj_regularized the value of the regularized quadratic function
real_wp_ | x_norm the M-norm of x, ||x||as
real_wp_ | multiplier the Lagrange multiplier corresponding to the regularization
real_wp_ | pole a lower bound max (0, — A1), where)\ is the left-most
eigenvalue of (H, M)
bool | dense_factorization | was a dense factorization used?
bool | hard_case has the hard case occurred?
char | bad_alloc[81] name of array which provoked an allocate failure
struct rqs_time_type | time time information
struct rgs_history_type | history[100] history information
struct sls—inform_type | sls—inform cholesky-information (see sls—c documentation)
CALARRREPir _inform_type | ir_inform iterative_refinement information (see ir S USESHEHTARBHID ROS|

3.1 galahad_rgs.h File Reference

11

3.1.2 Function Documentation

3.1.2.1 rqs_initialize()

void rgs_initialize

(

void *x data,

struct rgs_control_type x control,

int * status)

Set default control values and initialize private data

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see rgs_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
* 0. The import was succesful.
Examples

rgst.c, and rgstf.c.

3.1.2.2 rqs_read_specfile()

void rgs_read_specfile (

struct rgs_control_type x control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNRQS.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/rgs.pdf for a list of keywords that may

be set.

Parameters
in, out | control | is a struct containing control information (see rgs_control_type)
in specfile | is a character string containing the name of the specification file

3.1.2.3 rgs_import()

void rgs_import (

C interfaces to GALAHAD RQS

GALAHAD 4.0

12 File Documentation

struct rgs_control_type x control,
void #*x data,

int * status,

int n,

const char H_typel],

int H_ne,

const int H_row/[],

const int H_col[],

const int H _ptr[])

Import problem data into internal storage prior to solution.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
rgs_control_type)
in, out | data holds private internal data

in,out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 0. The import was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

+ -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’, 'sparse_by_rows', diagonal' or 'identity' has
been violated.

in n is a scalar variable of type int, that holds the number of rows (and columns) of H.

in H_type | is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H. It should be one of 'coordinate’, 'sparse_by_rows', 'dense’, or
'diagonal'; lower or upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row | is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense or diagonal storage schemes are
used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H, as well as the total number of entries, in the
sparse row-wise storage scheme. It need not be set when the other schemes are used,
and in this case can be NULL.

Examples

rgst.c, and rgstf.c.

GALAHAD 4.0 C interfaces to GALAHAD RQS

3.1 galahad_rgs.h File Reference 13

3.1.2.4 rqs_import_m()

void rgs_import_m (

Import data for

Parameters

void *x data,

int % status,

int n,

const char M _type[],

int M _ne,

const int M _row[],

const int M col[],

const int M ptr[])

the scaling matrix M into internal storage prior to solution.

in, out

data

holds private internal data

in, out

status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 0. The import was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’, 'sparse_by_rows', diagonal' or 'identity' has
been violated.

in

is a scalar variable of type int, that holds the number of rows (and columns) of M.

in

M_type

is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the scaling matrix, M. It should be one of 'coordinate’, 'sparse_by_rows',
'dense’, or 'diagonal’; lower or upper case variants are allowed.

in

M_ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of M in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in

M_row

is a one-dimensional array of size M_ne and type int, that holds the row indices of the
lower triangular part of M in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL.

in

M _col

is a one-dimensional array of size M_ne and type int, that holds the column indices of
the lower triangular part of M in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense, diagonal or identity storage
schemes are used, and in this case can be NULL.

in

M_ptr

is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of M, as well as the total number of entries, in the
sparse row-wise storage scheme. It need not be set when the other schemes are used,
and in this case can be NULL.

C interfaces to GALAHAD RQS

GALAHAD 4.0

14

File Documentation

Examples

rgst.c, and rgstf.c.

3.1.2.,5 rqs_import_a()

void rgs_import_a (

void % data,

int % status,

int m,

const char A_type[],

int A ne,

const int A _row/[],

const int A col[],

const int A ptr[])

Import data for the constraint matrix A into internal storage prior to solution.

Parameters

in, out

data

holds private internal data

in, out

status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

* 0. The import was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 and m > 0 or requirement that a type contains its
relevant string 'dense’, 'coordinate’ or 'sparse_by_rows' has been violated.

in

is a scalar variable of type int, that holds the number of general linear constraints, i.e.,
the number of rows of A, if any. m must be non-negative.

in

A_type

is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A if any. It should be one of 'coordinate’,
'sparse_by_rows' or 'dense'; lower or upper case variants are allowed.

in

A _ne

is a scalar variable of type int, that holds the number of entries in A, if used, in the
sparse co-ordinate storage scheme. It need not be set for any of the other schemes.

in

A_row

is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in

A_col

is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in

A_ptr

is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can be

ALAHAD 4.0

NULL.

C-i f: to-GALAHAD RQS/

3.1 galahad_rgs.h File Reference

15

Examples

rgst.c, and rgstf.c.

3.1.2.6 rqs_reset_control()

void rgs_reset_control (

struct rgs_control_type * control,

void =% data,

int * status)

Reset control parameters after import if required.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
rgs_control_type)
in,out | data holds private internal data
in, out | status | is a scalar variable of type int, that gives the exit status from the package. Possible

values are:

* 0. The import was succesful.

3.1.2.7 rqs_solve_problem()

void rgs_solve_problem (

void *x data,
int % status,
int n,

const real_wp_
const real_wp_
const real_wp_
const real_wp_
int H_ne,
const real_wp_
real_wp_ x[],
int M _ne,
const real_wp_
int m,

int A _ne,
const real_wp_

real_wp_ y[])

power,
welght,
£,
cl],

H vall],

M vall],

A vall],

Solve the regularised quadratic problem.

Parameters

in, out ‘ data ‘ holds private internal data

C interfaces to GALAHAD RQS

GALAHAD 4.0

16

File Documentation

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful.

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

+ -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0, power > 2, weight > 0 and m > 0 or requirement that
a type contains its relevant string 'dense’, 'coordinate’, 'sparse_by_rows',
'diagonal’ or 'identity' has been violated.

+ -9. The analysis phase of the factorization of the matrix (1) failed.

+ -10. The factorization of the matrix (1) failed.

+ -15. The matrix M appears not to be diagonally dominant.

» -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many factorizations have been required. This may happen if control.max
factorizations is too small, but may also be symptomatic of a badly scaled
problem.

in

is a scalar variable of type int, that holds the number of variables.

in

power

is a scalar of type double, that holds the order of regularisation, p, used. power must be
no smaller than 2.

in

weight

is a scalar of type double, that holds the regularisation weight, o, used. weight must be
strictly positive.

in

is a one-dimensional array of size n and type double, that holds the linear term c of the
objective function. The j-th component of ¢, j =0, ..., n-1, contains c;.

in

is a scalar of type double, that holds the constant term f of the objective function.

in

H _ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H .

in

H_val

is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

out

is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains x ;.

in

M_ne

is a scalar variable of type int, that holds the number of entries in the scaling matrix M if
it not the identity matrix.

in

M_val

is a one-dimensional array of size M_ne and type double, that holds the values of the
entries of the scaling matrix M, if it is not the identity matrix, in any of the available
storage schemes. If M_val is NULL, M will be taken to be the identity matrix.

in

is a scalar variable of type int, that holds the number of general linear constraints, if any.
m must be non-negative.

in

A _ne

is a scalar variable of type int, that holds the number of entries in the constraint
Jacobian matrix A if used. A_ne must be non-negative.

GALAHAD 4.0

C interfaces to GALAHAD RQS

3.1 galahad_rqgs.h File Reference 17

Parameters
in A val | is a one-dimensional array of size A_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A, if used, in any of the available storage
schemes. If A_val is NULL, no constraints will be enforced.
out y is a one-dimensional array of size m and type double, that holds the values y of the
Lagrange multipliers for the equality constraints Az = 0 if used. The i-th component of
y,i=0,..,m-1, contains y;.
Examples

rgst.c, and rgstf.c.

3.1.2.8 rqs_information()

void rgs_information (

void =% data,

struct rgs_inform_type * inform,

int * status)

Provides output information

Parameters
in, out | data holds private internal data
out inform | is a struct containing output information (see rgs_inform_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
* 0. The values were recorded succesfully
Examples

rgst.c, and rgstf.c.

3.1.2.9 rqs_terminate()

void rgs_terminate

void *x data,

struct rgs_control_type x control,

struct rgs_inform_type * inform)

Deallocate all internal private storage

C interfaces to GALAHAD RQS

GALAHAD 4.0

18

File Documentation

Parameters
in, out | data holds private internal data
out control | is a struct containing control information (see rgs_control_type)
out inform | is a struct containing output information (see rqs_inform_type)
Examples

rgst.c, and rgstf.c.

GALAHAD 4.0

C interfaces to GALAHAD RQS

Chapter 4

Example Documentation

41 rgst.c

This is an example of how to use the package to solve a regularised quadratic problem. A variety of supported
Hessian, scaling and constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexingto false.
/% rgst.c */
/% Full test for the RQS C interface using C sparse matrix indexing =/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_rgs.h"
int main(void) {
// Derived types
void xdata;
struct rgs_control_type control;
struct rgs_inform_type inform;
// Set problem data

int n = 3; // dimension of H

int m = 1; // dimension of A

int H_ne = 4; // number of elements of H

int M_ne = 3; // number of elements of M

int A_ne = 3; // number of elements of A

int H_dense_ne = 6; // number of elements of H

int M_dense_ne = 6; // number of elements of M

int H_row[] = {0, 1, 2, 2}; // row indices, NB lower triangle

int H_col[] = {0, 1, 2, 0};

int H_ptr[] = {0, 1, 2, 4};

int M_row[] = {0, 1, 2}; // row indices, NB lower triangle

int M_col[] = {0, 1, 2};

int M_ptr[] = {0, 1, 2, 3};

int A_row[] = {0, O, 0} ;

int A_coll[] = (0, 1, 2};

int A_ptr[] = {0, 3};

real wp_ H val[] = {1.0, 2.0, 3.0, 4.0};

real_ wp_ M val[] = {1.0, 2.0, 1.0};

real_wp_ A _val[] = {1.0, 1.0, 1.0};

real_wp_ H_dense[] = {1.0, 0.0, 2.0, 4.0, 0.0, 3.0};
] = {1.0, 0.0, 2.0, 0.0, 0.0, 1.0};

[
real_wp_ M_dense]|
real_wp_ H_diagl[]

]

real_wp_ M _diag][1.0};
real_wp_ £ = 0.96;

real_wp_ power = 3.0;

real_wp_ weight = 1.0;

real_wp_ c[] = {0.0, 2.0, 0.0};

char st;

int status;

real_wp_ x[n];

char ma[3];

printf (" C sparse matrix indexing\n\n");
printf (" basic tests of storage formats\n\n");

20

Example Documentation

for(int a_is=0;

strcpy (ma,

strcpy (ma,

strcpy (ma,

if (a_is

Lf (m_is

a_is <= 1;

int m_is=0; m_is <=
(a_is == 1 && m_is ==) {

"MAM) ;

==1) {
LN

== 1) {
momy

a_is++){ // add a linear constraint?
1; m_is++){ // include a scaling matrix?

strcpy (ma, " ");

or(int storage_type=1l; storage_type <= 4;
// Initialize RQS

rgs_initialize(&data, &control, &status);

// Set user-defined control options

storage_type++) {

7

control.f_indexing = false; // C sparse matrix indexing

(storage_type) {
se 1: // sparse co-ordinate storage
st = 'C’;

// import the control parameters and structural data
rgs_import (&control, &data, &status, n,
"coordinate", H_ne, H_row, H_col, NULL);

if (m_is == 1) {
rgs_import_m(&data, &status, n,

"coordinate", M_ne, M_row, M_col, NULL

}
if (a_is == 1) {
rgs_import_a(&data, &status, m,

"coordinate", A_ne, A_row, A_col, NULL

}
// solve the problem
if (a_ls == 1 && m_is ==) {

rgs_solve_problem(&data, &status, n,
power, weight, f, c, H_ne, H_val,

M_ne, M_val,

if (a_is == 1) {

m, A_ne, A_val, NULL

rgs_solve_problem(&data, &status, n,
power, weight, f, c, H_ne, H_val,
0, NULL, m, A_ne, A_val, NULL);

e if (m_is == 1) {

rgs_solve_problem(&data, &status, n,

power, weight, f, c, H_ne, H_val,

M_ne, M_val,

}
else {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, H_ne, H_val,
0, NULL, 0, 0, NULL, NULL);

}
br

I

7

- 2: // sparse by rows
st = 'R’;

0, 0, NULL, NULL);

printf (" case %1i break\n", storage_type);
-

// import the control parameters and structural data
rgs_import (&control, &data, &status, n,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr

(m_is == 1) {
rgs_import_m(&data, &status, n,
"sparse_by_rows",
}
if (a_is == 1) {
rgs_import_a(&data, &status, m,

"sparse_by_rows", A_ne, NULL, A_col, A_ptr

}
// solve the problem
© (a_ils == 1 && m_is ==) |

rgs_solve_problem(&data, &status, n,
power, weight, f, ¢, H_ne, H_val,

M_ne, M_val,

(a_is == 1) {

m, A_ne, A_val, NULL

rgs_solve_problem(&data, &status, n,

power, weight, f, ¢, H_ne, H_val,
0, NULL, m, A_ne, A_val, NULL);

}
el

(m_is == 1) {

rgs_solve_problem(&data, &status, n,

power, weight, f, ¢, H_ne, H_val,

M_ne, M_val,

{

0, 0, NULL, NULL);

rgs_solve_problem(&data, &status, n,

)i

)i

Xy

Xy

Xy

)i

M_ne, NULL, M_col, M_ptr);

Xy

)i

Xy

Xy

GALAHAD 4.0

C interfaces to GALAHAD RQS

4.1 rgst.c 21
power, weight, f, ¢, H_ne, H_val, x,
0, NULL, 0, 0, NULL, NULL);
}
ak;
case // dense
st = 'D’;
// import the control parameters and structural data
rgs_import (&control, &data, &status, n,
"dense", H_ne, NULL, NULL, NULL);
if (m_is == 1) {
rgs_import_m(&data, &status, n,
"dense", M_ne, NULL, NULL, NULL);
}
1f (a_is == 1) {
rgs_import_a(&data, &status, m,
"dense", A_ne, NULL, NULL, NULL);
}
// solve the problem
if (a_ls == 1 && m_is ==) {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
M_dense_ne, M_dense, m, A_ne, A_val,
NULL) ;
}
else 1if (a_is == 1) {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
0, NULL, m, A_ne, A_val, NULL);
}
else 1f (m_is == 1) {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
M_dense_ne, M_dense, 0, 0, NULL, NULL);
}
else {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
0, NULL, 0, 0, NULL, NULL);
}
break;
: // diagonal
st = 'L";
// import the control parameters and structural data
rgs_import (&control, &data, &status, n,
"diagonal", H_ne, NULL, NULL, NULL);
if (m_is == 1) {
rgs_import_m(&data, &status, n,
"diagonal", M_ne, NULL, NULL, NULL);
}
if (a_is == 1) {
rgs_import_a(&data, &status, m,
"dense", A_ne, NULL, NULL, NULL);
}
// solve the problem
if (a_is == 1 && m_is ==) |
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
n, M_diag, m, A_ne, A_val, NULL);
}
else if (a_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
0, NULL, m, A_ne, A_val, NULL);
}
else if (m_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
n, M_diag, 0, 0, NULL, NULL);
}
else {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
0, NULL, 0, 0, NULL, NULL);
}
rgs_information(&data, &inform, &status);
printf ("format %c%s: RQS_solve_problem exit status = %1i, f = %.Zf\n",
st, ma, inform.status, inform.obj_regularized);
//printf ("x: ");
//for(int i = 0; i < n+m; i++) printf("$f ", x[i]);
// Delete internal workspace
rgs_terminate (&data, &control, &inform);
}
}
}
}
C interfaces to GALAHAD RQS GALAHAD 4.0

22

Example Documentation

4.2 rqstf.c

This is the same example, but now fortran-style indexing is used.

/* rgstf.c =/

/% Full test for the RQS C interface using Fortran sparse matrix indexing =/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_rgs.h"
int main(void) {
// Derived types
void xdata;
struct rgs_control_type control;
struct rgs_inform_type inform;
// Set problem data

int n = 3; // dimension of H

int m = 1; // dimension of A

int H_ne = 4; // number of elements of H

int M_ne = 3; // number of elements of M

int A_ne = 3; // number of elements of A

int H_dense_ne = 6; // number of elements of H

int M_dense_ne = 6; // number of elements of M

int H_row[] = {1, 2, 3, 3}; // row indices, NB lower triangle

int H_col[] {1, 2, 3, 1};

int H_ptr[] = {1, 2, 3, 5};

int M_row[] = {1, 2, 3}; // row indices, NB lower triangle

int M_coll[] = {1, 2, 3};

int M_ptr[] = {1, 2, 3, 4};

int A_row[] = {1, 1, 1} ;

int A_coll] = {1, 2, 3};

int A_ptr[] = {1, 4};

real_wp_ H_val[] = {1.0, 2.0, 3.0, 4.0};

real_ wp_ M val[] = {1.0, 2.0, 1.0};

real_ wp_ A_val[] = {1.0, 1.0, 1.0};

real_wp_ H_dense[] = {1.0, 0.0, 2.0, 4.0, 0.0,
] = {1.0, 0.0, 2.0, 0.0, 0.0,

real_wp_ H_diag|
real_wp_ M_diag[
real_wp_ £ = 0.96;

[
real_wp_ M_dense]|
]
]

real_wp_ power = 3.0;

real_wp_ weight = 1.0;

real_wp_ c[] = {0.0, 2.0, 0.0};
char st;

int status;

real_wp_ x[n];

char ma[3];

printf (" Fortran sparse matrix indexing\n\n");
printf (" basic tests of storage formats\n\n");
for(int a_is=0; a_is <= 1; a_is++){ // add a

linear constraint?

for(int m_is=0; m_is <= 1; m_is++){ // include a scaling matrix?

if (a_is == 1 && m_is ==) A
strcpy (ma, "MA");

else if (a_is == 1) {
strcpy(ma, "A ");

e if (m_is == 1) {
strcpy (ma, "M ")

7

se |

strcpy (ma, " ");

// Initialize RQS

rgs_initialize(&data, &control, &status

// Set user-defined control options

or(int storage_type=1l; storage_type <= 4; storage_type++) {

)i

control.f_indexing = true; // fortran sparse matrix indexing

switch (storage_type) {

st = ’c’;

case 1: // sparse co-ordinate storage

// import the control parameters and structural data
rgs_import (&control, &data, &status, n,
"coordinate", H_ne, H_row, H_col, NULL);

if (m_is == 1) {
rgs_import_m(&data, &status,

n,

"coordinate", M_ne, M_row, M_col, NULL);

}
if (a_is == 1) {
rgs_import_a(&data, &status,

m,

"coordinate", A_ne, A_row, A_col, NULL);

}
// solve the problem

GALAHAD 4.0

C interfaces to GALAHAD RQS

4.2 rgstf.c 23

(a_is == 1 && m_is ==) {
rgs_solve_problem(&data, &status, n,
power, weight, £, ¢, H_ne, H_val, x,
M_ne, M_val, m, A_ne, A_val, NULL);

e if (a_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, £, ¢, H_ne, H_val, x,
0, NULL, m, A_ne, A_val, NULL);

}
else 1f (m_is == 1) {
rgs_solve_problem(&data, &status, n,

power, weight, f, ¢, H_ne, H_val, x,
M_ne, M_val, 0, 0, NULL, NULL);

et
rgs_solve_problem(&data, &status, n,
power, weight, f, ¢, H_ne, H_val, x,
0, NULL, 0, 0, NULL, NULL);

}
br

I

;
printf(" case %1i break\n", storage_type);
case 2: // sparse by rows

st = 'R’;

// import the control parameters and structural data
rgs_import (&control, &data, &status, n,
"sparse_by_rows", H_ne, NULL, H_col, H_ptr);
(m_is == 1) {
rgs_import_m(&data, &status, n,
"sparse_by_rows", M_ne, NULL, M_col, M_ptr);
}
if (a_is == 1) {
rgs_import_a(&data, &status, m,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
}
// solve the problem
if (a_is == 1 && m_is ==) |
rgs_solve_problem(&data, &status, n,
power, weight, f, ¢, H_ne, H_val, x,
M ne, M _val, m, A_ne, A_val, NULL);

else if (a_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, f, ¢, H_ne, H_val, x,
0, NULL, m, A_ne, A_val, NULL);

else if (m_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, f, ¢, H_ne, H_val, x,
M _ne, M _val, 0, 0, NULL, NULL);
}
else {
rgs_solve_problem(&data, &status, n,
power, weight, £, ¢, H_ne, H_val, x,
0, NULL, 0, 0, NULL, NULL);

// dense
st = 'D’;
// import the control parameters and structural data
rgs_import (&control, &data, &status, n,
"dense", H_ne, NULL, NULL, NULL);
(m_is == 1) {
rgs_import_m(&data, &status, n,
"dense", M_ne, NULL, NULL, NULL);

(a_is == 1) {
rgs_import_a(&data, &status, m,
"dense", A_ne, NULL, NULL, NULL);
}
// solve the problem
- (a_ils == 1 && m_is ==) {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
M_dense_ne, M_dense, m, A_ne, A_val,
NULL) ;

else 1f (a_is == 1) {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
0, NULL, m, A_ne, A_val, NULL);

if (m_is == 1) {

rgs_solve_problem(&data, &status, n, power, weight,

f, ¢, H_dense_ne, H_dense, x,
M_dense_ne, M_dense, 0, 0, NULL, NULL);

C interfaces to GALAHAD RQS GALAHAD 4.0

24

Example Documentation

else {
rgs_solve_problem(&data, &status, n, power, weight,
f, ¢, H_dense_ne, H_dense, x,
0, NULL, 0, 0, NULL, NULL);
}
ak;
case 4: // diagonal
st = 'L";

// import the control parameters and structural data

rgs_import (&control, &data, &status, n,
"diagonal", H_ne, NULL, NULL, NULL);
if (m_is == 1) {

rgs_import_m(&data, &status, n,

"diagonal", M_ne, NULL, NULL, NULL);

if (a_is == 1) {
rgs_import_a(&data,
"dense",

&status, m,

A_ne, NULL, NULL, NULL);
}

// solve the problem

if (a_ls == 1 && m_is == 1) {

rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
n, M_diag, m, A_ne, A_val, NULL);
}
€ e if (a_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
0, NULL, m, A_ne, A_val, NULL);
}
else if (m_is == 1) {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
n, M_diag, 0, 0, NULL, NULL);
}
else {
rgs_solve_problem(&data, &status, n,
power, weight, f, c, n, H_diag, x,
0, NULL, 0, 0, NULL, NULL);
}
rgs_information(&data, &inform, &status);

printf ("format %c
st, ma, in

%s: RQS_solve_problem exit st

form.status,

//printf ("x: ");

//for(int i = 0; i < n+m; i++)
// Delete internal workspace
rgs_terminate (&data, &control,

printf ("sf ",

&inform);

atus = %1i, £ = %.2f\n",
inform.obj_regularized);

x[11);

GALAHAD 4.0

C interfaces to GALAHAD RQS

	1 GALAHAD C package rqs
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Method
	1.1.5 Reference
	1.1.6 Call order
	1.1.7 Unsymmetric matrix storage formats
	1.1.7.1 Dense storage format
	1.1.7.2 Sparse co-ordinate storage format
	1.1.7.3 Sparse row-wise storage format

	1.1.8 Symmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format
	1.1.8.4 Diagonal storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_rqs.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct rqs_control_type
	3.1.1.2 struct rqs_time_type
	3.1.1.3 struct rqs_history_type
	3.1.1.4 struct rqs_inform_type

	3.1.2 Function Documentation
	3.1.2.1 rqs_initialize()
	3.1.2.2 rqs_read_specfile()
	3.1.2.3 rqs_import()
	3.1.2.4 rqs_import_m()
	3.1.2.5 rqs_import_a()
	3.1.2.6 rqs_reset_control()
	3.1.2.7 rqs_solve_problem()
	3.1.2.8 rqs_information()
	3.1.2.9 rqs_terminate()

	4 Example Documentation
	4.1 rqst.c
	4.2 rqstf.c

