C interfaces to GALAHAD ARC

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Thu Jun 22 2023

1 GALAHAD C package arc 1
1.1 Introduction L e e e e e 1
111 PUrPOSE o e e 1

1. 1.2Authors o 1

1.1.3 Originally released 1
1.1.4Terminology o e 1
11.5Method e 2

1.1.6 References L 2

1.2 Callorder e 2
1.3 Symmetric matrix storage formats L 3
1.3.1 Dense storage format 3

1.3.2 Sparse co-ordinate storage format L L L 3

1.3.3 Sparse row-wise storage format L 3

2 File Index

21 File List e 5
3 File Documentation 7
3.1 galahad_arc.h File Reference 7
3.1.1 Data Structure Documentation L 8
3.1.1.1 structarc_control_type 8
3.1.1.2structarc_time_type L 11
3.1.1.3structarc_inform_type 12

3.1.2 Function Documentation 12
3.1.21arc_initialize() 12
3.1.22arc_read_specfile() 13
3.1.23arc_import() L 13

3.1.24 arc_reset_control() 14
3.1.25arc_solve_with_mat() 15

3.1.2.6 arc_solve_without_mat() 17

3.1.2.7 arc_solve_reverse_with_ mat() L. 19

3.1.2.8 arc_solve_reverse_without mat() Lo 22

3.1.29 arc_information() 25
3.1.210arc_terminate() 25

4 Example Documentation 27
4.1arct.C. . . e e e e 27
4.2arctf.C . . e e 31

C interfaces to GALAHAD ARC GALAHAD 4.0

Chapter 1

GALAHAD C package arc

1.1 Introduction

1.1.1 Purpose

The arc package uses a regularization method to find a (local) unconstrained minimizer of a differentiable
objective function f(x) of many variables x. The method offers the choice of direct and iterative solution of
the key regularization subproblems, and is most suitable for large problems. First derivatives are required, and if
second derivatives can be calculated, they will be exploited—if the product of second derivatives with a vector may
be found, but not the derivatives themselves, that may also be exploited.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England, and M. Porcelli, University of Bologna, Italy.
C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

May 2011, C interface August 2021.

1.1.4 Terminology

The gradient V. f(x) of f(x) is the vector whose i-th component is 0f(x)/Jz;. The Hessian V . f (x) of f(x)
is the symmetric matrix whose i, j-th entry is 8 f(z)/0x;0z;. The Hessian is sparse if a significant and useful
proportion of the entries are universally zero.

2 GALAHAD C package arc

1.1.5 Method

An adaptive cubic regularization method is used. In this, an improvement to a current estimate of the required
minimizer, xy, is sought by computing a step sx. The step is chosen to approximately minimize a model my(s) of
f (x5, + s) that includes a weighted term oy || s, ||® for some specified positive weight o.. The quality of the resulting
step sy, is assessed by computing the "ratio” (f(xx) — f(zx + sk))/(mi(0) — mi(sk)). The step is deemed to
have succeeded if the ratio exceeds a given ny > 0, and in this case =41 = z + si. Otherwise x4 = 7, and
the weight is increased by powers of a given increase factor up to a given limit. If the ratio is larger than 7, > 74, the
weight will be decreased by powers of a given decrease factor again up to a given limit. The method will terminate
as soon as ||V, f(zx)|| is smaller than a specified value.

Either linear or quadratic models my(s) may be used. The former will be taken as the first two terms
f(xy) + sV, f(xx) of a Taylor series about z, while the latter uses an approximation to the first three terms
f(xi) + sTVa f(xr) + 557 Bys, for which By, is a symmetric approximation to the Hessian V,, f (z); possible
approximations include the true Hessian, limited-memory secant and sparsity approximations and a scaled identity
matrix. Normally a two-norm regularization will be used, but this may change if preconditioning is employed.

An approximate minimizer of the cubic model is found using either a direct approach involving factorization or an
iterative (conjugate-gradient/Lanczos) approach based on approximations to the required solution from a so-called
Krlov subspace. The direct approach is based on the knowledge that the required solution satisfies the linear
system of equations (By + A\xI)sx = —V.f(xy) involving a scalar Lagrange multiplier A;. This multiplier is
found by uni-variate root finding, using a safeguarded Newton-like process, by the GALAHAD packages RQS or
DPS (depending on the norm chosen). The iterative approach uses the GALAHAD packag GLRT, and is best
accelerated by preconditioning with good approximations to By, using GALAHAD's PSLS. The iterative approach
has the advantage that only matrix-vector products By v are required, and thus By, is not required explicitly. However
when factorizations of B, are possible, the direct approach is often more efficient.

1.1.6 References

The generic adaptive cubic regularization method is described in detail in

C. Cartis, N. I. M. Gould and Ph. L. Toint, “‘Adaptive cubic regularisation methods for unconstrained optimization.
Part |: motivation, convergence and numerical results” Mathematical Programming 127(2) (2011) 245-295,

and uses “‘tricks™ as suggested in

N. I. M. Gould, M. Porcelli and Ph. L. Toint, “‘Updating the regularization parameter in the adaptive cubic regular-
ization algorithm. Computational Optimization and Applications 53(1) (2012) 1-22.

1.2 Call order

To solve a given problem, functions from the arc package must be called in the following order:

* arc_initialize - provide default control parameters and set up initial data structures

« arc_read_specfile (optional) - override control values by reading replacement values from a file

+ arc_import - set up problem data structures and fixed values

« arc_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
+ solve the problem by calling one of

— arc_solve_with_mat - solve using function calls to evaluate function, gradient and Hessian values

GALAHAD 4.0 C interfaces to GALAHAD ARC

1.3 Symmetric matrix storage formats 3

— arc_solve_without_mat - solve using function calls to evaluate function and gradient values and Hessian-
vector products

— arc_solve_reverse_with_mat - solve returning to the calling program to obtain function, gradient and
Hessian values, or

— arc_solve_reverse_without_mat - solve returning to the calling prorgram to obtain function and gradient
values and Hessian-vector products

+ arc_information (optional) - recover information about the solution and solution process

« arc_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.3 Symmetric matrix storage formats

The symmetric n by n matrix H = V,, f may be presented and stored in a variety of formats. But crucially
symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on or below the
leading diagonal).

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and t rue for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.3.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part H;; for 0 < j < i < n — 1) need be held. In this case the lower triangle should be stored by
rows, that is component i * /2 + j of the storage array H_val will hold the value H;; (and, by symmetry, H ;) for
0<j<i<n-—1.

1.3.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the I-th entry, 0 < [< ne — 1, of H, its row index i, column
index j and value H;;, 0 < j < ¢ < n — 1, are stored as the [-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.3.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries. The column indices j, 0 < j < 4, and values H;;
of the entries in the i-th row are stored in components | = H_ptr(i), .. ., H_ptr(i+1)-1 of the integer array H_col, and
real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse
matrices, this scheme almost always requires less storage than its predecessor.

C interfaces to GALAHAD ARC GALAHAD 4.0

4 GALAHAD C package arc

GALAHAD 4.0 C interfaces to GALAHAD ARC

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_arc.h L

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD ARC

Chapter 3

File Documentation

3.1

galahad_arc.h File Reference

#include <stdbool.h>

#include <stdint.h>

#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_rgs.h"
#include "galahad_glrt.h"
finclude "galahad_dps.h"
#include "galahad_psls.h"
#include "galahad_lms.h"
#include "galahad_sha.h"

Data Structures

struct arc_control_type
struct arc_time_type
struct arc_inform_type

Functions

void arc_initialize (void *xdata, struct arc_control_type xcontrol, int xstatus)

void arc_read_specfile (struct arc_control_type xcontrol, const char specfile[])

void arc_import (struct arc_control_type xcontrol, void *xdata, int xstatus, int n, const char H_type[], int ne,
const int H_row[], const int H_col[], const int H_ptr[])

void arc_reset_control (struct arc_control_type xcontrol, void xxdata, int xstatus)

void arc_solve_with_mat (void xxdata, void xuserdata, int xstatus, int n, real_wp_ x[], real_wp_ g[], int ne,
int(xeval_f)(int, const real_wp_[], real_wp_ *, const void *), int(xeval_g)(int, const real_wp_[], real_wp_+«
[1, const void), int(xeval_h)(int, int, const real_wp_[], real_wp_[], const void x*), int(xeval_prec)(int, const
real_wp_[], real_wp_[], const real_wp_[], const void x))

void arc_solve_without_mat (void *xdata, void xuserdata, int xstatus, int n, real_wp_ x[], real_wp_ g[],
int(xeval_f)(int, const real_wp_[], real_wp_ *, const void *), int(xeval_g)(int, const real_wp_[], real_wp_+«
[1, const void %), int(xeval_hprod)(int, const real_wp_[], real_wp_[], const real_wp_[], bool, const void x),
int(xeval_prec)(int, const real_wp_[], real_wp_[], const real_wp_[], const void x))

void arc_solve_reverse_with_mat (void *xdata, int xstatus, int xeval_status, int n, real_wp_ x[], real_wp_ f,
real_wp_ g[], int ne, real_wp_ H_val[], const real_wp_ u[], real_wp_ v[])

void arc_solve_reverse_without_mat (void *xdata, int xstatus, int xeval_status, int n, real_wp_ x[], real_wp«
_f,real_wp_g[], real_wp_ u[], real_wp_ v[])

void arc_information (void *xdata, struct arc_inform_type xinform, int xstatus)

void arc_terminate (void *xdata, struct arc_control_type xcontrol, struct arc_inform_type xinform)

8 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct arc_control_type

control derived type as a C struct

Examples

arct.c, and arctf.c.

Data Fields
bool | f_indexing use C or Fortran sparse matrix indexing
int | error error and warning diagnostics occur on stream error
int | out general output occurs on stream out
int | print_level the level of output required.

» < 0 gives no output,
» =1 gives a one-line summary for every iteration,

» =2 gives a summary of the inner iteration for each
iteration,

» > 3 gives increasingly verbose (debugging) output

int | start_print any printing will start on this iteration
int | stop_print any printing will stop on this iteration
int | print_gap the number of iterations between printing
int | maxit the maximum number of iterations performed
int | alive_unit removal of the file alive_file from unit alive_unit terminates
execution
char | alive_file[31] see alive_unit
int | non_monotone the descent strategy used. Possible values are

+ <=0 a monotone strategy is used.

« anything else, a non-monotone strategy with history
length .non_monotine is used.

int | model the model used. Possible values are

» 0 dynamic (not yet implemented)

« 1 first-order (no Hessian)

+ 2 second-order (exact Hessian)

+ 3 barely second-order (identity Hessian)

* 4 secant second-order (limited-memory BFGS, with
.Ibfgs_vectors history) (not yet implemented)

+ 5 secant second-order (limited-memory SR1, with
.Ibfgs_vectors history) (not yet implemented)

GALAHAD 4.0 C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference

Data Fields

int

norm

the regularization norm used. The norm is defined via
|v]|? = v Pv, and will define the preconditioner used for
iterative methods. Possible values for P are

+ -3 users own preconditioner

+ -2 P = limited-memory BFGS matrix (with
.Ibfgs_vectors history)

-1 identity (= Euclidan two-norm)

» 0 automatic (not yet implemented)

1 diagonal, P = diag(max(Hessian, .min_diagonal

))

» 2 banded, P = band(Hessian) with
semi-bandwidth .semi_bandwidth

+ 3 re-ordered band, P=band(order(A)) with
semi-bandwidth .semi_bandwidth

4 full factorization, P = Hessian, Schnabel-Eskow
modification

5 full factorization, P = Hessian, GMPS
modification (not yet implemented)

6 incomplete factorization of Hessian, Lin-More'

7 incomplete factorization of Hessian, HSL_MI28

8 incomplete factorization of Hessian, Munskgaard
(not yet implemented)

» 9 expanding band of Hessian (not yet implemented)

» 10 diagonalizing norm from GALAHAD_DPS
(subproblem_direct only)

int

semi_bandwidth

specify the semi-bandwidth of the band matrix P if required

int

Ibfgs_vectors

number of vectors used by the L-BFGS matrix P if required

int

max_dxg

number of vectors used by the sparsity-based secant
Hessian if required

int

icfs_vectors

number of vectors used by the Lin-More' incomplete
factorization matrix P if required

int

mi28_lsize

the maximum number of fill entries within each column of
the incomplete factor L computed by HSL_MI28. In
general, increasing .mi28_lsize improve the quality of the
preconditioner but increases the time to compute and then
apply the preconditioner. Values less than 0 are treated as
0

C interfaces to GALAHAD ARC

GALAHAD 4.0

10 File Documentation

Data Fields

int | mi28_rsize the maximum number of entries within each column of the
strictly lower triangular matrix R used in the computation
of the preconditioner by HSL_MI28. Rank-1 arrays of size
.mi28_rsize * n are allocated internally to hold R. Thus the
amount of memory used, as well as the amount of work
involved in computing the preconditioner, depends on
.mi28_rsize. Setting .mi28_rsize > 0 generally leads to a
higher quality preconditioner than using .mi28_rsize = 0,
and choosing .mi28_rsize >= .mi28_lsize is generally
recommended

int | advanced_start try to pick a good initial regularization weight using
.advanced_start iterates of a variant on the strategy of
Sartenaer SISC 18(6) 1990:1788-1803

real_wp_ | stop_g_absolute overall convergence tolerances. The iteration will
terminate when the norm of the gradient of the objective
function is smaller than MAX(.stop_g_absolute,
.stop_g_relative * norm of the initial gradient) or if the
step is less than .stop_s

real_wp_ | stop_g_relative see stop_g_absolute

real_wp_ | stop_s see stop_g_absolute

real_wp_ | initial_weight Initial value for the regularisation weight (-ve => 1/||g_0||)
real_wp_ | minimum_weight minimum permitted regularisation weight

real_wp_ | reduce_gap expert parameters as suggested in Gould, Porcelli & Toint,

"Updating the regularization parameter in the adaptive
cubic regularization algorithm" RAL-TR-2011-007,
Rutherford Appleton Laboratory, England (2011),
http://epubs.stfc.ac.«
uk/bitstream/6181/RAL-TR-2011-007.pdf
(these are denoted beta, epsilon_chi and alpha_max in

the paper)
real_wp_ | tiny_gap see reduce_gap
real_wp_ | large_root see reduce_gap
real_wp_ | eta_successful a potential iterate will only be accepted if the actual

decrease f - f(x_new) is larger than .eta_successful times
that predicted by a quadratic model of the decrease. The
regularization weight will be decreased if this relative
decrease is greater than .eta_very_successful but smaller
than .eta_too_successful (the first is eta in Gould, Porcell
and Toint, 2011)

real_wp_ | eta_very_ successful see eta_successful

real_wp_ | eta_too_successful see eta_successful

real_wp_ | weight_decrease_min | on very successful iterations, the regularization weight will
be reduced by the factor .weight_decrease but no more
than .weight_decrease_min while if the iteration is
unsuccessful, the weight will be increased by a factor
.weight_increase but no more than .weight_increase_max
(these are delta_1, delta_2, delta3 and delta_max in
Gould, Porcelli and Toint, 2011)

real_wp_ | weight_decrease see weight_decrease_min

real_wp_ | weight_increase see weight_decrease_min

real_wp_ | weight_increase_max | see weight_decrease_min

real_wp_ | obj_unbounded the smallest value the onjective function may take before
the problem is marked as unbounded

GALAHAD 4.0 C interfaces to GALAHAD ARC

http://epubs.stfc.ac.uk/bitstream/6181/RAL-TR-2011-007.pdf
http://epubs.stfc.ac.uk/bitstream/6181/RAL-TR-2011-007.pdf
http://epubs.stfc.ac.uk/bitstream/6181/RAL-TR-2011-007.pdf

3.1 galahad_arc.h File Reference

11

Data Fields
real_wp_ | cpu_time_limit the maximum CPU time allowed (-ve means infinite)
real_wp_ | clock_time_limit the maximum elapsed clock time allowed (-ve means
infinite)
bool | hessian_available is the Hessian matrix of second derivatives available or is
access only via matrix-vector products?
bool | subproblem_direct use a direct (factorization) or (preconditioned) iterative
method to find the search direction
bool | renormalize_weight should the weight be renormalized to account for a change
in preconditioner?
bool | quadratic_ratio_test should the test for acceptance involve the quadratic model
or the cubic?
bool | space_critical if .space_critical true, every effort will be made to use as
little space as possible. This may result in longer
computation time
bool | deallocate_error_fatal | if .deallocate_error_fatal is true, any array/pointer
deallocation error will terminate execution. Otherwise,
computation will continue
char | prefix[31] all output lines will be prefixed by
.prefix(2:LEN(TRIM(.prefix))-1) where .prefix contains the
required string enclosed in quotes, e.g. "string" or 'string'
struct rgs_control_type | rgs_control control parameters for RQS
struct glrt_control_type | glrt_control control parameters for GLRT
struct dps_control_type | dps_control control parameters for DPS
struct psls_control_type | psls_control control parameters for PSLS
struct Ims_control_type | Ims_control control parameters for LMS
struct Ims_control_type | Ims_control_prec
struct sha_control_type | sha_control control parameters for SHA

3.1.1.2 struct arc_time_type

time derived type as a C struct

Data Fields
real_sp_ | total the total CPU time spent in the package
real_sp_ | preprocess the CPU time spent preprocessing the problem
real_sp_ | analyse the CPU time spent analysing the required matrices prior to factorizatio
real_sp_ | factorize the CPU time spent factorizing the required matrices
real_sp_ | solve the CPU time spent computing the search direction
real_wp_ | clock_total the total clock time spent in the package
real_wp_ | clock_preprocess | the clock time spent preprocessing the problem
real_wp_ | clock_analyse the clock time spent analysing the required matrices prior to factorizat
real_wp_ | clock_factorize the clock time spent factorizing the required matrices
real_wp_ | clock_solve the clock time spent computing the search direction

C interfaces to GALAHAD ARC

GALAHAD 4.0

12

File Documentation

3.1.1.3 struct arc_inform_type

inform derived type as a C struct

Examples

arct.c, and arctf.c.

Data Fields
int | status return status. See ARC_solve for details
int | alloc_status the status of the last attempted allocation/deallocation
char | bad_alloc[81] the name of the array for which an allocation/deallocation
error occurred
int | iter the total number of iterations performed
int | cg_iter the total number of CG iterations performed
int | f_eval the total number of evaluations of the objective function
int | g_eval the total number of evaluations of the gradient of the
objective functio
int | h_eval the total number of evaluations of the Hessian of the
objective function
int | factorization_status the return status from the factorization
int | factorization_max the maximum number of factorizations in a sub-problem
solve
int64_t | max_entries_factors | the maximum number of entries in the factors
int64_t | factorization_integer the total integer workspace required for the factorization
int64_t | factorization_real the total real workspace required for the factorization
real_wp_ | factorization_average | the average number of factorizations per sub-problem solve
real_wp_ | obj the value of the objective function at the best estimate of
the solution determined by the package.
real_wp_ | norm_g the norm of the gradient of the objective function at the best
estimate of the solution determined by the package.
real_wp_ | weight the current value of the regularization weight
struct arc_time_type | time timings (see above)
struct rgqs_inform_type | rqgs_inform inform parameters for RQS
struct glrt_inform_type | glrt_inform inform parameters for GLRT
struct dps_inform_type | dps_inform inform parameters for DPS
struct psls_inform_type | psls_inform inform parameters for PSLS
struct Ims_inform_type | Ims_inform inform parameters for LMS
struct Ims_inform_type | Ims_inform_prec
struct sha_inform_type | sha_inform inform parameters for SHA

3.1.2 Function Documentation

3.1.2.1 arc_initialize()

void arc_initialize (

void % data,

GALAHAD 4.0

C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference

13

struct arc_control_type x control,

int % status)

Set default control values and initialize private data

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see arc_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
* 0. The import was succesful.
Examples

arct.c, and arctf.c.

3.1.2.2 arc_read_specfile()

void arc_read_specfile (
struct arc_control_type x control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNARC.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/arc.pdf for a list of keywords that may

be set.

Parameters

in, out | control | is a struct containing control information (see arc_control_type)

in specfile | is a character string containing the name of the specification file

3.1.2.3 arc_import()

void arc_import (
struct arc_control_type * control,
void *xx data,
int * status,
int n,
const char H_typel],
int ne,
const int H_row/[],
const int H_col[],

const int H ptr[])

Import problem data into internal storage prior to solution.

C interfaces to GALAHAD ARC

GALAHAD 4.0

14

File Documentation

Parameters

in

control

is a struct whose members provide control paramters for the remaining prcedures (see
arc_control_type)

in, out

data

holds private internal data

in, out

status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 1. The import was succesful, and the package is ready for the solve phase

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been violated.

in

is a scalar variable of type int, that holds the number of variables

in

H_type

is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian. It should be one of 'coordinate’, 'sparse_by_rows', 'dense’,
'diagonal’ or 'absent’, the latter if access to the Hessian is via matrix-vector products;
lower or upper case variants are allowed

in

ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other three schemes.

in

H_row

is a one-dimensional array of size ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be set
for any of the other three schemes, and in this case can be NULL

in

H_col

is a one-dimensional array of size ne and type int, that holds the column indices of the
lower triangular part of H in either the sparse co-ordinate, or the sparse row-wise
storage scheme. It need not be set when the dense or diagonal storage schemes are
used, and in this case can be NULL

in

H_ptr

is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H, as well as the total number of entries, in the
sparse row-wise storage scheme. It need not be set when the other schemes are used,
and in this case can be NULL

Examples

arct.c, and arctf.c.

3.1.2.4 arc_reset_control()

void arc_reset_control (

struct arc_control_type x control,

void *x data,

int * status)

Reset control parameters after import if required.

GALAHAD 4.0

C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference 15

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
arc_control_type)
in,out | data holds private internal data
in, out | status | is a scalar variable of type int, that gives the exit status from the package. Possible

values are:

» 1. The import was succesful, and the package is ready for the solve phase

3.1.2.5 arc_solve_with_mat()

void arc_solve_with_mat (

prec)

void *x data,

void % userdata,

int % status,

int n,

real_wp_ x[],

real_wp_ gl],

int ne,

int (%) (int, const real_wp_[], real_wp_ *, const void *) eval_f,

int (%) (int, const real_wp_[], real_wp_[], const void *) eval_ g,

int (%) (int, int, const real_wp_[], real_wp_[], const void *) eval_h,

int (%) (int, const real_wp_[], real_wp_[], const real_wp_[], const void x*) eval ¢«

Find a local minimizer of a given function using a regularization method.

This call is for the case where H = V,, f(z) is provided specifically, and all function/derivative information is
available by function calls.

Parameters
in, out | data holds private internal data
in userdata | is a structure that allows data to be passed into the function and derivative evaluation

programs.

C interfaces to GALAHAD ARC

GALAHAD 4.0

16

File Documentation

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

« -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been violated.

 -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package is
given in the component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

-19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

+ -82. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

in

is a scalar variable of type int, that holds the number of variables

in, out

is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains x ;.

in, out

is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(x) of the objective function. The j-th component of g, =0, ... , n-1,
contains g;.

in

ne

is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the Hessian matrix H.

eval f

is a user-supplied function that must have the following signature:

int eval_f(int n, const double x[], double xf, const void xuserdata)

The value of the objective function f(x) evaluated at x= = must be assigned to f, and
the function return value set to 0. If the evaluation is impossible at x, return should be
set to a nonzero value. Data may be passed into eval_ f via the structure
userdata.

GALAHAD 4.0

C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference 17

Parameters

eval_g

is a user-supplied function that must have the following signature:

int eval_g(int n, const double x[], double g[], const void xuserdata

The components of the gradient g = V. f(x) of the objective function evaluated at
x= x must be assigned to g, and the function return value set to 0. If the evaluation is
impossible at x, return should be set to a nonzero value. Data may be passed into
eval_g via the structure userdata.

eval_h

is a user-supplied function that must have the following signature:

int eval_h(int n, int ne, const double x[], double hl[], const void suserdata
The nonzeros of the Hessian H = V. f(z) of the objective function evaluated at x=
x must be assigned to h in the same order as presented to arc_import, and the
function return value set to 0. If the evaluation is impossible at x, return should be set
to a nonzero value. Data may be passed into eval_h via the structure userdata.

eval_prec

is an optional user-supplied function that may be NULL. If non-NULL, it must have
the following signature:

int eval_prec(int n, const double x[], double u[], const double vI[], const
void *userdata

The product u = P(x)v of the user's preconditioner P(z) evaluated at = with the
vector v = v, the result u must be retured in u, and the function return value set to 0.
If the evaluation is impossible at x, return should be set to a nonzero value. Data may
be passed into eval_prec via the structure userdata.

Examples

arct.c, and arctf.c.

3.1.2.6 arc_solve_without_mat()

void arc_solve_without_mat (

eval_hprod,

prec)

void x*x data,

void *x userdata,

int % status,

int n,

real_wp_ x[],

real_wp_ gl],

int (%) (int,
int (%) (int,

int (*) (int,

int (%) (int,

const real_wp_[], real_wp_ *, const void *) eval_f,

const real _wp_[], real_wp_[], const void *) eval_g,

const real _wp_[], real wp_[], const real_wp_[], bool, const void x*)
const real_wp_[], real_wp_[], const real_wp_[], const void *) eval_<«

Find a local minimizer of a given function using a regularization method.

This call is for the case where access to H = V. f(z) is provided by Hessian-vector products, and all func-
tion/derivative information is available by function calls.

Parameters
in, out | data holds private internal data
in userdata is a structure that allows data to be passed into the function and derivative

evaluation programs.

C interfaces to GALAHAD ARC

GALAHAD 4.0

18

File Documentation

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent’ has been
violated.

+ -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

» -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

» -82. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

in

is a scalar variable of type int, that holds the number of variables

in, out

is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains ;.

in, out

is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(x) of the objective function. The j-th component of g, =0, ... , n-1,
contains g;.

eval f

is a user-supplied function that must have the following signature:

int eval_f(int n, const double x[], double *f, const void xuserdata)

The value of the objective function f(x) evaluated at x= = must be assigned to f,
and the function return value set to 0. If the evaluation is impossible at x, return
should be set to a nonzero value. Data may be passed into eval_f viathe
structure userdata.

GALAHAD 4.0

C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference 19

Parameters

eval_g is a user-supplied function that must have the following signature:
int eval_g(int n, const double x[], double g[], const void xuserdata)
The components of the gradient g = V. f(x) of the objective function evaluated at
x= x must be assigned to g, and the function return value set to 0. If the evaluation
is impossible at x, return should be set to a nonzero value. Data may be passed
into eval_g via the structure userdata.

eval_hprod | is a user-supplied function that must have the following signature:
int eval_hprod(int n, const double x[], double u[], const double v[], bool

got_h, const void xuserdata)

The sum u + V., f(z)v of the product of the Hessian V. f (z) of the objective
function evaluated at x= = with the vector v= v and the vector $ u must be returned
in u, and the function return value set to 0. If the evaluation is impossible at x,
return should be set to a nonzero value. The Hessian has already been evaluated
or used at x if got_h is true. Data may be passed into eval_hprod via the
structure userdata.

eval_prec is an optional user-supplied function that may be NULL. If non-NULL, it must have
the following signature:
int eval_prec(int n, const double x[], double u[], const double v[], const

void xuserdata)
The product u = P(x)v of the user's preconditioner P(z) evaluated at = with the
vector v = v, the result © must be retured in u, and the function return value set to 0.
If the evaluation is impossible at x, return should be set to a nonzero value. Data
may be passed into eval_prec via the structure userdata.
Examples

arct.c, and arctf.c.

3.1.2.7 arc_solve_reverse_with_mat()

void arc_solve_reverse_with_mat (

void =% data,

int % status,

int % eval_status,

int n,

real_wp_ x[],

real_wp_
real_wp_
int ne,

real_wp_

£,

gll,

H vall],

const real_wp_ ul],

real_wp_ v[])

Find a local minimizer of a given function using a regularization method.

This call is for the case where H = V., f(x) is provided specifically, but function/derivative information is only
available by returning to the calling procedure

Parameters

in, out | data

holds private internal data

C interfaces to GALAHAD ARC

GALAHAD 4.0

20

File Documentation

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.

On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

+ -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been
violated.

+ -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

+ -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

+ -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

+ -82. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

GALAHAD 4.0

C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference

21

Parameters

status

(continued)

« 2. The user should compute the objective function value f(x) at the point z
indicated in x and then re-enter the function. The required value should be
set in f, and eval_status should be set to 0. If the user is unable to evaluate
f(x)— for instance, if the function is undefined at z— the user need not set
f, but should then set eval_status to a non-zero value.

« 3. The user should compute the gradient of the objective function V. f(z) at
the point = indicated in x and then re-enter the function. The value of the i-th
component of the g radient should be set in g[i], fori =0, ..., n-1 and
eval_status should be set to 0. If the user is unable to evaluate a component
of V. f(x) — for instance if a component of the gradient is undefined at x
-the user need not set g, but should then set eval_status to a non-zero value.

* 4. The user should compute the Hessian of the objective function V. f ()
at the point x indicated in = and then re-enter the function. The value I-th
component of the Hessian stored according to the scheme input in the
remainder of H should be setin H_val[l], for | = 0, ..., ne-1 and eval_status
should be set to 0. If the user is unable to evaluate a component of V. f ()
— for instance, if a component of the Hessian is undefined at x — the user
need not set H_val, but should then set eval_status to a non-zero value.

+ 6. The user should compute the product « = P(x)v of their preconditioner
P(z) at the point x indicated in 2 with the vector v and then re-enter the
function. The vector v is given in v, the resulting vector « = P(x)v should be
set in u and eval_status should be set to 0. If the user is unable to evaluate
the product— for instance, if a component of the preconditioner is undefined
at x — the user need not set u, but should then set eval_status to a non-zero
value.

in, out

eval_status

is a scalar variable of type int, that is used to indicate if objective
function/gradient/Hessian values can be provided (see above)

in

is a scalar variable of type int, that holds the number of variables

in, out

is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains z;.

in

is a scalar variable pointer of type double, that holds the value of the objective
function.

in, out

is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(x) of the objective function. The j-th component of g, =0, ... , n-1,
contains g;.

in

ne

is a scalar variable of type int, that holds the number of entries in the lower
triangular part of the Hessian matrix H.

in

H_val

is a one-dimensional array of size ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in

is a one-dimensional array of size n and type double, that is used for reverse
communication (see above for details)

in, out

is a one-dimensional array of size n and type double, that is used for reverse
communication (see above for details)

Examples

arct.c, and arctf.c.

C interfaces to GALAHAD ARC

GALAHAD 4.0

22 File Documentation

3.1.2.8 arc_solve_reverse_without_mat()

void arc_solve_reverse_without_mat (
void =% data,
int * status,
int * eval_ status,
int n,
real_wp_ x[],
real_wp_ f,
real wp_ g/[],
real_wp_ ul],

real_wp_ v[])
Find a local minimizer of a given function using a regularization method.

This call is for the case where access to H = V,,f(z) is provided by Hessian-vector products, but func-
tion/derivative information is only available by returning to the calling procedure.

Parameters

in,out | data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference 23

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.

On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

+ -3. The restriction n > 0 or requirement that type contains its relevant string
'dense’, 'coordinate’, 'sparse_by_rows', 'diagonal’ or 'absent' has been
violated.

+ -7. The objective function appears to be unbounded from below

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

» -10. The factorization failed; the return status from the factorization package
is given in the component inform.factor_status.

» -11. The solution of a set of linear equations using factors from the
factorization package failed; the return status from the factorization package
is given in the component inform.factor_status.

+ -16. The problem is so ill-conditioned that further progress is impossible.

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

+ -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

+ -82. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

C interfaces to GALAHAD ARC

GALAHAD 4.0

24

File Documentation

Parameters

status

(continued)

« 2. The user should compute the objective function value f(x) at the point z
indicated in x and then re-enter the function. The required value should be
set in f, and eval_status should be set to 0. If the user is unable to evaluate
f(x) — for instance, if the function is undefined at - — the user need not set
f, but should then set eval_status to a non-zero value.

« 3. The user should compute the gradient of the objective function V. f(z) at
the point = indicated in x and then re-enter the function. The value of the i-th
component of the g radient should be set in g[i], fori =0, ..., n-1 and
eval_status should be set to 0. If the user is unable to evaluate a component
of V. f(x) — for instance if a component of the gradient is undefined at x
-the user need not set g, but should then set eval_status to a non-zero value.

+ 5. The user should compute the product V... f (z)v of the Hessian of the
objective function V, f (x) at the point z indicated in x with the vector v,
add the result to the vector u and then re-enter the function. The vectors u
and v are given in u and v respectively, the resulting vector u + V., f (z)v
should be set in u and eval_status should be set to 0. If the user is unable to
evaluate the product— for instance, if a component of the Hessian is
undefined at x — the user need not alter u, but should then set eval_status
to a non-zero value.

6. The user should compute the product « = P(x)v of their preconditioner
P(z) at the point x indicated in x with the vector v and then re-enter the
function. The vector v is given in v, the resulting vector w = P(x)v should be
set in u and eval_status should be set to 0. If the user is unable to evaluate
the product— for instance, if a component of the preconditioner is undefined
at x — the user need not set u, but should then set eval_status to a non-zero
value.

in, out

eval_status

is a scalar variable of type int, that is used to indicate if objective
function/gradient/Hessian values can be provided (see above)

in

is a scalar variable of type int, that holds the number of variables

in, out

is a one-dimensional array of size n and type double, that holds the values z of the
optimization variables. The j-th component of x, j =0, ... , n-1, contains z;.

in

is a scalar variable pointer of type double, that holds the value of the objective
function.

in, out

is a one-dimensional array of size n and type double, that holds the gradient
g = V. f(z) of the objective function. The j-th component of g,j=0, ... , n-1,
contains g;.

in, out

is a one-dimensional array of size n and type double, that is used for reverse
communication (see above for details)

in, out

is a one-dimensional array of size n and type double, that is used for reverse
communication (see above for details)

Examples

arct.c, and arctf.c.

GALAHAD 4.0

C interfaces to GALAHAD ARC

3.1 galahad_arc.h File Reference

25

3.1.2.9 arc_information()

void arc_information

(

void =% data,

struct arc_inform_type * inform,

int * status)

Provides output information

Parameters
in, out | data holds private internal data
out inform | is a struct containing output information (see arc_inform_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
+ 0. The values were recorded succesfully
Examples

arct.c, and arctf.c.

3.1.2.10 arc_terminate()

void arc_terminate

void *x data,

struct arc_control_type x control,

struct arc_inform_type * inform)

Deallocate all internal private storage

Parameters
in, out | data holds private internal data
out control | is a struct containing control information (see arc_control_type)
out inform | is a struct containing output information (see arc_inform_type)
Examples

arct.c, and arctf.c.

C interfaces to GALAHAD ARC

GALAHAD 4.0

26 File Documentation

GALAHAD 4.0 C interfaces to GALAHAD ARC

Chapter 4

Example Documentation

4.1 arct.c

This is an example of how to use the package both when the Hessian is directly available and when its product with
vectors may be found. Both function call evaluations and returns to the calling program to find the required values
are illustrated. A variety of supported Hessian storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexingto false. In
addition, see how parameters may be passed into the evaluation functions via userdata.

/% arct.c */
/% Full test for the ARC C interface using C sparse matrix indexing =/
#include <stdio.h>
#include <math.h>
#include "galahad precision.h"
#include "galahad_cfunctions.h"
#include "galahad_arc.h"
// Custom userdata struct
struct userdata_type {
real_wp_ p;
}i
// Function prototypes
int fun(int n, const real_wp_ x[], real_wp_ xf, const void x);
int grad(int n, const real_wp_ x[], real _wp_ g[], const void x);
int hess(int n, int ne, const real_wp_ x[], real_wp_ hval[], const void =);
int hess_dense(int n, int ne, const real_wp_ x[], real_wp_ hval[], const void x);
int hessprod(int n, const real_wp_ x[], real _wp_ u[], const real wp_ v[], bool got_h,
const void x);
int prec(int n, const real_wp_ x[], real_wp_ ul[], const real_wp_ v[], const void *);
int fun_diag(int n, const real _wp_ x[], real_wp_ =xf, const void x);
int grad_diag(int n, const real_wp_ x[], real_wp_ gl[], const void x);
int hess_diag(int n, int ne, const real_wp_ x[], real _wp_ hval[], const void *);
int hessprod_diag(int n, const real_wp_ x[], real wp_ ul[], const real_wp_ vI[],
bool got_h, const void x);
int main(void) {
// Derived types
void xdata;
struct arc_control_type control;
struct arc_inform_type inform;
// Set user data
struct userdata_type userdata;
userdata.p = 4.0;
// Set problem data
int n = 3; // dimension
int ne = 5; // Hesssian elements
int H_row[] = {0, 1, 2, 2, 2}; // Hessian H
int H_col[] = {0, 1, 0, 1, 2}; // NB lower triangle
int H_ptr[] = {0, 1, 2, 5}; // row pointers
// Set storage
real_wp_ g[n]; // gradient
char st;
int status;
printf (" C sparse matrix indexing\n\n");

28 Example Documentation

printf (" tests options for all-in-one storage format\n\n");
for(int d=1; d <= 5; d++){

// Initialize ARC

arc_initialize(&data, &control, &status);

// Set user-defined control options

control.f_indexing = false; // C sparse matrix indexing

//control.print_level = 1;

// Start from 1.5

real_wp_ x[] = {1.5,1.5,1.5};
s 1 (d) {
se 1: // sparse co-ordinate storage

st = ’c’;
arc_import (&control, &data, &status, n, "coordinate",
ne, H_row, H_col, NULL);
arc_solve_with_mat (&data, &userdata, &status,
n, %, g, ne, fun, grad, hess, prec);

break;
case 2: // sparse by rows
st = 'R’;

arc_import (&control, &data, &status, n, "sparse_by_rows",
ne, NULL, H_col, H_ptr);
arc_solve_with_mat (&data, &userdata, &status,
n, x, g, ne, fun, grad, hess, prec);

break;
case 3: // dense
st = 'D’;

arc_import (&control, &data, &status, n, "dense",
ne, NULL, NULL, NULL);
arc_solve_with_mat (&data, &userdata, &status,
n, x, g, ne, fun, grad, hess_dense, prec);

break;
case 4: // diagonal
st = '17;

arc_import (&control, &data, &status, n, "diagonal",
ne, NULL, NULL, NULL);
arc_solve_with_mat (&data, &userdata, &status, n, x, g,
ne, fun_diag, grad_diag, hess_diag, prec) ;

break;
cé 5: // access by products
st = 'P’;

arc_import (&control, &data, &status, n, "absent",
ne, NULL, NULL, NULL);
arc_solve_without_mat (&data, &userdata, &status,
n, x, g, fun, grad, hessprod, prec);
break;
}

arc_information(&data, &inform, &status);

if(inform.status == 0) {
printf ("$c:%61 iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);
telse{
printf ("$c: ARC_solve exit status = %li\n", st, inform.status);

}

//printf ("x: ")
//for(int i =
//printf ("\n");

//printf ("gradient: ");

//for(int i = 0; 1 < n; i++) printf("$f ", glil);
//printf ("\n");

// Delete internal workspace

arc_terminate(&data, &control, &inform);

0; 1 < n; i++) printf("sf ", x[i]);

}

printf("\n tests reverse-communication options\n\n");
// reverse—-communication input/output

int eval_status;

real_ wp_ £ = 0.0;

real_wp_ u[n], v[n];

int index_nz_u[n], index_nz_v[n];

real_wp_ H_val[ne], H_dense[n*(n+l)/2], H_diag[n];

for(int d=1; d <= 5; d++){
// Initialize ARC
arc_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
//control.print_level = 1;
// Start from 1.5
x[] = {1.5,1.5,1.5};

1: // sparse co-ordinate storage
st = 'C’;
arc_import (&control, &data, &status, n, "coordinate",

ne, H_row, H_col, NULL);
while (true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,

n, x, £, g, ne, H_val, u, v);

if(status == 0){ // successful termination

GALAHAD 4.0 C interfaces to GALAHAD ARC

4.1 arct.c 29

break;
}else if(status < 0){ // error exit
break;
}e if (status == 2){ // evaluate £
eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);
}else if (status == 4){ // evaluate H
eval_status = hess(n, ne, x, H_val, &userdata);
le > if (status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
telsef
printf (" the value %1i of status should not occur\n",
status);
break;
}
}
break;
c 2: // sparse by rows
st = 'R’;

arc_import (&control, &data, &status, n, "sparse_by_rows", ne,
NULL, H_col, H_ptr);
while (true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, ne, H_val, u, v);

if (status == 0){ // successful termination
break;
le if (status < 0){ // error exit
break;
}else if(status == 2){ // evaluate f
eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);
}else if(status == 4){ // evaluate H
eval_status = hess(n, ne, x, H_val, &userdata);
}else if(status == 6){ // evaluate the product with P

eval_status = prec(n, x, u, v, &userdata);
se {
printf (" the value %$1i of status should not occur\n",

le

status);
break;
}
}
break;
3: // dense

st = 'D’;
arc_import (&control, &data, &status, n, "dense",
ne, NULL, NULL, NULL);
while(true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, n+x(n+l)/2, H_dense, u, v);

if(status == 0){ // successful termination
break;

}Jelse if(status < 0){ // error exit
break;

}else if (status == 2){ // evaluate f
eval_status = fun(n, x, &f, &userdata);

}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);

}else if(status == 4){ // evaluate H

eval_status = hess_dense(n, n=*(n+l)/2, x, H_dense,
&userdata);

}e if(status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
telse{
printf (" the value %1i of status should not occur\n",
status);
break;
}
}
break;
- 4: // diagonal
st = "1";

arc_import (&control, &data, &status, n, "diagonal",
ne, NULL, NULL, NULL);
while (true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, n, H.diag, u, v);

if(status == 0){ // successful termination

break;
}else if(status < 0){ // error exit

break;
}else if(status == 2){ // evaluate f

eval_status = fun_diag(n, x, &f, &userdata);
}else if (status == 3){ // evaluate g

eval_status = grad_diag(n, x, g, &userdata);
}else if(status == 4){ // evaluate H

C interfaces to GALAHAD ARC GALAHAD 4.0

30 Example Documentation

eval_status = hess_diag(n, n, x, H_diag, &userdata);
}else if (status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
>{

printf (" the value %1i of status should not occur\n",

status);
break;
}
}
break;
5: // access by products

st = 'P’;
arc_import (&control, &data, &status, n, "absent",
ne, NULL, NULL, NULL);

while (true){ // reverse-communication loop

arc_solve_reverse_without_mat (&data, &status, &eval_status,

n, x, £, g, u, v);
if(status == 0){ // successful termination
break;

}e if(status < 0){ // error exit

break;
}else if (status == 2){ // evaluate f
eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);
}else if(status == 5){ // evaluate H
eval_status = hessprod(n, x, u, v, false, &userdata);
}else if(status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
telse(
printf (" the value %1i of status should not occur\n",

status);
reak;

}

arc_information(&data, &inform, &status);

if (inform.status == 0) {
printf ("%c:%61 iterations. Optimal objective value = $5.2f status = %li\n",

st, inform.iter, inform.obj, inform.status);

lelse{

printf ("$c: ARC_solve exit status = %1i\n", st, inform.status);
}
//printf ("x: ");
//for(int i = 0; i < n; i++) printf("$f ", x[i]);
//printf ("\n");
//printf ("gradi
//for(int i =
//printf ("\n");
// Delete internal workspace
arc_terminate(&data, &control, &inform);

ent: ");
0; 1 < n; i++) printf("$f ", gli]);

}

}

// Objective function

int fun(int n, const real wp_ x[], real_wp_ xf, const void xuserdata) {
struct userdata_type *myuserdata = (struct userdata_type =*) userdata;
real_wp_ p = myuserdata->p;
*f = pow(x[0] + x[2] + p, 2) + pow(x[1l] + x[2], 2) + cos(x[0]);
return 0;

}

// Gradient of the objective

int grad(int n, const real_wp_ x[], real_wp_ g[], const void =xuserdata) {

struct userdata_type *myuserdata = (struct userdata_type *) userdata;
real_wp_ p = myuserdata->p;

gl0] = 2.0 % (x[0] + x[2] + p) - sin(x[0]);

gll]l = 2.0 = (x[1] + x[2]);

gl2] = 2.0 » (x[0] + x[2] + p) + 2.0 » (x[1] + x[2]);

return 0;

}

// Hessian of the objective

int hess(int n, int ne, const real_wp_ x[], real_wp_ hvall[],
const void *userdata) {

hvall[0] 2.0 - cos(x[0]);
hvalll] = 2.0;
hval[2] = 2.0;
hval[3] = 2.0;
hvall4] = 4.0;

return 0;
}
// Dense Hessian
int hess_dense(int n, int ne, const real_wp_ x[], real_wp_ hvall]
const void *userdata) {

hval[0] = 2.0 - cos(x[0]);
hvalll] = 0.0;
hval[2] = 2.0;
hval[3] = 2.0;

GALAHAD 4.0 C interfaces to GALAHAD ARC

4.2 arctf.c 31

hvall4] =
hval([5]
return 0;

NN

o o

}
// Hessian-vector product
int hessprod(int n, const real_wp_ x[], real_wp_ ul], const real_wp_ vI[],
bool got_h, const void xuserdata) {
ul0] = ul0] + 2.0 = (v[0] + v[2]) - cos(x[0]) * v[O];
ull] = ul[l] + 2.0 %= (v[1] + v[2]);
ul2] = uf2] + 2.0 = (v[0] + v[1] + 2.0 % v[2]);
return 0;
}
// RApply preconditioner
int prec(int n, const real_wp_ x[], real _wp_ u[], const real_wp_ VvI[],
const void *userdata) {

ul0] = 0.5 * v[0];
ull] = 0.5 = v[1];
ufl2] = 0.25 x v[2];
return 0;

// Objective function

int fun_diag(int n, const real_wp_ x[], real _wp_ *f, const void *userdata) {
struct userdata_type *myuserdata = (struct userdata_type =*) userdata;
real_wp_ p = myuserdata->p;
*f = pow(x[2] + p, 2) + pow(x[1l], 2) + cos(x[0]);
return 0;

}

// Gradient of the objective

int grad_diag(int n, const real wp_ x[], real_wp_ g[], const void xuserdata) {
struct userdata_type smyuserdata = (struct userdata_type %) userdata;
real_wp_ p = myuserdata->p;
g[0] = -sin(x[0]);
gll]l = 2.0 = x[1];
gl[2] = 2.0 « (x[2] + p);
return 0;

}

// Hessian of the objective

int hess_diag(int n, int ne, const real_wp_ x[], real _wp_ hvall[],

const void *xuserdata) {

hval([0] = -cos(x[0]);
hvalll] = 2.0;
hval[2] = 2.0;

return 0;

}

// Hessian-vector product

int hessprod_diag(int n, const real_wp_ x[], real_wp_ u[], const real_wp_ vI[],
bool got_h, const void xuserdata) {

ul0] = ul[0] + - cos(x[0]) = v[0];
ull] = ull] + 2.0 = v[1];
ul2] = uf2] + 2.0 * v[2];

return 0;

4.2 arctf.c

This is the same example, but now fortran-style indexing is used.

/* arctf.c x/
/% Full test for the ARC C interface using Fortran sparse matrix indexing =/
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_arc.h"
// Custom userdata struct
struct userdata_type {
real_wp_ p;
}i
// Function prototypes
int fun(int n, const real_wp_ x[], real_wp_ xf, const void x);
int grad(int n, const real_wp_ x[], real_wp_ g[], const void x);
int hess(int n, int ne, const real_wp_ x[], real_wp_ hval[], const void x);
int hess_dense(int n, int ne, const real wp_ x[], real_wp_ hvall],
const void *);
int hessprod(int n, const real_wp_ x[], real_wp_ u[], const real wp_ vI[],
bool got_h, const void *);
int prec(int n, const real wp_ x[], real_wp_ u[], const real_wp_ VvI[],
const void *);
int fun_diag(int n, const real_wp_ x[], real wp_ *f, const void *);
int grad_diag(int n, const real_wp_ x[], real_wp_ g[], const void x);
int hess_diag(int n, int ne, const real_wp_ x[], real_wp_ hvall[],

C interfaces to GALAHAD ARC GALAHAD 4.0

32

Example Documentation

int hessprod_diag(int n,

)i
const real_wp_ x[],
const void *);

const void =*
real_wp_ ul],
bool got_h,

int main(void) {

// Derived types

void xdata;

struct arc_control_type control;
struct arc_inform_type inform;
// Set user data

struct userdata_type userdata;
userdata.p = 4.0;

// Set problem data

int n = 3; // dimension

int ne = 5; // Hesssian elements

int H_row[] = {1, 2, 3, 3, 3}; // Hessian H

int H_col[] = {1, 2, 1, 2, 3}; // NB lower triangle
int H_ptr[] = {1, 2, 3, 6}; // row pointers

// Set storage

real_wp_ g[n]l; // gradient

char st;
int status;
printf (" Fortran sparse matrix indexing\n\n");

const real_wp_ v[],

printf (" tests options for all-in-one storage format\n\n");

for(int d=1; d <= 5; d++){
// Initialize ARC
arc_initialize(&data, &control, &status);

// Set user-defined control options
control.f_indexing = true;
//control.print_level = 1;
// Start from 1.5

real wp_ x[] = {1.5,1.5,1.5};
i (d) {

// Fortran sparse matrix indexing

= 1: // sparse co-ordinate storage
st = 'C’;
arc_import (&control, &data, &status, n, "coordinate",
ne, H_row, H_col, NULL);
arc_solve_with_mat (&data, &userdata, &status,
n, x, g, ne, fun, grad, hess, prec);
break;
~ase 2: // sparse by rows
st = 'R’;
arc_import (&control, &data, &status, n, "sparse_by_rows",
ne, NULL, H_col, H_ptr);
arc_solve_with_mat (&data, &userdata, &status,
n, %, g, ne, fun, grad, hess, prec);
break;
3: // dense
st = 'D’";
arc_import (&control, &data, &status, n, "dense",
ne, NULL, NULL, NULL);
arc_solve_with_mat (&data, &userdata, &status,
n, x, g, ne, fun, grad, hess_dense, prec
break;
4: // diagonal
st = '1";
arc_import (&control, &data, &status, n, "diagonal",
ne, NULL, NULL, NULL);
arc_solve_with_mat (&data, &userdata, &status, n, x, g,
ne, fun_diag, grad_diag, hess_diag, prec)
break;
se 5: // access by products
st = 'P’;
arc_import (&control, &data, &status, n, "absent",
ne, NULL, NULL, NULL);
arc_solve_without_mat (&data, &userdata, &status,
n, x, g, fun, grad, hessprod, prec);
break;
}
arc_information(&data, &inform, &status);

if(inform.status == 0) {
printf ("$c:%61 iterations.
st, inform.iter, inform.obj,
lelse(
printf ("%c: ARC_solve exit status =
}
//printf ("x:

") i

//for(int i = 0; 1 < n; i++) printf("$f ", x[i]);
//printf ("\n");

//printf ("gradient: ");

//for(int i = 0; i < n; i++) printf("$f ", gli]);

//printf ("\n");

// Delete internal workspace
arc_terminate(&data, &control, &inform);

}

printf("\n tests reverse-communication options\n\n");
// reverse-communication input/output

int eval_status;

Optimal objective value =
inform.status);

%$5.2f status

$1i\n", st, inform.status);

)i

;

$1i\n",

GALAHAD 4.0

C interfaces to GALAHAD ARC

4.2 arctf.c 33

real_wp_ £ = 0.0;

real_wp_ uln], v[n];

int index_nz_u[n], index_nz_v[n];

real_wp_ H_val[ne], H_dense[n=(n+l)/2], H_diag[n];

for(int d=1; d <= 5; d++){
// Initialize ARC
arc_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
//control.print_level = 1;
// Start from 1.5

real_wp_ x[] = {1.5,1.5,1.5};
(d) {
ase 1: // sparse co-ordinate storage
st = ’C";

arc_import (&control, &data, &status, n, "coordinate",
ne, H_row, H_col, NULL);
hile(true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, ne, H_val, u, v);

if(status == 0){ // successful termination
break;
}else if(status < 0){ // error exit
break;
}else if(status == 2){ // evaluate f
eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);
}else if(status == 4){ // evaluate H
eval_status = hess(n, ne, x, H_val, &userdata);
}else if (status == 6){ // evaluate the product with P

eval_status = prec(n, x, u, v, &userdata);
se {
printf (" the value %$1i of status should not occur\n",

}e

status);
break;
}
}
break;
case 2: // sparse by rows
st = 'R’;

arc_import (&control, &data, &status, n, "sparse_by_rows", ne,
NULL, H_col, H_ptr);
while (true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, ne, H.val, u, v);

if(status == 0){ // successful termination
break;
}else if(status < 0){ // error exit
break;
}else if(status == 2){ // evaluate f
eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);
}else if (status == 4){ // evaluate H
eval_status = hess(n, ne, x, H_val, &userdata);
}else if(status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
telsef
printf (" the value %1i of status should not occur\n",
status);
break;
}
}
break;
c 3: // dense
st = 'D’";

arc_import (&control, &data, &status, n, "dense",
ne, NULL, NULL, NULL);
while (true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, nx(n+l)/2, H_dense, u, v);

if(status == 0){ // successful termination
break;
}e if (status < 0){ // error exit
eak;
}else if(status == 2){ // evaluate f
eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad(n, x, g, &userdata);
}else if(status == 4){ // evaluate H

eval_status = hess_dense(n, nx(n+l)/2, x, H_dense,
&userdata);
}else if (status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
lelse(

C interfaces to GALAHAD ARC GALAHAD 4.0

34 Example Documentation

printf (" the value %$1i of status should not occur\n",

status) ;
break;
}
}
>reak;
4: // diagonal

st = 'I’;
arc_import (&control, &data, &status, n, "diagonal",
ne, NULL, NULL, NULL);
while(true){ // reverse-communication loop
arc_solve_reverse_with_mat (&data, &status, &eval_status,
n, x, £, g, n, H_diag, u, v);

if(status == 0){ // successful termination
break;
}Jelse if(status < 0){ // error exit
break;
}else if(status == 2){ // evaluate f
eval_status = fun_diag(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g
eval_status = grad_diag(n, x, g, &userdata);
}else if (status == 4){ // evaluate H
eval_status = hess_diag(n, n, x, H_diag, &userdata);
}else if(status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
telsef
printf (" the value %1i of status should not occur\n",
status);
break;
}
}
break;
5: // access by products
st = 'P’;

arc_import (&control, &data, &status, n, "absent",
ne, NULL, NULL, NULL);

while (true){ // reverse-communication loop

arc_solve_reverse_without_mat (&data, &status, &eval_status,

n, x, £, g, u, v);
if(status == 0){ // successful termination
break;

if (status < 0){ // error exit

brea
}else if(status == 2){ // evaluate f

k;

eval_status = fun(n, x, &f, &userdata);
}else if(status == 3){ // evaluate g

eval_status = grad(n, x, g, &userdata);
}else if(status == 5){ // evaluate H

eval_status = hessprod(n, x, u, v, false, &userdata);
}else if (status == 6){ // evaluate the product with P
eval_status = prec(n, x, u, v, &userdata);
se{
printf (" the value %1i of status should not occur\n",
status);
break;

}
break;
}

arc_information(&data, &inform, &status);

if(inform.status == 0) {
printf("$c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",
st, inform.iter, inform.obj, inform.status);
telse(
printf ("$c: ARC_solve exit status = %1i\n", st, inform.status);
}
//printf ("x: ");
//for(int i = 0; 1 < n; i++) printf("$f ", x[i]);
//printf ("\n");
//printf ("gradient: ");

//for(int i = 0; 1 < n; i++) printf("$f ", glil);
//printf ("\n");
// Delete internal workspace
arc_terminate(&data, &control, &inform);
}
}
// Objective function
int fun(int n, const real_wp_ x[], real_wp_ *f, const void xuserdata) {
struct userdata_type smyuserdata = (struct userdata_type x) userdata;
real_wp_ p = myuserdata->p;
«*f = pow(x[0] + x[2] + p, 2) + pow(x[1l] + x[2], 2) + cos(x[0]);
return 0;
}
// Gradient of the objective
int grad(int n, const real wp_ x[], real_wp_ g[], const void *userdata) {
struct userdata_type smyuserdata = (struct userdata_type =*) userdata;
real_wp_ p = myuserdata->p;

GALAHAD 4.0 C interfaces to GALAHAD ARC

4.2 arctf.c 35

gl0] 2.0 » (x[0] + x[2] + p) — sin(x[0]);

gll] = 2.0 = (x[1] + x[2]));

gl2] = 2.0 « (x[0] + x[2] + p) + 2.0 » (x[1] + x[2]);
return 0;

i

}

// Hessian of the objective

int hess(int n, int ne, const real wp_ x[], real_wp_ hvall[],
const void =*userdata) {

hvall[0] 2.0 - cos(x[0]);
hval[l] = 2.0;

hval[2] = 2.0;

hval[3] = 2.0;

hvall4] = 4.0;

return 0;

}

// Dense Hessian

int hess_dense(int n, int ne, const real _wp_ x[], real_wp_ hvall[],
const void =*userdata) {

.0 - cos(x[0]);

.0;

’

|
SN NDNON
o O O o

7

}

// Hessian-vector product

int hessprod(int n, const real_wp_ x[], real_wp_ u[], const real wp_ vI[],
bool got_h, const void xuserdata) {

ul[0] = ul0] + 2.0 = (v[0] + v[2]) - cos(x[0]) * v[O0];
ull] = ull] + 2.0 = (v[1] + v[2]);

ul2] = ul2] + 2.0 = (v[0] + v[1] + 2.0 * v[2]);
return 0;

}

// BApply preconditioner

int prec(int n, const real_wp_ x[], real wp_ u[], const real_wp_ v[],
const void =*userdata) {

ul0] = 0.5 * v[0];
ull] = 0.5 = v[1];
ul2] = 0.25 % v[2];
return 0;

}

// Objective function

int fun_diag(int n, const real_wp_ x[], real _wp_ *f, const void *userdata) {
struct userdata_type smyuserdata = (struct userdata_type) userdata;
real_wp_ p = myuserdata->p;
xf = pow(x[2] + p, 2) + pow(x[1l], 2) + cos(x[0]);
return 0;

}

// Gradient of the objective

int grad_diag(int n, const real_wp_ x[], real_wp_ gl[], const void xuserdata) {
struct userdata_type *myuserdata = (struct userdata_type =*) userdata;
real_wp_ p = myuserdata->p;
gl0] = -sin(x[0]);
gll] = 2.0 » x[1];
gl2] = 2.0 = (x[2) + p);
return 0;

}

// Hessian of the objective

int hess_diag(int n, int ne, const real_wp_ x[], real_wp_ hvall[],

const void =*userdata) {

hval[0] = -cos(x[0]);
hval[l] = 2.0;
hval([2] = 2.0;

return 0;
}
// Hessian-vector product
int hessprod_diag(int n, const real_wp_ x[], real _wp_ u[], const real_wp_ vI[],
bool got_h, const void xuserdata) {

uf[0] = u[0] + - cos(x[0]) = v[0];
ull] = u[l] + 2.0 % v[1];
ul2] = ul2] + 2.0 % v[2];

return 0;

C interfaces to GALAHAD ARC GALAHAD 4.0

36 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD ARC

	1 GALAHAD C package arc
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 References

	1.2 Call order
	1.3 Symmetric matrix storage formats
	1.3.1 Dense storage format
	1.3.2 Sparse co-ordinate storage format
	1.3.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_arc.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct arc_control_type
	3.1.1.2 struct arc_time_type
	3.1.1.3 struct arc_inform_type

	3.1.2 Function Documentation
	3.1.2.1 arc_initialize()
	3.1.2.2 arc_read_specfile()
	3.1.2.3 arc_import()
	3.1.2.4 arc_reset_control()
	3.1.2.5 arc_solve_with_mat()
	3.1.2.6 arc_solve_without_mat()
	3.1.2.7 arc_solve_reverse_with_mat()
	3.1.2.8 arc_solve_reverse_without_mat()
	3.1.2.9 arc_information()
	3.1.2.10 arc_terminate()

	4 Example Documentation
	4.1 arct.c
	4.2 arctf.c

