
C interfaces to GALAHAD PRESOLVE

Jari Fowkes and Nick Gould

STFC Rutherford Appleton Laboratory

Thu Jun 22 2023

i

1 GALAHAD C package presolve 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Authors . 2

1.1.3 Originally released . 2

1.1.4 Terminology . 2

1.1.5 Method . 2

1.1.6 Reference . 4

1.1.7 Call order . 4

1.1.8 Unsymmetric matrix storage formats . 4

1.1.8.1 Dense storage format . 5

1.1.8.2 Sparse co-ordinate storage format . 5

1.1.8.3 Sparse row-wise storage format . 5

1.1.9 Symmetric matrix storage formats . 5

1.1.9.1 Dense storage format . 5

1.1.9.2 Sparse co-ordinate storage format . 5

1.1.9.3 Sparse row-wise storage format . 5

1.1.9.4 Diagonal storage format . 6

1.1.9.5 Multiples of the identity storage format . 6

1.1.9.6 The identity matrix format . 6

1.1.9.7 The zero matrix format . 6

2 File Index 7

2.1 File List . 7

3 File Documentation 9

3.1 galahad_presolve.h File Reference . 9

3.1.1 Data Structure Documentation . 10

3.1.1.1 struct presolve_control_type . 10

3.1.1.2 struct presolve_inform_type . 15

3.1.2 Function Documentation . 19

3.1.2.1 presolve_initialize() . 19

3.1.2.2 presolve_read_specfile() . 19

3.1.2.3 presolve_import_problem() . 20

3.1.2.4 presolve_transform_problem() . 22

3.1.2.5 presolve_restore_solution() . 24

3.1.2.6 presolve_information() . 26

3.1.2.7 presolve_terminate() . 26

4 Example Documentation 27

4.1 presolvet.c . 27

4.2 presolvetf.c . 29

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

Chapter 1

GALAHAD C package presolve

1.1 Introduction

1.1.1 Purpose

Presolving aims to improve the formulation of a given optimization problem by applying a sequence of simple
transformations, and thereby to produce a reduced problem in a standard form that should be simpler to solve.
This reduced problem may then be passed to an appropriate solver. Once the reduced problem has been solved, it
is then restored to recover the solution for the original formulation.

This package applies presolving techniques to a linear

minimize l(x) = gTx+ f

or quadratic program

minimize q(x) =
1

2
xTHx+ gTx+ f

subject to the general linear constraints

cli ≤ aTi x ≤ cui , i = 1, . . . ,m,

and the simple bound constraints
xl
j ≤ xj ≤ xu

j , j = 1, . . . , n,

where the n by n symmetric matrix H , the vectors g, ai, cl, cu, xl, xu and the scalar f are given. Any of the
constraint bounds cli, c

u
i , xl

j and xu
j may be infinite.

In addition, bounds on the Lagrange multipliers y associated with the general linear constraints and on the dual
variables z associated with the simple bound constraints

yli ≤ yi ≤ yui , i = 1, . . . ,m,

and
zli ≤ zi ≤ zui , i = 1, . . . , n,

are also provided, where the m-dimensional vectors yl and yu, as well as the n-dimensional vectors xl and xu are
given. Any component of cl, cu, xl, xu, yl, yu, zl or zu may be infinite.

2 GALAHAD C package presolve

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England and Ph. L. Toint, University of Namur, Belgium

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

March 2002, C interface March 2022.

1.1.4 Terminology

The required solution x necessarily satisfies the primal optimality conditions

(1a) Ax = c

and

(1b) cl ≤ c ≤ cu, xl ≤ x ≤ xu,

the dual optimality conditions

(2a) Hx+ g = AT y + z

where

(2b) y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(3) (Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectors y and z are known as the Lagrange multipliers for2 the general linear constraints, and the dual
variables for the bounds, respectively, and where the vector inequalities hold component-wise.

1.1.5 Method

The purpose of presolving is to exploit these equations in order to reduce the problem to the standard form defined
as follows:

• The variables are ordered so that their bounds appear in the order

free x
non-negativity 0 ≤ x
lower xl ≤ x
range xl ≤ x ≤ xu

upper x ≤ xu

non-positivity x ≤ 0

Fixed variables are removed. Within each category, the variables are further ordered so that those with
non-zero diagonal Hessian entries occur before the remainder.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

1.1 Introduction 3

• The constraints are ordered so that their bounds appear in the order

non-negativity 0 ≤ Ax
equality cl = Ax
lower cl ≤ Ax
range cl ≤ Ax ≤ cu

upper Ax ≤ cu

non-positivity Ax ≤ 0

Free constraints are removed.

• In addition, constraints may be removed or bounds tightened, to reduce the size of the feasible region or
simplify the problem if this is possible, and bounds may be tightened on the dual variables and the multipliers
associated with the problem.

The presolving algorithm proceeds by applying a (potentially long) series of simple transformations to the problem,
each transformation introducing a further simplification of the problem. These involve the removal of empty and
singleton rows, the removal of redundant and forcing primal constraints, the tightening of primal and dual bounds,
the exploitation of linear singleton, linear doubleton and linearly unconstrained columns, the merging dependent
variables, row sparsification and split equalities. Transformations are applied in successive passes, each pass
involving the following actions:

1. remove empty and singletons rows,

2. try to eliminate variables that are linearly unconstrained,

3. attempt to exploit the presence of linear singleton columns,

4. attempt to exploit the presence of linear doubleton columns,

5. complete the analysis of the dual constraints,

6. remove empty and singletons rows,

7. possibly remove dependent variables,

8. analyze the primal constraints,

9. try to make A sparser by combining its rows,

10. check the current status of the variables, dual variables and multipliers.

All these transformations are applied to the structure of the original problem, which is only permuted to standard
form after all transformations are completed. Note that the Hessian and Jacobian of the resulting reduced problem
are always stored in sparse row-wise format. The reduced problem is then solved by a quadratic or linear pro-
gramming solver, thus ensuring sufficiently small primal-dual feasibility and complementarity. Finally, the solution
of the simplified problem is re-translated in the variables/constraints/format of the original problem formulation by a
restoration phase.

If the number of problem transformations exceeds control.transf_buffer_size, the transformation buffer
size, then they are saved in a `‘history’' file, whose name may be chosen by specifying the control.transf_file_name
control parameter, When this is the case, this file is subsequently reread by presolve_restore_solution.
It must not be altered by the user.

Overall, the presolving process follows one of the two sequences:

initialize →
[

apply transformations → (solve problem) → restore
]
→ terminate

or

initialize →
[

read specfile → apply transformations → (solve problem) → restore
]
→ terminate

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

4 GALAHAD C package presolve

where the procedure's control parameter may be modified by reading the specfile, and where (solve problem) indi-
cates that the reduced problem is solved. Each of the `‘boxed’' steps in these sequences corresponds to calling a
specific routine of the package In the diagrams above, brackated subsequence of steps means that they can be re-
peated with problem having the same structure. The value of the problem.new_problem_structure must
be true on entry of presolve_apply_to_problem on the first time it is used in this repeated subsequence.
Such a subsequence must be terminated by a call to presolve_terminate before presolving is applied to a
problem with a different structure.

Note that the values of the multipliers and dual variables (and thus of their respective bounds) depend on the
functional form assumed for the Lagrangian function associated with the problem. This form is given by

L(x, y, z) = qx)− y_sign ∗ yT (Ax− c)− z_sign ∗ z,

(considering only active constraints Ax = c), where the parameters y_{sign} and z_{sign} are +1 or -1 and can
be chosen by the user. Thus, if ysign = +1, the multipliers associated to active constraints originally posed as
inequalities are non-negative if the inequality is a lower bound and non-positive if it is an upper bound. Obvioulsy
they are not constrained in sign for constraints originally posed as equalities. These sign conventions are reversed
if ysign = -1. Similarly, if zsign = +1}, the dual variables associated to active bounds are non-negative if the original
bound is an lower bound, non-positive if it is an upper bound, or unconstrained in sign if the variables is fixed;
and this convention is reversed in z_sign = -1}. The values of zsign and ysign may be chosen by setting the
corresponding components of the control structure to 1 or -1.

1.1.6 Reference

The algorithm is described in more detail in

N. I. M. Gould and Ph. L. Toint (2004). Presolving for quadratic programming. Mathematical Programming 100(1),
pp 95–132.

1.1.7 Call order

To solve a given problem, functions from the presolve package must be called in the following order:

• presolve_initialize - provide default control parameters and set up initial data structures

• presolve_read_specfile (optional) - override control values by reading replacement values from a file

• presolve_import_problem - import the problem data and report the dimensions of the transformed problem

• presolve_transform_problem - apply the presolve algorithm to transform the data

• presolve_restore_solution - restore the solution from that of the transformed problem

• presolve_information (optional) - recover information about the solution and solution process

• presolve_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and true for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

1.1 Introduction 5

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n ∗ i + j of the storage
array A_val will hold the value Aij for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of A, its row index i, column
index j and value Aij , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1, are stored as the l-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 ≤ j ≤ n− 1, and values
Aij of the nonzero entries in the i-th row are stored in components l = A_ptr(i), . . ., A_ptr(i+1)-1, 0 ≤ i ≤ m− 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

1.1.9 Symmetric matrix storage formats

Likewise, the symmetric n by n objective Hessian matrix H may be presented and stored in a variety of formats.
But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on
or below the leading diagonal).

1.1.9.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular
part (that is the part hij for 0 ≤ j ≤ i ≤ n − 1) need be held. In this case the lower triangle should be stored by
rows, that is component i ∗ i/2 + j of the storage array H_val will hold the value hij (and, by symmetry, hji) for
0 ≤ j ≤ i ≤ n− 1.

1.1.9.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 0 ≤ l ≤ ne− 1, of H , its row index i, column
index j and value hij , 0 ≤ j ≤ i ≤ n − 1, are stored as the l-th components of the integer arrays H_row and
H_col and real array H_val, respectively, while the number of nonzeros is recorded as H_ne = ne. Note that only
the entries in the lower triangle should be stored.

1.1.9.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of H the i-th component of the integer array H_ptr holds the position of the first
entry in this row, while H_ptr(n) holds the total number of entries. The column indices j, 0 ≤ j ≤ i, and values hij

of the entries in the i-th row are stored in components l = H_ptr(i), . . ., H_ptr(i+1)-1 of the integer array H_col, and
real array H_val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse
matrices, this scheme almost always requires less storage than its predecessor.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

6 GALAHAD C package presolve

1.1.9.4 Diagonal storage format

If H is diagonal (i.e., Hij = 0 for all 0 ≤ i ̸= j ≤ n − 1) only the diagonals entries Hii, 0 ≤ i ≤ n − 1 need be
stored, and the first n components of the array H_val may be used for the purpose.

1.1.9.5 Multiples of the identity storage format

If H is a multiple of the identity matrix, (i.e., H = αI where I is the n by n identity matrix and α is a scalar), it
suffices to store α as the first component of H_val.

1.1.9.6 The identity matrix format

If H is the identity matrix, no values need be stored.

1.1.9.7 The zero matrix format

The same is true if H is the zero matrix.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_presolve.h . 9

8 File Index

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

Chapter 3

File Documentation

3.1 galahad_presolve.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"

Data Structures

• struct presolve_control_type
• struct presolve_inform_type

Functions

• void presolve_initialize (void ∗∗data, struct presolve_control_type ∗control, int ∗status)
• void presolve_read_specfile (struct presolve_control_type ∗control, const char specfile[])
• void presolve_import_problem (struct presolve_control_type ∗control, void ∗∗data, int ∗status, int n, int m,

const char H_type[], int H_ne, const int H_row[], const int H_col[], const int H_ptr[], const real_wp_ H_val[],
const real_wp_ g[], const real_wp_ f, const char A_type[], int A_ne, const int A_row[], const int A_col[], const
int A_ptr[], const real_wp_ A_val[], const real_wp_ c_l[], const real_wp_ c_u[], const real_wp_ x_l[], const
real_wp_ x_u[], int ∗n_out, int ∗m_out, int ∗H_ne_out, int ∗A_ne_out)

• void presolve_transform_problem (void ∗∗data, int ∗status, int n, int m, int H_ne, int H_col[], int H_ptr[], real←↩

wp H_val[], real_wp_ g[], real_wp_ ∗f, int A_ne, int A_col[], int A_ptr[], real_wp_ A_val[], real_wp_ c_l[],
real_wp_ c_u[], real_wp_ x_l[], real_wp_ x_u[], real_wp_ y_l[], real_wp_ y_u[], real_wp_ z_l[], real_wp_
z_u[])

• void presolve_restore_solution (void ∗∗data, int ∗status, int n_in, int m_in, const real_wp_ x_in[], const real←↩

wp c_in[], const real_wp_ y_in[], const real_wp_ z_in[], int n, int m, real_wp_ x[], real_wp_ c[], real_wp_
y[], real_wp_ z[])

• void presolve_information (void ∗∗data, struct presolve_inform_type ∗inform, int ∗status)
• void presolve_terminate (void ∗∗data, struct presolve_control_type ∗control, struct presolve_inform_type
∗inform)

10 File Documentation

3.1.1 Data Structure Documentation

3.1.1.1 struct presolve_control_type

control derived type as a C struct

Examples

presolvet.c, and presolvetf.c.

Data Fields

bool f_indexing use C or Fortran sparse matrix indexing

int termination Determines the strategy for terminating the presolve analysis.
Possible values are:

• 1 presolving is continued as long as one of the sizes of the
problem (n, m, a_ne, or h_ne) is being reduced;

• 2 presolving is continued as long as problem transformations
remain possible. NOTE: the maximum number of analysis
passes (control.max_nbr_passes) and the maximum number
of problem transformations (control.max_nbr_transforms) set
an upper limit on the presolving effort irrespective of the choice
of control.termination. The only effect of this latter parameter is
to allow for early termination.

int max_nbr_transforms The maximum number of problem transformations, cumulated over
all calls to presolve.

int max_nbr_passes The maximum number of analysis passes for problem analysis
during a single call of presolve_transform_problem.

real_wp_ c_accuracy The relative accuracy at which the general linear constraints are
satisfied at the exit of the solver. Note that this value is not used
before the restoration of the problem.

real_wp_ z_accuracy The relative accuracy at which the dual feasibility constraints are
satisfied at the exit of the solver. Note that this value is not used
before the restoration of the problem.

real_wp_ infinity The value beyond which a number is deemed equal to plus infinity
(minus infinity being defined as its opposite)

int out The unit number associated with the device used for printout.

int errout The unit number associated with the device used for error ouput.

int print_level The level of printout requested by the user. Can take the values:

• 0 no printout is produced

• 1 only reports the major steps in the analysis

• 2 reports the identity of each problem transformation

• 3 reports more details

• 4 reports lots of information.

• 5 reports a completely silly amount of information

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 11

Data Fields

bool dual_transformations true if dual transformations of the problem are allowed. Note that this
implies that the reduced problem is solved accurately (for the dual
feasibility condition to hold) as to be able to restore the problem to
the original constraints and variables. false prevents dual
transformations to be applied, thus allowing for inexact solution of the
reduced problem. The setting of this control parameter overides that
of get_z, get_z_bounds, get_y, get_y_bounds, dual_constraints_freq,
singleton_columns_freq, doubleton_columns_freq, z_accuracy,
check_dual_feasibility.

bool redundant_xc true if the redundant variables and constraints (i.e. variables that do
not appear in the objective function and appear with a consistent sign
in the constraints) are to be removed with their associated
constraints before other transformations are attempted.

int primal_constraints_freq The frequency of primal constraints analysis in terms of presolving
passes. A value of j = 2 indicates that primal constraints are
analyzed every 2 presolving passes. A zero value indicates that they
are never analyzed.

int dual_constraints_freq The frequency of dual constraints analysis in terms of presolving
passes. A value of j = 2 indicates that dual constraints are analyzed
every 2 presolving passes. A zero value indicates that they are never
analyzed.

int singleton_columns_freq The frequency of singleton column analysis in terms of presolving
passes. A value of j = 2 indicates that singleton columns are
analyzed every 2 presolving passes. A zero value indicates that they
are never analyzed.

int doubleton_columns_freq The frequency of doubleton column analysis in terms of presolving
passes. A value of j indicates that doubleton columns are analyzed
every 2 presolving passes. A zero value indicates that they are never
analyzed.

int unc_variables_freq The frequency of the attempts to fix linearly unconstrained variables,
expressed in terms of presolving passes. A value of j = 2 indicates
that attempts are made every 2 presolving passes. A zero value
indicates that no attempt is ever made.

int dependent_variables_freq The frequency of search for dependent variables in terms of
presolving passes. A value of j = 2 indicates that dependent variables
are searched for every 2 presolving passes. A zero value indicates
that they are never searched for.

int sparsify_rows_freq The frequency of the attempts to make A sparser in terms of
presolving passes. A value of j = 2 indicates that attempts are made
every 2 presolving passes. A zero value indicates that no attempt is
ever made.

int max_fill The maximum percentage of fill in each row of A. Note that this is a
row-wise measure: globally fill never exceeds the storage initially
used for A, no matter how large control.max_fill is chosen. If max_fill
is negative, no limit is put on row fill.

int transf_file_nbr The unit number to be associated with the file(s) used for saving
problem transformations on a disk file.

int transf_buffer_size The number of transformations that can be kept in memory at once
(that is without being saved on a disk file).

int transf_file_status The exit status of the file where problem transformations are saved:

• 0 the file is not deleted after program termination

• 1 the file is not deleted after program termination

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

12 File Documentation

Data Fields

char transf_file_name[31] The name of the file (to be) used for storing problem transformation
on disk. NOTE: this parameter must be identical for all calls to
presolve following presolve_read_specfile. It can then
only be changed after calling presolve_terminate.

int y_sign Determines the convention of sign used for the multipliers associated
with the general linear constraints.

• 1 All multipliers corresponding to active inequality constraints
are non-negative for lower bound constraints and non-positive
for upper bounds constraints.

• -1 All multipliers corresponding to active inequality constraints
are non-positive for lower bound constraints and non-negative
for upper bounds constraints.

int inactive_y Determines whether or not the multipliers corresponding to
constraints that are inactive at the unreduced point corresponding to
the reduced point on input to presolve_restore_solution
must be set to zero. Possible values are: associated with the general
linear constraints.

• 0 All multipliers corresponding to inactive inequality constraints
are forced to zero, possibly at the expense of deteriorating the
dual feasibility condition.

• 1 Multipliers corresponding to inactive inequality constraints
are left unaltered.

int z_sign Determines the convention of sign used for the dual variables
associated with the bound constraints.

• 1 All dual variables corresponding to active lower bounds are
non-negative, and non-positive for active upper bounds.

• -1 All dual variables corresponding to active lower bounds are
non-positive, and non-negative for active upper bounds.

int inactive_z Determines whether or not the dual variables corresponding to
bounds that are inactive at the unreduced point corresponding to the
reduced point on input to presolve_restore_solution must
be set to zero. Possible values are: associated with the general
linear constraints.

• 0: All dual variables corresponding to inactive bounds are
forced to zero, possibly at the expense of deteriorating the dual
feasibility condition.

• 1 Dual variables corresponding to inactive bounds are left
unaltered.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 13

Data Fields

int final_x_bounds The type of final bounds on the variables returned by the package.
This parameter can take the values:

• 0 the final bounds are the tightest bounds known on the
variables (at the risk of being redundant with other constraints,
which may cause degeneracy);

• 1 the best known bounds that are known to be
non-degenerate. This option implies that an additional real
workspace of size 2 ∗ n must be allocated.

• 2 the loosest bounds that are known to keep the problem
equivalent to the original problem. This option also implies that
an additional real workspace of size 2 ∗ n must be allocated.

NOTE: this parameter must be identical for all calls to presolve
(except presolve_initialize).

int final_z_bounds The type of final bounds on the dual variables returned by the
package. This parameter can take the values:

• 0 the final bounds are the tightest bounds known on the dual
variables (at the risk of being redundant with other constraints,
which may cause degeneracy);

• 1 the best known bounds that are known to be
non-degenerate. This option implies that an additional real
workspace of size 2 ∗ n must be allocated.

• 2 the loosest bounds that are known to keep the problem
equivalent to the original problem. This option also implies that
an additional real workspace of size 2 ∗ n must be allocated.

NOTE: this parameter must be identical for all calls to presolve
(except presolve_initialize).

int final_c_bounds The type of final bounds on the constraints returned by the package.
This parameter can take the values:

• 0 the final bounds are the tightest bounds known on the
constraints (at the risk of being redundant with other
constraints, which may cause degeneracy);

• 1 the best known bounds that are known to be
non-degenerate. This option implies that an additional real
workspace of size 2 ∗ m must be allocated.

• 2 the loosest bounds that are known to keep the problem
equivalent to the original problem. This option also implies that
an additional real workspace of size 2 ∗ n must be allocated.

NOTES: 1) This parameter must be identical for all calls to presolve
(except presolve_initialize). 2) If different from 0, its value must be
identical to that of control.final_x_bounds.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

14 File Documentation

Data Fields

int final_y_bounds The type of final bounds on the multipliers returned by the package.
This parameter can take the values:

• 0 the final bounds are the tightest bounds known on the
multipliers (at the risk of being redundant with other
constraints, which may cause degeneracy);

• 1 the best known bounds that are known to be
non-degenerate. This option implies that an additional real
workspace of size 2 ∗ m must be allocated.

• 2 the loosest bounds that are known to keep the problem
equivalent to the original problem. This option also implies that
an additional real workspace of size 2 ∗ n must be allocated.

NOTE: this parameter must be identical for all calls to presolve
(except presolve_initialize).

int check_primal_feasibility The level of feasibility check (on the values of x) at the start of the
restoration phase. This parameter can take the values:

• 0 no check at all;

• 1 the primal constraints are recomputed at x and a message
issued if the computed value does not match the input value,
or if it is out of bounds (if control.print_level >= 2);

• 2 the same as for 1, but presolve is terminated if an
incompatibilty is detected.

int check_dual_feasibility The level of dual feasibility check (on the values of x, y and z) at the
start of the restoration phase. This parameter can take the values:

• 0 no check at all;

• 1 the dual feasibility condition is recomputed at (x, y, z) and a
message issued if the computed value does not match the
input value (if control.print_level >= 2);

• 2 the same as for 1, but presolve is terminated if an
incompatibilty is detected. The last two values imply the
allocation of an additional real workspace vector of size equal
to the number of variables in the reduced problem.

real_wp_ pivot_tol The relative pivot tolerance above which pivoting is considered as
numerically stable in transforming the coefficient matrix A. A zero
value corresponds to a totally unsafeguarded pivoting strategy
(potentially unstable).

real_wp_ min_rel_improve The minimum relative improvement in the bounds on x, y and z for a
tighter bound on these quantities to be accepted in the course of the
analysis. More formally, if lower is the current value of the lower
bound on one of the x, y or z, and if new_lower is a tentative tighter
lower bound on the same quantity, it is only accepted if. new_lower
>= lower + tol ∗ MAX(1, ABS(lower)),
where
tol = control.min_rel_improve.
Similarly, a tentative tighter upper bound new_upper only replaces
the current upper bound upper if
new_upper <= upper - tol ∗ MAX(1, ABS(upper)).
Note that this parameter must exceed the machine precision
significantly.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 15

Data Fields

real_wp_ max_growth_factor The maximum growth factor (in absolute value) that is accepted
between the maximum data item in the original problem and any data
item in the reduced problem. If a transformation results in this bound
being exceeded, the transformation is skipped.

3.1.1.2 struct presolve_inform_type

inform derived type as a C struct

Examples

presolvet.c, and presolvetf.c.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

16 File Documentation

Data Fields

int status The presolve exit condition. It can take the following values (symbol in parentheses
is the related Fortran code):

• (OK) successful exit;

• 1 (MAX_NBR_TRANSF) the maximum number of problem transformation
has been reached NOTE: this exit is not really an error, since the problem
can nevertheless be permuted and solved. It merely signals that further
problem reduction could possibly be obtained with a larger value of the
parameter control.max_nbr_transforms

• -21 (PRIMAL_INFEASIBLE) the problem is primal infeasible;

• -22 (DUAL_INFEASIBLE) the problem is dual infeasible;

• -23 (WRONG_G_DIMENSION) the dimension of the gradient is incompatible
with the problem dimension;

• -24 (WRONG_HVAL_DIMENSION) the dimension of the vector containing
the entries of the Hessian is erroneously specified;

• -25 (WRONG_HPTR_DIMENSION) the dimension of the vector containing
the addresses of the first entry of each Hessian row is erroneously specified;

• -26 (WRONG_HCOL_DIMENSION) the dimension of the vector containing
the column indices of the nonzero Hessian entries is erroneously specified;

• -27 (WRONG_HROW_DIMENSION) the dimension of the vector containing
the row indices of the nonzero Hessian entries is erroneously specified;

• -28 (WRONG_AVAL_DIMENSION) the dimension of the vector containing
the entries of the Jacobian is erroneously specified;

• -29 (WRONG_APTR_DIMENSION) the dimension of the vector containing
the addresses of the first entry of each Jacobian row is erroneously
specified;

• -30 (WRONG_ACOL_DIMENSION) the dimension of the vector containing
the column indices of the nonzero Jacobian entries is erroneously specified;

• -31 (WRONG_AROW_DIMENSION) the dimension of the vector containing
the row indices of the nonzero Jacobian entries is erroneously specified;

• -32 (WRONG_X_DIMENSION) the dimension of the vector of variables is
incompatible with the problem dimension;

• -33 (WRONG_XL_DIMENSION) the dimension of the vector of lower bounds
on the variables is incompatible with the problem dimension;

• -34 (WRONG_XU_DIMENSION) the dimension of the vector of upper
bounds on the variables is incompatible with the problem dimension;

• -35 (WRONG_Z_DIMENSION) the dimension of the vector of dual variables
is incompatible with the problem dimension;

• -36 (WRONG_ZL_DIMENSION) the dimension of the vector of lower bounds
on the dual variables is incompatible with the problem dimension;

• -37 (WRONG_ZU_DIMENSION) the dimension of the vector of upper
bounds on the dual variables is incompatible with the problem dimension;

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 17

Data Fields

int status_continue continuation of status (name in previous column should be status, doxygen issue):

• -38 (WRONG_C_DIMENSION) the dimension of the vector of constraints
values is incompatible with the problem dimension;

• -39 (WRONG_CL_DIMENSION) the dimension of the vector of lower bounds
on the constraints is incompatible with the problem dimension;

• -40 (WRONG_CU_DIMENSION) the dimension of the vector of upper
bounds on the constraints is incompatible with the problem dimension;

• -41 (WRONG_Y_DIMENSION) the dimension of the vector of multipliers
values is incompatible with the problem dimension;

• -42 (WRONG_YL_DIMENSION) the dimension of the vector of lower bounds
on the multipliers is incompatible with the problem dimension;

• -43 (WRONG_YU_DIMENSION) the dimension of the vector of upper
bounds on the multipliers is incompatible with the problem dimension;

• -44 (STRUCTURE_NOT_SET) the problem structure has not been set or
has been cleaned up before an attempt to analyze;

• -45 (PROBLEM_NOT_ANALYZED) the problem has not been analyzed
before an attempt to permute it;

• -46 (PROBLEM_NOT_PERMUTED) the problem has not been permuted or
fully reduced before an attempt to restore it

• -47 (H_MISSPECIFIED) the column indices of a row of the sparse Hessian
are not in increasing order, in that they specify an entry above the diagonal;

• -48 (CORRUPTED_SAVE_FILE) one of the files containing saved problem
transformations has been corrupted between writing and reading;

• -49 (WRONG_XS_DIMENSION) the dimension of the vector of variables'
status is incompatible with the problem dimension;

• -50 (WRONG_CS_DIMENSION) the dimension of the vector of constraints'
status is incompatible with the problem dimension;

• -52 (WRONG_N) the problem does not contain any (active) variable;

• -53 (WRONG_M) the problem contains a negative number of constraints;

• -54 (SORT_TOO_LONG) the vectors are too long for the sorting routine;

• -55 (X_OUT_OF_BOUNDS) the value of a variable that is obtained by
substitution from a constraint is incoherent with the variable's bounds. This
may be due to a relatively loose accuracy on the linear constraints. Try to
increase control.c_accuracy.

• -56 (X_NOT_FEASIBLE) the value of a constraint that is obtained by
recomputing its value on input of presolve_restore_solution from
the current x is incompatible with its declared value or its bounds. This may
caused the restored problem to be infeasible.

• -57 (Z_NOT_FEASIBLE) the value of a dual variable that is obtained by
recomputing its value on input to presolve_restore_solution
(assuming dual feasibility) from the current values of (x, y, z) is incompatible
with its declared value. This may caused the restored problem to be
infeasible or suboptimal.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

18 File Documentation

Data Fields

int status_continued continuation of status (name in previous column should be status, doxygen issue):

• -58 (Z_CANNOT_BE_ZEROED) a dual variable whose value is nonzero
because the corresponding primal is at an artificial bound cannot be zeroed
while maintaining dual feasibility (on restoration). This can happen when
(x, y, z) on input of RESTORE are not (sufficiently) optimal.

• -1 (MEMORY_FULL) memory allocation failed

• -2 (FILE_NOT_OPENED) a file intended for saving problem transformations
could not be opened;

• -3 (COULD_NOT_WRITE) an IO error occurred while saving transformations
on the relevant disk file;

• -4 (TOO_FEW_BITS_PER_BYTE) an integer contains less than NBRH + 1
bits.

• -60 (UNRECOGNIZED_KEYWORD) a keyword was not recognized in the
analysis of the specification file

• -61 (UNRECOGNIZED_VALUE) a value was not recognized in the analysis
of the specification file

• -63 (G_NOT_ALLOCATED) the vector G has not been allocated although it
has general values

• -64 (C_NOT_ALLOCATED) the vector C has not been allocated although m
> 0

• -65 (AVAL_NOT_ALLOCATED) the vector A.val has not been allocated
although m > 0

• -66 (APTR_NOT_ALLOCATED) the vector A.ptr has not been allocated
although m > 0 and A is stored in row-wise sparse format

• -67 (ACOL_NOT_ALLOCATED) the vector A.col has not been allocated
although m > 0 and A is stored in row-wise sparse format or sparse
coordinate format

• -68 (AROW_NOT_ALLOCATED) the vector A.row has not been allocated
although m > 0 and A is stored in sparse coordinate format

• -69 (HVAL_NOT_ALLOCATED) the vector H.val has not been allocated
although H.ne > 0

• -70 (HPTR_NOT_ALLOCATED) the vector H.ptr has not been allocated
although H.ne > 0 and H is stored in row-wise sparse format

• -71 (HCOL_NOT_ALLOCATED) the vector H.col has not been allocated
although H.ne > 0 and H is stored in row-wise sparse format or sparse
coordinate format

• -72 (HROW_NOT_ALLOCATED) the vector H.row has not been allocated
although H.ne > 0 and A is stored in sparse coordinate format

• -73 (WRONG_ANE) incompatible value of A_ne

• -74 (WRONG_HNE) incompatible value of H_ne

int nbr_transforms The final number of problem transformations, as reported to the user at exit.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 19

Data Fields

char message[3][81] A few lines containing a description of the exit condition on exit of PRESOLVE,
typically including more information than indicated in the description of
control.status above. It is printed out on device errout at the end of execution if
control.print_level >= 1.

3.1.2 Function Documentation

3.1.2.1 presolve_initialize()

void presolve_initialize (

void ∗∗ data,

struct presolve_control_type ∗ control,

int ∗ status)

Set default control values and initialize private data

Parameters

in,out data holds private internal data

out control is a struct containing control information (see presolve_control_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The import was succesful.

Examples

presolvet.c, and presolvetf.c.

3.1.2.2 presolve_read_specfile()

void presolve_read_specfile (

struct presolve_control_type ∗ control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters

Parameters

in,out control is a struct containing control information (see presolve_control_type)

in specfile is a character string containing the name of the specification file

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

20 File Documentation

3.1.2.3 presolve_import_problem()

void presolve_import_problem (

struct presolve_control_type ∗ control,

void ∗∗ data,

int ∗ status,

int n,

int m,

const char H_type[],

int H_ne,

const int H_row[],

const int H_col[],

const int H_ptr[],

const real_wp_ H_val[],

const real_wp_ g[],

const real_wp_ f,

const char A_type[],

int A_ne,

const int A_row[],

const int A_col[],

const int A_ptr[],

const real_wp_ A_val[],

const real_wp_ c_l[],

const real_wp_ c_u[],

const real_wp_ x_l[],

const real_wp_ x_u[],

int ∗ n_out,

int ∗ m_out,

int ∗ H_ne_out,

int ∗ A_ne_out)

Import the initial data, and apply the presolve algorithm to report crucial characteristics of the transformed variant

Parameters

in control is a struct whose members provide control paramters for the remaining prcedures
(see presolve_control_type)

in,out data holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 21

Parameters

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The restrictions n > 0 or m > 0 or requirement that a type contains its
relevant string 'dense', 'coordinate', 'sparse_by_rows' or 'diagonal' has been
violated.

• -23. An entry from the strict upper triangle of H has been specified.

in n is a scalar variable of type int, that holds the number of variables.

in m is a scalar variable of type int, that holds the number of general linear constraints.

in H_type is a one-dimensional array of type char that specifies the symmetric storage scheme
used for the Hessian, H . It should be one of 'coordinate', 'sparse_by_rows', 'dense',
'diagonal', 'scaled_identity', 'identity', 'zero' or 'none', the latter pair if H = 0; lower or
upper case variants are allowed.

in H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the sparse co-ordinate storage scheme. It need not be set for any of the
other schemes.

in H_row is a one-dimensional array of size H_ne and type int, that holds the row indices of the
lower triangular part of H in the sparse co-ordinate storage scheme. It need not be
set for any of the other three schemes, and in this case can be NULL.

in H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of
the lower triangular part of H in either the sparse co-ordinate, or the sparse
row-wise storage scheme. It need not be set when the dense, diagonal or (scaled)
identity storage schemes are used, and in this case can be NULL.

in H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of H , as well as the total number of entries, in
the sparse row-wise storage scheme. It need not be set when the other schemes are
used, and in this case can be NULL.

in H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the Hessian matrix H in any of the available
storage schemes.

in g is a one-dimensional array of size n and type double, that holds the linear term g of
the objective function. The j-th component of g, j = 0, ... , n-1, contains gj .

in f is a scalar of type double, that holds the constant term f of the objective function.

in A_type is a one-dimensional array of type char that specifies the
unsymmetric storage scheme used for the constraint Jacobian, A. It should be one
of 'coordinate', 'sparse_by_rows' or 'dense; lower or upper case variants are allowed.

in A_ne is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row is a one-dimensional array of size A_ne and type int, that holds the row indices of A
in the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

22 File Documentation

Parameters

in A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of
A in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need
not be set when the dense or diagonal storage schemes are used, and in this case
can be NULL.

in A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can
be NULL.

in A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in c_l is a one-dimensional array of size m and type double, that holds the lower bounds cl

on the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

in c_u is a one-dimensional array of size m and type double, that holds the upper bounds cl

on the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

in x_l is a one-dimensional array of size n and type double, that holds the lower bounds xl

on the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl
j .

in x_u is a one-dimensional array of size n and type double, that holds the upper bounds xl

on the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl
j .

out n_out is a scalar variable of type int, that holds the number of variables in the transformed
problem.

out m_out is a scalar variable of type int, that holds the number of general linear constraints in
the transformed problem.

out H_ne_out is a scalar variable of type int, that holds the number of entries in the lower triangular
part of H in the transformed problem.

out A_ne_out is a scalar variable of type int, that holds the number of entries in A in the
transformed problem.

Examples

presolvet.c, and presolvetf.c.

3.1.2.4 presolve_transform_problem()

void presolve_transform_problem (

void ∗∗ data,

int ∗ status,

int n,

int m,

int H_ne,

int H_col[],

int H_ptr[],

real_wp_ H_val[],

real_wp_ g[],

real_wp_ ∗ f,

int A_ne,

int A_col[],

int A_ptr[],

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 23

real_wp_ A_val[],

real_wp_ c_l[],

real_wp_ c_u[],

real_wp_ x_l[],

real_wp_ x_u[],

real_wp_ y_l[],

real_wp_ y_u[],

real_wp_ z_l[],

real_wp_ z_u[])

Apply the presolve algorithm to simplify the input problem, and output the transformed variant

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The input values n, m, A_ne or H_ne do not agree with those output as
necessary from presolve_import_problem.

out n is a scalar variable of type int, that holds the number of variables in the transformed
problem. This must match the value n_out from the last call to presolve_import_problem.

out m is a scalar variable of type int, that holds the number of general linear constraints. This
must match the value m_out from the last call to presolve_import_problem.

out H_ne is a scalar variable of type int, that holds the number of entries in the lower triangular
part of the transformed H . This must match the value H_ne_out from the last call to
presolve_import_problem.

out H_col is a one-dimensional array of size H_ne and type int, that holds the column indices of the
lower triangular part of the transformed H in the sparse row-wise storage scheme.

out H_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the lower triangular part of the transformed H in the sparse row-wise
storage scheme.

out H_val is a one-dimensional array of size h_ne and type double, that holds the values of the
entries of the lower triangular part of the the transformed Hessian matrix H in the sparse
row-wise storage scheme.

out g is a one-dimensional array of size n and type double, that holds the the transformed
linear term g of the objective function. The j-th component of g, j = 0, ... , n-1, contains
gj .

out f is a scalar of type double, that holds the transformed constant term f of the objective
function.

out A_ne is a scalar variable of type int, that holds the number of entries in the transformed A.
This must match the value A_ne_out from the last call to presolve_import_problem.

out A_col is a one-dimensional array of size A_ne and type int, that holds the column indices of the
transformed A in the sparse row-wise storage scheme.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

24 File Documentation

Parameters

out A_ptr is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of the transformed A, as well as the total number of entries, in the sparse
row-wise storage scheme.

out A_val is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the transformed constraint Jacobian matrix A in the sparse row-wise storage
scheme.

out c_l is a one-dimensional array of size m and type double, that holds the transformed lower
bounds cl on the constraints Ax. The i-th component of c_l, i = 0, ... , m-1, contains cli.

out c_u is a one-dimensional array of size m and type double, that holds the transformed upper
bounds cl on the constraints Ax. The i-th component of c_u, i = 0, ... , m-1, contains cui .

out x_l is a one-dimensional array of size n and type double, that holds the transformed lower
bounds xl on the variables x. The j-th component of x_l, j = 0, ... , n-1, contains xl

j .

out x_u is a one-dimensional array of size n and type double, that holds the transformed upper
bounds xl on the variables x. The j-th component of x_u, j = 0, ... , n-1, contains xl

j .

out y_l is a one-dimensional array of size m and type double, that holds the implied lower
bounds yl on the transformed Lagrange multipliers y. The i-th component of y_l, i = 0, ...
, m-1, contains yli.

out y_u is a one-dimensional array of size m and type double, that holds the implied upper
bounds yu on the transformed Lagrange multipliers y. The i-th component of y_u, i = 0,
... , m-1, contains yui .

out z_l is a one-dimensional array of size m and type double, that holds the implied lower
bounds yl on the transformed dual variables z. The j-th component of z_l, j = 0, ... , n-1,
contains zli.

out z_u is a one-dimensional array of size m and type double, that holds the implied upper
bounds yu on the transformed dual variables z. The j-th component of z_u, j = 0, ... ,
n-1, contains zui .

Examples

presolvet.c, and presolvetf.c.

3.1.2.5 presolve_restore_solution()

void presolve_restore_solution (

void ∗∗ data,

int ∗ status,

int n_in,

int m_in,

const real_wp_ x_in[],

const real_wp_ c_in[],

const real_wp_ y_in[],

const real_wp_ z_in[],

int n,

int m,

real_wp_ x[],

real_wp_ c[],

real_wp_ y[],

real_wp_ z[])

Given the solution (x_in,c_in,y_in,z_in) to the transformed problem, restore to recover the solution (x,c,y,z) to the
original

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

3.1 galahad_presolve.h File Reference 25

Parameters

in,out data holds private internal data

in,out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

• 0. The import was succesful

• -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

• -3. The input values n, m, n_in and m_in do not agree with those input to and
output as necessary from presolve_import_problem.

out n_in is a scalar variable of type int, that holds the number of variables in the transformed
problem. This must match the value n_out from the last call to presolve_import_problem.

out m_in is a scalar variable of type int, that holds the number of general linear constraints. This
must match the value m_out from the last call to presolve_import_problem.

in x_in is a one-dimensional array of size n_in and type double, that holds the transformed
values x of the optimization variables. The j-th component of x, j = 0, ... , n-1, contains
xj .

in c_in is a one-dimensional array of size m and type double, that holds the transformed
residual c(x). The i-th component of c, j = 0, ... , n-1, contains cj(x).

in y_in is a one-dimensional array of size n_in and type double, that holds the values y of the
transformed Lagrange multipliers for the general linear constraints. The j-th component
of y, j = 0, ... , n-1, contains yj .

in z_in is a one-dimensional array of size n_in and type double, that holds the values z of the
transformed dual variables. The j-th component of z, j = 0, ... , n-1, contains zj .

in n is a scalar variable of type int, that holds the number of variables in the transformed
problem. This must match the value n as input to presolve_import_problem.

in m is a scalar variable of type int, that holds the number of general linear constraints. This
must match the value m as input to presolve_import_problem.

out x is a one-dimensional array of size n and type double, that holds the transformed values
x of the optimization variables. The j-th component of x, j = 0, ... , n-1, contains xj .

out c is a one-dimensional array of size m and type double, that holds the transformed
residual c(x). The i-th component of c, j = 0, ... , n-1, contains cj(x).

out y is a one-dimensional array of size n and type double, that holds the values y of the
transformed Lagrange multipliers for the general linear constraints. The j-th component
of y, j = 0, ... , n-1, contains yj .

out z is a one-dimensional array of size n and type double, that holds the values z of the
transformed dual variables. The j-th component of z, j = 0, ... , n-1, contains zj .

Examples

presolvet.c, and presolvetf.c.

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

26 File Documentation

3.1.2.6 presolve_information()

void presolve_information (

void ∗∗ data,

struct presolve_inform_type ∗ inform,

int ∗ status)

Provides output information

Parameters

in,out data holds private internal data

out inform is a struct containing output information (see presolve_inform_type)

out status is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

• 0. The values were recorded succesfully

Examples

presolvet.c, and presolvetf.c.

3.1.2.7 presolve_terminate()

void presolve_terminate (

void ∗∗ data,

struct presolve_control_type ∗ control,

struct presolve_inform_type ∗ inform)

Deallocate all internal private storage

Parameters

in,out data holds private internal data

out control is a struct containing control information (see presolve_control_type)

out inform is a struct containing output information (see presolve_inform_type)

Examples

presolvet.c, and presolvetf.c.

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

Chapter 4

Example Documentation

4.1 presolvet.c

This is an example of how to use the package to solve a quadratic program. A variety of supported Hessian and
constraint matrix storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexing to false.
/* presolvet.c */
/* Full test for the PRESOLVE C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_presolve.h"
int main(void) {

// Derived types
void *data;
struct presolve_control_type control;
struct presolve_inform_type inform;
// Set problem data
int n = 6; // dimension
int m = 5; // number of general constraints
int H_ne = 1; // Hesssian elements
int H_row[] = {0}; // row indices, NB lower triangle
int H_col[] = {0}; // column indices, NB lower triangle
int H_ptr[] = {0, 1, 1, 1, 1, 1, 1}; // row pointers
real_wp_ H_val[] = {1.0}; // values
real_wp_ g[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; // linear term in the objective
real_wp_ f = 1.0; // constant term in the objective
int A_ne = 8; // Jacobian elements
int A_row[] = {2, 2, 2, 3, 3, 4, 4, 4}; // row indices
int A_col[] = {2, 3, 4, 2, 5, 3, 4, 5}; // column indices
int A_ptr[] = {0, 0, 0, 3, 5, 8}; // row pointers
real_wp_ A_val[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; // values
real_wp_ c_l[] = { 0.0, 0.0, 2.0, 1.0, 3.0}; // constraint lower bound
real_wp_ c_u[] = {1.0, 1.0, 3.0, 3.0, 3.0}; // constraint upper bound
real_wp_ x_l[] = {-3.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // variable lower bound
real_wp_ x_u[] = {3.0, 1.0, 1.0, 1.0, 1.0, 1.0}; // variable upper bound
// Set output storage
char st;
int status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 7; d++){

int n_trans, m_trans, H_ne_trans, A_ne_trans;
// Initialize PRESOLVE
presolve_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
presolve_import_problem(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL, H_val, g, f,

28 Example Documentation

"coordinate", A_ne, A_row, A_col, NULL, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
presolve_import_problem(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr, H_val, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = n*(n+1)/2; // number of elements of H
int A_dense_ne = m*n; // number of elements of A
real_wp_ H_dense[] = {1.0,

0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

real_wp_ A_dense[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 1.0, 1.0, 1.0};

presolve_import_problem(&control, &data, &status, n, m,
"dense", H_dense_ne, NULL, NULL, NULL, H_dense, g,
f, "dense", A_dense_ne, NULL, NULL, NULL, A_dense,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 4: // diagonal

st = ’L’;
presolve_import_problem(&control, &data, &status, n, m,

"diagonal", n, NULL, NULL, NULL, H_val, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 5: // scaled identity

st = ’S’;
presolve_import_problem(&control, &data, &status, n, m,

"scaled_identity", 1, NULL, NULL, NULL, H_val, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 6: // identity

st = ’I’;
presolve_import_problem(&control, &data, &status, n, m,

"identity", 0, NULL, NULL, NULL, NULL, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 7: // zero

st = ’Z’;
presolve_import_problem(&control, &data, &status, n, m,

"zero", 0, NULL, NULL, NULL, NULL, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
}

//printf("%c: n, m, h_ne, a_ne = %2i, %2i, %2i, %2i\n",
// st, n_trans, m_trans, H_ne_trans, A_ne_trans);
real_wp_ f_trans; // transformed constant term in the objective
int H_ptr_trans[n_trans+1]; // transformed Hessian row pointers
int H_col_trans[H_ne_trans]; // transformed Hessian column indices
real_wp_ H_val_trans[H_ne_trans]; // transformed Hessian values
real_wp_ g_trans[n_trans]; // transformed gradient
int A_ptr_trans[m_trans+1]; // transformed Jacobian row pointers
int A_col_trans[A_ne_trans]; // transformed Jacobian column indices
real_wp_ A_val_trans[A_ne_trans]; // transformed Jacobian values
real_wp_ x_l_trans[n_trans]; // transformed lower variable bounds
real_wp_ x_u_trans[n_trans]; // transformed upper variable bounds
real_wp_ c_l_trans[m_trans]; // transformed lower constraint bounds
real_wp_ c_u_trans[m_trans]; // transformed upper constraint bounds
real_wp_ y_l_trans[m_trans]; // transformed lower multiplier bounds
real_wp_ y_u_trans[m_trans]; // transformed upper multiplier bounds
real_wp_ z_l_trans[n_trans]; // transformed lower dual variable bounds
real_wp_ z_u_trans[n_trans]; // transformed upper dual variable bounds
presolve_transform_problem(&data, &status, n_trans, m_trans,

H_ne_trans, H_col_trans, H_ptr_trans,

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

4.2 presolvetf.c 29

H_val_trans, g_trans, &f_trans, A_ne_trans,
A_col_trans, A_ptr_trans, A_val_trans,
c_l_trans, c_u_trans, x_l_trans, x_u_trans,
y_l_trans, y_u_trans, z_l_trans, z_u_trans);

real_wp_ x_trans[n_trans]; // transformed variables
for(int i = 0; i < n_trans; i++) x_trans[i] = 0.0;
real_wp_ c_trans[m_trans]; // transformed constraints
for(int i = 0; i < m_trans; i++) c_trans[i] = 0.0;
real_wp_ y_trans[m_trans]; // transformed Lagrange multipliers
for(int i = 0; i < m_trans; i++) y_trans[i] = 0.0;
real_wp_ z_trans[n_trans]; // transformed dual variables
for(int i = 0; i < n_trans; i++) z_trans[i] = 0.0;
real_wp_ x[n]; // primal variables
real_wp_ c[m]; // constraint values
real_wp_ y[m]; // Lagrange multipliers
real_wp_ z[n]; // dual variables
//printf("%c: n_trans, m_trans, n, m = %2i, %2i, %2i, %2i\n",
// st, n_trans, m_trans, n, m);
presolve_restore_solution(&data, &status, n_trans, m_trans,

x_trans, c_trans, y_trans, z_trans, n, m, x, c, y, z);
presolve_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i transformations, n, m = %2i, %2i, status = %1i\n",
st, inform.nbr_transforms, n_trans, m_trans, inform.status);

}else{
printf("%c: PRESOLVE_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
presolve_terminate(&data, &control, &inform);

}
}

4.2 presolvetf.c

This is the same example, but now fortran-style indexing is used.

/* presolvetf.c */
/* Full test for the PRESOLVE C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_presolve.h"
int main(void) {

// Derived types
void *data;
struct presolve_control_type control;
struct presolve_inform_type inform;
// Set problem data
int n = 6; // dimension
int m = 5; // number of general constraints
int H_ne = 1; // Hesssian elements
int H_row[] = {1}; // row indices, NB lower triangle
int H_col[] = {1}; // column indices, NB lower triangle
int H_ptr[] = {1, 2, 2, 2, 2, 2, 2}; // row pointers
real_wp_ H_val[] = {1.0}; // values
real_wp_ g[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; // linear term in the objective
real_wp_ f = 1.0; // constant term in the objective
int A_ne = 8; // Jacobian elements
int A_row[] = {3, 3, 3, 4, 4, 5, 5, 5}; // row indices
int A_col[] = {3, 4, 5, 3, 6, 4, 5, 6}; // column indices
int A_ptr[] = {1, 1, 1, 4, 6, 9}; // row pointers
real_wp_ A_val[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; // values
real_wp_ c_l[] = { 0.0, 0.0, 2.0, 1.0, 3.0}; // constraint lower bound
real_wp_ c_u[] = {1.0, 1.0, 3.0, 3.0, 3.0}; // constraint upper bound
real_wp_ x_l[] = {-3.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // variable lower bound
real_wp_ x_u[] = {3.0, 1.0, 1.0, 1.0, 1.0, 1.0}; // variable upper bound
// Set output storage
char st;
int status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of qp storage formats\n\n");
for(int d=1; d <= 7; d++){

int n_trans, m_trans, H_ne_trans, A_ne_trans;
// Initialize PRESOLVE

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

30 Example Documentation

presolve_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
switch(d){

case 1: // sparse co-ordinate storage
st = ’C’;
presolve_import_problem(&control, &data, &status, n, m,

"coordinate", H_ne, H_row, H_col, NULL, H_val, g, f,
"coordinate", A_ne, A_row, A_col, NULL, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
printf(" case %1i break\n",d);
case 2: // sparse by rows

st = ’R’;
presolve_import_problem(&control, &data, &status, n, m,

"sparse_by_rows", H_ne, NULL, H_col, H_ptr, H_val, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 3: // dense

st = ’D’;
int H_dense_ne = n*(n+1)/2; // number of elements of H
int A_dense_ne = m*n; // number of elements of A
real_wp_ H_dense[] = {1.0,

0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

real_wp_ A_dense[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 0.0, 1.0, 1.0, 1.0};

presolve_import_problem(&control, &data, &status, n, m,
"dense", H_dense_ne, NULL, NULL, NULL, H_dense, g,
f, "dense", A_dense_ne, NULL, NULL, NULL, A_dense,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 4: // diagonal

st = ’L’;
presolve_import_problem(&control, &data, &status, n, m,

"diagonal", n, NULL, NULL, NULL, H_val, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 5: // scaled identity

st = ’S’;
presolve_import_problem(&control, &data, &status, n, m,

"scaled_identity", 1, NULL, NULL, NULL, H_val, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 6: // identity

st = ’I’;
presolve_import_problem(&control, &data, &status, n, m,

"identity", 0, NULL, NULL, NULL, NULL, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
case 7: // zero

st = ’Z’;
presolve_import_problem(&control, &data, &status, n, m,

"zero", 0, NULL, NULL, NULL, NULL, g, f,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr, A_val,
c_l, c_u, x_l, x_u,
&n_trans, &m_trans, &H_ne_trans, &A_ne_trans);

break;
}

//printf("%c: n, m, h_ne, a_ne = %2i, %2i, %2i, %2i\n",
// st, n_trans, m_trans, H_ne_trans, A_ne_trans);
real_wp_ f_trans; // transformed constant term in the objective
int H_ptr_trans[n_trans+1]; // transformed Hessian row pointers
int H_col_trans[H_ne_trans]; // transformed Hessian column indices
real_wp_ H_val_trans[H_ne_trans]; // transformed Hessian values
real_wp_ g_trans[n_trans]; // transformed gradient
int A_ptr_trans[m_trans+1]; // transformed Jacobian row pointers
int A_col_trans[A_ne_trans]; // transformed Jacobian column indices
real_wp_ A_val_trans[A_ne_trans]; // transformed Jacobian values
real_wp_ x_l_trans[n_trans]; // transformed lower variable bounds
real_wp_ x_u_trans[n_trans]; // transformed upper variable bounds

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

4.2 presolvetf.c 31

real_wp_ c_l_trans[m_trans]; // transformed lower constraint bounds
real_wp_ c_u_trans[m_trans]; // transformed upper constraint bounds
real_wp_ y_l_trans[m_trans]; // transformed lower multiplier bounds
real_wp_ y_u_trans[m_trans]; // transformed upper multiplier bounds
real_wp_ z_l_trans[n_trans]; // transformed lower dual variable bounds
real_wp_ z_u_trans[n_trans]; // transformed upper dual variable bounds
presolve_transform_problem(&data, &status, n_trans, m_trans,

H_ne_trans, H_col_trans, H_ptr_trans,
H_val_trans, g_trans, &f_trans, A_ne_trans,
A_col_trans, A_ptr_trans, A_val_trans,
c_l_trans, c_u_trans, x_l_trans, x_u_trans,
y_l_trans, y_u_trans, z_l_trans, z_u_trans);

real_wp_ x_trans[n_trans]; // transformed variables
for(int i = 0; i < n_trans; i++) x_trans[i] = 0.0;
real_wp_ c_trans[m_trans]; // transformed constraints
for(int i = 0; i < m_trans; i++) c_trans[i] = 0.0;
real_wp_ y_trans[m_trans]; // transformed Lagrange multipliers
for(int i = 0; i < m_trans; i++) y_trans[i] = 0.0;
real_wp_ z_trans[n_trans]; // transformed dual variables
for(int i = 0; i < n_trans; i++) z_trans[i] = 0.0;
real_wp_ x[n]; // primal variables
real_wp_ c[m]; // constraint values
real_wp_ y[m]; // Lagrange multipliers
real_wp_ z[n]; // dual variables
//printf("%c: n_trans, m_trans, n, m = %2i, %2i, %2i, %2i\n",
// st, n_trans, m_trans, n, m);
presolve_restore_solution(&data, &status, n_trans, m_trans,

x_trans, c_trans, y_trans, z_trans, n, m, x, c, y, z);
presolve_information(&data, &inform, &status);
if(inform.status == 0){

printf("%c:%6i transformations, n, m = %2i, %2i, status = %1i\n",
st, inform.nbr_transforms, n_trans, m_trans, inform.status);

}else{
printf("%c: PRESOLVE_solve exit status = %1i\n", st, inform.status);

}
//printf("x: ");
//for(int i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for(int i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
presolve_terminate(&data, &control, &inform);

}
}

C interfaces to GALAHAD PRESOLVE GALAHAD 4.0

32 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD PRESOLVE

	1 GALAHAD C package presolve
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 Reference
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	1.1.9 Symmetric matrix storage formats
	1.1.9.1 Dense storage format
	1.1.9.2 Sparse co-ordinate storage format
	1.1.9.3 Sparse row-wise storage format
	1.1.9.4 Diagonal storage format
	1.1.9.5 Multiples of the identity storage format
	1.1.9.6 The identity matrix format
	1.1.9.7 The zero matrix format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_presolve.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct presolve_control_type
	3.1.1.2 struct presolve_inform_type

	3.1.2 Function Documentation
	3.1.2.1 presolve_initialize()
	3.1.2.2 presolve_read_specfile()
	3.1.2.3 presolve_import_problem()
	3.1.2.4 presolve_transform_problem()
	3.1.2.5 presolve_restore_solution()
	3.1.2.6 presolve_information()
	3.1.2.7 presolve_terminate()

	4 Example Documentation
	4.1 presolvet.c
	4.2 presolvetf.c

