C interfaces to GALAHAD UGO

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Thu Jun 22 2023

1 GALAHAD C package ugo 1
1.1 Introduction L e e e e e 1
111 PUrPOSE o e e 1

1. 1.2Authors o 1

1.1.3 Originally released 1
1.1.4Method L e 1
1.1.5References L 2
1.2Callorder e e e e e e e 2

2 File Index

21 File List o e 3

3 File Documentation 5
3.1 galahad _ugo.h File Reference e 5
3.1.1 Data Structure Documentation 5

3.1.1.1 structugo_control_type 5
3.1.1.2structugo_time_type 7

3.1.1.3 structugo_inform_type 7

3.1.2 Function Documentationo 7

3.1.2.1 ugo_initialize()o 7
3.1.22ugo_read specfile() 8
3.1.23ugo_import() 8
3.1.24ugo_reset_control() 9
3.1.25ugo_solve_direct() L 10
3.1.2.6ugo_solve_reverse() e 11
3.1.2.7ugo_information() 13
3.1.28ugo_terminate() 13

4 Example Documentation 15
41 UJOS.C + v v o o e e e e e 15
42UQOL.C . . . e e e e 16

C interfaces to GALAHAD UGO GALAHAD 4.0

Chapter 1

GALAHAD C package ugo

1.1 Introduction

1.1.1 Purpose

The ugo package aims to find the global minimizer of a univariate twice-continuously differentiable function
f(z) of a single variable over the finite interval x! < x < 2®. Function and derivative values may be provided
either via a subroutine call, or by a return to the calling program. Second derivatives may be used to advantage if
they are available.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.
C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

July 2016, C interface August 2021.

1.1.4 Method

The algorithm starts by splitting the interval [xl, x*] into a specified number of subintervals [z;, ;1] of equal length,
and evaluating f and its derivatives at each x;. A surrogate (approximating) lower bound function is constructed
on each subinterval using the function and derivative values at each end, and an estimate of the first- and second-
derivative Lipschitz constant. This surrogate is minimized, the true objective evaluated at the best predicted point,
and the corresponding interval split again at this point. Any interval whose surrogate lower bound value exceeds
an evaluated actual value is discarded. The method continues until only one interval of a maximum permitted width
remains.

GALAHAD C package ugo

1.1.5 References

Many ingredients in the algorithm are based on the paper

D. Leraand Ya. D. Sergeyev (2013), “‘Acceleration of univariate global optimization algorithms working with Lipschitz
functions and Lipschitz first derivatives” SIAM J. Optimization Vol. 23, No. 1, pp. 508-529,

but adapted to use second derivatives.

1.2

Call order

To solve a given problem, functions from the ugo package must be called in the following order:

ugo_initialize - provide default control parameters and set up initial data structures

ugo_read_specfile (optional) - override control values by reading replacement values from a file

ugo_import - set up problem data structures and fixed values

ugo_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
solve the problem by calling one of

— ugo_solve_direct - solve using function calls to evaluate function and derivative values, or

— ugo_solve_reverse - solve returning to the calling program to obtain function and derivative values
ugo_information (optional) - recover information about the solution and solution process

ugo_terminate - deallocate data structures

See Section 4.1 for examples of use.

GALAHAD 4.0 C interfaces to GALAHAD UGO

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_ugo.h

4 File Index

GALAHAD 4.0 C interfaces to GALAHAD UGO

Chapter 3

File Documentation

3.1 galahad_ugo.h File Reference

#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"

Data Structures

« struct ugo_control_type
« struct ugo_time_type
+ struct ugo_inform_type

Functions

« void ugo_initialize (void *xdata, struct ugo_control_type xcontrol, int xstatus)

» void ugo_read_specfile (struct ugo_control_type xcontrol, const char specfile[])

« void ugo_import (struct ugo_control_type *control, void *xdata, int xstatus, const real_wp_ *x_I, const real«—
Wp *X_U)

+ void ugo_reset_control (struct ugo_control_type xcontrol, void *xdata, int xstatus)

« void ugo_solve_direct (void *xxdata, void xuserdata, int xstatus, real_wp_ xx, real_wp_ *f, real_wp_ *g, real«—
wp xh, int(xeval_fgh)(real_wp_, real_wp_ *, real_wp_ *, real_wp_ *, const void x))

» void ugo_solve_reverse (void *xdata, int xstatus, int xeval_status, real_wp_ xx, real_wp_ x*f, real_wp_ *qg,
real_wp_ xh)

+ void ugo_information (void *xdata, struct ugo_inform_type *xinform, int xstatus)

« void ugo_terminate (void xxdata, struct ugo_control_type *control, struct ugo_inform_type xinform)

3.1.1 Data Structure Documentation

3.1.1.1 struct ugo_control_type
Examples

ugos.c, and ugot.c.

File Documentation

Data Fields
int | error error and warning diagnostics occur on stream error
int | out general output occurs on stream out
int | print_level the level of output required. Possible values are:
* < 0 no output,
* 1 a one-line summary for every improvement
» 2 a summary of each iteration
» > 3increasingly verbose (debugging) output
int | start_print any printing will start on this iteration
int | stop_print any printing will stop on this iteration
int | print_gap the number of iterations between printing
int | maxit the maximum number of iterations allowed
int | initial_points the number of initial (uniformly-spaced) evaluation points (<2 reset
to 2)
int | storage_increment incremenets of storage allocated (less that 1000 will be reset to
1000)
int | buffer unit for any out-of-core writing when expanding arrays
int | lipschitz_estimate_used what sort of Lipschitz constant estimate will be used:
» 1 = global contant provided
+ 2 = global contant estimated
» 3 = local costants estimated
int | next_interval_selection how is the next interval for examination chosen:
» 1 = traditional
» 2 = local_improvement
int | refine_with_newton try refine_with_newton Newton steps from the vacinity of the global
minimizer to try to improve the estimate
int | alive_unit removal of the file alive_file from unit alive_unit terminates
execution
char | alive_file[31] see alive_unit
real_wp_ | stop_length overall convergence tolerances. The iteration will terminate when
the step is less than .stop_length
real_wp_ | small_g_for_newton if the absolute value of the gradient is smaller than
small_g_for_newton, the next evaluation point may be at a Newton
estimate of a local minimizer
real_wp_ | small_g if the absolute value of the gradient at the end of the interval
search is smaller than small_g, no Newton serach is necessary
real_wp_ | obj_sufficient stop if the objective function is smaller than a specified value
real_wp_ | global_lipschitz_constant the global Lipschitz constant for the gradient (-ve means unknown)
real_wp_ | reliability_parameter the reliability parameter that is used to boost insufficiently large
estimates of the Lipschitz constant (-ve means that default values
will be chosen depending on whether second derivatives are
provided or not)
real_wp_ | lipschitz_lower_bound a lower bound on the Lipscitz constant for the gradient (not zero
unless the function is constant)
real_wp_ | cpu_time_limit the maximum CPU time allowed (-ve means infinite)

GALAHAD 4.0

C interfaces to GALAHAD UGO

3.1 galahad_ugo.h File Reference

Data Fields

real_wp_ | clock_time_limit

the maximum elapsed clock time allowed (-ve means infinite)

bool | second_derivative_available

if .second_derivative_available is true, the user must provide them
when requested. The package is generally more effective if second
derivatives are available.

bool | space_critical

if .space_critical is true, every effort will be made to use as little
space as possible. This may result in longer computation time

bool | deallocate_error_fatal

if .deallocate_error_fatal is true, any array/pointer deallocation
error will terminate execution. Otherwise, computation will continue

char | prefix[31]

all output lines will be prefixed by .prefix(2:LEN(TRIM(.prefix))-1)
where .prefix contains the required string enclosed in quotes, e.g.
"string" or 'string’

3.1.1.2 struct ugo_time_type

Data Fields

real_sp_ | total

the total CPU time spent in the package

real_wp_ | clock_total

the total clock time spent in the package

3.1.1.3 struct ugo_inform_type

Examples

ugos.c, and ugot.c.

Data Fields
int | status return status. See UGO_solve for details
int | eval_status evaluation status for reverse communication interface
int | alloc_status the status of the last attempted allocation/deallocation
char | bad_alloc[81] | the name of the array for which an allocation/deallocation error occurred
int | iter the total number of iterations performed
int | f_eval the total number of evaluations of the objective function
int | g_eval the total number of evaluations of the gradient of the objective function
int | h_eval the total number of evaluations of the Hessian of the objective function
struct ugo_time_type | time timings (see above)

3.1.2 Function Documentation

3.1.2.1 ugo_initialize()

void ugo_initialize (

void % data,

C interfaces to GALAHAD UGO

GALAHAD 4.0

8 File Documentation

struct ugo_control_type x control,

int % status)

Set default control values and initialize private data

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see ugo_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
* 0. The import was succesful.
Examples

ugos.c, and ugot.c.

3.1.2.2 ugo_read_specfile()

void ugo_read_specfile (
struct ugo_control_type x control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNUGO.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $§GALAHAD/doc/ugo.pdf for a list of keywords that may
be set.

Parameters

in, out | control | is a struct containing control information (see ugo_control_type)

in specfile | is a character string containing the name of the specification file

Examples

ugot.c.

3.1.2.3 ugo_import()

void ugo_import (
struct ugo_control_type * control,
void *x data,
int * status,
const real_wp_ * x_1,

const real_wp_ * x_u)

Import problem data into internal storage prior to solution.

GALAHAD 4.0 C interfaces to GALAHAD UGO

3.1 galahad_ugo.h File Reference 9

Parameters

in control | is a struct whose members provide control paramters for the remaining prcedures (see
ugo_control_type)
in, out | data holds private internal data

in,out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 1. The import was succesful, and the package is ready for the solve phase

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

« -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

in x_I is a scalar variable of type double, that holds the value z! of the lower bound on the
optimization variable .

in X u is a scalar variable of type double, that holds the value z* of the upper bound on the
optimization variable x.

Examples

ugos.c, and ugot.c.

3.1.2.4 ugo_reset_control()

void ugo_reset_control (
struct ugo_control_type x control,
void *xx data,

int * status)

Reset control parameters after import if required.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
ugo_control_type)
in, out | data holds private internal data
in, out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:
« 1. The import was succesful, and the package is ready for the solve phase

C interfaces to GALAHAD UGO GALAHAD 4.0

10

File Documentation

3.1.2.5 ugo_solve_direct()

void ugo_solve_direct (

void =% data,
void * userdata,
int * status,
real_wp_ * X,
real_wp_ * f,
real_wp_ * g,
real_wp_ * h,

int (*) (real_wp_, real_wp_ *, real_wp_ *, real_wp_ *, const void x) eval_ fgh)

Find an approximation to the global minimizer of a given univariate function with a Lipschitz gradient in an interval.

This version is for the case where all function/derivative information is available by function calls.

Parameters

in, out

data holds private internal data

in

userdata | is a structure that allows data to be passed into the function and derivative evaluation
programs (see below).

in, out

status is a scalar variable of type int, that gives the entry and exit status from the package.
On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -7. The objective function appears to be unbounded from below

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

» -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

» -40. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

out

X is a scalar variable of type double, that holds the value of the approximate global
minimizer z after a successful (status = 0) call.

out

f is a scalar variable of type double, that holds the the value of the objective function
f(zx) at the approximate global minimizer x after a successful (status = 0) call.

out

g is a scalar variable of type double, that holds the the value of the gradient of the
objective function f’(x) at the approximate global minimizer = after a successful
(status = 0) call.

out

h is a scalar variable of type double, that holds the the value of the second derivative of
the objective function f”(x) at the approximate global minimizer x after a successful
(status = 0) call.

GALAHAD 4.0

C interfaces to GALAHAD UGO

3.1 galahad_ugo.h File Reference 11

Parameters
eval_fgh | is a user-provided function that must have the following signature:
int eval_fgh(double x, double xf,
double =g,
double xh,
const void *userdata)
The value of the objective function f(x) and its first derivative f’(xz) evaluated at x= x
must be assigned to f and g respectively, and the function return value set to 0. In
addition, if control.second_derivatives_available has been set to true, when calling
ugo_import, the user must also assign the value of the second derivative f”(x) in h; it
need not be assigned otherwise. If the evaluation is impossible at x, return should be
set to a nonzero value.
Examples
ugos.c.

3.1.2.6 ugo_solve_reverse()

void ugo_solve_reverse (
void xx data,
int % status,
int * eval_status,
real_wp_ * X,
real_wp_ * f,
real_wp_ * g,

real_wp_ * h)
Find an approximation to the global minimizer of a given univariate function with a Lipschitz gradient in an interval.

This version is for the case where function/derivative information is only available by returning to the calling proce-
dure.

Parameters

in,out | data holds private internal data

C interfaces to GALAHAD UGO GALAHAD 4.0

12

File Documentation

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.

On initial entry, status must be set to 1.
Possible exit are:

* 0. The run was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status
and inform.bad_alloc respectively.

+ -7. The objective function appears to be unbounded from below

+ -18. Too many iterations have been performed. This may happen if
control.maxit is too small, but may also be symptomatic of a badly scaled
problem.

+ -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly
scaled problem.

» -40. The user has forced termination of solver by removing the file named
control.alive_file from unit unit control.alive_unit.

« 3. The user should compute the objective function value f(x) and its first
derivative f’(x), and then re-enter the function. The required values should
be set in f and g respectively, and eval_status (below) should be set to 0. If
the user is unable to evaluate f(x) or f/(z) - for instance, if the function or
its first derivative are undefined at x - the user need not set f or g, but should
then set eval_status to a non-zero value. This value can only occur when
control.second_derivatives_available = false.

* 4. The user should compute the objective function value f(x) and its first
two derivatives f’(x) and f”(x) at x= x, and then re-enter the function. The
required values should be set in f, g and h respectively, and eval_status
(below) should be set to 0. If the user is unable to evaluate f(x), f’'(z) or
1" (z) - for instance, if the function or its derivatives are undefined at x - the
user need not set f, g or h, but should then set eval_status to a non-zero
value. This value can only occur when control.second_derivatives_available
= true.

in, out

eval_status

is a scalar variable of type int, that is used to indicate if objective function and its
derivatives can be provided (see above).

out

is a scalar variable of type double, that holds the next value of x at which the user
is required to evaluate the objective (and its derivatives) when status > 0, or the
value of the approximate global minimizer when status = 0

in, out

is a scalar variable of type double, that must be set by the user to hold the value of
f () if required by status > 0 (see above), and will return the value of the
approximate global minimum when status = 0

in, out

is a scalar variable of type double, that must be set by the user to hold the value of
f'(z) if required by status > 0 (see above), and will return the value of the first
derivative of f at the approximate global minimizer when status = 0

GALAHAD 4.0

C interfaces to GALAHAD UGO

3.1 galahad_ugo.h File Reference 13

Parameters
in,out | h is a scalar variable of type double, that must be set by the user to hold the value of
f"(zx) if required by status > 0 (see above), and will return the value of the second
derivative of f at the approximate global minimizer when status = 0
Examples
ugot.c.

3.1.2.7 ugo_information()

void ugo_information (
void #*x* data,
struct ugo_inform_type * inform,

int * status)

Provides output information

Parameters

in, out | data holds private internal data

out inform | is a struct containing output information (see ugo_inform_type)

out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):

* 0. The values were recorded succesfully

Examples

ugos.c, and ugot.c.

3.1.2.8 ugo_terminate()

void ugo_terminate (
void *x data,
struct ugo_control_type * control,

struct ugo_inform_type * inform

Deallocate all internal private storage

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see ugo_control_type)
out inform | is a struct containing output information (see ugo inform type)

C interfaces to GALAHAD UGO GALAHAD 4.0

14 File Documentation

Examples

ugos.c, and ugot.c.

GALAHAD 4.0 C interfaces to GALAHAD UGO

Chapter 4

Example Documentation

4.1 ugos.c

This is an example of how to use the package to find an approximation to the global minimum of a given univariate

function over an interval.

/* ugos.c */

/% Spec test for the UGO C interface x/

#include <stdio.h>

#include <math.h>

#include "galahad_precision.h"

#include "galahad_cfunctions.h"

#include "galahad_ugo.h"

struct userdata_type {
real_wp_ a;

Vi

// Evaluate test problem objective, first and second derivatives

int fgh(real_wp_ x, real_wp_ *f, real_wp_ *g, real_wp_ xh, const void xuserdata) {
struct userdata_type smyuserdata = (struct userdata_type =) userdata;
real_wp_ a = myuserdata->a;

*f = X * X * cos(a*x);

g = — a * X *# X % sin(a*x) + 2.0 » x x cos(a*x);

*h = — a * a*x X * X x cos(a*x) — 4.0 » a * x * sin(axx
+ 2.0 * cos(a*x);

return 0;

}
int main(void) {
// Derived types
void xdata;
struct ugo_control_type control;
struct ugo_inform_type inform;
// Initialize UGO
int status;
ugo_initialize(&data, &control, &status);
// Set user-defined control options
// control.print_level = 1;
// control.maxit = 100;
// control.lipschitz_estimate_used = 3;
// User data
struct userdata_type userdata;

userdata.a = 10.0;
// Test problem bounds
real_wp_ x_1 = -1.0;

real_wp_ x_u = 2.0;
// Test problem objective, gradient, Hessian values
real_wp_ x, £, g, h;
// import problem data
ugo_import (&control, &data, &status, &x_1, &x_u);
// Set for initial entry
status = 1;
// Call UGO_solve
ugo_solve_direct (&data, &userdata, &status, &x, &f, &g, &h, fgh);
// Record solution information
ugo_information(&data, &inform, &status);
if (inform.status == 0) {
printf ("$i evaluations. Optimal objective value = %5.2f"

16

Example Documentation

"

Jelsef

}

printf ("BGO_solve exit status = %$1i\n", inform.status);

// Delete internal workspace
ugo_terminate (&data, &control, &inform);
return 0;

4.2 ugot.c

at x = %$5.2f, status = %li\n", inform.f_eval, f, x, inform.status);

This is the same example, but now function and derivative information is found by reverse communication with the
calling program.

/% ugo_test.c */
/* Simple code to test the UGO reverse communication C interface =/

#include
#include
#include
#include
#include
#include

<stdio.h>

<math.h>
"galahad_precision.h"
"galahad_cfunctions.h"
"galahad_ugo.h"
<string.h>

// Test problem objective
real_wp_ objf(real_wp_ x){
real_wp_ a = 10.0;
return x * X * cos(a*x);

}

// Test problem first derivative

real_wp_

gradf (real_wp_ x) {

real_wp_ a = 10.0;
return — a x x *x x x sin(axx) + 2.0 * x x cos(axx);

}

// Test problem second derivative
real_wp_ hessf (real_wp_ x){
real_wp_ a = 10.0;
return — a * a* X * X * cos(a*x) — 4.0 * a * x * sin(a*x

}

+ 2.0 x cos(a*xx);

int main(void) {
// Derived types

void

~data;

struct ugo_control_type control;
struct ugo_inform_type inform;
// Initialize UGO
int status, eval_status;
ugo_initialize(&data, &control, &status);
// Set user-defined control options
control.print_level = 1;
//control.maxit = 100;
//control.lipschitz_estimate_used = 3;
strcpy (control.prefix, "’'ugo: '");
// Read options from specfile
char specfile[] = "UGO.SPC";
ugo_read_specfile (&control, specfile);
// Test problem bounds
real_ wp_ x_1 = -1.0;
real_wp_ x_u = 2.0;
// Test problem objective, gradient, Hessian values
real_wp_ x, £, g, h;
// import problem data
ugo_import (&control, &data, &status, &x_1, &x_u);
// Set for initial entry
status = 1;
// Solve the problem: min f(x), x_1 <= x <= x_u
vhile (true) {
// Call UGO_solve
ugo_solve_reverse (&data, &status, &eval_status, &x, &f, &g, &h
// Evaluate f(x) and its derivatives as required
if (status >= 2){ // need objective

f = objf(x);
f(status >= 3){ // need first derivative
g = gradf (x);
if(status >= 4){ // need second derivative
h = hessf (x);
}

break;

{ // the solution has been found (or an error has occured)

GALAHAD 4.0

C interfaces to GALAHAD UGO

4.2 ugot.c 17

// Record solution information
ugo_information(&data, &inform, &status);

if(inform.status == 0){
printf ("$i evaluations. Optimal objective value = %5.2f"
" status = %li\n", inform.f_eval, f, inform.status);
telse(

printf ("BGO_solve exit status = %1i\n", inform.status);
}
// Delete internal workspace
ugo_terminate (&data, &control, &inform);
return 0;

C interfaces to GALAHAD UGO GALAHAD 4.0

18 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD UGO

	1 GALAHAD C package ugo
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Method
	1.1.5 References

	1.2 Call order

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_ugo.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct ugo_control_type
	3.1.1.2 struct ugo_time_type
	3.1.1.3 struct ugo_inform_type

	3.1.2 Function Documentation
	3.1.2.1 ugo_initialize()
	3.1.2.2 ugo_read_specfile()
	3.1.2.3 ugo_import()
	3.1.2.4 ugo_reset_control()
	3.1.2.5 ugo_solve_direct()
	3.1.2.6 ugo_solve_reverse()
	3.1.2.7 ugo_information()
	3.1.2.8 ugo_terminate()

	4 Example Documentation
	4.1 ugos.c
	4.2 ugot.c

