C interfaces to GALAHAD LPA

Jari Fowkes and Nick Gould
STFC Rutherford Appleton Laboratory
Thu Jun 22 2023

1 GALAHAD C package Ipa 1
1.1 Introduction L e e e e e 1
111 PUrPOSE o e e 1

1. 1.2Authors o 1

1.1.3 Originally released 1
1.1.4Terminology o e 2
11.5Method e 2

1.1.6 References L 3
1.1.7Callorder e 3

1.1.8 Unsymmetric matrix storage formats L o o 3
1.1.8.1 Dense storage format L 3

1.1.8.2 Sparse co-ordinate storage format Lo 4

1.1.8.3 Sparse row-wise storage formato 4

2 File Index

21 File List e
3 File Documentation 7
3.1 galahad_Ipa.h File Reference 7
3.1.1 Data Structure Documentation L 7
3.1.1.1 struct Ipa_control_type 7
3.1.1.2struct Ipa_time_type 9
3.1.1.3struct Ipa_inform_type 9
3.1.2 Function Documentation 9
3. 121 lpa_initialize() 10
3.1.221lpa_read_specfile() 10
3.1.28Ipa_import() 10
3.1.24 Ipa_reset_control() 12
3.1.251Ipa_solve_Ip() 12
3.1.2.6 Ipa_information() 14
3.1.27Ipa_terminate() 15
4 Example Documentation 17
40pat.C e e 17
4.21patf.c . . . e e 18

C interfaces to GALAHAD LPA GALAHAD 4.0

Chapter 1

GALAHAD C package Ipa

1.1 Introduction

1.1.1 Purpose

This package uses the simplex method to solve the linear programming problem
minimize q(z) =g’z + f

subject to the general linear constraints

and the simple bound constraints

!

where the vectors g, w, z°, a;, ¢, ¢, z!, % and the scalar f are given. Any of the constraint bounds ¢, ¢¥, z* and
g y i J

z¥ may be infinite. Full advantage is taken of any zero coefficients in the matrix A whose rows are the transposes
of the vectors a;.

N.B. The package is simply a sophisticated interface to the HSL package LA04, and requires that a user has ob-
tained the latter. LAO4 is not included in GALAHAD but is available without charge to recognised academics, see

http://www.hsl.rl.ac.uk/catalogue/1la04.html. If LAO4 is unavailable, the GALAHAD interior-
point linear programming package LPB is an alternative.

1.1.2 Authors

N. I. M. Gould and J. K. Reid, STFC-Rutherford Appleton Laboratory, England.
C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

October 2018, C interface September 2021.

http://www.hsl.rl.ac.uk/catalogue/la04.html

2 GALAHAD C package Ipa

1.1.4 Terminology

The required solution x necessarily satisfies the primal optimality conditions
(1a) Ar =c
and

(1b) clgcgc“, o<z <at

)

the dual optimality conditions
(2a) g=ATy+2
where
(2b) y=y +y¥, z=z2' 42" y' >0, y*<0, 2/!>0 and z* <0,
and the complementary slackness conditions
(3) (Az — HTyt =0, (Av—c)Ty* =0, (x—2)T2' =0 and (z —2*)T2* =0,

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual
variables for the bounds, respectively, and where the vector inequalities hold component-wise.

The so-called dual to this problem is another linear program
—minimize Tyl + Ty 4+ 2720 + 24T 2% + f subject to the constraints (2a) and (2b)

that uses the same data. The solution to the two problems, it is exists, is the same, but if one is infeasible, the other
is unbounded. It can be more efficient to solve the dual, particularly if m is much larger than n.

1.1.5 Method

The bulk of the work is peformed by the HSL package LA04. The main subbroutine from this package requires that
the input problem be transformed into the *‘standard form”
minimize ¢/’
(4) subjectto A'z' =b
i <l <u, (i<k)
and z; >0, (i>1)

by introducing slack an surpulus variables, reordering and removing fixed variables and free constraints. The
resulting problem involves n' unknowns and m' general constraints. In order to deal with the possibility that the
general constraints are inconsistent or not of full rank, LA04 introduces additional “*artifical” variables v and replaces
the constraints of (4) by

(5) Az'+v=0»b
and gradually encourages v to zero as a first solution phase.

Once a selection of m' independent non-basic variables is made, the constraints (5) determine the remaining m'
dependent basic variables. The simplex method is a scheme for systematically adjusting the choice of basic and
non-basic variables until a set which defines an optimal solution of (4) is obtained. Each iteration of the simplex
method requires the solution of a number of sets of linear equations whose coefficient matrix is the basis matrix B,
made up of the columns of [A' I] corresponding to the basic variables, or its transpose BT As the basis matrices
for consecutive iterations are closely related, it is normally advantageous to update (rather than recompute) their
factorizations as the computation proceeds. If an initial basis is not provided by the user, a set of basic variables
which provide a (permuted) triangular basis matrix is found by the simple crash algorithm of Gould and Reid (1989),
and initial steepest-edge weights are calculated.

Phases one (finding a feasible solution) and two (solving (4) of the simplex method are applied, as appropriate,
with the choice of entering variable as described by Goldfarb and Reid (1977) and the choice of leaving variable
as proposed by Harris (1973). Refactorizations of the basis matrix are performed whenever doing so will reduce
the average iteration time or there is insufficient memory for its factors. The reduced cost for the entering variable
is computed afresh. If it is found to be of a different sign from the recurred value or more than 10% different in
magnitude, a fresh computation of all the reduced costs is performed. Details of the factorization and updating
procedures are given by Reid (1982). lterative refinement is encouraged for the basic solution and for the reduced
costs after each factorization of the basis matrix and when they are recomputed at the end of phase 1.

GALAHAD 4.0 C interfaces to GALAHAD LPA

1.1 Introduction 3

1.1.6 References

D. Goldfarb and J. K. Reid (1977). A practicable steepest-edge simplex algorithm. Mathematical Programming 12
361-371.

N. I. M. Gould and J. K. Reid (1989) New crash procedures for large systems of linear constraints. Mathematical
Programming 45 475-501.

P. M. J. Harris (1973). Pivot selection methods of the Devex LP code. Mathematical Programming 5 1-28.

J. K. Reid (1982) A sparsity-exploiting variant of the Bartels-Golub decomposition for linear-programming bases.
Mathematical Programming 24 55-69.

1.1.7 Call order

To solve a given problem, functions from the Ipa package must be called in the following order:

+ Ipa_initialize - provide default control parameters and set up initial data structures

* Ipa_read_specfile (optional) - override control values by reading replacement values from a file

* Ipa_import - set up problem data structures and fixed values

* Ipa_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
* Ipa_solve_lIp - solve the linear program

+ Ipa_information (optional) - recover information about the solution and solution process

+ Ipa_terminate - deallocate data structures

See Section 4.1 for examples of use.

1.1.8 Unsymmetric matrix storage formats

The unsymmetric m by n constraint matrix A may be presented and stored in a variety of convenient input formats.

Both C-style (0 based) and fortran-style (1-based) indexing is allowed. Choose control.f_indexing as
false for C style and t rue for fortran style; the discussion below presumes C style, but add 1 to indices for the
corresponding fortran version.

Wrappers will automatically convert between 0-based (C) and 1-based (fortran) array indexing, so may be used
transparently from C. This conversion involves both time and memory overheads that may be avoided by supplying
data that is already stored using 1-based indexing.

1.1.8.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. In this case, component n * ¢ + j of the storage
array A_val will hold the value Aij for0<i<m—-1,0<53<n—1

C interfaces to GALAHAD LPA GALAHAD 4.0

4 GALAHAD C package Ipa

1.1.8.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the I-th entry, 0 < | < ne — 1, of A, its row index i, column
index j and value Aij, 0<i<m-—1,0<j <n-—1, are stored as the [-th components of the integer arrays
A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = ne.

1.1.8.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+1. For the i-th row of A the i-th component of the integer array A_ptr holds the position of the first
entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, 0 < 7 < n — 1, and values
A;; of the nonzero entries in the i-th row are stored in components | = A_ptr(i), ..., A_ptr(i+1)-1,0 < ¢ <m — 1, of
the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires
less storage than its predecessor.

GALAHAD 4.0 C interfaces to GALAHAD LPA

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

galahad_lpa.h

6 File Index

GALAHAD 4.0 C interfaces to GALAHAD LPA

Chapter 3

File Documentation

3.1 galahad_lpa.h File Reference

#include <stdbool.h>

#include <stdint.h>

#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_rpd.h"

Data Structures

« struct Ipa_control_type
« struct Ipa_time_type
« struct Ipa_inform_type

Functions

+ void Ipa_initialize (void xxdata, struct Ipa_control_type xcontrol, int xstatus)

« void Ipa_read_specfile (struct Ipa_control_type *control, const char specfile[])

« void Ipa_import (struct Ipa_control_type *control, void *xdata, int xstatus, int n, int m, const char A_type[],
int A_ne, const int A_row[], const int A_col[], const int A_ptr[])

« void Ipa_reset_control (struct Ipa_control_type xcontrol, void *xdata, int xstatus)

« void Ipa_solve_lIp (void *xdata, int xstatus, int n, int m, const real_wp_ g[], const real_wp__f, int a_ne, const
real_wp_ A_val[], const real_wp_ c_I[], const real_wp_ c_u[], const real_wp_ x_I[], const real_wp_ x_u[],
real_wp_ x[], real_wp_ c[], real_wp_ y[], real_wp_ z[], int x_stat[], int c_stat[])

« void Ipa_information (void xxdata, struct Ipa_inform_type xinform, int xstatus)

+ void Ipa_terminate (void *xdata, struct Ipa_control_type xcontrol, struct Ipa_inform_type xinform)

3.1.1 Data Structure Documentation
3.1.1.1 struct Ipa_control_type

control derived type as a C struct

Examples

Ipat.c, and Ipatf.c.

File Documentation

Data Fields
bool | f_indexing use C or Fortran sparse matrix indexing
int | error error and warning diagnostics occur on stream error
int | out general output occurs on stream out
int | print_level the level of output required is specified by print_level (>= 2 turns on
LAO4 output)
int | start_print any printing will start on this iteration
int | stop_print any printing will stop on this iteration
int | maxit at most maxit inner iterations are allowed
int | max_iterative_refinements | maximum number of iterative refinements allowed
int | min_real_factor_size initial size for real array for the factors and other data
int | min_integer_factor_size initial size for integer array for the factors and other data
int | random_number_seed the initial seed used when generating random numbers
int | sif_file_device specifies the unit number to write generated SIF file describing the
current problem
int | gplib_file_device specifies the unit number to write generated QPLIB file describing
the current problem
real_wp_ | infinity any bound larger than infinity in modulus will be regarded as infinite
real_wp_ | tol_data the tolerable relative perturbation of the data (A,g,..) defining the
problem
real_wp_ | feas_tol any constraint violated by less than feas_tol will be considered to be
satisfied
real_wp_ | relative_pivot_tolerance pivot threshold used to control the selection of pivot elements in the
matrix factorization. Any potential pivot which is less than the largest
entry in its row times the threshold is excluded as a candidate
real_wp_ | growth_limit limit to control growth in the upated basis factors. A refactorization
occurs if the growth exceeds this limit
real_wp_ | zero_tolerance any entry in the basis smaller than this is considered zero
real_wp_ | change_tolerance any solution component whose change is smaller than a tolerence
times the largest change may be considered to be zero
real_wp_ | identical_bounds_tol any pair of constraint bounds (c_I,c_u) or (x_I,x_u) that are closer
than identical_bounds_tol will be reset to the average of their values
real_wp_ | cpu_time_limit the maximum CPU time allowed (-ve means infinite)
real_wp_ | clock_time_limit the maximum elapsed clock time allowed (-ve means infinite)
bool | scale if .scale is true, the problem will be automatically scaled prior to
solution. This may improve computation time and accuracy
bool | dual should the dual problem be solved rather than the primal?
bool | warm_start should a warm start using the data in C_stat and X_stat be
attempted?
bool | steepest_edge should steepest-edge weights be used to detetrmine the variable
leaving the basis?
bool | space_critical if .space_critical is true, every effort will be made to use as little
space as possible. This may result in longer computation time
bool | deallocate error fatal if .deallocate_error_fatal is true, any array/pointer deallocation error
will terminate execution. Otherwise, computation will continue
bool | generate_sif file if .generate_sif_file is .true. if a SIF file describing the current
problem is to be generated
bool | generate_gplib_file if .generate_gplib_file is .true. if a QPLIB file describing the current
problem is to be generated
char | sif_file_name[31] name of generated SIF file containing input problem
char | gplib_file_name[31] name of generated QPLIB file containing input problem

GALAHAD 4.0

C interfaces to GALAHAD LPA

3.1 galahad_lIpa.h File Reference 9

Data Fields

char | prefix[31] all output lines will be prefixed by .prefix(2:LEN(TRIM(.prefix))-1)
where .prefix contains the required string enclosed in quotes, e.g.
"string" or 'string’

3.1.1.2 struct Ipa_time_type

time derived type as a C struct

Data Fields
real_wp_ | total the total CPU time spent in the package
real_wp_ | preprocess the CPU time spent preprocessing the problem
real_wp_ | clock_total the total clock time spent in the package
real_wp_ | clock_preprocess | the clock time spent preprocessing the problem

3.1.1.3 struct Ipa_inform_type

inform derived type as a C struct

Examples

Ipat.c, and Ipatf.c.

Data Fields
int | status return status. See LPA_solve for details
int | alloc_status the status of the last attempted allocation/deallocation
char | bad_alloc[81] the name of the array for which an allocation/deallocation error
occurred
int | iter the total number of iterations required
int | la04_job the final value of 1a04's job argument
int | 1a04_job_info any extra information from an unsuccesfull call to LA04 (LA04's
RINFO(35)
real_wp_ | obj the value of the objective function at the best estimate of the
solution determined by LPA_solve
real_wp_ | primal_infeasibility | the value of the primal infeasibility
bool | feasible is the returned "solution" feasible?
real_wp_ | RINFOI[40] the information array from LA04
struct Ipa_time_type | time timings (see above)
struct rpd_inform_type | rpd_inform inform parameters for RPD

3.1.2 Function Documentation

C interfaces to GALAHAD LPA GALAHAD 4.0

10 File Documentation

3.1.2.1 Ipa_initialize()

void lpa_initialize (
void =% data,
struct lpa_control_type * control,

int * status)

Set default control values and initialize private data

Parameters
in, out | data holds private internal data
out control | is a struct containing control information (see Ipa_control_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
» 0. The import was succesful.
Examples

Ipat.c, and Ipatf.c.

3.1.2.2 Ipa_read_specfile()

void lpa_read_specfile (
struct lpa_control_type x control,

const char specfile[])

Read the content of a specification file, and assign values associated with given keywords to the corresponding
control parameters. By default, the spcification file will be named RUNLPA.SPC and lie in the current directory.
Refer to Table 2.1 in the fortran documentation provided in $GALAHAD/doc/lpa.pdf for a list of keywords that may
be set.

Parameters

in,out | control | is a struct containing control information (see Ipa_control_type)

in specfile | is a character string containing the name of the specification file

3.1.2.3 Ipa_import()

void lpa_import (
struct lpa_control_type * control,
void *x data,
int % status,

int n,

GALAHAD 4.0 C interfaces to GALAHAD LPA

3.1 galahad_Ipa.h File Reference 11

int m,

const char A _typel],

int A _ne,

const int A_row[],

const int A_col[],

const int A _ptr[])

Import problem data into internal storage prior to solution.

Parameters

in control

is a struct whose members provide control paramters for the remaining prcedures (see
Ipa_control_type)

in, out | data

holds private internal data

in, out | status

is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

» 0. The import was succesful

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 or m > 0 or requirement that A_type contains its
relevant string 'dense’, 'coordinate’ or 'sparse_by_rows' has been violated.

in n

is a scalar variable of type int, that holds the number of variables.

in m

is a scalar variable of type int, that holds the number of general linear constraints.

in A_type

is a one-dimensional array of type char that specifies the unsymmetric storage scheme
used for the constraint Jacobian, A. It should be one of 'coordinate’, 'sparse_by_rows'
or 'dense; lower or upper case variants are allowed.

in A _ne

is a scalar variable of type int, that holds the number of entries in A in the sparse
co-ordinate storage scheme. It need not be set for any of the other schemes.

in A_row

is a one-dimensional array of size A_ne and type int, that holds the row indices of A in
the sparse co-ordinate storage scheme. It need not be set for any of the other
schemes, and in this case can be NULL.

in A_col

is a one-dimensional array of size A_ne and type int, that holds the column indices of A
in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be
set when the dense or diagonal storage schemes are used, and in this case can be
NULL.

in A_ptr

is a one-dimensional array of size n+1 and type int, that holds the starting position of
each row of A, as well as the total number of entries, in the sparse row-wise storage
scheme. It need not be set when the other schemes are used, and in this case can be
NULL.

Examples

Ipat.c, and Ipatf.c.

C interfaces to GALAHAD LPA

GALAHAD 4.0

12 File Documentation

3.1.2.4 Ipa_reset_control()

void lpa_reset_control (
struct lpa_control_type * control,
void *x data,

int * status)

Reset control parameters after import if required.

Parameters
in control | is a struct whose members provide control paramters for the remaining prcedures (see
Ipa_control_type)
in,out | data holds private internal data

in, out | status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are:

* 0. The import was succesful.

3.1.2.5 Ipa_solve_Ip()

void lpa_solve_lp (
void xx data,
int % status,
int n,
int m,
const real_wp_ g[],
const real_wp_ f,
int a_ne,
const real_wp_ A val[],
const real_wp_ c_ 1[],
const real_wp_ c_ ul],
const real wp_ x 1[],
const real_wp_ x_ul],
real_wp_ x/[],
real_wp_ c[],
real_wp_ y/[],
real_wp_ z[],
int x_stat/[],
int c_stat/[])

Solve the linear program.

Parameters

in, out ‘ data ‘ holds private internal data

GALAHAD 4.0 C interfaces to GALAHAD LPA

3.1 galahad_Ipa.h File Reference 13

Parameters

in, out

status

is a scalar variable of type int, that gives the entry and exit status from the package.
Possible exit are:

* 0. The run was succesful.

» -1. An allocation error occurred. A message indicating the offending array is
written on unit control.error, and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -2. A deallocation error occurred. A message indicating the offending array is
written on unit control.error and the returned allocation status and a string
containing the name of the offending array are held in inform.alloc_status and
inform.bad_alloc respectively.

» -3. The restrictions n > 0 and m > 0 or requirement that A_type contains its
relevant string 'dense’, 'coordinate’ or 'sparse_by_rows' has been violated.

» -5. The simple-bound constraints are inconsistent.
» -7. The constraints appear to have no feasible point.

» -9. The analysis phase of the factorization failed; the return status from the
factorization package is given in the component inform.factor_status

+ -10. The factorization failed; the return status from the factorization package is
given in the component inform.factor_status.

+ -11. The solution of a set of linear equations using factors from the factorization
package failed; the return status from the factorization package is given in the
component inform.factor_status.

» -16. The problem is so ill-conditioned that further progress is impossible.
» -17. The step is too small to make further impact.

+ -18. Too many iterations have been performed. This may happen if control.maxit
is too small, but may also be symptomatic of a badly scaled problem.

+ -19. The CPU time limit has been reached. This may happen if
control.cpu_time_limit is too small, but may also be symptomatic of a badly scaled
problem.

in

is a scalar variable of type int, that holds the number of variables

in

is a scalar variable of type int, that holds the number of general linear constraints.

in

is a one-dimensional array of size n and type double, that holds the linear term g of the
objective function. The j-th component of g, =0, ... , n-1, contains g;.

in

is a scalar of type double, that holds the constant term f of the objective function.

in

a ne

is a scalar variable of type int, that holds the number of entries in the constraint Jacobian
matrix A.

in

A val

is a one-dimensional array of size a_ne and type double, that holds the values of the
entries of the constraint Jacobian matrix A in any of the available storage schemes.

in

cl

is a one-dimensional array of size m and type double, that holds the lower bounds ¢! on
the constraints Azx. The i-th componentof ¢ I,i=0, ... , m-1, contains ct

=

in

is a one-dimensional array of size m and type double, that holds the upper bounds ¢! on
the constraints Ax. The i-th component of c_u, i =0, ... , m-1, contains c;'.

in

x|

is a one-dimensional array of size n and type double, that holds the lower bounds ! on
the variables . The j-th component of x_I, j =0, ... , n-1, contains xé

C interfaces to GALAHAD LPA

GALAHAD 4.0

14 File Documentation
Parameters
in X u is a one-dimensional array of size n and type double, that holds the upper bounds z! on
the variables x. The j-th component of x_u, j =0, ... , n-1, contains x5
in,out | x is a one-dimensional array of size n and type double, that holds the values x of the
optimization variables. The j-th component of x, j = 0, ... , n-1, contains x ;.
out c is a one-dimensional array of size m and type double, that holds the residual ¢(z). The
i-th component of ¢, i = 0, ... , m-1, contains ¢;(z).
in,out | y is a one-dimensional array of size n and type double, that holds the values y of the
Lagrange multipliers for the general linear constraints. The j-th component of y, i =0, ... ,
m-1, contains ;.
in,out | z is a one-dimensional array of size n and type double, that holds the values z of the dual
variables. The j-th component of z,j =0, ... , n-1, contains z;.
out Xx_stat | is a one-dimensional array of size n and type int, that gives the optimal status of the
problem variables. If x_stat(j) is negative, the variable x; most likely lies on its lower
bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its
bounds.
out c_stat | is a one-dimensional array of size m and type int, that gives the optimal status of the
general linear constraints. If c_stat(i) is negative, the constraint value aiTx most likely
lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies
between its bounds.
Examples

Ipat.c, and Ipatf.c.

3.1.2.6 Ipa_information()

void lpa_information (

void *x data,

struct lpa_inform_type % inform,

int % status)

Provides output information

Parameters
in,out | data holds private internal data
out inform | is a struct containing output information (see Ipa_inform_type)
out status | is a scalar variable of type int, that gives the exit status from the package. Possible
values are (currently):
+ 0. The values were recorded succesfully
Examples

Ipat.c, and Ipatf.c.

GALAHAD 4.0

C interfaces to GALAHAD LPA

3.1 galahad_lIpa.h File Reference

15

3.1.2.7 Ipa_terminate()

void lpa_terminate

void =% data,

struct lpa_control_type x control,

struct lpa_inform_type * inform)

Deallocate all internal private storage

Parameters
in,out | data holds private internal data
out control | is a struct containing control information (see Ipa_control_type)
out inform | is a struct containing output information (see Ipa_inform_type)
Examples

Ipat.c, and Ipatf.c.

C interfaces to GALAHAD LPA

GALAHAD 4.0

16 File Documentation

GALAHAD 4.0 C interfaces to GALAHAD LPA

Chapter 4

Example Documentation

4.1 Ipat.c

This is an example of how to use the package to solve a linear program. A variety of supported constraint matrix

storage formats are shown.

Notice that C-style indexing is used, and that this is flaggeed by setting control.f_indexingto false.
/% lpat.c */
/% Full test for the LPA C interface using C sparse matrix indexing =/
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_lpa.h"
int main (void) {
// Derived types
void xdata;
struct lpa_control_type control;
struct lpa_inform_type inform;
// Set problem data

int n = 3; // dimension
int m = 2; // number of general constraints
real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective

real_wp_ f 1.0; // constant term in the objective

int A_ne = 4; // Jacobian elements

int A_row[] = {0, 0, 1, 1}; // row indices

int A_col[] = {0, 1, 1, 2}; // column indices

int A_ptr[] = {0, 2, 4}; // row pointers

real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values

real_ wp_ c_1[] = {1.0, 2.0}; // constraint lower bound

real_wp_ c_ul[] = {2.0, 2.0}; // constraint upper bound

real_wp_ x_1[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound

// Set output storage
real_wp_ c[m]; // constraint values

int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;

int status;
printf (" C sparse matrix indexing\n\n");
printf (" basic tests of lp storage formats\n\n");
for(int d=1; d <= 3; d++){
// Initialize LPA
lpa_initialize(&data, &control, &status);
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
real_wp_ x[] = {0.0,0.0,0.0};
real_wp_ yI[] = {0.0,0.0};
real_ wp_ z[] = {0.0,0.0,0.0};
switch (d) {
case 1: // sparse co-ordinate storage
st = 'C’;
lpa_import (&control, &data, &status, n, m,

18 Example Documentation

"coordinate", A_ne, A_row, A_col, NULL);
lpa_solve_lp(&data, &status, n, m, g, f,
A_ne, A_val, c_1, c_u, x_1, x u, x, ¢, y, z,
x_stat, c_stat);

break;
printf (" case %1i break\n",d);
case 2: // sparse by rows

st = 'R’;

lpa_import (&control, &data, &status, n, m,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr);
lpa_solve_lp(&data, &status, n, m, g, f,
A_ne, A_val, c_1, c_u, x_1, x_u, x, ¢, y, z,
x_stat, c_stat);

cak;
3: // dense
st = ’'D’;
int A_dense_ne = 6; // number of elements of A
real _wp_ A _dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};

lpa_import (&control, &data, &status, n, m,
"dense", A_ne, NULL, NULL, NULL);
lpa_solve_lp(&data, &status, n, m, g, £,
A_dense_ne, A_dense, c_1, c_u, x_1, x_u,
x, ¢, y, z, X_stat, c_stat);
cak;

}
lpa_information(&data, &inform, &status);

if(inform.status == 0) {
printf ("$c:%6i iterations. Optimal objective value = %5.2f status = %1i\n",

st, inform.iter, inform.obj, inform.status);
lelse(
printf("$c: LPA_solve exit status = %1i\n", st, inform.status);
}

//printf ("x: ");

//for(int i = 0; 1 < n; i++) printf("$f ", x[i]);
//printf ("\n");

//printf ("gradient: ");

//for(int i = 0; i < n; i++) printf("$f ", gli]);
//printf ("\n");

// Delete internal workspace

lpa_terminate(&data, &control, &inform);

4.2 |Ipatf.c

This is the same example, but now fortran-style indexing is used.

/+ lpatf.c =/
/* Full test for the LPA C interface using Fortran sparse matrix indexing =/
#include <stdio.h>
#include <math.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_lpa.h"
int main(void) {
// Derived types
void xdata;
struct lpa_control_type control;
struct lpa_inform_type inform;
// Set problem data
int n = 3; // dimension
int m = 2; // number of general constraints

real_wp_ g[] = {0.0, 2.0, 0.0}; // linear term in the objective
real_wp_ £ = 1.0; // constant term in the objective
int A_ne 4; // Jacobian elements

] {1, 1, 2, 2}; // row indices
] = {1, 2, 2, 3}; // column indices
]

int A_ptr[] = {1, 3, 5}; // row pointers

real_wp_ A_val[] = {2.0, 1.0, 1.0, 1.0 }; // values

real_wp_ c_1[] = {1.0, 2.0}; // constraint lower bound

real_wp_ c_ul]l = {2.0, 2.0}; // constraint upper bound

real_wp_ x_1[] = {-1.0, - INFINITY, - INFINITY}; // variable lower bound
]

real_wp_ x_u[] = {1.0, INFINITY, 2.0}; // variable upper bound
// Set output storage
real_wp_ c[m]; // constraint values

int x_stat[n]; // variable status
int c_stat[m]; // constraint status
char st;

int status;
printf (" Fortran sparse matrix indexing\n\n");
printf (" basic tests of lp storage formats\n\n");

GALAHAD 4.0 C interfaces to GALAHAD LPA

4.2 |patf.c

19

for(int d=1; d <= 3; d++){
// Initialize LPA
lpa_initialize(&data, &control, &status);
// Set user-defined control options

control.f_indexing = true; // Fortran sparse matrix indexing

// Start from 0

real wp_ x[] = {0.0,0.0,0.0};
real_wp_ y[] = {0.0,0.0};
real_wp_ z[] = {0.0,0.0,0.0};
S 1(d) {
se 1: // sparse co-ordinate storage
st = 'C’;

lpa_import (&control, &data, &status, n, m,
"coordinate", A_ne, A_row, A_col, NULL);

lpa_solve_lp(&data, &status, n, m,
A_ne, A_val, c_1, c_u,
x_stat, c_stat);

break;
printf (" case %$1i break\n",d);
case 2: // sparse by rows

st = 'R’;

g, £,

x_ 1, x_u, x, ¢, y, z,

lpa_import (&control, &data, &status, n, m,

"sparse_by_rows", A_ne,
lpa_solve_lp(&data, &status, n, m,
A_ne, A_val, c_1l, c_u,
x_stat, c_stat);

NULL, A_col, A_ptr);
g, £,

x_ 1, x_u, x, ¢, y, 2z,

break;
3: // dense
st = 'D’";
int A_dense_ne = 6; // number of elements of A
real_wp_ A_dense[] = {2.0, 1.0, 0.0, 0.0, 1.0, 1.0};

lpa_import (&control, &data, &status, n, m,
"dense", A_ne, NULL, NULL, NULL);

lpa_solve_lp(&data, &status, n, m,

g, £,

A_dense_ne, A_dense, c_l, c_u, x_1, x_u,

X, ¢, y, z, xX_stat, c_stat);
break;
}
lpa_information(&data, &inform, &status);
if (inform.status == 0) {
printf("$c:%6i iterations. Optimal objective value = %5.2f status = %$1i\n",

st, inform.iter, inform.obj, inform.status);

e{

printf ("$c: LPA_solve exit status = %li\n", st, inform.status);

}

//printf ("x: ");
//for(int i =
//printf ("\n");
//printf ("gradi
//for(int i =
//printf ("\n");
// Delete internal workspace
lpa_terminate (&data, &control, &inform);

; 1 < n; i++) printf("sf ",

ent: ");
0; 1 < n; i++) printf("sf ",

x[i]);

glil);

C interfaces to GALAHAD LPA

GALAHAD 4.0

20 Example Documentation

GALAHAD 4.0 C interfaces to GALAHAD LPA

	1 GALAHAD C package lpa
	1.1 Introduction
	1.1.1 Purpose
	1.1.2 Authors
	1.1.3 Originally released
	1.1.4 Terminology
	1.1.5 Method
	1.1.6 References
	1.1.7 Call order
	1.1.8 Unsymmetric matrix storage formats
	1.1.8.1 Dense storage format
	1.1.8.2 Sparse co-ordinate storage format
	1.1.8.3 Sparse row-wise storage format

	2 File Index
	2.1 File List

	3 File Documentation
	3.1 galahad_lpa.h File Reference
	3.1.1 Data Structure Documentation
	3.1.1.1 struct lpa_control_type
	3.1.1.2 struct lpa_time_type
	3.1.1.3 struct lpa_inform_type

	3.1.2 Function Documentation
	3.1.2.1 lpa_initialize()
	3.1.2.2 lpa_read_specfile()
	3.1.2.3 lpa_import()
	3.1.2.4 lpa_reset_control()
	3.1.2.5 lpa_solve_lp()
	3.1.2.6 lpa_information()
	3.1.2.7 lpa_terminate()

	4 Example Documentation
	4.1 lpat.c
	4.2 lpatf.c

