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The Reduction Routine 

To demonstrate how the data reduction pipeline works, this document will walk through a sample 

reduction of a dataset taken by a 6” telescope of the exoplanet HAT-P-32b (VMag 11.44) observed 

on December 20, 2017. The telescope used is part of the MicroObservatory Robotic Telescope 

Network operated by the Harvard-Smithsonian Center for Astrophysics.  

 

Tracking the Star 

 In order to extract the host star’s emitted light, known as 

the flux, from images in a dataset, the first step is to locate the 

star on the first image, and track it as it moves throughout the 

subsequent images taken during the night. Telescopes themselves 

track the star as it moves across the night sky, but despite this, the 

star’s position in the image is still likely to change between 

images as the tracker slips or drifts slightly. In order to correct for 

this, after the user first enters the star’s location in the first image, 

a mathematical function is fitted to the shape of the star on the 

detector in order to find the center of the star. This fitted 

mathematical function, also known as a centroid, is a 2D Gaussian function that is determined 

using a quick model fitting routine known as a least-squares fit (Figure 1). Large shifts between 

images that result from a tracking slip that occurred during the observing run are also registered 

and corrected for automatically.  

Figure 1: A subsection of a MicroObservatory 
Image containing the exoplanet HAT-P-32b. 



To demonstrate the tracking of the target as it moves on an image, during the reduction 

process, plots of the X centroid position and Y centroid position as a function of time are generated. 

If the telescope tracking is good, the X and Y centroid positions should remain constant, unlike 

what we observe in this current dataset. Even though in the images below the star drifted over 250 

pixels in the X direction and 100 pixels in the Y direction over the course of the example 

observation, the centroid was still able to keep track of it. These plots are saved as “<target 

name>XCentroidPos<date>.png” and “<target name>YCentroidPos<date>.png”. 

Another set of produced plots that are helpful for determining the quality of the tracking 

throughout your image series, are the plots that are saved as “XCentDistance…png” and 

“YCentroidDistance…png”. These plots show the distance between the X and Y positions of the 

target and comparison star. If the star tracking is good, the distance between the stars should remain 

close to constant.  As you can see in Figures 4 and 5 below, the centroid fitting routine tracked the 

stars well because the distance between them only changed by at most 1 pixel in either direction. 

Figure 3: Centroid Y Pixel Position vs Time Figure 2: Centroid X Pixel Position vs Time 

Figure 4: Centroid X Distance between Target and Comp 
 

Figure 5: Centroid Y Distance between Target and Comp 
 



Extracting the Flux of the Target 

 After establishing a mechanism for tracking 

stars throughout the image series, the next step is to 

determine the flux of the target star. To compute the 

flux, a circular aperture extraction is performed. In 

this method, the values of the pixels that are inside 

the target aperture, the red circle in Figure 6, are 

added together. The resulting sum is the total amount 

of light that was detected within the target aperture.  

 While the target aperture sum gives the total 

amount of light detected within the red circle, both 

light from the star itself and the background light is included in that sum. In order to isolate the 

light from the star, a background annulus, which is the area between the red and green circles, is 

used to determine the average value of the background pixels (Figure 6). The average background 

value is then subtracted off of each pixel value inside the target area. After the background 

subtraction, all that is remaining is the isolated flux of the star. A plot of the target flux values as 

a function of time is then generated (Figure 7) and saved as “TargetRawFlux<target 

name><date>.png”.  

 

Figure 6: A subsection of a MicroObservatory Image 
containing the exoplanet HAT-P-32b. Target Aperture (red) 

and Annulus (green) for HAT-P-32b 

Figure 7: HAT-P-32b Raw Flux vs Time. In this 

example, you can actually see the transit in the raw 

data (between .65 and .75 jd on the X axis), before 

possible sources of error have been corrected for, 

but this will not always be the case. 

 



Normalization by a Comparison Star 

 After extracting the flux of the target star, sources of error that may have been in play 

during the observing run need to be corrected for. To do this we want to extract the flux of a 

comparison star whose brightness should not change over time and is similar in brightness to the 

target star. Using the same method that was used to extract the flux of the target star, the time 

varying flux of comparison stars, whose locations the user inputs, are recorded. A comparison 

star’s flux should theoretically look like a flat line but as you can see in the bottom left plot of 

Figure 8, the flux vs. time plot of the comparison star has a similar shape to that of the target star. 

To correct for whatever source of error that shape is attributed to, the code divides the time varying 

flux of the target star by that of the best comparison star. The result is the normalized target star 

flux which then gets plotted as a function of orbital phase. The transit signal, which is the dip in 

flux that can be seen between orbital phase -.03 and .03, is now far more distinct. 

A planet’s orbital phase is a number that describes where the planet is in its orbital cycle. 

The phase is 0 when it is transiting in front of its star, ½ when it is directly behind its host star and 

either  ¼ if it is directly to side. If you are in fact observing a transit in your dataset, you should 

expect to see a dip centered at phase = 0 in the final reduced light curve. 

Figure 8: HAT-P-32b Normalized Flux vs. Phase. The 
transit occurs between -.03 and .03 phase. Gets saved 
as “NormalizedFluxPhase<targetName><date>.png” 
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Determining the Optimal Aperture and Comparison Star 

 In the explanation of the code so far it has not yet been made clear how the aperture and 

annulus sizes used to extract the fluxes, and which comparison star to divide by, are determined.  

If you recall the star tracking section, the centroid used to track the star between images 

estimates the size of the star on the image. Based on this size estimation, the code tests several 

combinations of aperture and annulus sizes for each comparison star the user decides to input. 

Then, a model light curve developed by Gael Roudier is quickly fitted to the data, and the annulus 

size, aperture side, and comparison star that is eventually selected is the combination that the model 

light curve fits best. A more thorough explanation of the light curve model is given in the 

subsequent section.  

 

The Full Lightcurve Fitting Routine 

Now that we have used the optimal aperture, annulus, and comparison star to completely 

reduce the image set into a plot of flux vs time (Figure 7), it is time to fit a lightcurve model to the 

data so that we can determine information about the planet. 

Before delving into how the light curve model is fitted to the data, let us first look at what 

a lightcurve model is. A light curve model, is a mathematical function that is designed to model 

the shape of the transit signal of an exoplanet. There are several planetary features that can affect 

the shape of the lightcurve model, but the most important features are the mid-transit time, the 

orbital period, and the ratio of the planet’s radius to that of its host star. To examine the effects 

these parameters have on the model, see Figure 9 below.  

Figure 9: The top plot shows that as the ratio of 

planetary radius to stellar radius increases, the 

depth of the transit increases. The middle plot 

shows that a change in mid transit time shifts the 

model in time. Finally, as the orbital period 

increases, the transit signal widens.  

 



 

In terms of fitting the light curve model to the data, although a quick least-squares fit is 

sufficient for determining the optimal aperture size and comparison star, a Monte-Carlo Markov 

Chain (MCMC) simulation is required to thoroughly explore the possible lightcurve fits. The 

MCMC used in EXOTIC fits for the mid-transit time, and the ratio of the planet’s radius to that of 

its host star. Also, coefficients of an airmass model (model = A*eB*Airmass) are fitted for to correct 

for the fact that the amount of atmosphere the star’s light passes through changes as it rises 

throughout the night. Figure 10, which will get saved as “Traces<target name><date>.png”, are 

the results of the MCMC fitting routine. For details on how an MCMC works, check out this 

resource: MCMC Introduction   

 

 

 

 

 

 

 

Figure 10: The results of the MCMC fitting for Transit Depth, Airmass Constants 1 and 2, and Mid Transit 
Time. The standard deviation of each variable’s histogram is the new uncertainty on the variable.  

https://towardsdatascience.com/a-zero-math-introduction-to-markov-chain-monte-carlo-methods-dcba889e0c50


 

Results Interpretation  

After reducing the dataset, and fitting a light curve model to it, the final result produced by 

the code is a final lightcurve fitted with a model (Figure 11). The red lightcurve model shown is 

the result of the MCMC fitting routine described in the previous section. A good way to check the 

quality of the lightcurve fit is to look at the residuals of the fit, which are shown in the smaller 

subplot in Figure 11. The residuals are determined by dividing each data point by the value of the 

model at that point, and then subtracting one. The error bar sizes represent the photometric 

uncertainty, which is the scatter in the data that is derived based on how bright your target and 

comparison star are. That photometric uncertainty is then propagated through the entire reduction 

process, and then finally scaled based upon the quality of the lightcurve model fit (determined by 

the reduced chi squared metric). This means that if the lightcurve model does not fit the data well, 

the error bars get inflated in size.  

 

Accompanying the final light curve, is a .txt file in which all of the results of the lightcurve 

fit are saved. The most interesting among the results, is the fitted ratio of planetary radius to host 

Figure 11: Final lightcurve and residuals for the reduction process.  



star radius (Rp/Rs). If you square the ratio of Rp/Rs, you get the percentage transit depth, which 

is the percentage of the host star’s light that gets blocked by the transiting planet. This HAT-P-32 

b transit has a depth of approximately 2.5%, which can be determined by looking at the y axis of 

Figure 11. For reference, a Jupiter sized planet orbiting around a sun sized star will cause the 

observed brightness to decrease by ~1% but an Earth sized planet orbiting around the same star 

will only cause a dip of 0.008%.  

Another fitted parameter, is the mid transit time of the planet, which can be extremely 

useful for increasing the efficiency of future exoplanet follow up missions by giving a better 

estimation on when the planet will transit in the future. The uncertainties on the fitted parameters 

are produced as a result of the MCMC lightcurve fitting routine. To understand how they came 

about, please check out the MCMC introduction link in the previous section.   

 


