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1. Introduction 

iLearnPlus is the first machine-learning platform with both graphical- and web-based user interface 

that enables the construction of automated machine-learning pipelines for computational analysis 

and predictions using nucleic acid and protein sequences. Four major modules, including 

iLearnPlus-Basic, iLearnPlus-Estimator, iLearnPlus-AutoML, and iLearnPlus-LoadModel, are 

provided in iLearnPlus for biologists and bioinformaticians to conduct customizable sequence-

based feature engineering and analysis, machine-learning algorithm construction, performance 

assessment, statistical analysis, and data visualization, without additional programming. iLearnPlus 

integrates 21 machine-learning algorithms (including 12 conventional classification algorithms, two 

ensemble-learning frameworks and seven deep-learning approaches) and 19 major sequence 

encoding schemes (in total 147 feature descriptors), outnumbering all the current web servers and 

stand-alone tools for biological sequence analysis, to the best of our knowledge. In addition, the 

friendly GUI (Graphical User Interface) of iLearnPlus is available to biologists to conduct their 

analyses smoothly, significantly increasing the effectiveness and user experience compared to the 

existing pipelines. iLearnPlus is an open-source platform for academic purposes and is available at 

https://github.com/Superzchen/iLearnPlus/. The iLearnPlus-Basic module is online accessible at 

http://ilearnplus.erc.monash.edu/. 

2. Installing and running iLearnPlus 

Installation 

iLearnPlus is an open-source Python-based toolkit, which operates in the Python environment 

(Python version 3.6 or above) and can run on multiple operating systems (e.g. Windows, Mac, and 

Linux). Prior to installing and running iLearnPlus, all the dependencies should be installed in the 

Python environment, including PyQt5, qdarkstyle, numpy (1.18.5), pandas (1.0.5), threading, sip, 

datetime, platform, pickle, copy, scikit-learn (0.23.1), math, scipy (1.5.0), collections, itertools, 

torch (≥1.3.1), lightgbm (2.3.1), xgboost (1.0.2), matplotlib (3.1.1), seaborn, joblib, warnings, 

random, multiprocessing, and time. For convenience, we strongly recommend users install the 

Anaconda Python environment in their local computers, which can be freely downloaded from 

https://github.com/Superzchen/iLearnPlus/
http://ilearnplus.erc.monash.edu/
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https://www.anaconda.com/. The detailed steps of installing these dependencies are provided as 

follows: 

Step 1. Download and install the anaconda platform: 

    Download from: https://www.anaconda.com/products/individual 

Step 2. Install PyTorch: 

    Please refer to https://pytorch.org/get-started/locally/ for PyTorch installation. 

Step 3. Install lightgbm, xgboost and qdarkstyle: 

pip3 install lightgbm 

pip3 install xgboost 

pip3 install qdarkstyle 

Running 

To run iLearnPlus, go to the installation folder of iLearnPlus and run the ‘iLearnPlus.py’ script as 

follows: 

python ilearnplus.py 

Once iLearnPlus has started, the interface will show as demonstrated in Figure S1. 

 
Figure S1. The main interface of the GUI version of iLearnPlus. 

https://www.anaconda.com/
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3. The workflow of iLearnPlus 

Here we provide a step-by-step user instruction to demonstrate the workflow of iLearnPlus toolkit 

by running the examples provided in the “examples” directory. Five basic functions were designed 

and implemented in iLearnPlus, including feature extraction, feature analysis, predictor construction, 

and data/result visualization. Using these basic functions, four modules, including iLearnPlus-Basic, 

iLearnPlus-Estimator and iLearnPlus-AutoML, and iLearnPlus-LoadModel were further designed 

to facilitate sequence-based analysis and predictions on different levels of complexity (Table S1, 

Figure S1). 
 

Table S1. Functions of the four major built-in modules in iLearnPlus. 

Module Function 
iLearnPlus-
Basic 

1) Extraction of 147 different types of feature descriptors for DNA, RNA and protein 
sequences. 

 
2) 20 feature analysis algorithms (ten feature clustering, five feature selection, three 

dimensionality reduction, and two feature normalization algorithms). 

 

3) 21 machine-learning algorithms (12 conventional classification algorithms, two ensemble-
learning frameworks and seven deep-learning approaches) 

4) Data visualization (scatter plots for clustering and dimensionality reduction results, 
histogram and kernel density plot for data distribution, ROC and PRC for performance 
evaluation) 

iLearnPlus-
Estimator 

1) Estimation of the prediction ability for the selected descriptors by providing a more flexible 
way of feature extraction and calculation. 

2) Data visualization (boxplot for the evaluation metrics of the K-fold cross-validation, heatmap 
for displaying the correlation or p-values matrix of the models, ROC and PRC curve for 
performance evaluation) 

 
3) The bootstrap test and student’s t-test were used to compare the prediction performance 

difference. 
iLearnPlus-
AutoML 

1) Automated performance benchmarking of different machine-learning algorithms based on 
the input features. 

2) Data visualization (boxplot for the evaluation metrics of the K-fold cross-validation, heatmap 
for displaying the correlation or p-values matrix of the models, ROC and PRC curve for 
performance evaluation) 

3) The bootstrap test and student’s t-test were used to compare the prediction performance 
difference. 

iLearnPlus-
LoadModel 

1) Performing prediction using the generated models and testing dataset. 
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4. The input format of iLearnPlus 

The input of iLearnPlus is a set of DNA, RNA or protein sequences in FASTA format with a 

specially designed header. The FASTA header consists of three parts: part 1, part 2 and part 3, which 

are separated by the symbol “|” (Figure S2). Part 1 is the sequence name while part 2 is the sample 

category information, which can be filled with any integer. For instance, users may use 1 to indicate 

the positive samples and 0 to represent the negative samples for a binary classification task, or use 

0, 1, 2, … to represent different classes in multiclass classification tasks. Part 3 indicates the role of 

the sample, for example “training” would indicate that the corresponding sequence would be used 

as the training set for K-fold validation test, and “testing” indicates that the sequence would be used 

as the independent testing sample for independent testing. 

For feature analysis and predictor construction, four file formats are supported, including LIBSVM 

(1) format, Comma-Separated Values (CSV), Tab Separated Values (TSV), and Waikato 

Environment for Knowledge Analysis (WEKA) (2) format. For LIBSVM, CSV and TSV format, 

the first column must be the sample label. Please find the “data” directory of the software for 

examples of these file formats. 

 

 
Figure S2. An example of the FASTA-formatted input DNA sequences used in iLearnPlus for 

feature descriptor extraction. 
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5. The iLearnPlus-Basic module 

The iLearnPlus-Basic module aims at simply analysis and prediction using one protein/RNA/DNA 

descriptor and a machine-learning algorithm of choice. This module is particularly instrumental 

when interrogating the contributions of a certain type of feature descriptor or a specific machine-

learning algorithm to the prediction performance. All the five basic functions including feature 

extraction, feature analysis, predictor construction, and data/result visualization can be implemented 

through the iLearnPlus-Basic module. There are four panels in iLearnPlus-Basic module. The 

“Descriptor” panel is used to extract feature descriptors for DNA, RNA and protein sequences, while 

the “Cluster / Dimensionality Reduction” and “Feature Normalization / Selection” panels are 

designed to implement the feature analysis algorithms, and the “Machine-learning” is used to build 

the prediction model. 

 

Feature descriptor extraction 

Each type of feature descriptor can be calculated using the “Descriptor” panel in the iLearnPlus-

Basic module. Taking the DNA “DAC” descriptor as an example (Figure S3): 

Step 1: Open the sequences file 

Click the “Open” button in “Descriptor” panel and select the DNA sequences file (e.g. 

“DNA_sequences.txt” in “data” directory of iLearnPlus package). The biological sequence type 

(i.e. DNA, RNA or protein) will then be automatically detected based on the input sequences. 

Step 2: Select the feature descriptor and configure the descriptor parameters 

Click the “DAC” descriptor and set the corresponding parameters with the parameter dialog box 

(the default parameters were used here (Figure S4)). The information including sequence type, 

selected descriptor and the descriptor parameter(s) will be displayed in the “Parameters” area. 

 

Step 3: Run the program 

Click the “Start” button to calculate the descriptor features. The feature encoding and graphical 
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presentation will be displayed in the “Data” and “Data distribution” panels, respectively. Here, 

we used the histogram and kernel density plot to display the distribution of the feature encoding.  

Step 4: Save the results and plots 

Click the “Save” button to save the generated feature encodings. iLearnPlus supports four 

formats for saving the calculated features, including LIBSVM, CSV, TSV, and WEKA format, 

so as to facilitate direct use of the features in the following analysis, prediction model 

construction and the third-party computational tools, such as scikit-learn and WEKA. In 

addition, iLearnPlus provides the TSV_1 format, which includes the sample and feature labels. 

All the plots in iLearnPlus are generated by the matplotlib library and can be saved to a variety 

of image formats, such as PNG, JPG, PDF, TIFF etc). 

 
Figure S3. An example of extracting feature descriptor using the iLearnPlus-Basic module. 
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Figure S4. The dialog box for DNA DAC descriptor the parameter setting. 

Feature analysis 

iLearnPlus provides multiple options to facilitate feature analysis, including ten feature clustering, 

three dimensionality reduction, two feature normalization and five feature selection approaches 

(Table 3 in our paper). In the iLearnPlus-Basic module, the “Cluster / Dimensionality Reduction” 

panel is used to deploy the clustering and dimensionality reduction algorithms; while the “Feature 

Normalization / Selection” panel is designed to implement the feature normalization and selection 

function. Taking the clustering as an example: 

Step 1: Load data 

There are two ways to load the data for analysis: 1) open a coding file and 2) select the data 

generated from other panels. Here we load the data from file. Click the “Open” button and open 

the “data.csv” in the “data” directory. 

Step 2: Select the analysis algorithm and set the corresponding parameter(s) 
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Select “kmeans” clustering algorithm and set the cluster number as 5. 

Step 3: Run the program 

Click the “Start” button to start the analysis progress. The clustering result and graphical 

presentation will be displayed in the “Result” and “Scatter plot” panels, respectively. Here, we 

used the scatter plot to display the clustering result. 

Step 4: Save the result and plot 

Click the “Save” button to save the generated clustering results (Figure S5). 

 

Figure S5. An example of implement the clustering algorithm using iLearnPlus-Basic module. 

Predictor construction 

iLearnPlus offers 12 conventional classification algorithms, two ensemble-learning frameworks, 

and seven deep-learning approaches. Figure S6 shows the architectures of the deep-learning 

approaches. The implementation of these algorithms in iLearnPlus is based on four third-party 

machine-learning platforms, including scikit-learn (3), XGBoost (4), LightGBM (5), and PyTorch 

(6). Taking the CNN algorithm as the core machine-learning algorithm: 
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Step 1: Load data. 

There are also two ways to load the data for analysis: 1) open a coding file and 2) select the data 

generated from other panels. Here we load the data from the “Descriptor” panel. At first, open 

the “m1A_DNA_sequences.txt” in the “data” directory and select the “binary” descriptor. Click 

“Start” button to calculate the feature encoding. Then, switch to the “Machine-learning” panel 

and load data by clicking the “Select” button (Figure S7). Select “Descriptor data” in the data 

selection dialog box and click the “OK” button.  

 

Figure S6. The architectures of the deep-learning approaches employed in iLearnPlus. 
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Figure S7. Loading data using the data selection explorer. 

Step 2: Select the machine-learning algorithm and configure the corresponding parameter(s) 

Select “Net_1_CNN” and set the “Input channels” as 4 (Figure S8). The default values were 

used for the remaining parameters. 

 

Figure S8. An example of parameter setting for the CNN algorithm. 

Step 3: Set K-fold cross-validation 

Set the K number as 5 (Figure S9). 

Step 4: Run the program 

Click the “Start” button to start the analysis progress. The prediction score, evaluation metrics 

for K-fold cross-validation test, independent test, and the ROC and PRC curve will be displayed 
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(Figure S10). 

 
Figure S9. Setting five-fold cross-validation. 

 
Figure S10. An example of model construction using CNN algorithm in iLearnPlus. 

Building machine-learning pipelines 

Usually, more than one individual functionality will be used in biological sequence analysis. In this 

case, the iLearnPlus-Basic module allows users to build their own machine-learning pipelines. The 

output data generated in the previous panel can be used as the input for next panel by using the 

graphical data selection explorer. Here, we take the malonylation site prediction as an example: 

Step 1: Extract the descriptor using the iLearnPlus-Basic panel 

In “Descriptor” panel, open the “Malonylation.txt” in “data” directory, select the ENAC 
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descriptor, and set the sliding window size as 8. Click “Start” button to calculate the descriptor 

(Figure S11). 

Step 2: Select the top 100 features 

Switch to the “Feature Normalization / Selection” panel and load the data which has been 

generated by the “Descriptor” panel, we can see that the data shape of the generated data is 

(10578, 480), indicating that there are 10578 samples and the dimension for the feature vector 

is 480. We used the CHI2 algorithm to select the top 100 features (Figure S12). 

 
Figure S11. Extracting the EAAC descriptor using “Descriptor” panel in the iLearnPlus-Basic 
module. 
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Figure S12. Selecting the top 100 features using “Feature Normalization/Selection” panel in the 

iLearnPlus-Basic module. 

Step 3: Build the prediction model using the selected features 

Switch to the “Machine-learning” panel, load the data from “Feature selection data” using the 

data selection dialog box in the “Machine-learning” panel and the data shape is (10576, 100) 

(Figure S13). Select the RF algorithm and use the default parameters to build the prediction 

model (Figure S14). 

 
Figure S13. An example of loading data with the data selection dialog box. 
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Figure S14. An example of prediction model construction using RF algorithm in the iLearnPlus-

basic module. 

6. The iLearnPlus-Estimator module 

The iLearnPlus-Estimator module provides a more flexible way of feature extraction and calculation 

by allowing users to select multiple feature descriptors of interest. For a prediction task, the 

iLearnPlus-Estimator module can select out the descriptor with best performance. Here, we take the 

m1A site prediction as an example: 

Step 1: Load sequence data 

Open the “m1A_DNA_sequences.txt” file in “data” directory of the iLearnPlus package. 

Step 2: Select the descriptors 

Here, nine descriptors, including Kmer, NAC, ANF, ENAC, binary, KNN, Z_curve_9bit and 

MMI, were selected to evaluate their performance. The default parameters for the descriptors 

were used. 

Step 3: Select machine-learning algorithm 

The RF algorithm was selected to build prediction models, and the number of trees was set as 
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1000. 

Step 4: Set K-fold cross-validation 

Set the K as 5. 

Step 5: Running the program 

Click “Start” button to train the models. For each of the selected feature descriptors, the program 

will extract the feature encoding and build the prediction model automatically one by one 

(Figure S15). 

 

Figure S15. The panel of the iLearnPlus-Estimator module. 

Step 6: Display prediction results 

1) The evaluation metrics for the nine classifiers were displayed in the table widget (Figure 

S15). 

2) The correlation matrix of the nine classifiers was displayed using the heatmap (Figure 

S16). 

3) Boxplot for the evaluation metrics (Figure S17).  

4) ROC and PRC curves (Figure S18).  
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Figure S16. The correlation matrix generated by the iLearnPlus-Estimator module. 

 

Figure S17. The boxplot generated by the iLearnPlus-Estimator module. 
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Figure S18. The ROC and PRC curves generated by the iLearnPlus-Estimator module. 

In addition, iLearnPlus offers two statistical tests for users to compare the prediction performance 

difference. The student’s t-test is used to statistically compare the means of any two performance 

evaluation measures (e.g. Sn, Sp, Acc, MCC etc.) obtained via the K-fold cross-validation test 

(Figure S19); while a bootstrap test was used to assess the significance of performance difference 

between all pairs in the ROC or PRC curve (Figure S20). 
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Figure S19. The paired p-values calculated by the student’s t-test in the iLearnPlus-Estimator 

module. 

 

Figure S20. The paired p-values calculated by the bootstrap method in the iLearnPlus-Estimator 
module. 
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iLearnPlus-estimator and iLearnPlus-AutoML modules facilitate merging results produced by 

multiple machine-learning algorithms to train new models. This is implemented by combining the 

multiple predictions with the underlying goal to improve predictive performance. To do so, 

iLearnPlus supports automatic evaluation of the performance for all possible combinations of the 

selected models. Compared with iLearn, which only uses a logistic regression approach to integrate 

the classifiers, iLearnPlus provide more options to use different algorithms in order to integrate the 

trained models. User can click the “Combine models” button in the result panel. For example, the 

best performance of the eight descriptor is binary (AUROC=0.9144), while the combined model has 

achieved the best performance with AUROC=0.9198. The combined models include 

'ENAC_RF_model', 'ANF_RF_model', 'KNN_RF_model', 'NAC_RF_model', 'binary_RF_model', 

'Kmer_RF_model', 'Z_curve_9bit_RF_model', and 'MMI_RF_model', which can be found in log 

panel. 

7. The iLearnPlus-AutoML module 

The iLearnPlus-AutoML module focuses on automated performance benchmarking of different 

machine-learning algorithms based on the input features. The usage of the iLearnPlus-AutoML 

module is similar with the usage of the iLearnPlus-Estimator module. The difference of the two 

models is that the input of the iLearnPlus-Estimator module only contains biological sequences; 

while the input of the iLearnPlus-AutoML module is the feature encoding information in CSV, TSV, 

LIBSVM or WEKA format. Combining the iLearnPlus-Estimator and iLearnPlus-AutoML modules, 

users can evaluate and compare the prediction performance using all the selected feature descriptors 

and machine-learning algorithms in an efficient manner.  

8. The iLearnPlus-LoadModel module 

All the generated models can be saved (“*.pkl”) in the aforementioned three modules and users can 

upload their models and testing dataset to perform prediction directly via the iLearnPlus-LoadModel 

module. The saved convetional machine-learning modules can be direclty applied indepdently in the 

scikit-learn running environment by invoking the joblib library to load the model. The exported 

deep-learning models, on the other hand, can be used with the help of PyTorch library independently, 
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with the prerequisite of importing the architectures of the neural network. To use the model in their 

own applications, advanced users can refer to the code in “iLearnPlusLoadModel.py” for the detail 

usage. 

Step 1: Load models 

Click the “Load” button and select the models in the “models” directory, one or more modules 

can be selected at one time. 

Step 2: Load the testing file 

Click the “Open” button and select the “binary_ind.csv” file in the “data” directory of the 

iLearnPlus package. 

Step 3: Run the program 

Click the “Start” button to predict the testing file using the loaded models. If multiple models 

are loaded, the average prediction score of the models will be displayed. In addition, the 

evaluation metrics, ROC and PRC curves will also be displayed (Figure S21). 

 

Figure S21. The interface of the iLearnPlus-LoadModel module. 

9. Other functions 
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For the users’ convenience, iLearnPlus also supplies some additional applications, including “Plot 

ROC curve”, “Plot PRC curve”, “Boxplot”, “Heatmap”, “Scatter plot”, “Distribution visualization”, 

“File format transformation” and “Merging feature set files”. These applications aim to facilitate 

plotting with user-defined data and file operations. 

Example of plotting the ROC curve 

Step 1. Click “Visualization”  “Plot ROC curve”, and open the ROC curve window.  

 

Step 2. Click “File”  “Add curve”, select data file, set color and set the legend name. The example 

of the data file can be found in the ‘data’ directory of iLearnPlus. 
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Example of merging different descriptors 

Step 1. Click “Tools”  “Merge coding files into one” to open the file dialog and select the coding 

files that need to be merged together. At least two files should be selected by press “Ctrl” in the 

keyboard. Then click the ‘Open’ button. 
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Step 2. After clicking the ‘Open’ button, a new file dialog will be displayed. Users can select the 

object position of the merged coding file and set the file name of the merged coding. Then click 

the “Save” button to save the merged descriptors into file. 
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10. Performance evaluation strategy in iLearnPlus 

As described in our paper, iLearnPlus supports both the binary classification task and multiclass 

classification task. For binary classification problems, eight frequently-used metrics are supported 

by iLearnPlus, including Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), Matthews correlation 

coefficient (MCC), Precision, F1-score, the Area Under ROC curve (AUROC) and the Area Under 

the PRC curve (AUPRC). Sn, Sp, Acc, MCC, Precision and F1-score are defined as: 

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

,                                                              

𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

,                                                                     

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 ,                                                               

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹×𝐹𝐹𝐹𝐹
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

,                                                         
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 ,                                                       

𝐹𝐹1 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

,                                                           

where TP, FP, TN and FN represent the numbers of true positives, false positives, true negatives and 

false negatives, respectively. The AUROC and AUCPRC values, ranging between 0 and 1, are 

calculated based on the Receiver-Operating-Characteristic (ROC) curve and the Precision-Recall 

curve, respectively. The higher the AUROC and AUPRC values, the better the predictive 

performance of the model. 

For multi-class classification tasks, the Acc is commonly used to evaluate the performance, which 

is defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇(𝑖𝑖)+𝑇𝑇𝑇𝑇(𝑖𝑖)
𝑇𝑇𝑇𝑇(𝑖𝑖)+𝑇𝑇𝑇𝑇(𝑖𝑖)+𝐹𝐹𝐹𝐹(𝑖𝑖)+𝐹𝐹𝐹𝐹(𝑖𝑖)

 , 

where TP(i), FP(i), TN(i) and FN(i) represent the numbers of the samples (molecules) predicted 

correctly to be in the i-th class, the total number of the samples in the i-th class that are predicted as 

one of the other classes, the total number of the samples predicted correctly not to be in the i-th class, 

and the total number of the samples not in the i-th class that are predicted as the i-th class, 

respectively. 

11. Online web server 

The iLearnPlus server is freely accessible at http://ilearnplus.erc.monash.edu/, which resides on the 

Nectar (The National eResearch Collaboration Tools and Resources) infrastructure and managed by 

the eResearch Centre at Monash University. The iLearnPlus server was implemented based on the 

open-source web platform LAMP (Linux-Apache-MySQL-PHP) and is equipped with 16 cores, 64 

GB memory and a 2 TB hard disk. The server has been tested across five commonly used browsers, 

including Internet Explorer (version ≥7.0), Microsoft Edge, Mozilla Firefox, Google Chrome and 

Safari. Considering the computational burden, the web server only offers the iLearnPlus-Basic 

model for the analysis and machine-learning modeling of DNA, RNA and protein sequences. The 

step-by-step of usage instructions is as follows:  

http://ilearnplus.erc.monash.edu/
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Type “http://ilearnplus.erc.monash.edu” on your browser, and click the “Go To Use Online Version” 

button. 

 

Then, you will see the descriptor calculation page. 

 
Step 1: Paste sequences or upload a sequence file. 

 

http://ilearnplus.erc.monash.edu/
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Note: Paste your protein (or peptide) sequences in the text area or upload a file that includes the 

sequences. The biological sequences must be in a specified 'FASTA' format. iLearnPlus is designed 

to accept no more than 2000 sequences at one time. 

Step 2: Select the descriptor type. 

 
 
Step 3: Select the output format. 

 
 
Step 4: Select the clustering method (optional). 

 
 
Step 5: Select the feature normalization method (optional). 

 
 
Step 6: Select the feature selection method (optional). 
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Step 7: Select the dimension reduction method (optional). 

 
 
Step 8: Select the machine-learning algorithm (optional). 

 
Finally, click the 'Submit' button to calculate the descriptors and run the selected clustering, feature 

selection and machine-learning algorithms. 

Step 9. Wait for the prediction results. 
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Step 10: Query your results. 

 
After a few seconds, the result should display in the result page. For each job, the server will generate 

a job ID, and the results will be stored for a week. Within a week, you can query your result by 

searching your job ID. 
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Note: Descriptions for the feature descriptors discussed in our previous publication, iFeature (7) and 

iLearn (8), have been extracted from the corresponding publications. 

12. Descriptions of feature descriptors for nucleotide sequences 

Let us assume that a nucleotide sequence with L residues can be generally represented as {R1, R2, …, 

RL}, where Ri represents the base at the i-th position in the sequence. The following commonly used 

feature descriptors can be described as follows:  

Kmer 

For kmer descriptor, the DNA or RNA sequences are represented as the occurrence frequencies of 

k neighboring nucleic acids (9), which has been successfully applied to human gene regulatory 

sequence prediction (10) and enhancer identification (9). The Kmer (k=3) descriptor can be 

calculated as: 

𝑓𝑓(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)
𝑁𝑁

,   t ∈ {AAA, AAC, AAG, …, TTT}, 

where N(t) is the number of kmer type t, while N is the length of a nucleotide sequence. The Kmer 

descriptor has been successfully applied to lncRNA prediction (11,12). 

 

RCKmer (Reverse compliment kmer) 

The reverse compliment kmer (10,13) is a variant of kmer descriptor, in which the kmers are not 

expected to be strand-specific. For instance, for a DNA sequence, there are 16 types of 2-mers (i.e. 

'AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 'GC', 'GG', 'GT', 'TA', 'TC', 'TG', 'TT'), ‘TT’ is 

reverse compliment with ‘AA’. After removing the reverse compliment kmers, there are only 10 

distinct kmers in the reverse compliment kmer approach ('AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 

'GA', 'GC', 'TA'). It has been used to predict the in vivo signature of human gene regulatory sequences 

(10) and human nucleosome occupancy (13). 

 

Mismatch (The occurrence of kmers, allowing at most m mismatches) 

The mismatch profile also calculates the occurrences of kmers (14), but allows max m inexact 

matching (m < k). There are two parameters for this descriptor, k neighboring nucleic acids and m 

inexact matching. The mismatch descriptor is defined as: 
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𝑓𝑓𝑘𝑘,𝑚𝑚 = (� 𝑐𝑐1,𝑗𝑗,
𝑚𝑚

𝑗𝑗=0
� 𝑐𝑐2,𝑗𝑗,

𝑚𝑚

𝑗𝑗=0
… ,� 𝑐𝑐4𝑘𝑘,𝑗𝑗,

𝑚𝑚

𝑗𝑗=0
), 

where ci,j represents the occurrences of i-th kmer type with j mismatches, i = 1, 2, 3, …, 4k; j = 0, 1, 

2, …, m. The mismatch descriptor has been successfully applied to protein classification prediction 

(15), B-cell epitopes identification (16) and transposon-derived piRNA prediction (17).  

 

Subsequence (The occurrences of kmers, allowing non-contiguous matches) 

The subsequence descriptor allows non-contiguous matching (14). For example, the 3-mer “AAC” 

in the sequence “AACTACG”. By exact and non-contiguous matching, we can obtain AAC, AA-C, 

A-AC, A-AC (“-” means the gap in non-contiguous matching). AAC is the exact form of “AAC”, 

and AA-C, A-AC, A-AC are non-contiguous forms of “AAC”. The occurrences of non-contiguous 

forms are penalized with their length l and the factor δ (0 ≤ δ ≤ 1), defined as δl. Therefore, the 

occurrence of “AAC” in above example is 1 + 2δ6 + δ5. The subsequence descriptor has been 

successfully applied to B-cell epitopes identification (16), transposon-derived piRNA prediction 

(17).   

 

NAC (Nucleic Acid Composition) 

The Nucleic Acid Composition (NAC) encoding calculates the frequency of each nucleic acid type 

in a nucleotide sequence. The frequencies of all 4 natural nucleic acids (i.e. “ACGT or U”) can be 

calculated as: 

𝑓𝑓(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)
𝑁𝑁

,  t ∈ {A, C, G, T(U)}, 

where N(t) is the number of nucleic acid type t, while N is the length of a nucleotide sequence. 

 

ANF (Accumulated nucleotide frequency) 

The Accumulated Nucleotide Frequency (ANF) encoding (18) include the nucleotide frequency 

information and the distribution of each nucleotide in the RNA sequence, the density di of any 

nucleotide si at position i in RNA sequence by the following formula: 

𝑑𝑑𝑖𝑖 =
1

|𝑠𝑠𝑖𝑖|
�𝑓𝑓(𝑠𝑠𝑖𝑖),   𝑓𝑓(𝑞𝑞) =  �1      𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖 = 𝑞𝑞

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑙𝑙

𝑗𝑗=1

, 

where l is the sequence length, |Si| is the length of the i-th prefix string {s1, s2, …, si} in the sequence, 



 35 

q ∈ {A, C, G or U}. Suppose an example sequence “UCGUUCAUGG”. The density of ‘U’ is 1 

(1/1), 0.5 (2/4), 0.6 (3/5), 0.5 (4/8) at positions 1, 4, 5, and 8, respectively. The density of ‘C’ is 0.5 

(1/2), 0.33 (2/6) at positions 2 and 6, respectively. The density of ‘G’ is 0.33 (1/3), 0.22 (2/9), 0.3 

(3/10) at positions 3, 9, and 10, respectively. The density of ‘A’ is 0.14 (1/7) at position 7.  

By integrating both the nucleotide chemical property and accumulated nucleotide information, the 

sample sequence “UCGUUCAUGG” can be represented by {(0, 0, 1, 1), (0, 1, 0, 0.5), (1, 0, 0, 0.33), 

(0, 0, 1, 0.5), (0, 0, 1, 0.6), (0, 1, 0, 0.33), (1, 1, 1, 0.14), (0, 0, 1, 0.5), (1, 0, 0, 0.22), (1, 0, 0, 0.3)}. 

By doing so, not only the chemical property was considered, but also the long-range sequence order 

information was incorporated. Therefore, the samples in the benchmark dataset were encoded in 

terms of both nucleotide chemical property and nucleotide densities. The ANF descriptor has been 

successfully applied to N(6)-methyldenosine site prediction (18). 

 

ENAC (Enhanced nucleic acid composition) 

The Enhanced Nucleic Acid Composition (ENAC) calculates the NAC based on the sequence 

window of fixed length (the default value is 5) that continuously slides from the 5’ to 3’ terminus of 

each nucleotide sequence and can be usually applied to encode the nucleotide sequence with an 

equal length, which has been successfully applied to N(6)-methyldenosine site prediction (19). 

 

Binary (also termed one-hot) 

In the Binary encoding, each amino acid is represented by a 4-dimensional binary vector, e.g. A is 

encoded by (1000), C is encoded by (0100), G is encoded by (0010) and T(U) is encoded by (0001), 

respectively. This encoding scheme is often used to encode nucleotide sequence with an equal length. 

The binary descriptor has been successfully applied to N(6)-methyldenosine sites prediction (19), 

RNA pseudouridylation sites prediction (20), DNA- and RNA-binding proteins prediction (21) and 

noncoding variants effect prediction (22).  

 

PS2 (Position-specific of two nucleotides) 

There are 4 × 4 = 16 pairs of adjacent pairwise nucleotides, such as AA/AT/AG …, thus a single 

variable representing one such pair gets one-hot (i.e. binary) encoded into 16 binary variables (14). 

For example, e.g. AA is encoded by (1000000000000000), AC is encoded by 
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(0100000000000000) …, and the sequence AAC is encoded as 

(10000000000000000100000000000000). PS2 has been successfully applied to off-target effects of 

CRISPR-Cas9 prediction (23). Both PS3 and PS4 are encoded for three adjacent nucleotides (4 × 4 

× 4 = 64) and four adjacent nucleotides (4 × 4 × 4 × 4 = 256) in a similar way.  

 

CKSNAP (Composition of k-spaced nucleic acid pairs) 

The CKSNAP feature encoding calculates the frequency of nucleic acid pairs separated by any k 

nucleic acid (k = 0, 1, 2, … , 5) (8). Taking k = 0 as an example, there are 16 0-spaced nucleic acid 

pairs (i.e. 'AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 'GC', 'GG', 'GT', 'TA', 'TC', 'TG', 'TT'). 

Then, a feature vector can be defined as: 

(
𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

,
𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

,
𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

, … ,
𝑁𝑁𝑇𝑇𝑇𝑇
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

, )16. 

The value of each descriptor denotes the composition of the corresponding nucleic acid pair in the 

nucleotide sequence. For instance, if the nucleic acid pair AA appears m times in the nucleotide 

sequence, the composition of the nucleic acid pair AA is equal to m divided by the total number of 

0-spaced nucleic acid pairs (Ntotal) in the nucleotide sequence. For k = 0, 1, 2, 3, 4 and 5, the value 

of Ntotal is P – 1, P – 2, P – 3, P – 4, P – 5 and P – 6 for a nucleotide sequence of length P, respectively.  

 

NCP (Nucleotide chemical property) 

There are four different kinds of nucleotides in RNA, i.e., adenine (A), guanine (G), cytosine (C) 

and uracil (U). Each nucleotide has different chemical structure and chemical binding. The four 

kinds of nucleotides can be classified into three different groups in terms of these chemical 

properties (Table S2). 

Table S2. Chemical structure of each nucleotide (18). 

Chemical property Class Nucleotides 

Ring Structure 
Purine A, G 
Pyrimidine C, U 

Functional Group 
Amino A, C 
Keto G, U 

Hydrogen Bond 
Strong C, G 
Weak A, U 

 
Based on chemical properties, A can be represented by coordinates (1, 1, 1), C can be represented 
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by coordinates (0, 1, 0), G can be represented by coordinates (1, 0, 0), U can be represented by 

coordinates (0, 0, 1). The NCP descriptor has been successfully applied to N(6)-methyldenosine site 

prediction (18). 
 
PSTNPss (Position-specific trinucleotide propensity based on single-strand) 

The Position-specific trinucleotide propensity based on single-strand (PSTNPss) (24,25) using a 

statistical strategy based on single-stranded characteristics of DNA or RNA. There are 43 = 64 

trinucleotides: AAA, AAC, AAG, ..., TTT(UUU). So, for an L bp sample, its details of the 

trinucleotides position specificity can be expressed by the following 64 × (L-2) matrix: 

Z = �

𝑧𝑧1,1 𝑧𝑧1,2 ⋯ 𝑧𝑧1,𝐿𝐿−2

𝑧𝑧2,1 𝑧𝑧2,2 ⋯ 𝑧𝑧2,𝐿𝐿−2

⋮
𝑧𝑧64,1

⋮
𝑧𝑧64,2

⋯
⋯

⋮
𝑧𝑧64,𝐿𝐿−2

� 

where  

𝑧𝑧𝑖𝑖,𝑗𝑗 = 𝐹𝐹+(3𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖|𝑗𝑗) − 𝐹𝐹−(3𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖|𝑗𝑗), 𝑖𝑖 = 1,2, … ,64; 𝑗𝑗 = 1,2, … 𝐿𝐿 − 2 

𝐹𝐹+(3𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖|𝑗𝑗) and 𝐹𝐹−(3𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖|𝑗𝑗) denote the frequency of the i-th trinucleotide (3meri) at the j-th 

position appear in the positive (S+) and negative (S−) data sets, respectively. In the formula, 3mer1 

equals AAA,3mer2 equals AAC, …, 3mer64 equals TTT. Therefore, the sample can be expressed as: 

S = �∅1,∅2, … ,∅𝐿𝐿−2�
𝑇𝑇
 

where T is the operator of transpose and ϕu was defined as follows: 

∅𝑢𝑢 =

⎩
⎨

⎧
𝑧𝑧1,𝑢𝑢,     𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑁𝑁𝑢𝑢𝑁𝑁𝑢𝑢+1𝑁𝑁𝑢𝑢+2 = 𝐴𝐴𝐴𝐴𝐴𝐴
𝑧𝑧2,𝑢𝑢,     𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑁𝑁𝑢𝑢𝑁𝑁𝑢𝑢+1𝑁𝑁𝑢𝑢+2 = 𝐴𝐴𝐴𝐴𝐴𝐴

⋮
𝑧𝑧64,𝑢𝑢,     𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑁𝑁𝑢𝑢𝑁𝑁𝑢𝑢+1𝑁𝑁𝑢𝑢+2 = 𝑇𝑇𝑇𝑇𝑇𝑇

 

The PSTNP descriptor has been successfully applied to DNA N4-methylcytosine sites prediction 

(25). 

 

 

PSTNPds (Position-specific trinucleotide propensity based on double-strand) 

Feature Position-specific trinucleotide propensity based on double-strand (PSTNPds) (24,25) using 

a statistical strategy based on double-stranded characteristics of DNA according to complementary 

base pairing, so they have more evident statistical features. At this point, we deem A and T as 
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identical, the same to C and G. Thus, for every sample, it can be converted into a sequence contained 

A and T only.  

 

EIIP (Electron-ion interaction pseudopotentials) 

Dragutin (26) came up with electron-ion interaction pseudopotentials (EIIP) value of nucleotides A, 

G, C, T (A: 0.1260, C: 0.1340, G: 0.0806, T:0.1335). The EIIP directly use the EIIP value represent 

the nucleotide in the DNA sequence. Therefore, the dimension of the EIIP descriptor is the length 

of the DNA sequence. The EIIP descriptor has been successfully applied to DNA N4-methylcytosine 

site prediction (27) and subcellular location prediction (28). 

 

PseEIIP (Electron-ion interaction pseudopotentials of trinucleotide) 

In these encoding, let EIIPA, EIIPT, EIIPG, and EIIPC denote the EIIP values of nucleotides A, T, G 

and C, respectively. Then, the mean EIIP value of trinucleotides in each sample to construct feature 

vector, which can be formulated as: 

V = [𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 , … ,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 ∙ 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇], 

where fxyz is the normalized frequency of the i-th trinucleotide, EIIPxyz = EIIPx + EIIPy + EIIPz 

expresses the EIIP value of one trinucleotide and X, Y, Z∈ [A, C, G, T]. Obviously, the dimension 

of vector V is 64. The EIIP descriptor has been successfully applied to 5-Methylcytosine prediction 

(29) and non-coding RNA promoter identification (30). 

 

ASDC (Adaptive skip dinucleotide composition) 

The adaptive skip dipeptide composition is a modified dinucleotide composition, which sufficiently 

considers the correlation information present not only between adjacent residues but also between 

intervening residues (31). For given a sequence, the feature vector for ASDC is represented by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑓𝑓𝑣𝑣1, 𝑓𝑓𝑣𝑣1, … ,𝑓𝑓𝑣𝑣16), 

where fvi is calculated by 

𝑓𝑓𝑣𝑣𝑣𝑣 =
∑ 𝑂𝑂𝑖𝑖

𝑔𝑔𝐿𝐿−1
𝑔𝑔=1

∑ ∑ 𝑂𝑂𝑖𝑖
𝑔𝑔𝐿𝐿−1

𝑔𝑔=1
16
𝑖𝑖=1

, 

where fvi denotes the occurrence frequency of all possible dinucleotide with ≤ L-1 intervening 

nucleotides. The ASDC descriptor has been successfully applied to anti-cancer peptide (31) and cell-
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penetrating peptide predictions (32). 

 

DBE (Dinucleotide binary encoding) 

The dinucleotide binary encoding descriptor encapsulates the positional information of the 

dinucleotide at each position in the sequence. There are a total of 16 possible dinucleotides. In this 

descriptor, each dinucleotide can be encoded into a 4-dimensional 0/1 vector. For example, AA is 

encoded as (0,0,0,0); AT is encoded as (0,0,0,1); AC is encoded as (0,0,1,0); and so forth, GG is 

encoded as (1,1,1,1). Therefore, using the dinucleotide binary encoding, we can yield a 160 (=40×4)-

dimensional 0/1 vector for the given sequence. The DBE descriptor has been successfully applied 

to N6-Methyladenosine site prediction (33). 

 

LPDF (Local position-specific dinucleotide frequency) 

The local position-specific dinucleotide frequency descriptor can be denoted as (f2, f3, …, fl), where 

fi is calculated as follows: 

𝑓𝑓 =
1

|𝑁𝑁𝑖𝑖|
𝐶𝐶(𝑋𝑋𝑖𝑖−1𝑋𝑋𝑖𝑖), 2 ≤ 𝑖𝑖 ≤ 𝑙𝑙, 

where l is the length of the given sequence, |Ni| is the length of the i-th prefix string {X1X2…Xi} in 

the sequence, and C (Xi-1Xi) is the occurrence number of the dinucleotide Xi-1Xi in position i of the i-

th prefix string. The LPDF descriptor has been successfully applied to N6-Methyladenosine site 

prediction (33). 

 

DPCP (Dinucleotide physicochemical properties) 

The dinucleotide physicochemical properties descriptor can be devised as: 

𝑉𝑉 = [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 × 𝑓𝑓𝐴𝐴𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 × 𝑓𝑓𝐴𝐴𝐴𝐴, … ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇 × 𝑓𝑓𝑇𝑇𝑇𝑇], 

where DPCPi is one of the i-th physicochemical properties of a dinucleotide. The 148 

physicochemical properties for DNA dinucleotide and 22 physicochemical properties for RNA 

dinucleotide are listed in Tables S3 and S4, respectively. The DPCP descriptor has been successfully 

applied to DNA N4-Methylcytosine sites prediction (34). 
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Table S3. The names of the 148 physicochemical dinucleotides indices for DNA. 
Base stacking Protein induced deformability B-DNA twist Propeller twist Duplex stability:(freeenergy) 

Duplex tability(disruptenergy) Protein DNA twist Stabilising energy of Z-DNA Aida_BA_transition Breslauer_dS 

Electron_interaction Hartman_trans_free_energy Lisser_BZ_transition Polar_interaction SantaLucia_dG 

Sarai_flexibility Stability Stacking_energy Sugimoto_dS Watson-Crick_interaction 

Twist Shift Slide Rise Twist stiffness 

Tilt stiffness Shift_rise Twist_shift Enthalpy1 Twist_twist 

Shift2 Tilt3 Tilt1 Slide (DNA-protein complex) 1 Tilt_shift 

Twist_tilt Roll_rise Stacking energy Stacking energy1 Propeller Twist 

Roll11 Rise (DNA-protein complex) Roll2 Roll3 Roll1 

Slide_slide Enthalpy Shift_shift Flexibility_slide Minor Groove Distance 

Rise (DNA-protein complex)1 Roll (DNA-protein complex)1 Entropy Cytosine content Major Groove Distance 

Twist (DNA-protein complex) Purine (AG) content Tilt_slide Major Groove Width Major Groove Depth 

Free energy6 Free energy7 Free energy4 Free energy3 Free energy1 

Twist_roll Flexibility_shift Shift (DNA-protein complex) 1 Thymine content Tip 

Keto (GT) content Roll stiffness Entropy1 Roll_slide Slide (DNA-protein complex) 

Twist2 Twist5 Twist4 Tilt (DNA-protein complex)1 Twist_slide 

Minor Groove Depth Persistance Length Rise3 Shift stiffness Slide3 

Slide2 Slide1 Rise1 Rise stiffness Mobility to bend towards minor groove 

Dinucleotide GC Content A-philicity Wedge DNA denaturation Bending stiffness 

Free energy5 Breslauer_dG Breslauer_dH Shift (DNA-protein complex) Helix-Coil_transition 

Ivanov_BA_transition Slide_rise SantaLucia_dH SantaLucia_dS Minor Groove Width 

Sugimoto_dG Sugimoto_dH Twist1 Tilt Roll 

Twist7 Clash Strength Roll_roll Roll (DNA-protein complex) Adenine content 

Direction Probability contacting nucleosome core Roll_shift Shift_slide Shift1 

Tilt4 Tilt2 Free energy8 Twist (DNA-protein complex)1 Tilt_rise 

Free energy2 Stacking energy2 Stacking energy3 Rise_rise Tilt_tilt 

Roll4 Tilt_roll Minor Groove Size GC content Inclination 

Slide stiffness Melting Temperature1 Twist3 Tilt (DNA-protein complex) Guanine content 

Twist6 Major Groove Size Twist_rise Rise2 Melting Temperature 

Free energy Mobility to bend towards major groove Bend   

 
Table S4. The names of the 22 physicochemical dinucleotides indices for RNA. 

Shift (RNA) Hydrophilicity (RNA) Hydrophilicity (RNA) GC content Purine (AG) content 

Keto (GT) content Adenine content Guanine content Cytosine content Thymine content 

Slide (RNA) Rise (RNA) Tilt (RNA) Roll (RNA) Twist (RNA) 

Stacking energy (RNA) Enthalpy (RNA) Entropy (RNA) Free energy (RNA) Free energy (RNA) 

Enthalpy (RNA) Entropy (RNA)    

 
DPCP type2 (Dinucleotide physicochemical properties) 

For DPCP type2 descriptor, it can be encoded into the following matrix: 
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𝑉𝑉 = �
𝑃𝑃𝑃𝑃1(𝑁𝑁1𝑁𝑁2) … 𝑃𝑃𝑃𝑃1(𝑁𝑁𝐿𝐿−1𝑁𝑁𝐿𝐿)

… … …
𝑃𝑃𝑃𝑃𝑗𝑗(𝑁𝑁1𝑁𝑁2) … 𝑃𝑃𝑃𝑃𝑗𝑗(𝑁𝑁𝐿𝐿−1𝑁𝑁𝐿𝐿)

�, 

where PCj(Ni, Ni+1) is the j-th physicochemical dinucleotides value of the dinucleotide NiNi+1. L is 

the length of sequence. The 148 physicochemical properties for DNA dinucleotide and 22 

physicochemical properties for RNA dinucleotide are listed in Tables S3 and S4, respectively. The 

DPCP type2 descriptor has been successfully applied to DNA N4-Methylcytosine sites prediction 

(35). 

 

TPCP (Trinucleotide physicochemical properties) 

The trinucleotide physicochemical properties descriptor can be devised as: 

𝑉𝑉 = [𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴,𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 , … ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇], 

where TPCPi is one of the i-th physicochemical properties of a trinucleotide listed in Table S4, and 

fNNN denotes the trinucleotide normalized frequency. The 12 physicochemical properties for DNA 

trinucleotide are listed in Table S5. The TPCP descriptor has been successfully applied to DNA N4-

Methylcytosine site prediction (34).  
 

Table S5. The names of the 12 physicochemical trinucleotides indices for DNA. 
Dnase I Bendability (DNAse) Bendability (consensus) Trinucleotide GC Content 

Nucleosome positioning Consensus_roll Consensus-Rigid Dnase I-Rigid 

MW-Daltons MW-kg Nucleosome Nucleosome-Rigid 

 
TPCP type2 (Trinucleotide physicochemical properties) 

For TPCP type2 descriptor, it can be encoded into the following matrix: 

𝑉𝑉 = �
𝑃𝑃𝑃𝑃1(𝑁𝑁1𝑁𝑁2𝑁𝑁3) … 𝑃𝑃𝑃𝑃1(𝑁𝑁𝐿𝐿−2𝑁𝑁𝐿𝐿−1𝑁𝑁𝐿𝐿)

… … …
𝑃𝑃𝑃𝑃𝑗𝑗(𝑁𝑁1𝑁𝑁2𝑁𝑁3) … 𝑃𝑃𝑃𝑃𝑗𝑗(𝑁𝑁𝐿𝐿−2𝑁𝑁𝐿𝐿−1𝑁𝑁𝐿𝐿)

� 

Where PCj(Ni, Ni+1,Ni+2) is the j-th physicochemical value of the trinucleotide NiNi+1,Ni+2. L is the 

length of sequence. The 12 physicochemical properties for DNA trinucleotide are listed in Table 

S5. The TPCP type2 descriptor has been successfully applied to DNA N4-Methylcytosine site 

prediction (35). 

 

MMI (Multivariate mutual information) 

In order to use multivariate mutual information on a DNA/RNA sequence, the ‘2-mer’ set T2 = { AA, 
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AC, AG, AT, CC, CG, CT, GG, GT, TT} and ‘3-mer’ set T3 = {AAA, AAC, AAG, AAT, ACC, 

ACG, ACT, AGG, AGT, ATT, CCC, CCG, CCT, CGG, CGT, CTT, GGG, GGT, GTT and TTT} 

were defined, and then the mutual information can be calculated as follows: 

𝐼𝐼(𝑁𝑁1𝑁𝑁2) = 𝑓𝑓(𝑁𝑁1𝑁𝑁2)𝑙𝑙𝑙𝑙
𝑓𝑓(𝑁𝑁1𝑁𝑁2)

𝑓𝑓(𝑁𝑁1)𝑓𝑓(𝑁𝑁2)
 

𝐼𝐼(𝑁𝑁1𝑁𝑁2𝑁𝑁3) = 𝑓𝑓(𝑁𝑁1𝑁𝑁2)𝑙𝑙𝑙𝑙 𝑓𝑓(𝑁𝑁1𝑁𝑁2)
𝑓𝑓(𝑁𝑁1)𝑓𝑓(𝑁𝑁2)

+ 𝑓𝑓(𝑁𝑁1𝑁𝑁3)
𝑓𝑓(𝑁𝑁3)

𝑙𝑙𝑙𝑙 𝑓𝑓(𝑁𝑁1𝑁𝑁3)
𝑓𝑓(𝑁𝑁3)

-𝑓𝑓(𝑁𝑁1𝑁𝑁2𝑁𝑁3)
𝑓𝑓(𝑁𝑁2𝑁𝑁3)

𝑙𝑙𝑙𝑙 𝑓𝑓(𝑁𝑁1𝑁𝑁2𝑁𝑁3)
𝑓𝑓(𝑁𝑁2𝑁𝑁3)

 

where f(Ni) is the frequency of Ni in the sequence; f(Ni, Nj) is the frequency of the T2’s element NiNj; 

f(Ni, Nj, Nk) are the frequency of the T3’s element NiNjNk. The MMI descriptor has been successfully 

applied to DNA N4-Methylcytosine site prediction (35,36). 

 

KNN (K-nearest neighbor) 

The K-nearest neighbor descriptor depicts how much one query sample resembles other samples. 

When comparing two local sequence fragments A and B, the similarity score S(A, B) can be 

calculated as: 

𝑆𝑆(𝐴𝐴,𝐵𝐵) = � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖)
1≤𝑖𝑖≤𝐿𝐿

, 

where L is sequence length; Ai is the nucleotide at position i in the sequence A; Bi is the nucleotide 

at position i in the sequence B. The similarity score for A and B is given by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �2, 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑏𝑏
−1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒. 

The KNN descriptor has been successfully applied to DNA N4-Methylcytosine sites prediction (35) 

and RNA N6-methyladenosine site prediction (37).  

 

Z_curve_9bit (The Z curve parameters for frequencies of phase-specific mononucleotides) 

The frequencies of bases A, C, G and T occurring in an open reading frame or a fragment of DNA 

sequence with base at position 1, 4, 7, …; 2, 5, 8, …; 3, 6, 9, …, are denoted by a1, c1, g1, t1; a2, c2, 

g2, t2; a3, c3, g3, t3, respectively. They are in fact the frequencies of bases at the 1st, 2nd and 3rd 

codon positions. ai, ci, gi, ti are mapped onto a point Pi in a three-dimensional space Vi, i=1, 2, 3. 

The coordinates of Pi, denoted by xi, yi, zi, are determined by the Z-transform of DNA sequences: 
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⎩
⎨

⎧
𝑥𝑥𝑖𝑖 = (𝑎𝑎𝑖𝑖 + 𝑔𝑔𝑖𝑖) − (𝑐𝑐𝑖𝑖 + 𝑡𝑡𝑖𝑖),
𝑦𝑦𝑖𝑖 = (𝑎𝑎𝑖𝑖 + 𝑐𝑐𝑖𝑖) − (𝑔𝑔𝑖𝑖 + 𝑡𝑡𝑖𝑖),
𝑧𝑧𝑖𝑖 = (𝑎𝑎𝑖𝑖 + 𝑡𝑡𝑖𝑖) − (𝑔𝑔𝑖𝑖 + 𝑐𝑐𝑖𝑖),
𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖,∈ [−1, 1], 𝑖𝑖 = 1,2,3.

 

 

Z_curve_12bit (The Z curve parameters for frequencies of phaseindependent di-nucleotides) 

The Z_curve_12bit descriptor consider the frequency of dinucleotides, denoted by p(XY), where X, 

Y = A, C, G and T. This descriptor can be calculated as follows: 

�

𝑥𝑥𝑋𝑋 = (𝑝𝑝(𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋)) − (𝑝𝑝(𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋)),
𝑦𝑦𝑋𝑋 = (𝑝𝑝(𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋)) − (𝑝𝑝(𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋)),
𝑧𝑧𝑋𝑋 = (𝑝𝑝(𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋)) − (𝑝𝑝(𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋)),

𝑋𝑋 = 𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇,

 

 

Z_curve_36bit (The Z curve parameters for frequencies of phase-specific di-nucleotides) 

Using similar notations, the Z_curve_36bit descriptor can be calculated as follows: 

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑋𝑋𝑘𝑘 = (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋)) − (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋)),
𝑦𝑦𝑋𝑋𝑘𝑘 = (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋)) − (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋)),
𝑧𝑧𝑋𝑋𝑘𝑘 = (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋)) − (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋)),

𝑋𝑋 = 𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇; 𝑘𝑘 = 1,2,3,

 

 

Z_curve_48bit (The Z curve parameters for frequencies of phaseindependent tri-nucleotides) 

Using similar notations, the Z_curve_48bit descriptor can be calculated as follows: 

�

𝑥𝑥𝑋𝑋𝑋𝑋 = (𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋)) − (𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋)),
𝑦𝑦𝑋𝑋𝑋𝑋 = (𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋)) − (𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋)),
𝑧𝑧𝑋𝑋𝑋𝑋 = (𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋)) − (𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝(𝑋𝑋𝑋𝑋𝑋𝑋)),

𝑋𝑋 = 𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇;𝑌𝑌 = 𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇

 

 

Z_curve_144bit (The Z curve parameters for frequencies of phase-specific tri-nucleotides) 

Using similar notations, the Z_curve_144bit descriptor can be calculated as follows: 

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑋𝑋𝑋𝑋𝑘𝑘 = (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋)) − (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋)),
𝑦𝑦𝑋𝑋𝑋𝑋𝑘𝑘 = (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋)) − (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋)),
𝑧𝑧𝑋𝑋𝑋𝑋𝑘𝑘 = (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋)) − (𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋) + 𝑝𝑝𝑘𝑘(𝑋𝑋𝑋𝑋𝑋𝑋)),

𝑋𝑋 = 𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇;𝑌𝑌 = 𝐴𝐴,𝐶𝐶,𝐺𝐺,𝑇𝑇; 𝑘𝑘 = 1,2,3.  

 

The Z_curve descriptor has been successfully applied to short coding sequence identification of 

human genes (38). 
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Autocorrelation 

The Autocorrelation encoding (39) can transform the nucleotide/protein sequences of different 

lengths into fixed-length vectors by measuring the correlation between any two properties. 

Autocorrelation encoding can generate two kinds of variables (i.e. The autocorrelation (AC) between 

the same property, and the cross-covariance (CC) between two different properties). There are six 

types of autocorrelation encodings for nucleotide sequence, including dinucleotide-based auto 

covariance (DAC), dinucleotide-based cross covariance (DCC), dinucleotide-based auto-cross 

covariance (DACC), trinucleotide-based auto covariance (TAC), trinucleotide-based cross 

covariance (TCC), and trinucleotide-based auto-cross covariance (TACC). The used 148 

physicochemical properties for DNA dinucleotide and 22 physicochemical properties for RNA 

dinucleotide are listed in Tables S3 and S4, respectively. The used 12 physicochemical properties 

for DNA trinucleotide are listed in Table S5.  

 

DAC (Dinucleotide-based auto covariance) 

The Dinucleotide-based Auto Covariance (DAC) encoding (39) measures the correlation of the same 

physicochemical index between two dinucleotide separated by a distance of lag along the sequence. 

The DAC can be calculated as: 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑢𝑢, 𝑙𝑙𝑙𝑙𝑙𝑙) = � ((𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) − 𝑃𝑃𝑢𝑢� )(𝑃𝑃𝑢𝑢�𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙+1� − 𝑃𝑃𝑢𝑢� )/(𝐿𝐿 − 𝑙𝑙𝑙𝑙𝑙𝑙 − 1))
𝐿𝐿−𝑙𝑙𝑙𝑙𝑙𝑙−1

𝑖𝑖=1

, 

where u is a physicochemical index, L is the length of the nucleotide sequence, 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) is the 

numerical value of the physicochemical index u for the dinucleotide RiRi+1 at position i, 𝑃𝑃𝑢𝑢�  is the 

average value for physicochemical index u along the whole sequence: 

𝑃𝑃𝑢𝑢� = �𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1�
𝐿𝐿−1

𝑗𝑗=1

/(𝐿𝐿 − 1). 

The dimension of the DAC feature vector is N×LAG, where N is the number of physicochemical 

indices and LAG is the maximum of lag (lag = 1, 2, …, LAG). 

 

DCC (Dinucleotide-based Cross Covariance) 
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The Dinucleotide-based Cross Covariance (DCC) encoding (39) measures the correlation of two 

different physicochemical indices between two dinucleotides separated by lag nucleic acids along 

the sequence. The DCC encoding is calculated as: 

DCC(𝑢𝑢1,𝑢𝑢2, 𝑙𝑙𝑙𝑙𝑙𝑙) = � �𝑃𝑃𝑢𝑢1(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) − 𝑃𝑃�𝑢𝑢1�
𝐿𝐿−𝑙𝑙𝑙𝑙𝑙𝑙−1

𝑖𝑖=1

(𝑃𝑃𝑢𝑢2�𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙+1� − 𝑃𝑃�𝑢𝑢2)/(𝐿𝐿 − 𝑙𝑙𝑙𝑙𝑙𝑙 − 1), 

where u1 and u2 are different physicochemical indices, L is the length of the nucleotide sequence, 

𝑃𝑃𝑢𝑢𝑎𝑎(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) is the numerical value of the physicochemical index ua for the dinucleotide RiRi+1 at 

position i, 𝑃𝑃�𝑢𝑢𝑎𝑎 is the average value for physicochemical index ua along the whole sequence: 

𝑃𝑃�𝑢𝑢𝑎𝑎 = �𝑃𝑃𝑢𝑢𝑎𝑎�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1�
𝐿𝐿−1

𝑗𝑗=1

/(𝐿𝐿 − 1). 

The dimension of the DCC feature vector is N× (N-1)×LAG, where N is the number of 

physicochemical indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  

 

DACC (Dinucleotide-based Auto-Cross Covariance) 

The Dinucleotide-based Auto-Cross Covariance (DACC) encoding (39) is a combination of DAC 

and DCC encoding. Thus, the dimension of the DACC encoding is N×N×LAG, where N is the 

number of physicochemical indices and LAG is the maximum of the lag (lag = 1, 2, …, LAG). 

 

TAC (Trinucleotide-based Auto Covariance) 

The Trinucleotide-based Auto Covariance (TAC) encoding measures the correlation of the same 

physicochemical index between trinucleotides separated by lag nucleic acids along the sequence, 

and can be calculated as: 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢) = � (𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2) − 𝑃𝑃�𝑢𝑢)(𝑃𝑃𝑢𝑢�𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙+1𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙+2� − 𝑃𝑃�𝑢𝑢)/(𝐿𝐿 − 𝑙𝑙𝑙𝑙𝑙𝑙
𝐿𝐿−𝑙𝑙𝑙𝑙𝑙𝑙−2

𝑖𝑖=1

− 2), 

where u is a physicochemical index, L is the length of the nucleotide sequence,𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2) is 

the numerical value of the physicochemical index u for the trinucleotide RiRi+1Ri+2 at position i, 𝑃𝑃𝑢𝑢�  

is the average value for physicochemical index u along the whole sequence: 
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𝑃𝑃𝑢𝑢� = �𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2)
𝐿𝐿−2

𝑗𝑗=1

/(𝐿𝐿 − 2). 

The dimension of the TAC feature vector is N×LAG, where N is the number of physicochemical 

indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  

 

TCC (Trinucleotide-based Cross Covariance) 

The Trinucleotide-based Cross Covariance (TCC) encoding measures the correlation of two 

different physicochemical indices between two trinucleotides separated by lag nucleic acids along 

the sequence. The TCC encoding can be calculated as: 

DCC(𝑢𝑢1,𝑢𝑢2, 𝑙𝑙𝑙𝑙𝑙𝑙) = � �𝑃𝑃𝑢𝑢1(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2) − 𝑃𝑃�𝑢𝑢1�
𝐿𝐿−𝑙𝑙𝑙𝑙𝑙𝑙−2

𝑖𝑖=1

(𝑃𝑃𝑢𝑢2�𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙+1𝑅𝑅𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙+2� − 𝑃𝑃�𝑢𝑢2)/(𝐿𝐿 − 𝑙𝑙𝑙𝑙𝑙𝑙 − 2) 

where u1 and u2 are different physicochemical indices, L is the length of the nucleotide sequence, 

𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2 is the numerical value of the physicochemical index ua for the dinucleotide RiRi+1Ri+2 

at position i, 𝑃𝑃�𝑢𝑢𝑎𝑎 is the average value for physicochemical index ua along the whole sequence: 

𝑃𝑃�𝑢𝑢𝑎𝑎 = �𝑃𝑃𝑢𝑢𝑎𝑎�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2�
𝐿𝐿−1

𝑗𝑗=1

/(𝐿𝐿 − 2) 

The dimension of the DCC feature vector is N× (N-1)×LAG, where N is the number of 

physicochemical indices and LAG is the maximum of lag (lag = 1, 2, …, LAG).  

 

TACC (Trinucleotide-based Auto-Cross Covariance) 

Like DAC encoding, the Trinucleotide-based Auto-Cross Covariance (TACC) encoding (39) is a 

combination of TAC and TACC encoding. Thus, the dimension of the TACC encoding is N×N×

LAG, where N is the number of physicochemical indices and LAG is the maximum of the lag (lag 

= 1, 2, …, LAG). There are three types of autocorrelation encodings for protein sequence, including 

auto covariance (AC), cross covariance (CC), auto-cross covariance (ACC), The amino acid 

properties used here are different types of amino acids index, which is retrieved from the AAindex 

Database (40) available at http://www.genome.jp/dbget/aaindex.html. The Autocorrelation 

descriptor has been successfully applied to protein fold recognition (41) and protein-protein 

interaction prediction (42). 

http://www.genome.jp/dbget/aaindex.html
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PseNAC (Pseudo nucleic acid composition) 

The Pseudo Nucleic Acid Composition (PseNAC) encodings consider both the local sequence-order 

information and long-range sequence-order effects (39,43). Six types of PseNAC encodings 

including dinucleotide composition (PseDNC), pseudo k-tuple nucleotide composition (PseKNC), 

parallel correlation pseudo dinucleotide composition (PC-PseDNC), parallel correlation pseudo 

trinucleotide composition (PC-PseTNC), series correlation pseudo dinucleotide composition (SC-

PseDNC), and series correlation pseudo trinucleotide composition (SC-PseTNC) can be calculated 

by the package. The used 148 physicochemical properties for DNA dinucleotide and 22 

physicochemical properties for RNA dinucleotide are listed in Tables S3 and S4, respectively. The 

used 12 physicochemical properties for DNA trinucleotide are listed in Table S5. 

 

PseDNC (Pseudo dinucleotide composition) 

The Pseudo Dinucleotide Composition (PseDNC) encoding (44) incorporate contiguous local 

sequence-order information and the global sequence-order information into the feature vector of the 

nucleotide sequence. The PseDNC encoding is defined: 

𝐷𝐷 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑16,𝑑𝑑16+1, … ,𝑑𝑑16+1, … ,𝑑𝑑16+𝜆𝜆]𝑇𝑇 , 

where 

𝑑𝑑𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑘𝑘
∑ 𝑓𝑓𝑖𝑖16
𝑖𝑖=1 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
,                   (1 ≤ 𝑘𝑘 ≤ 16)

𝑤𝑤𝜃𝜃𝑘𝑘−16
∑ 𝑓𝑓𝑖𝑖16
𝑖𝑖=1 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
, (17 ≤ 𝑘𝑘 ≤ 16 + 𝜆𝜆)

, 

where fk (k=1, 2, …, 16) is the normalized occurrence frequency of dinucleotide in the nucleotide 

sequence, λ represent the highest counted rank (or tie) of the correlation along the nucleotide 

sequence, w is the weight factor ranged from 0 to 1, and θj (j =1,2, …, λ) is the j-tier correlation 

factor and is defined: 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃𝜃1 = 1

𝐿𝐿 − 2∑ 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2)𝐿𝐿−2
𝑖𝑖=1

𝜃𝜃2 = 1
𝐿𝐿 − 3∑ 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2𝑅𝑅𝑖𝑖+3)𝐿𝐿−3

𝑖𝑖=1

𝜃𝜃3 = 1
𝐿𝐿 − 4∑ 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+3𝑅𝑅𝑖𝑖+4)𝐿𝐿−4

𝑖𝑖=1

⋯

𝜃𝜃𝜆𝜆 =
1

𝐿𝐿 − 1 − 𝜆𝜆
� 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+𝜆𝜆𝑅𝑅𝑖𝑖+𝜆𝜆+1)

𝐿𝐿−1−𝜆𝜆

𝑖𝑖=1

(𝜆𝜆 < 𝐿𝐿) 

where the correlation function is defined: 

𝛩𝛩�𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+1� =
1
𝜇𝜇
�[𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) − 𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1�]2
𝜇𝜇

𝑢𝑢=1

 

where μ is the number of physicochemical indices. 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) is the numerical value of the u-th 

(u=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1 at position i and 𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1� 

represents the corresponding value of the dinucleotide 𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1 at position j. The PseDNC descriptor 

has been successfully applied to recombination spot identification (44). 

 

PseKNC (Pseudo k-tupler composition) 

The Pseudo k-tupler Composition (PseKNC) encoding (45) incorporate the k-tuple nucleotide 

composition, which can be defined as: 

𝐷𝐷 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑4𝑘𝑘 ,𝑑𝑑4𝑘𝑘+1, … ,𝑑𝑑4𝑘𝑘+𝜆𝜆]𝑇𝑇 , 

where 

 

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑢𝑢
∑ 𝑓𝑓𝑖𝑖 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
4𝑘𝑘
𝑖𝑖=1

, (1 ≤ 𝑢𝑢 ≤ 4)

𝑤𝑤𝜃𝜃𝑢𝑢−4𝑘𝑘
∑ 𝑓𝑓𝑖𝑖 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
4𝑘𝑘
𝑖𝑖=1

, (4𝑘𝑘 ≤ 𝑢𝑢 ≤ 4𝑘𝑘 + 𝜆𝜆)
, 

where λ is the number of the total counted ranks (or tiers) of the correlations along a nucleotide 

sequence; fu (u=1,2,…,4k) is the frequency of oligonucleotide that is normalized to ∑ 𝑓𝑓𝑖𝑖 = 14𝑘𝑘
𝑖𝑖=1 , w 

is the factor, and θj is defined: 

𝜃𝜃𝑗𝑗 =
1

𝐿𝐿 − 𝑗𝑗 − 1
� 𝛩𝛩�𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1�,   (𝑗𝑗 = 1,2, … , 𝜆𝜆; 𝜆𝜆 < 𝐿𝐿)
𝐿𝐿−𝑗𝑗−1

𝑖𝑖=1

. 
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The correlation function 𝛩𝛩�𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1� is defined as: 

𝛩𝛩�𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1� =
1
𝜇𝜇
�[𝑃𝑃𝑣𝑣(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) − 𝑃𝑃𝑣𝑣�𝑅𝑅𝑖𝑖+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1�]2
𝜇𝜇

𝑣𝑣=1

, 

where μ is the number of physicochemical indices. 𝑃𝑃𝑣𝑣(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) is the numerical value of the v-th 

(v=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1 at position i and 𝑃𝑃𝑣𝑣�𝑅𝑅𝑗𝑗+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1� 

represents the corresponding value of the dinucleotide 𝑅𝑅𝑖𝑖+𝑗𝑗𝑅𝑅𝑖𝑖+𝑗𝑗+1 at position i+j. The PseKNC 

descriptor has been successfully applied to nucleosome positioning prediction (45). 

 

PCPseTNC (Parallel correlation pseudo trinucleotide composition) 

The Parallel Correlation Pseudo Trinucleotide Composition (PCPseTNC) encoding (46,47) is 

defined as: 

𝐷𝐷 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑64,𝑑𝑑64+1, … ,𝑑𝑑64+𝜆𝜆]𝑇𝑇 , 

where 

𝑑𝑑𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑘𝑘
∑ 𝑓𝑓𝑖𝑖 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
64
𝑖𝑖=1

 , (1 ≤ 𝑘𝑘 ≤ 64)

𝑤𝑤𝜃𝜃𝑘𝑘−64
∑ 𝑓𝑓𝑖𝑖 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
64
𝑖𝑖=1

 , (65 ≤ 𝑘𝑘 ≤ 64 + 𝜆𝜆)
, 

where fk (k=1, 2, …, 64) is the normalized occurrence frequency of trinucleotide in the DNA 

sequence, λ represent the highest counted rank (or tie) of the correlation along the DNA sequence, 

w is the weight factor ranged from 0 to 1, and θj (j =1,2, …, λ) is the j-tier correlation factor and is 

defined: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃𝜃1 = 1

𝐿𝐿 − 3∑ 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2,𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2𝑅𝑅𝑖𝑖+3)𝐿𝐿−3
𝑖𝑖=1

𝜃𝜃2 = 1
𝐿𝐿 − 4∑ 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2,𝑅𝑅𝑖𝑖+2𝑅𝑅𝑖𝑖+3𝑅𝑅𝑖𝑖+4)𝐿𝐿−4

𝑖𝑖=1

𝜃𝜃3 = 1
𝐿𝐿 − 5∑ 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2,𝑅𝑅𝑖𝑖+3𝑅𝑅𝑖𝑖+4𝑅𝑅𝑖𝑖+5)𝐿𝐿−5

𝑖𝑖=1

⋯

𝜃𝜃𝜆𝜆 =
1

𝐿𝐿 − 2 − 𝜆𝜆
� 𝛩𝛩(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2,𝑅𝑅𝑖𝑖+𝜆𝜆𝑅𝑅𝑖𝑖+𝜆𝜆+1𝑅𝑅𝑖𝑖+𝜆𝜆+2)

𝐿𝐿−2−𝜆𝜆

𝑖𝑖=1

(𝜆𝜆 < 𝐿𝐿), 

where the correlation function is defined: 

𝛩𝛩�𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2,𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2� =
1
𝜇𝜇
�[𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2) − 𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2�]2
𝜇𝜇

𝑢𝑢=1

, 
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where μ is the number of physicochemical indices. 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2) is the numerical value of the 

u-th (u=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2  at position i and 

𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2� represents the corresponding value of the dinucleotide 𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2 at position j. 

The PCPseTNC descriptor has been successfully applied to recombination spot identification (47). 

 

SCPseDNC (Series correlation pseudo dinucleotide composition) 

The Series Correlation Pseudo Dinucleotide Composition (SCPseDNC) encoding (46) is defined 

as: 

𝐷𝐷 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑16,𝑑𝑑16+1, … ,𝑑𝑑16+𝜆𝜆,𝑑𝑑16+𝜆𝜆+1, … ,𝑑𝑑16+𝜆𝜆𝜆𝜆]𝑇𝑇 , 

where 

𝑑𝑑𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑘𝑘
∑ 𝑓𝑓𝑖𝑖16
𝑖𝑖=1 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
,                   (1 ≤ 𝑘𝑘 ≤ 16)

𝑤𝑤𝜃𝜃𝑘𝑘−16
∑ 𝑓𝑓𝑖𝑖16
𝑖𝑖=1 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆𝜆𝜆

𝑗𝑗=1
, (17 ≤ 𝑘𝑘 ≤ 16 + 𝜆𝜆𝜆𝜆)

, 

where fk (k=1, 2, …, 16) is the normalized occurrence frequency of dinucleotide in the nucleotide 

sequence, λ represent the highest counted rank (or tie) of the correlation along the nucleotide 

sequence, w is the weight factor ranged from 0 to 1, Λ is the number of physicochemical indices and 

θj (j =1,2, …, λ) is the j-tier correlation factor and is defined: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃𝜃1 = 1

𝐿𝐿 − 3∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+11𝐿𝐿−3
𝑖𝑖=1

𝜃𝜃2 = 1
𝐿𝐿 − 3∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+12𝐿𝐿−3

𝑖𝑖=1
…

𝜃𝜃𝛬𝛬 = 1
𝐿𝐿 − 3∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+1𝛬𝛬𝐿𝐿−3

𝑖𝑖=1…
𝜃𝜃𝜆𝜆𝜆𝜆 = 1

𝐿𝐿 − 𝜆𝜆 − 2∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+𝜆𝜆𝛬𝛬−1𝐿𝐿−𝜆𝜆−2
𝑖𝑖=1

𝜃𝜃𝜆𝜆𝜆𝜆 = 1
𝐿𝐿 − 𝜆𝜆 − 2∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+𝜆𝜆𝛬𝛬𝐿𝐿−𝜆𝜆−2

𝑖𝑖=1

(𝜆𝜆 < 𝐿𝐿 − 2), 

where the correlation function is defined: 

� 𝐽𝐽𝑖𝑖,𝑖𝑖+𝑚𝑚
𝜁𝜁 = 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1)𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖+𝑚𝑚𝑅𝑅𝑖𝑖+𝑚𝑚+1)

𝜁𝜁 = 1,2, … ,𝛬𝛬;𝑚𝑚 = 1,2, … , 𝜆𝜆; 𝑖𝑖 = 1,2, … , 𝐿𝐿 − 𝜆𝜆 − 2
, 

where μ is the number of physicochemical indices. 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1) is the numerical value of the u-th 

(u=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1 at position i and 𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1� 
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represents the corresponding value of the dinucleotide 𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1  at position j. The SCPseDNC 

descriptor has been successfully applied to recombination spot identification (47). 

 

SCPseTNC (Series correlation pseudo trinucleotide composition) 

The Series Correlation Pseudo Trinucleotide Composition (SCPseTNC) encoding (46) is defined 

as: 

𝐷𝐷 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑64,𝑑𝑑64+1, … ,𝑑𝑑64+𝜆𝜆,𝑑𝑑64+𝜆𝜆+1,𝑑𝑑64+𝜆𝜆+1, … , 𝑑𝑑64+𝜆𝜆𝜆𝜆]𝑇𝑇 , 

where 

𝑑𝑑𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑓𝑓𝑘𝑘
∑ 𝑓𝑓𝑖𝑖 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆

𝑗𝑗=1
64
𝑖𝑖=1

 , (1 ≤ 𝑘𝑘 ≤ 64)

𝑤𝑤𝜃𝜃𝑘𝑘−64
∑ 𝑓𝑓𝑖𝑖 + 𝑤𝑤∑ 𝜃𝜃𝑗𝑗𝜆𝜆𝜆𝜆

𝑗𝑗=1
64
𝑖𝑖=1

 , (65 ≤ 𝑘𝑘 ≤ 64 + 𝜆𝜆𝜆𝜆)
, 

where fk (k=1, 2, …, 64) is the normalized occurrence frequency of trinucleotide in the DNA 

sequence, λ represent the highest counted rank (or tie) of the correlation along the DNA sequence, 

w is the weight factor ranged from 0 to 1, Λ is the number of physicochemical indices and θj (j 

=1,2, …, λ) is the j-tier correlation factor and is defined: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜃𝜃1 = 1

𝐿𝐿 − 4∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+11𝐿𝐿−4
𝑖𝑖=1

𝜃𝜃2 = 1
𝐿𝐿 − 4∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+12𝐿𝐿−4

𝑖𝑖=1
…

𝜃𝜃𝛬𝛬 = 1
𝐿𝐿 − 4∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+1𝛬𝛬𝐿𝐿−4

𝑖𝑖=1…
𝜃𝜃𝜆𝜆𝜆𝜆 = 1

𝐿𝐿 − 𝜆𝜆 − 3∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+𝜆𝜆𝛬𝛬−1𝐿𝐿−𝜆𝜆−3
𝑖𝑖=1

𝜃𝜃𝜆𝜆𝜆𝜆 = 1
𝐿𝐿 − 𝜆𝜆 − 3∑ 𝐽𝐽𝑖𝑖,𝑖𝑖+𝜆𝜆𝛬𝛬𝐿𝐿−𝜆𝜆−3

𝑖𝑖=1

(𝜆𝜆 < 𝐿𝐿 − 3), 

where the correlation function is defined: 

� 𝐽𝐽𝑖𝑖,𝑖𝑖+𝑚𝑚
𝜁𝜁 = 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1)𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖+𝑚𝑚𝑅𝑅𝑖𝑖+𝑚𝑚+1𝑅𝑅𝑖𝑖+𝑚𝑚+2)

𝜁𝜁 = 1,2, … ,𝛬𝛬;𝑚𝑚 = 1,2, … , 𝜆𝜆; 𝑖𝑖 = 1,2, … , 𝐿𝐿 − 𝜆𝜆 − 3
, 

where μ is the number of physicochemical indices. 𝑃𝑃𝑢𝑢(𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2) is the numerical value of the 

u-th (u=1, 2, …, μ) physicochemical index of the dinucleotide 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖+1𝑅𝑅𝑖𝑖+2  at position i and 

𝑃𝑃𝑢𝑢�𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2� represents the corresponding value of the dinucleotide 𝑅𝑅𝑗𝑗𝑅𝑅𝑗𝑗+1𝑅𝑅𝑗𝑗+2 at position j. 
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13. Descriptions of feature descriptors for protein or peptide sequences 

AAC (Amino acid composition) 

The Amino Acid Composition (AAC) encoding calculates the frequency of each amino acid type in 

a protein or peptide sequence. The frequencies of all 20 natural amino acids (i.e. 

“ACDEFGHIKLMNPQRSTVWY”) can be calculated as: 

( )( ) , { , , ,..., }N tf t t A C D Y
N

= ∈ , 

where N(t) is the number of amino acid type t, while N is the length of a protein or peptide sequence. 

The AAC descriptor has been successfully applied to nuclear receptor classification (48) and anti-

cancer peptide prediction (31). 

 

EAAC (Enhanced amino acid composition) 

The Enhanced Amino Acid Composition (EAAC) feature calculates the AAC based on the sequence 

window of fixed length that continuously slides from the N- to C-terminus of each peptide and can 

be usually applied to encode the peptides with an equal length (49). The EAAC can be calculated 

as: 

( , )( , ) , { , , ,..., }, { 1, 2,..., 17}
( )

N t winf t win t A C D Y win window window window
N win

= ∈ ∈ , 

where N(t,win) is the number of amino acid type t in the sliding window win and N(win) is the size 

of the sliding window win. The EAAC descriptor has been successfully applied to protein 

malonylation sites prediction (50), lysine crotonylation site prediction (51).  

 

CKSAAP (Composition of k-spaced amino acid pairs) 

The CKSAAP feature encoding calculates the frequency of amino acid pairs separated by any k 

residues (k = 0, 1, 2, … , 5) (52-55). Taking k = 0 as an example, there are 400 0-spaced residue 

pairs (i.e., AA, AC, AD,…, YY.). Then, a feature vector can be defined as: 

400( , , ,..., )ACAA AD YY

total total total total

NN N N
N N N N

. 

The value of each descriptor denotes the composition of the corresponding residue pair in the protein 
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or peptide sequence. For instance, if the residue pair AA appears m times in the protein, the 

composition of the residue pair AA is equal to m divided by the total number of 0-spaced residue 

pairs (Ntotal) in the protein. For k = 0, 1, 2, 3, 4 and 5, the value of Ntotal is P – 1, P – 2, P – 3, P – 4, 

P – 5 and P – 6 for a protein of length P, respectively. The EAAC descriptor has been successfully 

applied to membrane protein type prediction (52), protein crystallization prediction (53), protein 

flexible/rigid region prediction (54) and protein structural class prediction (55). 

 

DPC (Di-Peptide Composition) 

The Dipeptide Composition (56) gives 400 descriptors. It is defined as: 

( , ) , , { , , , }
1

rsND r s r s A C D Y
N

= ∈
−

 , 

where Nrs is the number of dipeptides represented by amino acid types r and s. 

 

Dipeptide Deviation from Expected Mean (DDE) 

The Dipeptide Deviation from Expected Mean feature vector is constructed by computing three 

parameters, i.e. dipeptide composition (Dc), theoretical mean (Tm), and theoretical variance (Tv). The 

above three parameters and the DDE are computed as follows. Dc(r,s), the dipeptide composition 

measure for the dipeptide ‘rs’, is given as 

( , ) , , { , , , }
1

rs
c

ND r s r s A C D Y
N

= ∈
−

 , 

where Nrs is the number of dipeptides represented by amino acid types r and s and N is the length of 

the protein or peptide. Tm(r,s), the theoretical mean, is given by: 

( , ) sr
m

N N

CCT r s
C C

= × , 

where Cr is the number of codons that code for the first amino acid and Cs is the number of codons 

that code for the second amino acid in the given dipeptide ‘rs’. CN is the total number of possible 

codons, excluding the three stop codons (i.e., 61). Tv (r,s), the theoretical variance of the dipeptide 

‘rs’, is given by: 

( , )(1 ( , ))( , )
1

m m
v

T r s T r sT r s
N
−

=
−

. 
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Finally, DDE(r,s) is calculated as: 

( , ) ( , )( , )
( , )

c m

v

D r s T r sDDE r s
T r s
−

= . 

The DDE descriptor has been successfully applied to B-cell epitope prediction (56). 

 

TPC (Tri-peptide composition) 

The Tripeptide Composition (TPC) gives 8000 descriptors, defined as: 

( , , ) , , , { , , ,..., }
2

rstNf r s t r s t A C D Y
N

= ∈
−

, 

where Nrst is the number of tripeptides represented by amino acid types r, s and t. 

 

Binary 

In the binary encoding (57,58), each amino acid is represented by a 20-dimensional binary vector, 

e.g. 

A is encoded by (10000000000000000000), C is encoded by (01000000000000000000), …, Y is 

encoded by (00000000000000000001), respectively. This encoding scheme is often used to encode 

peptides with an equal length. The binary descriptor has been successfully applied to protein 

ubiquitination sites prediction (57,58), kinase-specific phosphorylation site prediction (59). 

 

Binary_6bit 

In this descriptor, the 6-letter exchange group {e1, e2, e3, e4, e5, e6} is adopted to represent a protein 

sequence (14,60), where e1∈{H, R, K}, e2∈{D, E, N, D}, e3∈{C}, e4∈{S, T, P, A, G}, e5∈{M, 

I, L, V}, e6∈{F, Y, W}. Exchange groups represent conservative replacements through evolution. 

These exchange groups are effectively equivalence classes of amino acids and are derived from 

PAM. For example, the protein sequence PVKTNVK can be represented as e4e5e1e4e2e5e1. Then, 

each group is represented by a 6-dimensional binary vector, e.g. e1 is encoded by (100000), e2 is 

encoded by (010000), …, e6 is encoded by (000001).  

 

Binary_5bit_type 1 

Like binary_6bit descriptor, the 5-letter amino acid group {e1, e2, e3, e4, e5} is adopted to represent 
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a protein sequence, and each group is represented by a 5-dimensional binary vector (14,61). e1∈{G, 

A, V, L, M, I}, e2∈{F, Y, W}, e3∈{K, R, H}, e4∈{D, E}, e5∈{S, T, C, P, N, Q}. Then, each 

group is represented by a 5-dimensional binary vector, e.g. e1 is encoded by (10000), e2 is encoded 

by (01000), …, e5 is encoded by (00001). 

 

Binary_5bit_type 2 

For this descriptor, it is based on all the possible ways that ones and zeros can be combined in a five 

bit unit. There are 32 possible ways to represent 20 amino acids. When the representations with no 

or all ones and those with 1 or 4 ones are removed there are exactly twenty representations. And A 

is encoded by (00011), C (00101), D (00110), E (00111), F(01001), G (01010), H (01011), I (01100), 

K (01101), L (01110), M (10001), N (10010), P (10011), Q (10100), R (10101), S (10110), T 

(11000), V (11001), W (11010), Y (11100). 

 

Binary_3bit_type 1 

For this descriptor, the 3-letter amino acid group {e1, e2, e3} is adopted to represent a protein 

sequence, and each group is represented by a 3-dimensional binary vector (31). Then, each group is 

represented by a 5-dimensional binary vector, e.g. e1 is encoded by (100), e2 is encoded by (010), e3 

is encoded by (001). The division of the amino acids based on physicochemical properties 

(PRAM900101) in Table S6. The difference of the type 1 to type 7 subtypes is the different division 

of amino acids. The division of amino acids for type 2 to 7 is based on “Normalized van der Waals 

volume”, “Polarity”, “Polarizability”, “Charge”, “Secondary structure” and “Solvent accessibility” 

in Table S6. 
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Table S6. Amino acid physicochemical attributes and the division of the amino acids into three groups 
according to each attribute. 

Attribute Division 
Hydrophobicity_PRAM900101 Polar: RKEDQN Neutral: GASTPHY Hydrophobicity: CLVIMFW 
Hydrophobicity_ARGP820101 Polar: QSTNGDE Neutral: RAHCKMV Hydrophobicity: LYPFIW 
Hydrophobicity_ZIMJ680101 Polar: QNGSWTDERA Neutral: HMCKV Hydrophobicity: LPFYI 
Hydrophobicity_PONP930101 Polar: KPDESNQT Neutral: GRHA Hydrophobicity: YMFWLCVI 
Hydrophobicity_CASG920101 Polar: KDEQPSRNTG Neutral: AHYMLV Hydrophobicity: FIWC 
Hydrophobicity_ENGD860101 Polar: RDKENQHYP Neutral :SGTAW Hydrophobicity: CVLIMF 
Hydrophobicity_FASG890101 Polar: KERSQD Neutral: NTPG Hydrophobicity: AYHWVMFLIC 
Normalized van der Waals volume Volume range: 0-2.78 

GASTPD 
Volume range: 2.95-94.0 
NVEQIL 

Volume range: 4.03-8.08 
MHKFRYW 

Polarity Polarity value: 4.9-6.2 
LIFWCMVY 

Polarity value: 8.0-9.2 
PATGS 

Polarity value: 10.4-13.0 
HQRKNED 

Polarizability Polarizability value: 0-
1.08 
GASDT 

Polarizability value: 0.128-
120.186 
GPNVEQIL 

Polarizability value: 0.219-0.409 
KMHFRYW 

Charge Positive: KR Neutral: 
ANCQGHILMFPSTWYV 

Negative: DE 

Secondary structure Helix: EALMQKRH Strand: VIYCWFT Coil: GNPSD 
Solvent accessibility Buried: ALFCGIVW Exposed: PKQEND Intermediate: MPSTHY 

 
AESNN3 (Learn from alignments) 

For this descriptor, each amino acid type is described using a three-dimensional vector. Values are 

taken from the three hidden units from the neural network trained on structure alignments (14,62). 

The values are listed in Table S7.  
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Table S7. AESNN3 values learning from alignments. 

Amino acids AESNN3 values 
A -0.99 -0.61 0.00 
R 0.28 -0.99 -0.22 
N 0.77 -0.24 0.59 
D 0.74 -0.72 -0.35 
C 0.34 0.88 0.35 
Q 0.12 -0.99 -0.99 
E 0.59 -0.55 -0.99 
G -0.79 -0.99 0.10 
H 0.08 -0.71 0.68 
I -0.77 0.67 -0.37 
L -0.92 0.31 -0.99 
K -0.63 0.25 0.50 
M -0.80 0.44 -0.71 
F 0.87 0.65 -0.53 
P -0.99 -0.99 -0.99 
S 0.99 0.40 0.37 
T 0.42 0.21 0.97 
W -0.13 0.77 -0.90 
Y 0.59 0.33 -0.99 
V -0.99 0.27 -0.52 

 
GAAC (Grouped amino acid composition) 

In the GAAC encoding, the 20 amino acid types are further categorized into five classes according 

to their physicochemical properties, e.g. hydrophobicity, charge and molecular size (63). The five 

classes include the aliphatic group (g1: GAVLMI), aromatic group (g2: FYW), positive charge group 

(g3: KRH), negative charged group (g4: DE) and uncharged group (g5: STCPNQ). GAAC descriptor 

is the frequency of each amino acid group, which is defined as (8,49): 

( )( ) , { 1, 2, 3, 4, 5}N gf g g g g g g g
N

= ∈  

( ) ( ),tN g N t t g= ∈∑  

where N(g) is the number of amino acid in group g, N(t) is the number of amino acid type t, and N 

is the length of the protein/peptide sequence.  

 

EGAAC (Enhanced grouped amino acid composition) 
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The Enhanced GAAC (EGAAC) is also for the first time proposed in this work. It calculates GAAC 

in windows of fixed length continuously sliding from the N- to C-terminal of each peptide (8,49) 

and is usually applied to peptides with an equal length. 

( , )( , ) , { 1, 2, 3, 4, 5}, { 1, 2,..., 17}
( )

N g winf g win g g g g g g win window window window
N win

= ∈ ∈ , 

where N(g, win) is the number of amino acids in group g within the sliding window win and 

N(win) is the size of the sliding window win. The EGAAC descriptor has been successfully 

applied to lysine crotonylation sites prediction (51).  

 

CKSAAGP (Composition of k-spaced amino acid group pairs) 

The Composition of k-Spaced Amino Acid Group Pairs (CKSAAGP) is a variation of the CKSAAP 

descriptor, which is our own proposal. It calculates the frequency of amino acid group pairs 

separated by any k residues. Taking k = 0 as an example, there are 25 0-spaced group pairs (i.e., 

g1g1, g1g2, g1g3, … g5g5). Thus, a feature vector of CKSAAGP can be defined as (8,49): 

1 1 1 2 1 3 5 5
25( , , ,..., )g g g g g g g g

total total total total

N N N N
N N N N

. 

The value of each descriptor denotes the composition of the corresponding residue group pair in a 

protein or peptide sequence. For instance, if the residue group pair g1g1 appears m times in the 

protein, the composition of the residue pair g1g1 is equal to m divided by the total number of 0-

spaced residue pairs (Ntotal) in the protein. For k = 0, 1, 2, 3, 4 and 5, the values of Ntotal are P – 1, P 

– 2, P – 3, P – 4, P – 5 and P – 6 respectively, for a protein of length P. 

 

GDPC (Grouped dipeptide composition) 

The Grouped Di-Peptide Composition encoding is another variation of the DPC descriptor. It is 

composed of a total of 25 descriptors that are defined as (8,49): 

( , ) , , { 1, 2, 3, 4, 5}
1

rsNf r s r s g g g g g
N

= ∈
−

, 

where Nrs is the number of tripeptides represented by amino acid type groups r and s, and N is the 

length of a protein or peptide sequence. 
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GTPC (Grouped tripeptide composition) 

The Grouped Tri-Peptide Composition encoding is also a variation of TPC descriptor, which 

generates 125 descriptors, defined as (8,49): 

( , , ) , , , { 1, 2, 3, 4, 5}
2

rstNf r s t r s t g g g g g
N

= ∈
−

, 

where Nrst is the number of tripeptides represented by amino acid type groups r, s and t. N is the 

length of a protein or peptide sequence. 

 

 

AAIndex 

Physicochemical properties of amino acids are the most intuitive features for representing 

biochemical reactions and have been extensively applied in bioinformatics research. The amino acid 

indices (AAIndex) database (40) collects many published indices representing physicochemical 

properties of amino acids. For each physicochemical property, there is a set of 20 numerical values 

for all amino acids. Currently, 544 physicochemical properties can be retrieved from the AAIndex 

database. After removing physicochemical properties with value 'NA' for any of the amino acids, 

531 physicochemical properties were left. In contrast to the residue-based encoding methods of 

amino acid identity and evolutionary information, a vector of 531 mean values is used to represent 

a sample for various window sizes. The AAIndex descriptor (64) can be applied to encode peptides 

of equal length. The AAIndex descriptor has been applied to protein ubiquitination site prediction 

(64) and protein malonylation site prediction (50). 

 

ZScale 

For this descriptor, each amino acid is characterized by five physicochemical descriptor variables 

(cf. Table S8), which were developed by Sandberg et al. in 1998 (65). The ZSCALE descriptor can 

be applied to encode peptides with equal length. The descriptor has been successfully applied to 

sumoylation site prediction (66).  
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Table S8. Z-scales for the 20 amino acids. 

Amino 

acid 

Z1 Z2 Z3 Z4 Z5 Amino 

Acid 

Z1 Z2 Z3 Z4 Z5 

A 0.24 -2.32 0.60 -0.14 1.30 M -2.85 -0.22 0.47 1.94 -0.98 

C 0.84 -1.67 3.71 0.18 -2.65 N 3.05 1.60 1.04 -1.15 1.61 

D 3.98 0.93 1.93 -2.46 0.75 P -1.66 0.27 1.84 0.70 2.00 

E 3.11 0.26 -0.11 -3.04 -0.25 Q 1.75 0.50 -1.44 -1.34 0.66 

F -4.22 1.94 1.06 0.54 -0.62 R 3.52 2.50 -3.50 1.99 -0.17 

G 2.05 4.06 0.36 -0.82 -0.38 S 2.39 -1.07 1.15 -1.39 0.67 

H 2.47 1.95 0.26 3.90 0.09 T 0.75 -2.18 -1.12 -1.46 -0.40 

I -3.89 -1.73 -1.71 -0.84 0.26 V -2.59 -2.64 -1.54 -0.85 -0.02 

K 2.29 0.89 -2.49 1.49 0.31 W -4.36 3.94 0.59 3.44 -1.59 

L -4.28 -1.30 -1.49 -0.72 0.84 Y -2.54 2.44 0.43 0.04 -1.47 

 

BLOSUM62 

In this descriptor, the BLOSUM62 matrix is employed to represent the protein primary sequence 

information as the basic feature set. A matrix comprising of m × n elements is used to represent each 

residue in a training dataset, where n denotes the peptide length and m  =  20, which elements 

comprise 20 amino acids. Each row in the BLOSUM62 matrix is adopted to encode one of 20 amino 

acids. The BLOSUM62 descriptor can be applied to encode peptides of equal length. The 

BLOSUM62 descriptor has been successfully applied to ubiquitination site prediction (67). 

 

Moran 

The autocorrelation descriptors are defined based on the distribution of amino acid properties along 

the sequence (68-70). The amino acid properties used here are different types of amino acids index, 

which is retrieved from the AAindex Database (40) available at 

http://www.genome.jp/dbget/aaindex.html/. All the amino acid indices are centralized and 

standardized prior to the calculation: 

http://www.genome.jp/dbget/aaindex.html/
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r
r

P PP −
=

σ
, 

where P
—

 is the average of the properties of the 20 amino acids and σ is the standard deviation of 

the properties of the 20 amino acids. P
—

 and σ can be calculated as follows: 

20

20
21

1

1, ( )
20 20

r
r

r
r

P
P P P=

=

= σ = −
∑

∑ . 

The Moran autocorrelation descriptors (68,71) can thus be defined as: 

' '

1

' 2

1

1 ( )( )
( ) , 1, 2,3...,

1 ( )

N d

i i d
i

N

i
i

P P P P
N dI d d nlag

P P
N

−

+
=

=

− −
−= =

−

∑

∑
, 

where d is the lag of the autocorrelation, nlag is the maximum value of the lag, Pi and Pi+d are the 

properties of the amino acids at positions i and i + d, respectively. 𝑃𝑃′  is the average of the 

considered property P over the entire sequence of length N and is calculated as: 

1'

N

i
i

P
P

N
==
∑

. 

The Moran descriptor has been successfully applied to membrane protein type prediction (68) and 

protein secondary structural content prediction (71).  

 

Geary 

The Geary autocorrelation descriptors for a protein or peptide sequence are defined as: 

2

1

2

1

1 ( )
2( )( ) , 1, 2,...,

1 ( ')
1

N d

i i d
i

N

i
i

P P
N dC d d nlag

P P
N

−

+
=

=

−
−= =

−
−

∑

∑
, 

where d, P, Pi and Pi+d, nlag have the same definitions as described above. The Geary descriptor 

has been successfully applied to population structure inferring (70).  

 

NMBroto (Normalized moreau-broto autocorrelation) 
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The Moreau-Broto autocorrelation descriptors are defined as follows: 

1
( ) , 1, 2,...,

N d

i i d
i

AC d P P d nlag
−

+
=

= × =∑ . 

The normalized Moreau-Broto autocorrelation descriptors are thus defined as: 

( )( ) , 1, 2,...,AC dATS d d nlag
N d

= =
−

. 

The NMBroto descriptor has been successfully applied to protein helix content prediction (69). 

 

Composition/Transition/Distribution (CTD) 

The Composition, Transition and Distribution (CTD) features represent the amino acid distribution 

patterns of a specific structural or physicochemical property in a protein or peptide sequence (72-

76). 13 types of physicochemical properties have been previously used for computing these features 

(Table S6). These include hydrophobicity, normalized Van der Waals Volume, polarity, 

polarizability, charge, secondary structures and solvent accessibility. These descriptors are 

calculated according to the following procedures: (i) The sequence of amino acids is transformed 

into a sequence of certain structural or physicochemical properties of residues; (ii) Twenty amino 

acids are divided into three groups for each of the seven different physicochemical attributes based 

on the main clusters of the amino acid indices of Tomii and Kanehisa (77). The groups of amino 

acids are listed in Table S6. The Composition/Transition/Distribution descriptors has been 

successfully applied to protein folding class prediction (72,73), enzyme family classification (75), 

RNA-binding protein prediction (76), protein structural prediction (77) and anti-cancer peptide 

prediction (31). 

 

CTDC 

Taking the hydrophobicity attribute as an example, all amino acids are divided into three groups: 

polar, neutral and hydrophobic (Table S6). The Composition descriptor consists of three values: the 

global compositions (percentage) of polar, neutral and hydrophobic residues of the protein. An 

illustrated example of this encoding scheme is provided in the following Figure S22. The 

Composition descriptor can be calculated as follows: 
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( )( ) , { , , }N rC r r polar neutral hydrophobic
N

= ∈ , 

where N(r) is the number of amino acid type r in the encoded sequence and N is the length of the 

sequence. 

 

CTDT 

The Transition descriptor T also consists of three values (72,73): A transition from the polar group 

to the neutral group is the percentage frequency with which a polar residue is followed by a neutral 

residue or a neutral residue by a polar residue. Transitions between the neutral group and the 

hydrophobic group and those between the hydrophobic group and the polar group are defined in a 

similar way. The transition descriptor can then be calculated as: 

( , ) ( , )( , ) , , {( , ), ( , ), ( , )}
1

N r s N s rT r s r s polar neutral neutral hydrophobic hydrophobic polar
N
+

= ∈
−

, 

where N(r,s) and N(s,r) are the numbers of dipeptides encoded as “rs” and “sr” respectively in the 

sequence, while N is the length of the sequence. An illustrated example of this encoding scheme is 

provided in the following Figure S22. 

 

Figure S22. An example of the calculation of composition and transition descriptors. This 

example uses the hydrophobicity attribute. 

 

CTDD 

The Distribution descriptor consists of five values for each of the three groups (polar, neutral and 

hydrophobic) (72,73), namely the corresponding fraction of the entire sequence, where the first 

residue of a given group is located, and where 25, 50, 75 and 100% of occurrences are contained. 

For example, we start with the first residue up to and including the residue that marks 25/50/75/100% 

of occurrences for residues of any given group and then we simply divide the position of this residue 

by the length of the entire sequence. 
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CTriad (Conjoint triad) 

The Conjoint Triad descriptor (CTriad) considers the properties of one amino acid and its vicinal 

amino acids by regarding any three continuous amino acids as a single unit (78). First, the protein 

sequence is represented by a binary space (V, F), where V denotes the vector space of the sequence 

features, and each feature (Vi) represents a sort of triad type; F is the number vector corresponding 

to V, where fi, the value of the i-th dimension of F, is the number of type Vi appearing in the protein 

sequence. For the amino acids that have been catalogued into seven classes, the size of V should be 

equal to 7ⅹ7ⅹ7=343. Accordingly, i = 1, 2, 3, …, 343. An illustrated example of this encoding 

scheme is provided in the following Figure S23. In principle, the longer a protein sequence, the 

higher the probability to have larger values of fi, confounding the comparison of proteins with 

different lengths. Thus, we define a new parameter, di, by normalizing fi with the following equation: 

1 2 343

1 2 343

min{ , ,..., }
max{ , ,..., }

i
i

f f f fd
f f f

−
= . 

The CTriad descriptors has been successfully applied to protein-protein interaction prediction (78). 

 
Figure S23. Schematic diagram for constructing the vector space (V, F) of a given protein sequence. 
V is the vector space of the sequence features; each feature (Vi) represents a triad composed of three 
consecutive amino acids; F is the number vector corresponding to V, and the value of the i-th entry 
of F, denoted fi, is the number of occurrences that the triad associated with Vi appearing in the protein 
sequence. The figure was adapted from the Supplementary Figure in (78). 
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KSCTriad (Conjoint k-spaced Triad) 

The k-Spaced Conjoint Triad (KSCTriad) descriptor is based on the Conjoint CTriad descriptor, 

which not only calculates the numbers of three continuous amino acid units, but also considers the 

continuous amino acid units that are separated by any k residues (The default maximum value of k 

is set to 5). For example, AxRxT is a 1-spaced triad. Thus, the dimensionality of the KSCTriad 

encoded feature vector is 343×(k+1). An illustrated example of this encoding scheme is provided in 

Figure S24. 

 
Figure S24. A schematic diagram for constructing the vector space (V, F) of protein sequence (k=1). 
 
SOCNumber (Sequence-Order-Coupling Number) 

The d-th rank sequence-order-coupling number is defined as: 

2
,

1
( ) , 1, 2,3,...,

N d

d i i d
i

d d nlag
−

+
=

τ = =∑ , 

where di,i+d is the entry in a given distance matrix describing a distance between the two amino acids 

at position i and i + d, nlag denotes the maximum value of the lag (default value: 30) and N is the 

length of a protein or peptide sequence. As distance matrix both the Schneider-Wrede 

physicochemical distance matrix (79) used by Kuo-Chen Chou, and the chemical distance matrix by 

Grantham (80) are used. Accordingly, the descriptor dimension will be nlagⅹ2. The quasi-

sequence-order descriptors described next also utilizes the two matrices. An illustrated example of 

this encoding scheme is provided in the following Figure S25. 
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Note: the length of the protein must be not less than the maximum value of nlag. 

 

Figure S25. A schematic drawing to show (a) the 1st-rank, (b) the 2nd-rank, and (3) the 3rd-rank 

sequence-order-coupling mode along a protein sequence. (a) reflects the coupling mode between 

all the most adjacent residues, (b) shows the coupling between the adjacent plus one residue, and 

(c) shows the coupling between the adjacent plus two residues. This figure is adapted from (81). 
 
QSOrder (Quasi-sequence-order) 

For each amino acid type, a quasi-sequence-order descriptor can be defined as: 

20

1 1

, 1, 2,..., 20r
r nlag

r d
r d

fX r
f w

= =

= =
+ τ∑ ∑

 

where fr is the normalized occurrence of amino acid type r and w is a weighting factor (w = 0.1), 

nlag and 𝜏𝜏𝑑𝑑have the same definitions as described above. These are the first 20 quasi-sequence-

order descriptors. The other 30 quasi-sequence-order descriptors are defined as: 

20

1 1

20 , 21,22,..., 20d
d nlag

r d
r d

wX d nlag
f w

= =

τ −
= = +

+ τ∑ ∑
. 

The SOCNumber and QSOrder descriptors have been successfully applied to protein subcellular 

location prediction (79,82).  

 

PAAC (Pseudo-Amino Acid Composition) 

This group of descriptors has been proposed in (83,84). Let 𝐻𝐻1𝑜𝑜(𝑖𝑖), 𝐻𝐻2𝑜𝑜(𝑖𝑖), 𝑀𝑀𝑜𝑜(𝑖𝑖) for i = 1, 2, 3, … 

20 be the original hydrophobicity values, the original hydrophilicity values and the original side 



 67 

chain masses of the 20 natural amino acids, respectively. They are converted to the following 

quantities by a standard conversion: 

20

1 1
1

1 20 20
2

1 1
1 1

1( ) ( )
20( )

1[ ( ) ( )]
20
20

o o

i

o o

i i

H i H i
H i

H i H i

=

= =

−
=

−

∑

∑ ∑
, 

where 𝐻𝐻2𝑜𝑜(𝑖𝑖) and  𝑀𝑀𝑜𝑜(𝑖𝑖) are normalized as 𝐻𝐻2(𝑖𝑖) and 𝑀𝑀(𝑖𝑖) in the same manner. An example 

of the correlation function is provided in the following Figure S26. 

 

 

Figure S26. A schematic illustration showing (a) the first-tier, (b) the second-tier, and (3) the third-

tier sequence order correlation mode along a protein sequence. (a) reflects the coupling mode 

between all the most adjacent residues, (b) shows the coupling between the adjacent plus one residue, 

and (c) shows the coupling between the adjacent plus two residues. This figure is adapted from (84) 

for illustration purposes. 
 
Next, a correlation function can be defined as: 

2 2 2
1 1 2 2

1( , ) {[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] }
3i j i j i j i jR R H R H R H R H R M R M RΘ = − + − + − . 

This correlation function is actually an averaged value for the three amino acid properties: 

hydrophobicity value, hydrophilicity value and side chain mass. Therefore, we can extend this 

definition of correlation function for one amino acid property or for a set of n amino acid properties. 

For one amino acid property, the correlation can be defined as: 

2
1 1( , ) [ ( ) ( )]i j i jR R H R H RΘ = − , 



 68 

where H(Ri) is the amino acid property of amino acid Ri after standardization. 

For a set of n amino acid properties, it can be defined as: 

2

1

1( , ) [ ( ) ( )]
n

i j k i k j
n

R R H R H R
n =

Θ = −∑ , 

where Hk(Ri) is the k-th property in the amino acid property set for amino acid Ri. 

A set of descriptors called sequence order-correlated factors are defined as: 
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where λ (λ < N) is an integer parameter to be chosen. Let fi be the normalized occurrence frequency 

of amino acid i in the protein sequence. Then, a set of 20 + λ descriptors called the pseudo-amino 

acid composition for a protein sequence can be defines as: 
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, 

where w is the weighting factor for the sequence-order effect and is set to w = 0.05 in iLearnPlus as 

suggested by Chou et al. (84). 

 

APAAC (Amphiphilic Pseudo-Amino Acid Composition) 

Amphiphilic Pseudo-Amino Acid Composition (APAAC) was proposed in (83,84). The definition 

of this set of features is similar to the PAAC descriptors. Using H1(i) and H2(j) as previously defined, 
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the hydrophobicity and hydrophilicity correlation functions are defined as: 
1
, 1 1

2
, 2 2
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, 

respectively. An illustrated example of the correlation functions is provided in the following Figure 

S27. Thus, sequence order factors can be defined as: 
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Then, Amphiphilic Pseudo-Amino Acid Composition (APAAC) is defined as: 
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where w is the weighting factor. In iLearnPlus this factor is set to w = 0.5 as described in Chou’s 

work (84). The PAAC and APAAC have been successfully applied to protein cellular attributes 

prediction (84) and enzyme subfamily classes prediction (83). 

 

OPF_10bit 

For this descriptor, the amino acids are classified into 10 groups based their physicochemical 

properties (Table S9). Note that different groups might overlap, since a specific amino acid type 

may have two or more physicochemical properties. To reflect the correlation of different properties, 

a 10-bit vector were calculated to represent each amino acid of the N-terminus of peptide. Similarly, 
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the position of the bit of this 10-bit vector is set to 1, if the amino acid belongs to a corresponding 

group and 0 otherwise. The OPF_10bit descriptor has been successfully applied to anti-cancer 

peptides prediction (31).  

 

OPF_7bit type 1 

Similar to OPF_10bit descriptor, for this descriptor, the amino acids are classified into 7 groups. 

There are three subtypes of OPF_7bit descriptor (i.e. type 1, type 2 and type 3), due to different 

division of the amino acids. The difference of the type 1 to type 3 subtypes is the different division 

of amino acids. The division of amino acids for type 1 to 3 is listed in Table S10. 
 

 

Figure S27. A schematic diagram to show (a1/a2) the first-rank, (b1/b2) the second-rank and (c1/c2) 

the third-rank sequence-order-coupling mode along a protein sequence through a 

hydrophobicity/hydrophilicity correlation function, where 𝐻𝐻𝑖𝑖,𝑗𝑗1  and 𝐻𝐻𝑖𝑖,𝑗𝑗2   are given by the 

aforementioned equation. Panels (a1/a2) reflects the coupling mode between the most adjacent 

residues, panels (b1/b2) shows the coupling between the adjacent plus one residue, and panels (c1/c2) 

shows the coupling between the adjacent plus two residues. This figure is adapted from (83) for 

illustration purposes. 
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Table S9. Details of the division of the standard amino acid alphabet based on ten 
physicochemical properties. 

Rank Physicochemical properties Amino acid group 
1 Aromatic {F, Y, W, H} 
2 Negative {D, E} 
3 Positive {K, H, R} 
4 Polar {N, Q, S, D, E, C, T, K, R, H, Y, W} 
5 Hydrophobic {A, G, C, T, I, V, L, K, H, F, Y, W, M} 
6 Aliphatic {I, V, L} 
7 Tiny {A, S, G, C} 
8 Charged {K, H, R, D, E} 
9 Small {P, N, D, T, C, A, G, S, V} 
10 Proline {P} 

 
Table S10. Details of the division of the standard amino acid alphabet based on seven 

physicochemical properties. 
Rank Physicochemical 

properties 
Type 1 Type 2 Type 3 

1 Hydrophobicity {A, C, F, G, H, I, L, M, N, P, 
Q, S, T, V, W, Y} 

{D, E} {K, R} 

2 Normalized Van der 
Waals volume 

{C, F, I, L, M, V, W} {A, G, H, P, S, T, Y} {D, E, K, N, Q, R} 

3 Polarity {A, C, D, G, P, S, T} {E, I, L, N, Q, V} {F, H, K, M, R, W, Y} 
4 Polarizibility {C, F, I, L, M, V, W, Y} {A, G, P, S, T} {D, E, H, K, N, Q, R} 
5 Charge {A, D, G, S, T} {C, E, I, L, N, P, Q, V} {F, H, K, M, R, W, Y} 
6 Secondary structures {D, G, N, P, S} {A, E, H, K, L, M, Q, R} {C, F, I, T, V, W, Y} 
7 Solvent accessibility {A, C, F, G, I, L, V, W} {H, M, P, S, T, Y} {D, E, K, N, R, Q} 

 
ASDC (Adaptive skip dinucleotide composition) 

The adaptive skip dipeptide composition is a modified dipeptide composition, which sufficiently 

considers the correlation information present not only between adjacent residues but also between 

intervening residues (31). For given a sequence, the feature vector for ASDC is represented by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑓𝑓𝑣𝑣1,𝑓𝑓𝑣𝑣1, … ,𝑓𝑓𝑣𝑣400), 

where fvi is calculated by 

𝑓𝑓𝑣𝑣𝑣𝑣 =
∑ 𝑂𝑂𝑖𝑖

𝑔𝑔𝐿𝐿−1
𝑔𝑔=1

∑ ∑ 𝑂𝑂𝑖𝑖
𝑔𝑔𝐿𝐿−1

𝑔𝑔=1
400
𝑖𝑖=1

, 

where fvi denotes the occurrence frequency of all possible dipeptide with ≤ L-1 intervening 

nucleotides. The ASDC descriptor has been successfully applied to anti-cancer peptide prediction 

(31) and cell-penetrating peptide prediction (32). 
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KNN (K-Nearest Neighbor for peptides) 

The K-Nearest Neighbor for peptides (KNN) descriptor depicts how much one query sample 

resembles other samples. Here, the similarity score between two peptides is defined as: 
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∑
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where P is the peptide with n amino acids, i is the sequence position, and BLOSUM62(a,b) is the 

corresponding element value for amino acids a and b in the BLOSUM62 matrix. The KNN 

descriptor has been successfully applied to ubiquitination site prediction (85). 

 

DistancePair (PseAAC of distance-pair and reduced alphabet) 

The descriptor incorporates the amino acid distance pair coupling information and the amino acid 

reduced alphabet profile into the general pseudo amino acid composition vector. For the reduced 

alphabet profile, they are cp(13), cp(14), and cp(15) as defined below: 

cp(13) = {MF; IL;V;A;C;WYQHP;G;T; S;N;RK;D; E} 

cp(14) = {EIMV; L;F;WY;G; P;C;A; S; T;N;HRKQ; E;D} 

sp(15) = {P;G; E;K;R;Q;D; S;N; T;H;C; I;V;W;YF;A; L;M} 

where the single letters without a semicolon (;) to separate them mean belonging to a same cluster. 

The DistancePair descriptor has been successfully applied to DNA-binding protein identification 

(14). 

 

PseKRAAC (pseudo K-tuple reduced amino acids composition) 

Previous studies indicate that certain residues are similar in their physicochemical features, and can 

be clustered into groups because they play similar structural or functional roles in proteins (86). By 

implementing reduced amino acid alphabets, the protein complexity can be significantly simplified, 

which reduces information redundancy and decreases the risk of overfitting. The Pseudo K-tuple 

Reduced Amino Acids Composition (PseKRAAC) descriptor (87) includes two different feature 

types for protein sequence analysis: g-gap and λ-correlation PseKRAAC (84). 
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The g-gap PseKRAAC is used to represent a protein sequence with a vector containing RAACK 

components, where g represents the gap between each K-tuple peptides (39,43,88,89). A g-gap of n 

reflects the sequence-order information for all K-tuple peptides with the starting residues separated 

by n residues. An illustrated example of this encoding scheme (K = 2) is provided in the following 

Figure S28A. 

The λ-correlation PseKRAAC is used to represent a protein sequence with a vector containing 

RAACK components, where λ is an integer that represents the correlation tier and is less than N-K, 

where N is the sequence length. The n-th-tier correlation factor (λ = n) reflects the sequence-order 

correlation between the n-th nearest residues. An illustrated example of this encoding scheme (K = 

2) is provided in the following Figure S28B. 
 

 
Figure S28. A schematic diagram showing: (A) g-gap definition of dipeptide, and (B) λ-correlation 

definition of dipeptide A: (a) g-gap of 0 reflects the sequence-order information between all adjacent 

dipeptides, i.e. separated by zero residues, (b) g-gap of 1 reflects the sequence-order information for 

all dipeptides with the starting residues separated by one residue, and (c) g-gap of 2 reflects the 

sequence-order information for all dipeptides with the starting residues separated by two residues; 

B: (a) the first-tier correlation factor reflects the sequence-order correlation between the nearest 

residues along a protein chain, (b) the second-tier correlation factor reflects the sequence-order 

correlation between the second nearest residues, (c) the third-tier correlation factor reflects the 

sequence-order correlation between the 3rd nearest residues, and so forth. The figure is adapted from 

(87). 
 
The 16 types of reduced amino acid alphabets with different clustering approaches can be used to 

generate different versions of pseudo reduced amino acid compositions (PseRAACs) (Table S11). 
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Table S11. A list of 16 types of reduced amino acid alphabets for proteins (87). 

Type Description Cluster Reference 
1 RedPSSM 2-19 (90) 
2 BLOSUM 62 matrix 2-6, 8, 15 (91) 
3 PAM matrix (3A) and WAG matrix (3B) 2-19 (92) 
4 Protein Blocks 5,8,9,11,13 (93) 
5 BLOSUM50 matrix 3,4,8,10,15 (93) 
6 Multiple cluster 4,5A,5B,5C (94) 
7 Metric multi-dimensional scaling 2-19 (95) 
8 Grantham Distance Matrix 2-19 (96) 
9 Grantham Distance Matrix 2-19 (96) 
10 BLOSUM matrix for SWISS-PROT 2-19 (97) 
11 BLOSUM matrix for SWISS-PROT 2-19 (97) 
12 BLOSUM matrix for DAPS 2-18 (98) 
13 Coarse-graining substitution 

matrices 
4,12,17 (99) 

14 Alphabet Simplifer 2-19 (100) 
15 MJ matrix 2-16 (101) 
16 BLOSUM50 matrix 2-16 (101) 

 

14. Guidance of parameters setting for conventional machine learning 

algorithms 

For the conventional machine-learning algorithms, iLearnPlus supports automatic parameter 

optimization for the main parameters of these algorithms. Users who are not familiar with the 

parameters can use parameter(s) auto optimization function to find optimized parameter(s). For 

example, if you do not know how to set the “Penalty” and “Gamma” values of “rbf” kernel in SVM 

algorithm, you can select the “Auto optimization” option to optimize these two parameters 

automatically. We suggest using the default values when users are not familiar with a given 

parameter. 
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RF (Random forest) 

RF (102) is a well-established and widely employed predictive/supervised algorithm which 

ensembles/combines of a given number of decision trees.  

Parameters 1 Tree number: The number of trees in the forest, default=100. 
2 Number of 

threads: 
The number of threads to run in parallel, default=1. 

3 Auto 
optimization: 

If “Auto optimization” is checked, the program will optimize 
parameter of “Tree number” automatically. 

4 Trees range 
from: 

The searching space for “Tree number” parameters. If “Auto 
optimization” is checked, the program will test the performance 
with tree number value from “Trees range from” to “Trees 
range to” with steps as “Tree step”. 

5 Trees range 
to: 

6 Tree step: 
 
LightGBM 

LightGBM (103) is a gradient boosting predictive/supervised method that uses tree-based learning 

algorithms. 

Parameters 1 Boosting type: Boosting type, default=’gbdt’.  
2 Number of 

leaves: 
Maximum tree leaves for base learners. This is the main 
parameter to control the complexity of the tree model. Should 
let it be small than 2Max depth, default=31. 

3 Max depth: Maximum tree depth for base learners, <=0 means no limit. 
4 Learning rate: Boosting learning rate, default=0.1. 
5 Number of 

threads: 
The number of threads to run in parallel, default=1. 

6 Auto 
optimization: 

If “Auto optimization” is checked, the program will optimize 
the parameters “Number of leaves”, “Max depth” and 
“Learning rate” automatically. 

7 Leaves range: Searching space for “Number of leaves”, with the format of 
“from:to:step”, default=20:100:10, when “Auto optimization:” 
is checked. 

8 Depth range: Searching space for “Max depth”, default=15:55:10, only 
when “Auto optimization:” is checked. 

9 Learning rate 
range: 

Searching space for “Learning rate”, default=0.01:0.15:0.02, 
only when “Auto optimization:” is checked. 

 
SVM (Support Vector Machine) 

SVM (104) is a predictive/supervised algorithm that accurately classifies samples by generating the 

optimal hyperplanes using quadratic programming on the training data. A variety of kernels can be 
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used to further improve predictive performance of SVM including Gaussian radial basis function 

(RBF), linear kernel, polynomial kernel, sigmoid kernel, etc. 

Parameters 1 Kernel 
function 

Specifies the kernel type to be used in the algorithm. It must be 
one of ‘linear’, ‘poly’, ‘rbf’ or ‘sigmoid’. 

2 Penalty Regularization parameter, default=1. The strength of the 
regularization is inversely proportional to Penality. Must be 
strictly positive. 

3 Gamma Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. if ‘auto’, uses 
1 / n_features. 

4 Auto 
optimization 

If “Auto optimization” is checked, the program will optimize 
the parameters “Penalty” and “Gamma” automatically. 

5 Penalty from Searching space for parameter “Penalty”, default from 1.0 to 
15.0 6 Penalty to 

7 Gamma from Searching space for parameter “Gamma”, default from 2-10 to 
25. 8 Gamma to 

 
MLP (Multi-layer Perceptron)  
MLP (105) is a predictive/supervised algorithm that implements a network of neurons, typically 

involving three or more interconnected layers of neutorn, that are wired in a linear/feed-forward 

fashion. 

Parameters 1 Hidden layer 
size 

Integers separated by “:”, The i-th element represents the 
number of neurons in the i-th hidden layer. For example, 
32:64:2 means a neural network with three layers, with 32 
neurons in first layer, 64 neurons in secondary layer and 2 
neurons in the third layer. 

2 Epochs Maximum number of iterations. The solver iterates until 
convergence or this number of iterations, default=200. 

3 Activation Activation function for the hidden layer, default=relu. 
4 Optimizer The solver for weight optimization, default=adam. 
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XGBoost 

XGBoost (4) is a tree-boosting predictive/supervised algorithm which is an advanced 

implementation of the gradient boosting algorithm. Given its favorable predictive performance in a 

wide range of practical applications and recently-held competitions, it has been widely applied to 

solve many classification problems in recent years. 

Parameters 1 Booster Which booster to use. Can be gbtree, gblinear; gbtree use 
tree based models while gblinear uses linear functions. 

2 Threads number The number of threads to run in parallel, default=1. 
3 Max depth Maximum depth of a tree. Increasing this value will make 

the model more complex and more likely to overfit, 
default=6. 

4 Learning rate Step size shrinkage used in update to prevents overfitting, 
default=0.3. 

5 colsample_bytree This the subsample ratio of columns when constructing each 
tree. Subsampling occurs once for every tree constructed, 
default=0.8. 

6 Auto optimization If “Auto optimization” is checked, the program will 
optimize the parameters “Max depth” and “Learning rate” 
automatically. 

7 Depth range Searching space for parameter “Max depth”, with the format 
of “from:to:step”, default=3:10:1, only when “Auto 
optimization:” is checked. 

8 Learning rate 
range 

Searching space for parameter “Learning rate”, with the 
format of “from:to:step”, default=0.01:0.3:0.05, only when 
“Auto optimization:” is checked. 

 
KNN (K-Nearest Neighbor) 

KNN (106) algorithm is a commonly employed supervised algorithm that relies on calculating 

similarities/distances between objects/sequences. 

Parameters 1 Top K 
values 

Number of neighbors to use by default for k-neighbors queries, 
default=3.  

 
Bagging  
Bagging (107) is a popular approach to combine/ensemble results produced by multiple 

supervised/predictive algorithms.  

Parameters 1 n_estimators The number of base estimators in the ensemble, default =10. 
2 Number of 

threads 
The number of threads to run in parallel, default=1. 
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15. Guidance of parameters setting for deep learning algorithms 

For Net_1_CNN, Net_2_RNN, Net_3_BRNN, Net_4_ABCNN, and Net_5_ResNet, the “Input 

channels” and “Input length” are regarded as two key parameters that determine the predictive 

performance of these models. These methods can use the residue-level feature encoding as the input. 

The residue-level features refer to the encoding of the amino acid or nucleotide sequence into the 

fixed-size feature vector for each of its amino acids/nucleotides. The residue-level features refer to 

each amino acid or nucleotide in the sequence can be encoded into a fixed-size feature vector. For 

example, in protein binary encoding, each amino acid in the protein sequence can be encoded as a 

20-dimension vector. Other protein descriptors such as AAIndex, ZScale, BLOSUM62, OPF, and 

nucleotide descriptors like ANF, binary, and EIIP are also residue-level descriptors. The “Input 

channels” is the vector dimension for each amino acids/nucleotide in the input sequence (e.g. Input 

channels=20 for the abovementioned binary encoding) while the “Input length” denotes the 

sequence length. Thus, the product of the “Input channels” and “Input length” determines the total 

numbers of input features for the given sequence. Importantly, these methods can also take the 

sequences-level feature encoding as the input. This would mean, for instance, that the input protein 

sequence could be encoded using AAC of the entire sequences. In this case, the users should set 

“Input channels” =1 and “Input length” = vector dimension for the sequence encoding (20 when 

using AAC). The descriptions of the remaining parameters are provided in the subsequent tables. 

We suggest using the default values when users are not familiar with a given parameter. 
 
Net_1_CNN 
Parameters 1 Output 

channels 
The number of convolving kernels in CNN, default=64. 

2 Padding Controls the amount of implicit zero-paddings on both sides for 
padding number of points in convolution operation, default=2. 

3 Kernel size Size of the convolving kernel for CNN, default=5. 
4 FC layer size The neurons number in flatten layer, default=64. 
5 Dropout rate Dropout is a regularization technique which prevents over-fitting 

of the network. During training a certain number of neurons in 
the hidden layer is randomly dropped. Default=0.5. 

6 Learning 
rate 

The learning rate is defined as the amount of minimization in the 
cost func+tion in each iteration, default=0.001. 

7 Epochs A single training iteration of all batches in both forward and back 



 79 

propagation. This means 1 epoch is a single forward and 
backward pass of the entire input data, default=1000. 

8 Early 
stopping 

If the performance did not improve within the value of “Early 
stopping” epochs, the model optimization process will be 
terminated early. Default=100. 

9 Batch size While training a neural network, instead of sending the entire 
input in one go, we divide in input into several chunks of equal 
size randomly. Training the data on batches makes the model 
more generalized as compared to the model built when the entire 
data set is fed to the network in one go. Default=64. 

 
Net_2_RNN and Net_3_BRNN 
Parameters 1 Hidden size The number of features in the hidden state h, default=32. 

2 Number of 
recurrent 
layers 

Number of recurrent layers. E.g., setting num_layers=2 would 
mean stacking two LSTMs together to form a stacked LSTM, 
with the second LSTM taking in outputs of the first LSTM and 
computing the final results. Default: 1. 

Please refer to Net_1_CNN for the description of the other parameters. 
 
Net_4_ABCNN and Net_5_ResNet 
Please refer to Net_1_CNN for the description of the parameters. 
 
Net_6_AE 
Parameters 1 Input size The dimension of the feature encoding, the parameter will be 

determined automatically. 
 
 

16. Guide to source code location 

For the users’ convenience, we provide a brief guide that users can utilize to identify location of a 

given part of the source code from iLearnPlus. The source code guide is summarized in Table S12. 
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Table S12. Guide to source code location for iLearnPlus. 
Primary directory Secondary directory Content 

data Txt files The example files are stored in this directory 
docs iLearnPlus_manual.pdf User manual 
images Image files Icon and image files 
models Model files ended with 

“.pkl” 
The models will be saved in this directory by default 

util CheckAccPseParameter.py Parameters validation for descriptors of DAC, DCC, 
DACC, PseDNC, PseKNC, PCPseDNC, PCPseTNC, 
SCPseDNC and SCPseTNC 

 DataAnalysis.py The class used for feature analysis including clustering, 
feature normalization, selection and dimensionality 
reduction 

 FileProcessiong.py The class used for feature descriptor extraction, which 
includes all the feature descriptor methods 

 EvaluationMetrics.py The class used for calculating evaluation metrics 
 InputDialog.py The GUI class for all the dialogs, which are used for 

parameters setting 
 MachineLearning.py The class used for model construction, include all the 

conventional machine learning algorithms 
 MCL.py The markov clustering algorithm 
 ModelMetrics.py The class used for storing the data of evaluation metrics, 

and plotting data for ROC and PRC curves. 
 Modules.py The GUI classes used for plotting ROC, PRC curves, 

scatter plot and kernel density plot by using the user-
defined data. 

 Nets.py The architectures of the deep-learning algorithms are 
stored in this file 

 PlotWidgets.py The GUI classes used for plotting, such as ROC, PRC 
curves, scatter plot and kernel density 

 TableWidget.py The GUI for table display 
iLearnPlus.py -- The GUI for starting program 
iLearnPlusBasic.py -- The GUI for iLearnPlus-Basic module 
iLearnPlusEstimator.py -- The GUI for iLearnPlus-Estimator module 
iLearnPlusAutoML.py -- The GUI for iLearnPlus-AutoML module 
iLearnPlusLoadModel.py -- The GUI for iLearnPlus-LoadModel module 
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