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Summary

VeridicalFlow is a Python package for simplifying building reproducible and trustworthy
data-science pipelines using the PCS framework (Yu & Kumbier, 2020). It provides users
a simple interface for stability analysis, i.e. checking the robustness of results from a data-
science pipeline to various judgement calls made during modeling. This ensures that arbitrary
judgement calls made by data-practitioners (e.g. specifying a default imputation strategy)
do not dramatically alter the final conclusions made in a modeling pipeline. In addition to
wrappers facilitating stability analysis, VeridicalFlow also automates many cumbersome
coding aspects of python pipelines, including experiment tracking and saving, parallelization,
and caching, all through integrations with existing python packages. Overall, the package
helps to code using the PCS (predictability-computability-stability) framework, by screening
models for predictive performance, helping automate computation, and facilitating stability
analysis.

Statement of need
Predictability, computability, and stability are central concerns in modern statistical/machine-
learning practice, as they are required to help vet that findings reflect reality, can be reasonably
computed, and are robust as the many judgement calls during the data-science life cycle which
often go unchecked (Yu & Kumbier, 2020).
The package focuses on stability, but also provides wrappers to help support and improve
predictability and computability. Stability is a common-sense principle related to notions of
scientific reproducibility Ivie & Thain (2018), sample variability, robust statistics, sensitivity
analysis (Saltelli, 2002), and stability in numerical analysis and control theory. Moreover,
stability serves as a prerequisite for understanding which parts of a model will generalize and
can be interpreted (Murdoch et al., 2019).
Importantly, current software packages offer very little support to facilitate stability analyses.
VeridicalFlow helps fill this gap by making stability analysis simple, reproducible, and com-
putationally efficient. This enables a practitioner to represent a pipeline with many different
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perturbations in a simple-to-code way, while using prediction analysis as a reality check to
screen out poor models.

Features
Using VeridicalFlows’s simple wrappers easily enables many best practices for data science,
and makes writing pipelines easy.

Stability Computability Reproducibility
Replace a single function
(e.g. preprocessing) with a set of
functions representing different
judgement calls and easily assess
the stability of downstream results

Automatic parallelization and
caching throughout the pipeline

Automatic experiment
tracking and saving

The main features of VeridicalFlow center around stability analysis. The central concept
is to replace given functions with a set of functions subject to different pipeline perturbations
that are documented and argued for in PCS documentation (Yu & Kumbier, 2020). Then, a
set of useful analysis functions and computations enable easily assessing the stability to these
perturbations on top of predictive screening for reality checks.
The package also helps users to improve the efficacy of their computational pipeline. Compu-
tation is (optionally) handled through Ray (Moritz et al., 2018), which easily facilitates paral-
lelization across different machines and along different perturbations of the pipeline. Caching
is handled via joblib, so that individual parts of the pipeline do not need to be rerun.
Experiment-tracking and saving are (optionally) handled via integration with MLFlow (Zaharia
et al., 2018), which enables automatic experiment tracking and saving.
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The code here heavily derives from the wonderful work of previous projects. It hinges on the
data-science infrastructure of python, including packages such as pandas (McKinney & others,
2011), numpy (Van Der Walt et al., 2011), and scikit-learn (Pedregosa et al., 2011) as well as
newer projects such as imodels (Singh et al., 2021) and networkx (Hagberg & Conway, n.d.).
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