
9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 1/104

pugixml 1.9 manual
website – http://pugixml.org ⋅ repository – http://github.com/zeux/pugixml

Table of Contents
1. Overview

1.1. Introduction
1.2. Feedback

1.3. Acknowledgments
1.4. License

2. Installation

2.1. Getting pugixml
2.2. Building pugixml
2.3. Portability

3. Document object model
3.1. Tree structure
3.2. C++ interface

3.3. Unicode interface
3.4. Thread-safety guarantees
3.5. Exception guarantees

3.6. Memory management
4. Loading document

4.1. Loading document from �le

4.2. Loading document from memory
4.3. Loading document from C++ IOstreams
4.4. Handling parsing errors

4.5. Parsing options
4.6. Encodings
4.7. Conformance to W3C speci�cation

5. Accessing document data
5.1. Basic traversal functions
5.2. Getting node data

5.3. Getting attribute data
5.4. Contents-based traversal functions
5.5. Range-based for-loop support

5.6. Traversing node/attribute lists via iterators
5.7. Recursive traversal with xml_tree_walker
5.8. Searching for nodes/attributes with predicates

http://pugixml.org/
http://github.com/zeux/pugixml

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 2/104

5.9. Working with text contents
5.10. Miscellaneous functions

6. Modifying document data
6.1. Setting node data
6.2. Setting attribute data

6.3. Adding nodes/attributes
6.4. Removing nodes/attributes
6.5. Working with text contents

6.6. Cloning nodes/attributes
6.7. Moving nodes
6.8. Assembling document from fragments

7. Saving document
7.1. Saving document to a �le
7.2. Saving document to C++ IOstreams

7.3. Saving document via writer interface
7.4. Saving a single subtree
7.5. Output options

7.6. Encodings
7.7. Customizing document declaration

8. XPath

8.1. XPath types
8.2. Selecting nodes via XPath expression
8.3. Using query objects

8.4. Using variables
8.5. Error handling
8.6. Conformance to W3C speci�cation

9. Changelog
v1.9
v1.8

v1.7
v1.6
v1.5

v1.4
v1.2
v1.0
v0.9

v0.5
v0.42
v0.41

2018-04-04

2016-11-24

2015-10-19

2015-04-10

2014-11-27

2014-02-27

2012-05-01

2010-11-01

2010-07-01

2009-11-08

2009-09-17

2009-02-08

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 3/104

v0.4
v0.34

v0.3
v0.2
v0.1

10. API Reference
10.1. Macros
10.2. Types

10.3. Enumerations
10.4. Constants
10.5. Classes

10.6. Functions

2009-01-18

2007-10-31

2007-02-21

2006-11-06

2006-07-15

1. Overview

1.1. Introduction
pugixml (http://pugixml.org/) is a light-weight C++ XML processing library. It consists of a DOM-
like interface with rich traversal/modification capabilities, an extremely fast XML parser
which constructs the DOM tree from an XML file/buffer, and an XPath 1.0 implementation for
complex data-driven tree queries. Full Unicode support is also available, with two Unicode
interface variants and conversions between different Unicode encodings (which happen
automatically during parsing/saving). The library is extremely portable and easy to integrate
and use. pugixml is developed and maintained since 2006 and has many users. All code is
distributed under the MIT license, making it completely free to use in both open-source and
proprietary applications.

pugixml enables very fast, convenient and memory-efficient XML document processing.
However, since pugixml has a DOM parser, it can’t process XML documents that do not fit in
memory; also the parser is a non-validating one, so if you need DTD or XML Schema
validation, the library is not for you.

This is the complete manual for pugixml, which describes all features of the library in detail. If
you want to start writing code as quickly as possible, you are advised to read the quick start
guide first.

NOTE
No documentation is perfect; neither is this one. If you find errors or
omissions, please don’t hesitate to submit an issue or open a pull request
(https://github.com/zeux/pugixml/issues/new) with a fix.

§

http://pugixml.org/
https://pugixml.org/docs/quickstart.html
https://github.com/zeux/pugixml/issues/new

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 4/104

1.2. Feedback
If you believe you’ve found a bug in pugixml (bugs include compilation problems
(errors/warnings), crashes, performance degradation and incorrect behavior), please file an
issue via issue submission form (https://github.com/zeux/pugixml/issues/new). Be sure to include the
relevant information so that the bug can be reproduced: the version of pugixml, compiler
version and target architecture, the code that uses pugixml and exhibits the bug, etc.

Feature requests can be reported the same way as bugs, so if you’re missing some
functionality in pugixml or if the API is rough in some places and you can suggest an
improvement, file an issue (https://github.com/zeux/pugixml/issues/new). However please note that
there are many factors when considering API changes (compatibility with previous versions,
API redundancy, etc.), so generally features that can be implemented via a small function
without pugixml modification are not accepted. However, all rules have exceptions.

If you have a contribution to pugixml, such as build script for some build system/IDE, or a
well-designed set of helper functions, or a binding to some language other than C++, please file
an issue or open a pull request (https://github.com/zeux/pugixml/issues/new). Your contribution has
to be distributed under the terms of a license that’s compatible with pugixml license; i.e.
GPL/LGPL licensed code is not accepted.

If filing an issue is not possible due to privacy or other concerns, you can contact pugixml
author by e-mail directly: arseny.kapoulkine@gmail.com.

1.3. Acknowledgments
pugixml could not be developed without the help from many people; some of them are listed
in this section. If you’ve played a part in pugixml development and you can not find yourself
on this list, I’m truly sorry; please send me an e-mail so I can fix this.

Thanks to Kristen Wegner for pugxml parser, which was used as a basis for pugixml.

Thanks to Neville Franks for contributions to pugxml parser.

Thanks to Artyom Palvelev for suggesting a lazy gap contraction approach.

Thanks to Vyacheslav Egorov for documentation proofreading and fuzz testing.

1.4. License
The pugixml library is distributed under the MIT license:

https://github.com/zeux/pugixml/issues/new
https://github.com/zeux/pugixml/issues/new
https://github.com/zeux/pugixml/issues/new
mailto:arseny.kapoulkine@gmail.com

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 5/104

Copyright (c) 2006-2018 Arseny Kapoulkine

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

This means that you can freely use pugixml in your applications, both open-source and
proprietary. If you use pugixml in a product, it is sufficient to add an acknowledgment like this
to the product distribution:

This software is based on pugixml library (http://pugixml.org).
pugixml is Copyright (C) 2006-2018 Arseny Kapoulkine.

2. Installation

2.1. Getting pugixml
pugixml is distributed in source form. You can either download a source distribution or clone
the Git repository.

2.1.1. Source distributions

You can download the latest source distribution as an archive:

pugixml-1.9.zip (https://github.com/zeux/pugixml/releases/download/v1.9/pugixml-1.9.zip) (Windows
line endings) / pugixml-1.9.tar.gz
(https://github.com/zeux/pugixml/releases/download/v1.9/pugixml-1.9.tar.gz) (Unix line endings)

https://github.com/zeux/pugixml/releases/download/v1.9/pugixml-1.9.zip
https://github.com/zeux/pugixml/releases/download/v1.9/pugixml-1.9.tar.gz

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 6/104

The distribution contains library source, documentation (the manual you’re reading now and
the quick start guide) and some code examples. After downloading the distribution, install
pugixml by extracting all files from the compressed archive.

If you need an older version, you can download it from the version archive
(https://github.com/zeux/pugixml/releases).

2.1.2. Git repository

The Git repository is located at https://github.com/zeux/pugixml/. There is a Git tag "v{version}"
for each version; also there is the "latest" tag, which always points to the latest stable release.

For example, to checkout the current version, you can use this command:

The repository contains library source, documentation, code examples and full unit test suite.

Use latest tag if you want to automatically get new versions. Use other tags if you want to
switch to new versions only explicitly. Also please note that the master branch contains the
work-in-progress version of the code; while this means that you can get new features and bug
fixes from master without waiting for a new release, this also means that occasionally the
code can be broken in some configurations.

2.1.3. Subversion repository

You can access the Git repository via Subversion using https://github.com/zeux/pugixml URL.
For example, to checkout the current version, you can use this command:

2.1.4. Packages

pugixml is available as a package via various package managers. Note that most packages are
maintained separately from the main repository so they do not necessarily contain the latest
version.

Here’s an incomplete list of pugixml packages in various systems:

Linux (Ubuntu (http://packages.ubuntu.com/search?keywords=pugixml), Debian
(https://tracker.debian.org/pkg/pugixml), Fedora (https://apps.fedoraproject.org/packages/pugixml),
Arch Linux (https://aur.archlinux.org/packages/pugixml/), other distributions

git clone https://github.com/zeux/pugixml
cd pugixml
git checkout v1.9

BASH

svn checkout https://github.com/zeux/pugixml/tags/v1.9 pugixml
BASH

https://github.com/zeux/pugixml/releases
https://github.com/zeux/pugixml/
https://github.com/zeux/pugixml
http://packages.ubuntu.com/search?keywords=pugixml
https://tracker.debian.org/pkg/pugixml
https://apps.fedoraproject.org/packages/pugixml
https://aur.archlinux.org/packages/pugixml/
http://pkgs.org/search/pugixml

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 7/104

(http://pkgs.org/search/pugixml))

FreeBSD (http://fbsdmon.org/ports/textproc/pugixml)

OSX, via Homebrew (http://brewformulas.org/Pugixml)

Windows, via NuGet (https://www.nuget.org/packages/pugixml/)

2.2. Building pugixml
pugixml is distributed in source form without any pre-built binaries; you have to build them
yourself.

The complete pugixml source consists of three files - one source file, pugixml.cpp , and two
header files, pugixml.hpp and pugiconfig.hpp . pugixml.hpp is the primary header which
you need to include in order to use pugixml classes/functions; pugiconfig.hpp is a
supplementary configuration file (see Additional configuration options). The rest of this guide
assumes that pugixml.hpp is either in the current directory or in one of include directories of
your projects, so that #include "pugixml.hpp" can find the header; however you can also
use relative path (i.e. #include "../libs/pugixml/src/pugixml.hpp") or include directory-
relative path (i.e. #include <xml/thirdparty/pugixml/src/pugixml.hpp>).

2.2.1. Building pugixml as a part of another static library/executable

The easiest way to build pugixml is to compile the source file, pugixml.cpp , along with the
existing library/executable. This process depends on the method of building your application;
for example, if you’re using Microsoft Visual Studio [1], Apple Xcode, Code::Blocks or any other
IDE, just add pugixml.cpp to one of your projects.

If you’re using Microsoft Visual Studio and the project has precompiled headers turned on,
you’ll see the following error messages:

The correct way to resolve this is to disable precompiled headers for pugixml.cpp ; you have
to set "Create/Use Precompiled Header" option (Properties dialog → C/C++ → Precompiled
Headers → Create/Use Precompiled Header) to "Not Using Precompiled Headers". You’ll have
to do it for all project configurations/platforms (you can select Configuration "All
Configurations" and Platform "All Platforms" before editing the option):

pugixml.cpp(3477) : fatal error C1010: unexpected end of file while looking for
precompiled header. Did you forget to add '#include "stdafx.h"' to your source?

http://pkgs.org/search/pugixml
http://fbsdmon.org/ports/textproc/pugixml
http://brewformulas.org/Pugixml
https://www.nuget.org/packages/pugixml/

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 8/104

2.2.2. Building pugixml as a standalone static library

It’s possible to compile pugixml as a standalone static library. This process depends on the
method of building your application; pugixml distribution comes with project files for several
popular IDEs/build systems. There are project files for Apple XCode, Code::Blocks, Codelite,
Microsoft Visual Studio 2005, 2008, 2010+, and configuration scripts for CMake and premake4.
You’re welcome to submit project files/build scripts for other software; see Feedback.

There are two projects for each version of Microsoft Visual Studio: one for dynamically linked
CRT, which has a name like pugixml_vs2008.vcproj , and another one for statically linked
CRT, which has a name like pugixml_vs2008_static.vcproj . You should select the version
that matches the CRT used in your application; the default option for new projects created by
Microsoft Visual Studio is dynamically linked CRT, so unless you changed the defaults, you
should use the version with dynamic CRT (i.e. pugixml_vs2008.vcproj for Microsoft Visual
Studio 2008).

In addition to adding pugixml project to your workspace, you’ll have to make sure that your
application links with pugixml library. If you’re using Microsoft Visual Studio 2005/2008, you
can add a dependency from your application project to pugixml one. If you’re using Microsoft
Visual Studio 2010+, you’ll have to add a reference to your application project instead. For
other IDEs/systems, consult the relevant documentation.

Microsoft Visual Studio 2005/2008 Microsoft Visual Studio 2010+

2.2.3. Building pugixml as a standalone shared library

It’s possible to compile pugixml as a standalone shared library. The process is usually similar
to the static library approach; however, no preconfigured projects/scripts are included into
pugixml distribution, so you’ll have to do it yourself. Generally, if you’re using GCC-based
toolchain, the process does not differ from building any other library as DLL (adding -shared

https://pugixml.org/docs/images/vs2005_pch1.png
https://pugixml.org/docs/images/vs2005_pch2.png
https://pugixml.org/docs/images/vs2005_pch3.png
https://pugixml.org/docs/images/vs2005_pch4.png
https://pugixml.org/docs/images/vs2005_link1.png
https://pugixml.org/docs/images/vs2005_link2.png
https://pugixml.org/docs/images/vs2010_link1.png
https://pugixml.org/docs/images/vs2010_link2.png

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 9/104

to compilation flags should suffice); if you’re using MSVC-based toolchain, you’ll have to
explicitly mark exported symbols with a declspec attribute. You can do it by defining
PUGIXML_API macro, i.e. via pugiconfig.hpp :

CAUTION

If you’re using STL-related functions, you should use the shared runtime
library to ensure that a single heap is used for STL allocations in your
application and in pugixml; in MSVC, this means selecting the 'Multithreaded
DLL' or 'Multithreaded Debug DLL' to 'Runtime library' property (/MD or
/MDd linker switch). You should also make sure that your runtime library
choice is consistent between different projects.

2.2.4. Using pugixml in header-only mode

It’s possible to use pugixml in header-only mode. This means that all source code for pugixml
will be included in every translation unit that includes pugixml.hpp . This is how most of
Boost and STL libraries work.

Note that there are advantages and drawbacks of this approach. Header mode may improve
tree traversal/modification performance (because many simple functions will be inlined), if
your compiler toolchain does not support link-time optimization, or if you have it turned off
(with link-time optimization the performance should be similar to non-header mode).
However, since compiler now has to compile pugixml source once for each translation unit
that includes it, compilation times may increase noticeably. If you want to use pugixml in
header mode but do not need XPath support, you can consider disabling it by using
PUGIXML_NO_XPATH define to improve compilation time.

To enable header-only mode, you have to define PUGIXML_HEADER_ONLY . You can either do it
in pugiconfig.hpp , or provide them via compiler command-line.

Note that it is safe to compile pugixml.cpp if PUGIXML_HEADER_ONLY is defined - so if you
want to i.e. use header-only mode only in Release configuration, you can include pugixml.cpp
in your project (see Building pugixml as a part of another static library/executable), and
conditionally enable header-only mode in pugiconfig.hpp like this:

#ifdef _DLL
 #define PUGIXML_API __declspec(dllexport)
#else
 #define PUGIXML_API __declspec(dllimport)
#endif

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 10/104

2.2.5. Additional con�guration options

pugixml uses several defines to control the compilation process. There are two ways to define
them: either put the needed definitions to pugiconfig.hpp (it has some examples that are
commented out) or provide them via compiler command-line. Consistency is important: the
definitions should match in all source files that include pugixml.hpp (including pugixml
sources) throughout the application. Adding defines to pugiconfig.hpp lets you guarantee
this, unless your macro definition is wrapped in preprocessor #if / #ifdef directive and this
directive is not consistent. pugiconfig.hpp will never contain anything but comments,
which means that when upgrading to a new version, you can safely leave your modified
version intact.

PUGIXML_WCHAR_MODE define toggles between UTF-8 style interface (the in-memory text
encoding is assumed to be UTF-8, most functions use char as character type) and UTF-16/32
style interface (the in-memory text encoding is assumed to be UTF-16/32, depending on
wchar_t size, most functions use wchar_t as character type). See Unicode interface for more
details.

PUGIXML_COMPACT define activates a different internal representation of document storage
that is much more memory efficient for documents with a lot of markup (i.e. nodes and
attributes), but is slightly slower to parse and access. For details see Compact mode.

PUGIXML_NO_XPATH define disables XPath. Both XPath interfaces and XPath implementation
are excluded from compilation. This option is provided in case you do not need XPath
functionality and need to save code space.

PUGIXML_NO_STL define disables use of STL in pugixml. The functions that operate on STL
types are no longer present (i.e. load/save via iostream) if this macro is defined. This option is
provided in case your target platform does not have a standard-compliant STL
implementation.

PUGIXML_NO_EXCEPTIONS define disables use of exceptions in pugixml. This option is
provided in case your target platform does not have exception handling capabilities.

PUGIXML_API , PUGIXML_CLASS and PUGIXML_FUNCTION defines let you specify custom
attributes (i.e. declspec or calling conventions) for pugixml classes and non-member functions.
In absence of PUGIXML_CLASS or PUGIXML_FUNCTION definitions, PUGIXML_API definition is

#ifndef _DEBUG
 #define PUGIXML_HEADER_ONLY
#endif

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 11/104

used instead. For example, to specify fixed calling convention, you can define
PUGIXML_FUNCTION to i.e. __fastcall . Another example is DLL import/export attributes in
MSVC (see Building pugixml as a standalone shared library).

NOTE
In that example PUGIXML_API is inconsistent between several source files;
this is an exception to the consistency rule.

PUGIXML_MEMORY_PAGE_SIZE , PUGIXML_MEMORY_OUTPUT_STACK and
PUGIXML_MEMORY_XPATH_PAGE_SIZE can be used to customize certain important sizes to
optimize memory usage for the application-specific patterns. For details see Memory
consumption tuning.

PUGIXML_HAS_LONG_LONG define enables support for long long type in pugixml. This define
is automatically enabled if your platform is known to have long long support (i.e. has C++11
support or uses a reasonably modern version of a known compiler); if pugixml does not
recognize that your platform supports long long but in fact it does, you can enable the
define manually.

2.3. Portability
pugixml is written in standard-compliant C++ with some compiler-specific workarounds
where appropriate. pugixml is compatible with the C++11 standard, but does not require
C++11 support. Each version is tested with a unit test suite with code coverage exceeding 99%.

pugixml runs on a variety of desktop platforms (including Microsoft Windows, Linux,
FreeBSD, Apple MacOSX and Sun Solaris), game consoles (inclusing Microsoft Xbox 360,
Microsoft Xbox One, Nintendo Wii, Sony Playstation Portable and Sony Playstation 3) and
mobile platforms (including Android, iOS, BlackBerry, Samsung bada and Microsoft Windows
CE).

pugixml supports various architectures, such as x86/x86-64, PowerPC, ARM, MIPS and SPARC.
In general it should run on any architecture since it does not use architecture-specific code
and does not rely on features such as unaligned memory access.

pugixml can be compiled using any C++ compiler; it was tested with all versions of Microsoft
Visual C++ from 6.0 up to 2015, GCC from 3.4 up to 5.2, Clang from 3.2 up to 3.7, as well as a
variety of other compilers (e.g. Borland C++, Digital Mars C++, Intel C++, Metrowerks
CodeWarrior and PathScale). The code is written to avoid compilation warnings even on
reasonably high warning levels.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 12/104

Note that some platforms may have very bare-bones support of C++; in some cases you’ll have
to use PUGIXML_NO_STL and/or PUGIXML_NO_EXCEPTIONS to compile without issues. This
mostly applies to old game consoles and embedded systems.

3. Document object model
pugixml stores XML data in DOM-like way: the entire XML document (both document
structure and element data) is stored in memory as a tree. The tree can be loaded from a
character stream (file, string, C++ I/O stream), then traversed with the special API or XPath
expressions. The whole tree is mutable: both node structure and node/attribute data can be
changed at any time. Finally, the result of document transformations can be saved to a
character stream (file, C++ I/O stream or custom transport).

3.1. Tree structure
The XML document is represented with a tree data structure. The root of the tree is the
document itself, which corresponds to C++ type xml_document. Document has one or more
child nodes, which correspond to C++ type xml_node. Nodes have different types; depending
on a type, a node can have a collection of child nodes, a collection of attributes, which
correspond to C++ type xml_attribute, and some additional data (i.e. name).

The tree nodes can be of one of the following types (which together form the enumeration
xml_node_type):

Document node (node_document) - this is the root of the tree, which consists of several
child nodes. This node corresponds to xml_document class; note that xml_document is a
sub-class of xml_node, so the entire node interface is also available. However, document
node is special in several ways, which are covered below. There can be only one document
node in the tree; document node does not have any XML representation.

Element/tag node (node_element) - this is the most common type of node, which
represents XML elements. Element nodes have a name, a collection of attributes and a
collection of child nodes (both of which may be empty). The attribute is a simple
name/value pair. The example XML representation of element nodes is as follows:

There are two element nodes here: one has name "node" , single attribute "attr" and
single child "child" , another has name "child" and does not have any attributes or
child nodes.

<node attr="value"><child/></node>

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 13/104

Plain character data nodes (node_pcdata) represent plain text in XML. PCDATA nodes
have a value, but do not have a name or children/attributes. Note that plain character
data is not a part of the element node but instead has its own node; an element node
can have several child PCDATA nodes. The example XML representation of text nodes is as
follows:

Here "node" element has three children, two of which are PCDATA nodes with values "
text1 " and " text2 " .

Character data nodes (node_cdata) represent text in XML that is quoted in a special way.
CDATA nodes do not differ from PCDATA nodes except in XML representation - the above
text example looks like this with CDATA:

CDATA nodes make it easy to include non-escaped < , & and > characters in plain text.
CDATA value can not contain the character sequence]]> , since it is used to determine the
end of node contents.

Comment nodes (node_comment) represent comments in XML. Comment nodes have a
value, but do not have a name or children/attributes. The example XML representation of a
comment node is as follows:

Here the comment node has value "comment text" . By default comment nodes are
treated as non-essential part of XML markup and are not loaded during XML parsing. You
can override this behavior with parse_comments flag.

Processing instruction node (node_pi) represent processing instructions (PI) in XML. PI
nodes have a name and an optional value, but do not have children/attributes. The
example XML representation of a PI node is as follows:

Here the name (also called PI target) is "name" , and the value is "value" . By default PI
nodes are treated as non-essential part of XML markup and are not loaded during XML
parsing. You can override this behavior with parse_pi flag.

<node> text1 <child/> text2 </node>

<node> <![CDATA[text1]]> <child/> <![CDATA[text2]]> </node>

<!-- comment text -->

<?name value?>

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 14/104

Declaration node (node_declaration) represents document declarations in XML.
Declaration nodes have a name ("xml") and an optional collection of attributes, but do not
have value or children. There can be only one declaration node in a document; moreover,
it should be the topmost node (its parent should be the document). The example XML
representation of a declaration node is as follows:

Here the node has name "xml" and a single attribute with name "version" and value
"1.0" . By default declaration nodes are treated as non-essential part of XML markup and
are not loaded during XML parsing. You can override this behavior with parse_declaration
flag. Also, by default a dummy declaration is output when XML document is saved unless
there is already a declaration in the document; you can disable this with
format_no_declaration flag.

Document type declaration node (node_doctype) represents document type declarations
in XML. Document type declaration nodes have a value, which corresponds to the entire
document type contents; no additional nodes are created for inner elements like
<!ENTITY> . There can be only one document type declaration node in a document;
moreover, it should be the topmost node (its parent should be the document). The example
XML representation of a document type declaration node is as follows:

Here the node has value "greeting [<!ELEMENT greeting (#PCDATA)>]" . By default
document type declaration nodes are treated as non-essential part of XML markup and are
not loaded during XML parsing. You can override this behavior with parse_doctype flag.

Finally, here is a complete example of XML document and the corresponding tree
representation (samples/tree.xml):

<?xml version="1.0"?>

<!DOCTYPE greeting [<!ELEMENT greeting (#PCDATA)>]>

https://pugixml.org/docs/samples/tree.xml

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 15/104

3.2. C++ interface

NOTE

All pugixml classes and functions are located in the pugi namespace; you
have to either use explicit name qualification (i.e. pugi::xml_node), or to
gain access to relevant symbols via using directive (i.e. using
pugi::xml_node; or using namespace pugi;). The namespace will be
omitted from all declarations in this documentation hereafter; all code
examples will use fully qualified names.

Despite the fact that there are several node types, there are only three C++ classes representing
the tree (xml_document , xml_node , xml_attribute); some operations on xml_node are
only valid for certain node types. The classes are described below.

xml_document is the owner of the entire document structure; it is a non-copyable class. The
interface of xml_document consists of loading functions (see Loading document), saving
functions (see Saving document) and the entire interface of xml_node , which allows for
document inspection and/or modification. Note that while xml_document is a sub-class of
xml_node , xml_node is not a polymorphic type; the inheritance is present only to simplify
usage. Alternatively you can use the document_element function to get the element node
that’s the immediate child of the document.

Default constructor of xml_document initializes the document to the tree with only a root
node (document node). You can then populate it with data using either tree modification
functions or loading functions; all loading functions destroy the previous tree with all
occupied memory, which puts existing node/attribute handles for this document to invalid
state. If you want to destroy the previous tree, you can use the xml_document::reset
function; it destroys the tree and replaces it with either an empty one or a copy of the specified

<?xml version="1.0"?>
<mesh name="mesh_root">
 <!-- here is a mesh node -->
 some text
 <![CDATA[someothertext]]>
 some more text
 <node attr1="value1" attr2="value2"
/>
 <node attr1="value2">
 <innernode/>
 </node>
</mesh>
<?include somedata?>

XML

https://pugixml.org/docs/images/dom_tree.png

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 16/104

document. Destructor of xml_document also destroys the tree, thus the lifetime of the
document object should exceed the lifetimes of any node/attribute handles that point to the
tree.

CAUTION

While technically node/attribute handles can be alive when the tree they’re
referring to is destroyed, calling any member function for these handles
results in undefined behavior. Thus it is recommended to make sure that the
document is destroyed only after all references to its nodes/attributes are
destroyed.

xml_node is the handle to document node; it can point to any node in the document,
including the document node itself. There is a common interface for nodes of all types; the
actual node type can be queried via the xml_node::type() method. Note that xml_node is
only a handle to the actual node, not the node itself - you can have several xml_node handles
pointing to the same underlying object. Destroying xml_node handle does not destroy the
node and does not remove it from the tree. The size of xml_node is equal to that of a pointer,
so it is nothing more than a lightweight wrapper around a pointer; you can safely pass or
return xml_node objects by value without additional overhead.

There is a special value of xml_node type, known as null node or empty node (such nodes
have type node_null). It does not correspond to any node in any document, and thus
resembles null pointer. However, all operations are defined on empty nodes; generally the
operations don’t do anything and return empty nodes/attributes or empty strings as their
result (see documentation for specific functions for more detailed information). This is useful
for chaining calls; i.e. you can get the grandparent of a node like so:
node.parent().parent() ; if a node is a null node or it does not have a parent, the first
parent() call returns null node; the second parent() call then also returns null node,
which makes error handling easier.

xml_attribute is the handle to an XML attribute; it has the same semantics as xml_node , i.e.
there can be several xml_attribute handles pointing to the same underlying object and
there is a special null attribute value, which propagates to function results.

Both xml_node and xml_attribute have the default constructor which initializes them to
null objects.

xml_node and xml_attribute try to behave like pointers, that is, they can be compared with
other objects of the same type, making it possible to use them as keys in associative containers.
All handles to the same underlying object are equal, and any two handles to different
underlying objects are not equal. Null handles only compare as equal to themselves. The result

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 17/104

of relational comparison can not be reliably determined from the order of nodes in file or in
any other way. Do not use relational comparison operators except for search optimization (i.e.
associative container keys).

If you want to use xml_node or xml_attribute objects as keys in hash-based associative
containers, you can use the hash_value member functions. They return the hash values that
are guaranteed to be the same for all handles to the same underlying object. The hash value
for null handles is 0. Note that hash value does not depend on the content of the node, only on
the location of the underlying structure in memory - this means that loading the same
document twice will likely produce different hash values, and copying the node will not
preserve the hash.

Finally handles can be implicitly cast to boolean-like objects, so that you can test if the
node/attribute is empty with the following code: if (node) { … } or if (!node) { … } else
{ … } . Alternatively you can check if a given xml_node / xml_attribute handle is null by
calling the following methods:

Nodes and attributes do not exist without a document tree, so you can’t create them without
adding them to some document. Once underlying node/attribute objects are destroyed, the
handles to those objects become invalid. While this means that destruction of the entire tree
invalidates all node/attribute handles, it also means that destroying a subtree (by calling
xml_node::remove_child) or removing an attribute invalidates the corresponding handles.
There is no way to check handle validity; you have to ensure correctness through external
mechanisms.

3.3. Unicode interface
There are two choices of interface and internal representation when configuring pugixml: you
can either choose the UTF-8 (also called char) interface or UTF-16/32 (also called wchar_t) one.
The choice is controlled via PUGIXML_WCHAR_MODE define; you can set it via
pugiconfig.hpp or via preprocessor options, as discussed in Additional configuration
options. If this define is set, the wchar_t interface is used; otherwise (by default) the char
interface is used. The exact wide character encoding is assumed to be either UTF-16 or UTF-32
and is determined based on the size of wchar_t type.

NOTE
If the size of wchar_t is 2, pugixml assumes UTF-16 encoding instead of UCS-
2, which means that some characters are represented as two code points.

bool xml_attribute::empty() const;
bool xml_node::empty() const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 18/104

All tree functions that work with strings work with either C-style null terminated strings or
STL strings of the selected character type. For example, node name accessors look like this in
char mode:

and like this in wchar_t mode:

There is a special type, pugi::char_t , that is defined as the character type and depends on
the library configuration; it will be also used in the documentation hereafter. There is also a
type pugi::string_t , which is defined as the STL string of the character type; it corresponds
to std::string in char mode and to std::wstring in wchar_t mode.

In addition to the interface, the internal implementation changes to store XML data as
pugi::char_t ; this means that these two modes have different memory usage characteristics
- generally UTF-8 mode is more memory and performance efficient, especially if
sizeof(wchar_t) is 4. The conversion to pugi::char_t upon document loading and from
pugi::char_t upon document saving happen automatically, which also carries minor
performance penalty. The general advice however is to select the character mode based on
usage scenario, i.e. if UTF-8 is inconvenient to process and most of your XML data is non-ASCII,
wchar_t mode is probably a better choice.

There are cases when you’ll have to convert string data between UTF-8 and wchar_t
encodings; the following helper functions are provided for such purposes:

Both functions accept a null-terminated string as an argument str , and return the converted
string. as_utf8 performs conversion from UTF-16/32 to UTF-8; as_wide performs
conversion from UTF-8 to UTF-16/32. Invalid UTF sequences are silently discarded upon
conversion. str has to be a valid string; passing null pointer results in undefined behavior.
There are also two overloads with the same semantics which accept a string as an argument:

const char* xml_node::name() const;
bool xml_node::set_name(const char* value);

C++

const wchar_t* xml_node::name() const;
bool xml_node::set_name(const wchar_t* value);

C++

std::string as_utf8(const wchar_t* str);
std::wstring as_wide(const char* str);

C++

std::string as_utf8(const std::wstring& str);
std::wstring as_wide(const std::string& str);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 19/104

NOTE

Most examples in this documentation assume char interface and therefore
will not compile with PUGIXML_WCHAR_MODE. This is done to simplify the
documentation; usually the only changes you’ll have to make is to pass
wchar_t string literals, i.e. instead of

xml_node node =

doc.child("bookstore").find_child_by_attribute("book", "id",

"12345");

you’ll have to use

xml_node node =

doc.child(L"bookstore").find_child_by_attribute(L"book", L"id",

L"12345");

3.4. Thread-safety guarantees
Almost all functions in pugixml have the following thread-safety guarantees:

it is safe to call free (non-member) functions from multiple threads

it is safe to perform concurrent read-only accesses to the same tree (all constant member
functions do not modify the tree)

it is safe to perform concurrent read/write accesses, if there is only one read or write access
to the single tree at a time

Concurrent modification and traversing of a single tree requires synchronization, for example
via reader-writer lock. Modification includes altering document structure and altering
individual node/attribute data, i.e. changing names/values.

The only exception is set_memory_management_functions; it modifies global variables and as
such is not thread-safe. Its usage policy has more restrictions, see Custom memory
allocation/deallocation functions.

3.5. Exception guarantees
With the exception of XPath, pugixml itself does not throw any exceptions. Additionally, most
pugixml functions have a no-throw exception guarantee.

This is not applicable to functions that operate on STL strings or IOstreams; such functions
have either strong guarantee (functions that operate on strings) or basic guarantee (functions
that operate on streams). Also functions that call user-defined callbacks (i.e.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 20/104

xml_node::traverse or xml_node::find_node) do not provide any exception guarantees beyond
the ones provided by the callback.

If exception handling is not disabled with PUGIXML_NO_EXCEPTIONS define, XPath functions
may throw xpath_exception on parsing errors; also, XPath functions may throw
std::bad_alloc in low memory conditions. Still, XPath functions provide strong exception
guarantee.

3.6. Memory management
pugixml requests the memory needed for document storage in big chunks, and allocates
document data inside those chunks. This section discusses replacing functions used for chunk
allocation and internal memory management implementation.

3.6.1. Custom memory allocation/deallocation functions

All memory for tree structure, tree data and XPath objects is allocated via globally specified
functions, which default to malloc/free. You can set your own allocation functions with
set_memory_management function. The function interfaces are the same as that of
malloc/free:

You can use the following accessor functions to change or get current memory management
functions:

Allocation function is called with the size (in bytes) as an argument and should return a
pointer to a memory block with alignment that is suitable for storage of primitive types
(usually a maximum of void* and double types alignment is sufficient) and size that is
greater than or equal to the requested one. If the allocation fails, the function has to either
return null pointer or to throw an exception.

Deallocation function is called with the pointer that was returned by some call to allocation
function; it is never called with a null pointer. If memory management functions are not
thread-safe, library thread safety is not guaranteed.

typedef void* (*allocation_function)(size_t size);
typedef void (*deallocation_function)(void* ptr);

C++

void set_memory_management_functions(allocation_function allocate,
deallocation_function deallocate);
allocation_function get_memory_allocation_function();
deallocation_function get_memory_deallocation_function();

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 21/104

This is a simple example of custom memory management
(samples/custom_memory_management.cpp):

When setting new memory management functions, care must be taken to make sure that
there are no live pugixml objects. Otherwise when the objects are destroyed, the new
deallocation function will be called with the memory obtained by the old allocation function,
resulting in undefined behavior.

3.6.2. Memory consumption tuning

There are several important buffering optimizations in pugixml that rely on predefined
constants. These constants have default values that were tuned for common usage patterns;
for some applications, changing these constants might improve memory consumption or
increase performance. Changing these constants is not recommended unless their default
values result in visible problems.

These constants can be tuned via configuration defines, as discussed in Additional
configuration options; it is recommended to set them in pugiconfig.hpp .

PUGIXML_MEMORY_PAGE_SIZE controls the page size for document memory allocation.
Memory for node/attribute objects is allocated in pages of the specified size. The default
size is 32 Kb; for some applications the size is too large (i.e. embedded systems with little
heap space or applications that keep lots of XML documents in memory). A minimum size
of 1 Kb is recommended.

PUGIXML_MEMORY_OUTPUT_STACK controls the cumulative stack space required to output
the node. Any output operation (i.e. saving a subtree to file) uses an internal buffering
scheme for performance reasons. The default size is 10 Kb; if you’re using node output
from threads with little stack space, decreasing this value can prevent stack overflows. A
minimum size of 1 Kb is recommended.

void* custom_allocate(size_t size)
{
 return new (std::nothrow) char[size];
}

void custom_deallocate(void* ptr)
{
 delete[] static_cast<char*>(ptr);
}

C++

pugi::set_memory_management_functions(custom_allocate, custom_deallocate);
C++

https://pugixml.org/docs/samples/custom_memory_management.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 22/104

PUGIXML_MEMORY_XPATH_PAGE_SIZE controls the page size for XPath memory allocation.
Memory for XPath query objects as well as internal memory for XPath evaluation is
allocated in pages of the specified size. The default size is 4 Kb; if you have a lot of resident
XPath query objects, you might need to decrease the size to improve memory consumption.
A minimum size of 256 bytes is recommended.

3.6.3. Document memory management internals

Constructing a document object using the default constructor does not result in any
allocations; document node is stored inside the xml_document object.

When the document is loaded from file/buffer, unless an inplace loading function is used (see
Loading document from memory), a complete copy of character stream is made; all
names/values of nodes and attributes are allocated in this buffer. This buffer is allocated via a
single large allocation and is only freed when document memory is reclaimed (i.e. if the
xml_document object is destroyed or if another document is loaded in the same object). Also
when loading from file or stream, an additional large allocation may be performed if encoding
conversion is required; a temporary buffer is allocated, and it is freed before load function
returns.

All additional memory, such as memory for document structure (node/attribute objects) and
memory for node/attribute names/values is allocated in pages on the order of 32 Kb; actual
objects are allocated inside the pages using a memory management scheme optimized for fast
allocation/deallocation of many small objects. Because of the scheme specifics, the pages are
only destroyed if all objects inside them are destroyed; also, generally destroying an object
does not mean that subsequent object creation will reuse the same memory. This means that it
is possible to devise a usage scheme which will lead to higher memory usage than expected;
one example is adding a lot of nodes, and them removing all even numbered ones; not a single
page is reclaimed in the process. However this is an example specifically crafted to produce
unsatisfying behavior; in all practical usage scenarios the memory consumption is less than
that of a general-purpose allocator because allocation meta-data is very small in size.

3.6.4. Compact mode

By default nodes and attributes are optimized for efficiency of access. This can cause them to
take a significant amount of memory - for documents with a lot of nodes and not a lot of
contents (short attribute values/node text), and depending on the pointer size, the document
structure can take noticeably more memory than the document itself (e.g. on a 64-bit platform
in UTF-8 mode a markup-heavy document with the file size of 2.1 Mb can use 2.1 Mb for
document buffer and 8.3 Mb for document structure).

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 23/104

If you are processing big documents or your platform is memory constrained and you’re
willing to sacrifice a bit of performance for memory, you can compile pugixml with
PUGIXML_COMPACT define which will activate compact mode. Compact mode uses a different
representation of the document structure that assumes locality of reference between nodes
and attributes to optimize memory usage. As a result you get significantly smaller
node/attribute objects; usually most objects in most documents don’t require additional
storage, but in the worst case - if assumptions about locality of reference don’t hold -
additional memory will be allocated to store the extra data required.

The compact storage supports all existing operations - including tree modification - with the
same amortized complexity (that is, all basic document manipulations are still O(1) on
average). The operations are slightly slower; you can usually expect 10-50% slowdown in
terms of processing time unless your processing was memory-bound.

On 32-bit architectures document structure in compact mode is typically reduced by around
2.5x; on 64-bit architectures the ratio is around 5x. Thus for big markup-heavy documents
compact mode can make the difference between the processing of a multi-gigabyte document
running completely from RAM vs requiring swapping to disk. Even if the document fits into
memory, compact storage can use CPU caches more efficiently by taking less space and
causing less cache/TLB misses.

4. Loading document
pugixml provides several functions for loading XML data from various places - files, C++
iostreams, memory buffers. All functions use an extremely fast non-validating parser. This
parser is not fully W3C conformant - it can load any valid XML document, but does not
perform some well-formedness checks. While considerable effort is made to reject invalid
XML documents, some validation is not performed for performance reasons. Also some XML
transformations (i.e. EOL handling or attribute value normalization) can impact parsing speed
and thus can be disabled. However for vast majority of XML documents there is no
performance difference between different parsing options. Parsing options also control
whether certain XML nodes are parsed; see Parsing options for more information.

XML data is always converted to internal character format (see Unicode interface) before
parsing. pugixml supports all popular Unicode encodings (UTF-8, UTF-16 (big and little
endian), UTF-32 (big and little endian); UCS-2 is naturally supported since it’s a strict subset of
UTF-16) as well as some non-Unicode encodings (Latin-1) and handles all encoding
conversions automatically. Unless explicit encoding is specified, loading functions perform
automatic encoding detection based on source XML data, so in most cases you do not have to
specify document encoding. Encoding conversion is described in more detail in Encodings.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 24/104

4.1. Loading document from �le
The most common source of XML data is files; pugixml provides dedicated functions for
loading an XML document from file:

These functions accept the file path as its first argument, and also two optional arguments,
which specify parsing options (see Parsing options) and input data encoding (see Encodings).
The path has the target operating system format, so it can be a relative or absolute one, it
should have the delimiters of the target system, it should have the exact case if the target file
system is case-sensitive, etc.

File path is passed to the system file opening function as is in case of the first function (which
accepts const char* path); the second function either uses a special file opening function if
it is provided by the runtime library or converts the path to UTF-8 and uses the system file
opening function.

load_file destroys the existing document tree and then tries to load the new tree from the
specified file. The result of the operation is returned in an xml_parse_result object; this object
contains the operation status and the related information (i.e. last successfully parsed position
in the input file, if parsing fails). See Handling parsing errors for error handling details.

This is an example of loading XML document from file (samples/load_file.cpp):

4.2. Loading document from memory
Sometimes XML data should be loaded from some other source than a file, i.e. HTTP URL; also
you may want to load XML data from file using non-standard functions, i.e. to use your virtual
file system facilities or to load XML from GZip-compressed files. All these scenarios require
loading document from memory. First you should prepare a contiguous memory block with all
XML data; then you have to invoke one of buffer loading functions. These functions will

xml_parse_result xml_document::load_file(const char* path, unsigned int options =
parse_default, xml_encoding encoding = encoding_auto);
xml_parse_result xml_document::load_file(const wchar_t* path, unsigned int options =
parse_default, xml_encoding encoding = encoding_auto);

C++

pugi::xml_document doc;

pugi::xml_parse_result result = doc.load_file("tree.xml");

std::cout << "Load result: " << result.description() << ", mesh name: " <<
doc.child("mesh").attribute("name").value() << std::endl;

C++

https://pugixml.org/docs/samples/load_file.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 25/104

handle the necessary encoding conversions, if any, and then will parse the data into the
corresponding XML tree. There are several buffer loading functions, which differ in the
behavior and thus in performance/memory usage:

All functions accept the buffer which is represented by a pointer to XML data, contents , and
data size in bytes. Also there are two optional arguments, which specify parsing options (see
Parsing options) and input data encoding (see Encodings). The buffer does not have to be zero-
terminated.

load_buffer function works with immutable buffer - it does not ever modify the buffer.
Because of this restriction it has to create a private buffer and copy XML data to it before
parsing (applying encoding conversions if necessary). This copy operation carries a
performance penalty, so inplace functions are provided - load_buffer_inplace and
load_buffer_inplace_own store the document data in the buffer, modifying it in the
process. In order for the document to stay valid, you have to make sure that the buffer’s
lifetime exceeds that of the tree if you’re using inplace functions. In addition to that,
load_buffer_inplace does not assume ownership of the buffer, so you’ll have to destroy it
yourself; load_buffer_inplace_own assumes ownership of the buffer and destroys it once it
is not needed. This means that if you’re using load_buffer_inplace_own , you have to
allocate memory with pugixml allocation function (you can get it via
get_memory_allocation_function).

The best way from the performance/memory point of view is to load document using
load_buffer_inplace_own ; this function has maximum control of the buffer with XML data
so it is able to avoid redundant copies and reduce peak memory usage while parsing. This is
the recommended function if you have to load the document from memory and performance
is critical.

There is also a simple helper function for cases when you want to load the XML document
from null-terminated character string:

xml_parse_result xml_document::load_buffer(const void* contents, size_t size, unsigned
int options = parse_default, xml_encoding encoding = encoding_auto);
xml_parse_result xml_document::load_buffer_inplace(void* contents, size_t size,
unsigned int options = parse_default, xml_encoding encoding = encoding_auto);
xml_parse_result xml_document::load_buffer_inplace_own(void* contents, size_t size,
unsigned int options = parse_default, xml_encoding encoding = encoding_auto);

C++

xml_parse_result xml_document::load_string(const char_t* contents, unsigned int options
= parse_default);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 26/104

It is equivalent to calling load_buffer with size being either strlen(contents) or
wcslen(contents) * sizeof(wchar_t) , depending on the character type. This function
assumes native encoding for input data, so it does not do any encoding conversion. In general,
this function is fine for loading small documents from string literals, but has more overhead
and less functionality than the buffer loading functions.

This is an example of loading XML document from memory using different functions
(samples/load_memory.cpp):

4.3. Loading document from C++ IOstreams

const char source[] = "<mesh name='sphere'><bounds>0 0 1 1</bounds></mesh>";
size_t size = sizeof(source);

C++

// You can use load_buffer to load document from immutable memory block:
pugi::xml_parse_result result = doc.load_buffer(source, size);

C++

// You can use load_buffer_inplace to load document from mutable memory block; the
block's lifetime must exceed that of document
char* buffer = new char[size];
memcpy(buffer, source, size);

// The block can be allocated by any method; the block is modified during parsing
pugi::xml_parse_result result = doc.load_buffer_inplace(buffer, size);

// You have to destroy the block yourself after the document is no longer used
delete[] buffer;

C++

// You can use load_buffer_inplace_own to load document from mutable memory block and
to pass the ownership of this block
// The block has to be allocated via pugixml allocation function - using i.e. operator
new here is incorrect
char* buffer = static_cast<char*>(pugi::get_memory_allocation_function()(size));
memcpy(buffer, source, size);

// The block will be deleted by the document
pugi::xml_parse_result result = doc.load_buffer_inplace_own(buffer, size);

C++

// You can use load to load document from null-terminated strings, for example
literals:
pugi::xml_parse_result result = doc.load_string("<mesh name='sphere'><bounds>0 0 1
1</bounds></mesh>");

C++

https://pugixml.org/docs/samples/load_memory.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 27/104

To enhance interoperability, pugixml provides functions for loading document from any
object which implements C++ std::istream interface. This allows you to load documents
from any standard C++ stream (i.e. file stream) or any third-party compliant implementation
(i.e. Boost Iostreams). There are two functions, one works with narrow character streams,
another handles wide character ones:

load with std::istream argument loads the document from stream from the current read
position to the end, treating the stream contents as a byte stream of the specified encoding
(with encoding autodetection as necessary). Thus calling xml_document::load on an opened
std::ifstream object is equivalent to calling xml_document::load_file .

load with std::wstream argument treats the stream contents as a wide character stream
(encoding is always encoding_wchar). Because of this, using load with wide character
streams requires careful (usually platform-specific) stream setup (i.e. using the imbue
function). Generally use of wide streams is discouraged, however it provides you the ability to
load documents from non-Unicode encodings, i.e. you can load Shift-JIS encoded data if you set
the correct locale.

This is a simple example of loading XML document from file using streams
(samples/load_stream.cpp); read the sample code for more complex examples involving wide
streams and locales:

4.4. Handling parsing errors
All document loading functions return the parsing result via xml_parse_result object. It
contains parsing status, the offset of last successfully parsed character from the beginning of
the source stream, and the encoding of the source stream:

xml_parse_result xml_document::load(std::istream& stream, unsigned int options =
parse_default, xml_encoding encoding = encoding_auto);
xml_parse_result xml_document::load(std::wistream& stream, unsigned int options =
parse_default);

C++

std::ifstream stream("weekly-utf-8.xml");
pugi::xml_parse_result result = doc.load(stream);

C++

https://pugixml.org/docs/samples/load_stream.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 28/104

Parsing status is represented as the xml_parse_status enumeration and can be one of the
following:

status_ok means that no error was encountered during parsing; the source stream
represents the valid XML document which was fully parsed and converted to a tree.

status_file_not_found is only returned by load_file function and means that file
could not be opened.

status_io_error is returned by load_file function and by load functions with
std::istream / std::wstream arguments; it means that some I/O error has occurred
during reading the file/stream.

status_out_of_memory means that there was not enough memory during some
allocation; any allocation failure during parsing results in this error.

status_internal_error means that something went horribly wrong; currently this error
does not occur

status_unrecognized_tag means that parsing stopped due to a tag with either an empty
name or a name which starts with incorrect character, such as # .

status_bad_pi means that parsing stopped due to incorrect document
declaration/processing instruction

status_bad_comment , status_bad_cdata , status_bad_doctype and
status_bad_pcdata mean that parsing stopped due to the invalid construct of the
respective type

status_bad_start_element means that parsing stopped because starting tag either had
no closing > symbol or contained some incorrect symbol

status_bad_attribute means that parsing stopped because there was an incorrect
attribute, such as an attribute without value or with value that is not quoted (note that
<node attr=1> is incorrect in XML)

status_bad_end_element means that parsing stopped because ending tag had incorrect
syntax (i.e. extra non-whitespace symbols between tag name and >)

struct xml_parse_result
{
 xml_parse_status status;
 ptrdiff_t offset;
 xml_encoding encoding;

 operator bool() const;
 const char* description() const;
};

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 29/104

status_end_element_mismatch means that parsing stopped because the closing tag did
not match the opening one (i.e. <node></nedo>) or because some tag was not closed at all

status_no_document_element means that no element nodes were discovered during
parsing; this usually indicates an empty or invalid document

description() member function can be used to convert parsing status to a string; the
returned message is always in English, so you’ll have to write your own function if you need a
localized string. However please note that the exact messages returned by description()
function may change from version to version, so any complex status handling should be based
on status value. Note that description() returns a char string even in
PUGIXML_WCHAR_MODE ; you’ll have to call as_wide to get the wchar_t string.

If parsing failed because the source data was not a valid XML, the resulting tree is not
destroyed - despite the fact that load function returns error, you can use the part of the tree
that was successfully parsed. Obviously, the last element may have an unexpected name/value;
for example, if the attribute value does not end with the necessary quotation mark, like in
<node attr="value>some data</node> example, the value of attribute attr will contain
the string value>some data</node> .

In addition to the status code, parsing result has an offset member, which contains the
offset of last successfully parsed character if parsing failed because of an error in source data;
otherwise offset is 0. For parsing efficiency reasons, pugixml does not track the current line
during parsing; this offset is in units of pugi::char_t (bytes for character mode, wide characters
for wide character mode). Many text editors support 'Go To Position' feature - you can use it to
locate the exact error position. Alternatively, if you’re loading the document from memory,
you can display the error chunk along with the error description (see the example code
below).

CAUTION
Offset is calculated in the XML buffer in native encoding; if encoding
conversion is performed during parsing, offset can not be used to reliably
track the error position.

Parsing result also has an encoding member, which can be used to check that the source data
encoding was correctly guessed. It is equal to the exact encoding used during parsing (i.e. with
the exact endianness); see Encodings for more information.

Parsing result object can be implicitly converted to bool ; if you do not want to handle parsing
errors thoroughly, you can just check the return value of load functions as if it was a bool : if
(doc.load_file("file.xml")) { … } else { … } .

This is an example of handling loading errors (samples/load_error_handling.cpp):

https://pugixml.org/docs/samples/load_error_handling.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 30/104

4.5. Parsing options
All document loading functions accept the optional parameter options . This is a bitmask that
customizes the parsing process: you can select the node types that are parsed and various
transformations that are performed with the XML text. Disabling certain transformations can
improve parsing performance for some documents; however, the code for all transformations
is very well optimized, and thus the majority of documents won’t get any performance benefit.
As a rule of thumb, only modify parsing flags if you want to get some nodes in the document
that are excluded by default (i.e. declaration or comment nodes).

NOTE
You should use the usual bitwise arithmetics to manipulate the bitmask: to
enable a flag, use mask | flag ; to disable a flag, use mask & ~flag .

These flags control the resulting tree contents:

parse_declaration determines if XML document declaration (node with type
node_declaration) is to be put in DOM tree. If this flag is off, it is not put in the tree, but is
still parsed and checked for correctness. This flag is off by default.

parse_doctype determines if XML document type declaration (node with type
node_doctype) is to be put in DOM tree. If this flag is off, it is not put in the tree, but is still
parsed and checked for correctness. This flag is off by default.

parse_pi determines if processing instructions (nodes with type node_pi) are to be put in
DOM tree. If this flag is off, they are not put in the tree, but are still parsed and checked for
correctness. Note that <?xml … ?> (document declaration) is not considered to be a PI. This
flag is off by default.

pugi::xml_document doc;
pugi::xml_parse_result result = doc.load_string(source);

if (result)
{
 std::cout << "XML [" << source << "] parsed without errors, attr value: [" <<
doc.child("node").attribute("attr").value() << "]\n\n";
}
else
{
 std::cout << "XML [" << source << "] parsed with errors, attr value: [" <<
doc.child("node").attribute("attr").value() << "]\n";
 std::cout << "Error description: " << result.description() << "\n";
 std::cout << "Error offset: " << result.offset << " (error at [..." << (source +
result.offset) << "]\n\n";
}

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 31/104

parse_comments determines if comments (nodes with type node_comment) are to be put
in DOM tree. If this flag is off, they are not put in the tree, but are still parsed and checked
for correctness. This flag is off by default.

parse_cdata determines if CDATA sections (nodes with type node_cdata) are to be put in
DOM tree. If this flag is off, they are not put in the tree, but are still parsed and checked for
correctness. This flag is on by default.

parse_trim_pcdata determines if leading and trailing whitespace characters are to be
removed from PCDATA nodes. While for some applications leading/trailing whitespace is
significant, often the application only cares about the non-whitespace contents so it’s easier
to trim whitespace from text during parsing. This flag is off by default.

parse_ws_pcdata determines if PCDATA nodes (nodes with type node_pcdata) that consist
only of whitespace characters are to be put in DOM tree. Often whitespace-only data is not
significant for the application, and the cost of allocating and storing such nodes (both
memory and speed-wise) can be significant. For example, after parsing XML string <node>
<a/> </node> , <node> element will have three children when parse_ws_pcdata is set
(child with type node_pcdata and value " " , child with type node_element and name "a" ,
and another child with type node_pcdata and value " "), and only one child when
parse_ws_pcdata is not set. This flag is off by default.

parse_ws_pcdata_single determines if whitespace-only PCDATA nodes that have no
sibling nodes are to be put in DOM tree. In some cases application needs to parse the
whitespace-only contents of nodes, i.e. <node> </node> , but is not interested in
whitespace markup elsewhere. It is possible to use parse_ws_pcdata flag in this case, but it
results in excessive allocations and complicates document processing; this flag can be used
to avoid that. As an example, after parsing XML string <node> <a> </node> with
parse_ws_pcdata_single flag set, <node> element will have one child <a> , and <a>
element will have one child with type node_pcdata and value " " . This flag has no effect if
parse_ws_pcdata is enabled. This flag is off by default.

parse_embed_pcdata determines if PCDATA contents is to be saved as element values.
Normally element nodes have names but not values; this flag forces the parser to store the
contents as a value if PCDATA is the first child of the element node (otherwise PCDATA node
is created as usual). This can significantly reduce the memory required for documents with
many PCDATA nodes. To retrieve the data you can use xml_node::value() on the element
nodes or any of the higher-level functions like child_value or text . This flag is off by
default. Since this flag significantly changes the DOM structure it is only recommended for
parsing documents with many PCDATA nodes in memory-constrained environments. This
flag is off by default.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 32/104

parse_fragment determines if document should be treated as a fragment of a valid XML.
Parsing document as a fragment leads to top-level PCDATA content (i.e. text that is not
located inside a node) to be added to a tree, and additionally treats documents without
element nodes as valid. This flag is off by default.

CAUTION

Using in-place parsing (load_buffer_inplace) with parse_fragment flag may
result in the loss of the last character of the buffer if it is a part of PCDATA.
Since PCDATA values are null-terminated strings, the only way to resolve this
is to provide a null-terminated buffer as an input to load_buffer_inplace
- i.e. doc.load_buffer_inplace("test\0", 5, pugi::parse_default |
pugi::parse_fragment) .

These flags control the transformation of tree element contents:

parse_escapes determines if character and entity references are to be expanded during
the parsing process. Character references have the form &#… ; or &#x… ; (… is Unicode
numeric representation of character in either decimal (&#… ;) or hexadecimal (&#x… ;)
form), entity references are < , > , & , ' and " (note that as
pugixml does not handle DTD, the only allowed entities are predefined ones). If
character/entity reference can not be expanded, it is left as is, so you can do additional
processing later. Reference expansion is performed on attribute values and PCDATA
content. This flag is on by default.

parse_eol determines if EOL handling (that is, replacing sequences \r\n by a single \n
character, and replacing all standalone \r characters by \n) is to be performed on input
data (that is, comment contents, PCDATA/CDATA contents and attribute values). This flag is
on by default.

parse_wconv_attribute determines if attribute value normalization should be
performed for all attributes. This means, that whitespace characters (new line, tab and
space) are replaced with space (' '). New line characters are always treated as if
parse_eol is set, i.e. \r\n is converted to a single space. This flag is on by default.

parse_wnorm_attribute determines if extended attribute value normalization should be
performed for all attributes. This means, that after attribute values are normalized as if
parse_wconv_attribute was set, leading and trailing space characters are removed, and all
sequences of space characters are replaced by a single space character.
parse_wconv_attribute has no effect if this flag is on. This flag is off by default.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 33/104

NOTE

parse_wconv_attribute option performs transformations that are required
by W3C specification for attributes that are declared as CDATA;
parse_wnorm_attribute performs transformations required for NMTOKENS
attributes. In the absence of document type declaration all attributes should
behave as if they are declared as CDATA, thus parse_wconv_attribute is the
default option.

Additionally there are three predefined option masks:

parse_minimal has all options turned off. This option mask means that pugixml does not
add declaration nodes, document type declaration nodes, PI nodes, CDATA sections and
comments to the resulting tree and does not perform any conversion for input data, so
theoretically it is the fastest mode. However, as mentioned above, in practice parse_default
is usually equally fast.

parse_default is the default set of flags, i.e. it has all options set to their default values. It
includes parsing CDATA sections (comments/PIs are not parsed), performing character and
entity reference expansion, replacing whitespace characters with spaces in attribute values
and performing EOL handling. Note, that PCDATA sections consisting only of whitespace
characters are not parsed (by default) for performance reasons.

parse_full is the set of flags which adds nodes of all types to the resulting tree and
performs default conversions for input data. It includes parsing CDATA sections, comments,
PI nodes, document declaration node and document type declaration node, performing
character and entity reference expansion, replacing whitespace characters with spaces in
attribute values and performing EOL handling. Note, that PCDATA sections consisting only
of whitespace characters are not parsed in this mode.

This is an example of using different parsing options (samples/load_options.cpp):

https://pugixml.org/docs/samples/load_options.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 34/104

4.6. Encodings
pugixml supports all popular Unicode encodings (UTF-8, UTF-16 (big and little endian), UTF-32
(big and little endian); UCS-2 is naturally supported since it’s a strict subset of UTF-16) as well
as some non-Unicode encodings (Latin-1) and handles all encoding conversions. Most loading
functions accept the optional parameter encoding . This is a value of enumeration type
xml_encoding , that can have the following values:

encoding_auto means that pugixml will try to guess the encoding based on source XML
data. The algorithm is a modified version of the one presented in Appendix F of XML
recommendation (http://www.w3.org/TR/REC-xml/#sec-guessing). It tries to find a Byte Order
Mark of one of the supported encodings first; if that fails, it checks if the first few bytes of
the input data look like a representation of < or <? in one of UTF-16 or UTF-32 variants; if
that fails as well, encoding is assumed to be either UTF-8 or one of the non-Unicode
encodings - to make the final decision the algorithm tries to parse the encoding attribute
of the XML document declaration, ultimately falling back to UTF-8 if document declaration
is not present or does not specify a supported encoding.

encoding_utf8 corresponds to UTF-8 encoding as defined in the Unicode standard; UTF-8
sequences with length equal to 5 or 6 are not standard and are rejected.

encoding_utf16_le corresponds to little-endian UTF-16 encoding as defined in the
Unicode standard; surrogate pairs are supported.

const char* source = "<!--comment--><node><</node>";

// Parsing with default options; note that comment node is not added to the tree, and
entity reference < is expanded
doc.load_string(source);
std::cout << "First node value: [" << doc.first_child().value() << "], node child
value: [" << doc.child_value("node") << "]\n";

// Parsing with additional parse_comments option; comment node is now added to the tree
doc.load_string(source, pugi::parse_default | pugi::parse_comments);
std::cout << "First node value: [" << doc.first_child().value() << "], node child
value: [" << doc.child_value("node") << "]\n";

// Parsing with additional parse_comments option and without the (default)
parse_escapes option; < is not expanded
doc.load_string(source, (pugi::parse_default | pugi::parse_comments) &
~pugi::parse_escapes);
std::cout << "First node value: [" << doc.first_child().value() << "], node child
value: [" << doc.child_value("node") << "]\n";

// Parsing with minimal option mask; comment node is not added to the tree, and < is
not expanded
doc.load_string(source, pugi::parse_minimal);
std::cout << "First node value: [" << doc.first_child().value() << "], node child
value: [" << doc.child_value("node") << "]\n";

C++

http://www.w3.org/TR/REC-xml/#sec-guessing

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 35/104

encoding_utf16_be corresponds to big-endian UTF-16 encoding as defined in the Unicode
standard; surrogate pairs are supported.

encoding_utf16 corresponds to UTF-16 encoding as defined in the Unicode standard; the
endianness is assumed to be that of the target platform.

encoding_utf32_le corresponds to little-endian UTF-32 encoding as defined in the
Unicode standard.

encoding_utf32_be corresponds to big-endian UTF-32 encoding as defined in the Unicode
standard.

encoding_utf32 corresponds to UTF-32 encoding as defined in the Unicode standard; the
endianness is assumed to be that of the target platform.

encoding_wchar corresponds to the encoding of wchar_t type; it has the same meaning
as either encoding_utf16 or encoding_utf32 , depending on wchar_t size.

encoding_latin1 corresponds to ISO-8859-1 encoding (also known as Latin-1).

The algorithm used for encoding_auto correctly detects any supported Unicode encoding for
all well-formed XML documents (since they start with document declaration) and for all other
XML documents that start with < ; if your XML document does not start with < and has
encoding that is different from UTF-8, use the specific encoding.

NOTE

The current behavior for Unicode conversion is to skip all invalid UTF
sequences during conversion. This behavior should not be relied upon;
moreover, in case no encoding conversion is performed, the invalid sequences
are not removed, so you’ll get them as is in node/attribute contents.

4.7. Conformance to W3C speci�cation
pugixml is not fully W3C conformant - it can load any valid XML document, but does not
perform some well-formedness checks. While considerable effort is made to reject invalid
XML documents, some validation is not performed because of performance reasons.

There is only one non-conformant behavior when dealing with valid XML documents:
pugixml does not use information supplied in document type declaration for parsing. This
means that entities declared in DOCTYPE are not expanded, and all attribute/PCDATA values
are always processed in a uniform way that depends only on parsing options.

As for rejecting invalid XML documents, there are a number of incompatibilities with W3C
specification, including:

Multiple attributes of the same node can have equal names.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 36/104

Tag and attribute names are not fully validated for consisting of allowed characters, so
some invalid tags are not rejected

Attribute values which contain < are not rejected.

Invalid entity/character references are not rejected and are instead left as is.

Comment values can contain -- .

XML data is not required to begin with document declaration; additionally, document
declaration can appear after comments and other nodes.

Invalid document type declarations are silently ignored in some cases.

Unicode validation is not performed so invalid UTF sequences are not rejected.

5. Accessing document data
pugixml features an extensive interface for getting various types of data from the document
and for traversing the document. This section provides documentation for all such functions
that do not modify the tree except for XPath-related functions; see XPath for XPath reference.
As discussed in C++ interface, there are two types of handles to tree data - xml_node and
xml_attribute. The handles have special null (empty) values which propagate through various
functions and thus are useful for writing more concise code; see this description for details.
The documentation in this section will explicitly state the results of all function in case of null
inputs.

5.1. Basic traversal functions
The internal representation of the document is a tree, where each node has a list of child
nodes (the order of children corresponds to their order in the XML representation), and
additionally element nodes have a list of attributes, which is also ordered. Several functions
are provided in order to let you get from one node in the tree to the other. These functions
roughly correspond to the internal representation, and thus are usually building blocks for
other methods of traversing (i.e. XPath traversals are based on these functions).

xml_node xml_node::parent() const;
xml_node xml_node::first_child() const;
xml_node xml_node::last_child() const;
xml_node xml_node::next_sibling() const;
xml_node xml_node::previous_sibling() const;

xml_attribute xml_node::first_attribute() const;
xml_attribute xml_node::last_attribute() const;
xml_attribute xml_attribute::next_attribute() const;
xml_attribute xml_attribute::previous_attribute() const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 37/104

parent function returns the node’s parent; all non-null nodes except the document have non-
null parent. first_child and last_child return the first and last child of the node,
respectively; note that only document nodes and element nodes can have non-empty child
node list. If node has no children, both functions return null nodes. next_sibling and
previous_sibling return the node that’s immediately to the right/left of this node in the
children list, respectively - for example, in <a/><c/> , calling next_sibling for a handle
that points to results in a handle pointing to <c/> , and calling previous_sibling
results in handle pointing to <a/> . If node does not have next/previous sibling (this happens
if it is the last/first node in the list, respectively), the functions return null nodes.
first_attribute , last_attribute , next_attribute and previous_attribute
functions behave similarly to the corresponding child node functions and allow to iterate
through attribute list in the same way.

NOTE
Because of memory consumption reasons, attributes do not have a link to
their parent nodes. Thus there is no xml_attribute::parent() function.

Calling any of the functions above on the null handle results in a null handle - i.e.
node.first_child().next_sibling() returns the second child of node , and null handle if
node is null, has no children at all or if it has only one child node.

With these functions, you can iterate through all child nodes and display all attributes like this
(samples/traverse_base.cpp):

5.2. Getting node data
Apart from structural information (parent, child nodes, attributes), nodes can have name and
value, both of which are strings. Depending on node type, name or value may be absent.
node_document nodes do not have a name or value, node_element and node_declaration
nodes always have a name but never have a value, node_pcdata, node_cdata, node_comment

for (pugi::xml_node tool = tools.first_child(); tool; tool = tool.next_sibling())
{
 std::cout << "Tool:";

 for (pugi::xml_attribute attr = tool.first_attribute(); attr; attr =
attr.next_attribute())
 {
 std::cout << " " << attr.name() << "=" << attr.value();
 }

 std::cout << std::endl;
}

C++

https://pugixml.org/docs/samples/traverse_base.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 38/104

and node_doctype nodes never have a name but always have a value (it may be empty
though), node_pi nodes always have a name and a value (again, value may be empty). In order
to get node’s name or value, you can use the following functions:

In case node does not have a name or value or if the node handle is null, both functions return
empty strings - they never return null pointers.

It is common to store data as text contents of some node - i.e. <node><description>This is a
node</description></node> . In this case, <description> node does not have a value, but
instead has a child of type node_pcdata with value "This is a node" . pugixml provides
several helper functions to parse such data:

child_value() returns the value of the first child with type node_pcdata or node_cdata;
child_value(name) is a simple wrapper for child(name).child_value() . For the above
example, calling node.child_value("description") and description.child_value()
will both produce string "This is a node" . If there is no child with relevant type, or if the
handle is null, child_value functions return empty string.

text() returns a special object that can be used for working with PCDATA contents in more
complex cases than just retrieving the value; it is described in Working with text contents
sections.

There is an example of using some of these functions at the end of the next section.

5.3. Getting attribute data
All attributes have name and value, both of which are strings (value may be empty). There are
two corresponding accessors, like for xml_node :

In case the attribute handle is null, both functions return empty strings - they never return
null pointers.

const char_t* xml_node::name() const;
const char_t* xml_node::value() const;

C++

const char_t* xml_node::child_value() const;
const char_t* xml_node::child_value(const char_t* name) const;
xml_text xml_node::text() const;

C++

const char_t* xml_attribute::name() const;
const char_t* xml_attribute::value() const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 39/104

If you need a non-empty string if the attribute handle is null (for example, you need to get the
option value from XML attribute, but if it is not specified, you need it to default to "sorted"
instead of ""), you can use as_string accessor:

It returns def argument if the attribute handle is null. If you do not specify the argument, the
function is equivalent to value() .

In many cases attribute values have types that are not strings - i.e. an attribute may always
contain values that should be treated as integers, despite the fact that they are represented as
strings in XML. pugixml provides several accessors that convert attribute value to some other
type:

as_int , as_uint , as_llong , as_ullong , as_double and as_float convert attribute
values to numbers. If attribute handle is null def argument is returned (which is 0 by
default). Otherwise, all leading whitespace characters are truncated, and the remaining string
is parsed as an integer number in either decimal or hexadecimal form (applicable to as_int ,
as_uint , as_llong and as_ullong ; hexadecimal format is used if the number has 0x or
0X prefix) or as a floating point number in either decimal or scientific form (as_double or
as_float).

In case the input string contains a non-numeric character sequence or a number that is out of
the target numeric range, the result is undefined.

CAUTION
Number conversion functions depend on current C locale as set with
setlocale , so may return unexpected results if the locale is different from
"C" .

as_bool converts attribute value to boolean as follows: if attribute handle is null, def
argument is returned (which is false by default). If attribute value is empty, false is
returned. Otherwise, true is returned if the first character is one of '1', 't', 'T', 'y',

const char_t* xml_attribute::as_string(const char_t* def = "") const;
C++

int xml_attribute::as_int(int def = 0) const;
unsigned int xml_attribute::as_uint(unsigned int def = 0) const;
double xml_attribute::as_double(double def = 0) const;
float xml_attribute::as_float(float def = 0) const;
bool xml_attribute::as_bool(bool def = false) const;
long long xml_attribute::as_llong(long long def = 0) const;
unsigned long long xml_attribute::as_ullong(unsigned long long def = 0) const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 40/104

'Y' . This means that strings like "true" and "yes" are recognized as true , while strings
like "false" and "no" are recognized as false . For more complex matching you’ll have to
write your own function.

NOTE
as_llong and as_ullong are only available if your platform has reliable
support for the long long type, including string conversions.

This is an example of using these functions, along with node data retrieval ones
(samples/traverse_base.cpp):

5.4. Contents-based traversal functions
Since a lot of document traversal consists of finding the node/attribute with the correct name,
there are special functions for that purpose:

child and attribute return the first child/attribute with the specified name;
next_sibling and previous_sibling return the first sibling in the corresponding direction
with the specified name. All string comparisons are case-sensitive. In case the node handle is
null or there is no node/attribute with the specified name, null handle is returned.

child and next_sibling functions can be used together to loop through all child nodes
with the desired name like this:

Occasionally the needed node is specified not by the unique name but instead by the value of
some attribute; for example, it is common to have node collections with each node having a
unique id: <group><item id="1"/> <item id="2"/></group> . There are two functions for
finding child nodes based on the attribute values:

for (pugi::xml_node tool = tools.child("Tool"); tool; tool = tool.next_sibling("Tool"))
{
 std::cout << "Tool " << tool.attribute("Filename").value();
 std::cout << ": AllowRemote " << tool.attribute("AllowRemote").as_bool();
 std::cout << ", Timeout " << tool.attribute("Timeout").as_int();
 std::cout << ", Description '" << tool.child_value("Description") << "'\n";
}

C++

xml_node xml_node::child(const char_t* name) const;
xml_attribute xml_node::attribute(const char_t* name) const;
xml_node xml_node::next_sibling(const char_t* name) const;
xml_node xml_node::previous_sibling(const char_t* name) const;

C++

for (pugi::xml_node tool = tools.child("Tool"); tool; tool = tool.next_sibling("Tool"))
C++

https://pugixml.org/docs/samples/traverse_base.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 41/104

The three-argument function returns the first child node with the specified name which has
an attribute with the specified name/value; the two-argument function skips the name test for
the node, which can be useful for searching in heterogeneous collections. If the node handle is
null or if no node is found, null handle is returned. All string comparisons are case-sensitive.

In all of the above functions, all arguments have to be valid strings; passing null pointers
results in undefined behavior.

This is an example of using these functions (samples/traverse_base.cpp):

5.5. Range-based for-loop support
If your C++ compiler supports range-based for-loop (this is a C++11 feature, at the time of
writing it’s supported by Microsoft Visual Studio 2012+, GCC 4.6+ and Clang 3.0+), you can use
it to enumerate nodes/attributes. Additional helpers are provided to support this; note that
they are also compatible with Boost Foreach (http://www.boost.org/libs/foreach/), and possibly
other pre-C++11 foreach facilities.

children function allows you to enumerate all child nodes; children function with name
argument allows you to enumerate all child nodes with a specific name; attributes function
allows you to enumerate all attributes of the node. Note that you can also use node object itself
in a range-based for construct, which is equivalent to using children() .

This is an example of using these functions (samples/traverse_rangefor.cpp):

xml_node xml_node::find_child_by_attribute(const char_t* name, const char_t* attr_name,
const char_t* attr_value) const;
xml_node xml_node::find_child_by_attribute(const char_t* attr_name, const char_t*
attr_value) const;

C++

std::cout << "Tool for *.dae generation: " << tools.find_child_by_attribute("Tool",
"OutputFileMasks", "*.dae").attribute("Filename").value() << "\n";

for (pugi::xml_node tool = tools.child("Tool"); tool; tool = tool.next_sibling("Tool"))
{
 std::cout << "Tool " << tool.attribute("Filename").value() << "\n";
}

C++

implementation-defined-type xml_node::children() const;
implementation-defined-type xml_node::children(const char_t* name) const;
implementation-defined-type xml_node::attributes() const;

C++

https://pugixml.org/docs/samples/traverse_base.cpp
http://www.boost.org/libs/foreach/
https://pugixml.org/docs/samples/traverse_rangefor.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 42/104

5.6. Traversing node/attribute lists via iterators
Child node lists and attribute lists are simply double-linked lists; while you can use
previous_sibling / next_sibling and other such functions for iteration, pugixml
additionally provides node and attribute iterators, so that you can treat nodes as containers of
other nodes or attributes:

begin and attributes_begin return iterators that point to the first node/attribute,
respectively; end and attributes_end return past-the-end iterator for node/attribute list,
respectively - this iterator can’t be dereferenced, but decrementing it results in an iterator
pointing to the last element in the list (except for empty lists, where decrementing past-the-end
iterator results in undefined behavior). Past-the-end iterator is commonly used as a
termination value for iteration loops (see sample below). If you want to get an iterator that
points to an existing handle, you can construct the iterator with the handle as a single
constructor argument, like so: xml_node_iterator(node) . For xml_attribute_iterator ,
you’ll have to provide both an attribute and its parent node.

for (pugi::xml_node tool: tools.children("Tool"))
{
 std::cout << "Tool:";

 for (pugi::xml_attribute attr: tool.attributes())
 {
 std::cout << " " << attr.name() << "=" << attr.value();
 }

 for (pugi::xml_node child: tool.children())
 {
 std::cout << ", child " << child.name();
 }

 std::cout << std::endl;
}

C++

class xml_node_iterator;
class xml_attribute_iterator;

typedef xml_node_iterator xml_node::iterator;
iterator xml_node::begin() const;
iterator xml_node::end() const;

typedef xml_attribute_iterator xml_node::attribute_iterator;
attribute_iterator xml_node::attributes_begin() const;
attribute_iterator xml_node::attributes_end() const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 43/104

begin and end return equal iterators if called on null node; such iterators can’t be
dereferenced. attributes_begin and attributes_end behave the same way. For correct
iterator usage this means that child node/attribute collections of null nodes appear to be
empty.

Both types of iterators have bidirectional iterator semantics (i.e. they can be incremented and
decremented, but efficient random access is not supported) and support all usual iterator
operations - comparison, dereference, etc. The iterators are invalidated if the node/attribute
objects they’re pointing to are removed from the tree; adding nodes/attributes does not
invalidate any iterators.

Here is an example of using iterators for document traversal (samples/traverse_iter.cpp):

CAUTION

Node and attribute iterators are somewhere in the middle between const
and non-const iterators. While dereference operation yields a non-constant
reference to the object, so that you can use it for tree modification
operations, modifying this reference using assignment - i.e. passing iterators
to a function like std::sort - will not give expected results, as assignment
modifies local handle that’s stored in the iterator.

5.7. Recursive traversal with xml_tree_walker
The methods described above allow traversal of immediate children of some node; if you want
to do a deep tree traversal, you’ll have to do it via a recursive function or some equivalent
method. However, pugixml provides a helper for depth-first traversal of a subtree. In order to
use it, you have to implement xml_tree_walker interface and to call traverse function:

for (pugi::xml_node_iterator it = tools.begin(); it != tools.end(); ++it)
{
 std::cout << "Tool:";

 for (pugi::xml_attribute_iterator ait = it->attributes_begin(); ait != it-
>attributes_end(); ++ait)
 {
 std::cout << " " << ait->name() << "=" << ait->value();
 }

 std::cout << std::endl;
}

C++

https://pugixml.org/docs/samples/traverse_iter.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 44/104

The traversal is launched by calling traverse function on traversal root and proceeds as
follows:

First, begin function is called with traversal root as its argument.

Then, for_each function is called for all nodes in the traversal subtree in depth first
order, excluding the traversal root. Node is passed as an argument.

Finally, end function is called with traversal root as its argument.

If begin , end or any of the for_each calls return false , the traversal is terminated and
false is returned as the traversal result; otherwise, the traversal results in true . Note that
you don’t have to override begin or end functions; their default implementations return
true .

You can get the node’s depth relative to the traversal root at any point by calling depth
function. It returns -1 if called from begin / end , and returns 0-based depth if called from
for_each - depth is 0 for all children of the traversal root, 1 for all grandchildren and so on.

This is an example of traversing tree hierarchy with xml_tree_walker
(samples/traverse_walker.cpp):

class xml_tree_walker
{
public:
 virtual bool begin(xml_node& node);
 virtual bool for_each(xml_node& node) = 0;
 virtual bool end(xml_node& node);

 int depth() const;
};

bool xml_node::traverse(xml_tree_walker& walker);

C++

struct simple_walker: pugi::xml_tree_walker
{
 virtual bool for_each(pugi::xml_node& node)
 {
 for (int i = 0; i < depth(); ++i) std::cout << " "; // indentation

 std::cout << node_types[node.type()] << ": name='" << node.name() << "',
value='" << node.value() << "'\n";

 return true; // continue traversal
 }
};

C++

https://pugixml.org/docs/samples/traverse_walker.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 45/104

5.8. Searching for nodes/attributes with predicates
While there are existing functions for getting a node/attribute with known contents, they are
often not sufficient for simple queries. As an alternative for manual iteration through
nodes/attributes until the needed one is found, you can make a predicate and call one of
find_ functions:

The predicate should be either a plain function or a function object which accepts one
argument of type xml_attribute (for find_attribute) or xml_node (for find_child and
find_node), and returns bool . The predicate is never called with null handle as an
argument.

find_attribute function iterates through all attributes of the specified node, and returns
the first attribute for which the predicate returned true . If the predicate returned false for
all attributes or if there were no attributes (including the case where the node is null), null
attribute is returned.

find_child function iterates through all child nodes of the specified node, and returns the
first node for which the predicate returned true . If the predicate returned false for all
nodes or if there were no child nodes (including the case where the node is null), null node is
returned.

find_node function performs a depth-first traversal through the subtree of the specified
node (excluding the node itself), and returns the first node for which the predicate returned
true . If the predicate returned false for all nodes or if subtree was empty, null node is
returned.

This is an example of using predicate-based functions (samples/traverse_predicate.cpp):

simple_walker walker;
doc.traverse(walker);

C++

template <typename Predicate> xml_attribute xml_node::find_attribute(Predicate pred)
const;
template <typename Predicate> xml_node xml_node::find_child(Predicate pred) const;
template <typename Predicate> xml_node xml_node::find_node(Predicate pred) const;

C++

https://pugixml.org/docs/samples/traverse_predicate.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 46/104

5.9. Working with text contents
It is common to store data as text contents of some node - i.e. <node><description>This is a
node</description></node> . In this case, <description> node does not have a value, but
instead has a child of type node_pcdata with value "This is a node" . pugixml provides a
special class, xml_text , to work with such data. Working with text objects to modify data is
described in the documentation for modifying document data; this section describes the access
interface of xml_text .

You can get the text object from a node by using text() method:

bool small_timeout(pugi::xml_node node)
{
 return node.attribute("Timeout").as_int() < 20;
}

struct allow_remote_predicate
{
 bool operator()(pugi::xml_attribute attr) const
 {
 return strcmp(attr.name(), "AllowRemote") == 0;
 }

 bool operator()(pugi::xml_node node) const
 {
 return node.attribute("AllowRemote").as_bool();
 }
};

C++

// Find child via predicate (looks for direct children only)
std::cout << tools.find_child(allow_remote_predicate()).attribute("Filename").value()
<< std::endl;

// Find node via predicate (looks for all descendants in depth-first order)
std::cout << doc.find_node(allow_remote_predicate()).attribute("Filename").value() <<
std::endl;

// Find attribute via predicate
std::cout << tools.last_child().find_attribute(allow_remote_predicate()).value() <<
std::endl;

// We can use simple functions instead of function objects
std::cout << tools.find_child(small_timeout).attribute("Filename").value() <<
std::endl;

C++

xml_text xml_node::text() const;
C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 47/104

If the node has a type node_pcdata or node_cdata , then the node itself is used to return
data; otherwise, a first child node of type node_pcdata or node_cdata is used.

You can check if the text object is bound to a valid PCDATA/CDATA node by using it as a
boolean value, i.e. if (text) { … } or if (!text) { … } . Alternatively you can check it by
using the empty() method:

Given a text object, you can get the contents (i.e. the value of PCDATA/CDATA node) by using
the following function:

In case text object is empty, the function returns an empty string - it never returns a null
pointer.

If you need a non-empty string if the text object is empty, or if the text contents is actually a
number or a boolean that is stored as a string, you can use the following accessors:

All of the above functions have the same semantics as similar xml_attribute members: they
return the default argument if the text object is empty, they convert the text contents to a
target type using the same rules and restrictions. You can refer to documentation for the
attribute functions for details.

xml_text is essentially a helper class that operates on xml_node values. It is bound to a node
of type node_pcdata or node_cdata. You can use the following function to retrieve this node:

Essentially, assuming text is an xml_text object, calling text.get() is equivalent to
calling text.data().value() .

bool xml_text::empty() const;
C++

const char_t* xml_text::get() const;
C++

const char_t* xml_text::as_string(const char_t* def = "") const;
int xml_text::as_int(int def = 0) const;
unsigned int xml_text::as_uint(unsigned int def = 0) const;
double xml_text::as_double(double def = 0) const;
float xml_text::as_float(float def = 0) const;
bool xml_text::as_bool(bool def = false) const;
long long xml_text::as_llong(long long def = 0) const;
unsigned long long xml_text::as_ullong(unsigned long long def = 0) const;

C++

xml_node xml_text::data() const;
C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 48/104

This is an example of using xml_text object (samples/text.cpp):

5.10. Miscellaneous functions
If you need to get the document root of some node, you can use the following function:

This function returns the node with type node_document, which is the root node of the
document the node belongs to (unless the node is null, in which case null node is returned).

While pugixml supports complex XPath expressions, sometimes a simple path handling
facility is needed. There are two functions, for getting node path and for converting path to a
node:

Node paths consist of node names, separated with a delimiter (which is / by default); also
paths can contain self (.) and parent (..) pseudo-names, so that this is a valid path:
"../../foo/./bar" . path returns the path to the node from the document root,
first_element_by_path looks for a node represented by a given path; a path can be an
absolute one (absolute paths start with the delimiter), in which case the rest of the path is
treated as document root relative, and relative to the given node. For example, in the following
document: <a><c/> , node <c/> has path "a/b/c" ; calling
first_element_by_path for document with path "a/b" results in node ; calling
first_element_by_path for node <a/> with path "../a/./b/../." results in node <a/> ;
calling first_element_by_path with path "/a" results in node <a/> for any node.

In case path component is ambiguous (if there are two nodes with given name), the first one is
selected; paths are not guaranteed to uniquely identify nodes in a document. If any component
of a path is not found, the result of first_element_by_path is null node; also
first_element_by_path returns null node for null nodes, in which case the path does not
matter. path returns an empty string for null nodes.

std::cout << "Project name: " << project.child("name").text().get() << std::endl;
std::cout << "Project version: " << project.child("version").text().as_double() <<
std::endl;
std::cout << "Project visibility: " << (project.child("public").text().as_bool(/* def=
*/ true) ? "public" : "private") << std::endl;
std::cout << "Project description: " << project.child("description").text().get() <<
std::endl;

C++

xml_node xml_node::root() const;
C++

string_t xml_node::path(char_t delimiter = '/') const;
xml_node xml_node::first_element_by_path(const char_t* path, char_t delimiter = '/')
const;

C++

https://pugixml.org/docs/samples/text.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 49/104

NOTE
path function returns the result as STL string, and thus is not available if
PUGIXML_NO_STL is defined.

pugixml does not record row/column information for nodes upon parsing for efficiency
reasons. However, if the node has not changed in a significant way since parsing (the
name/value are not changed, and the node itself is the original one, i.e. it was not deleted from
the tree and re-added later), it is possible to get the offset from the beginning of XML buffer:

If the offset is not available (this happens if the node is null, was not originally parsed from a
stream, or has changed in a significant way), the function returns -1. Otherwise it returns the
offset to node’s data from the beginning of XML buffer in pugi::char_t units. For more
information on parsing offsets, see parsing error handling documentation.

6. Modifying document data
The document in pugixml is fully mutable: you can completely change the document structure
and modify the data of nodes/attributes. This section provides documentation for the relevant
functions. All functions take care of memory management and structural integrity themselves,
so they always result in structurally valid tree - however, it is possible to create an invalid XML
tree (for example, by adding two attributes with the same name or by setting attribute/node
name to empty/invalid string). Tree modification is optimized for performance and for
memory consumption, so if you have enough memory you can create documents from scratch
with pugixml and later save them to file/stream instead of relying on error-prone manual text
writing and without too much overhead.

All member functions that change node/attribute data or structure are non-constant and thus
can not be called on constant handles. However, you can easily convert constant handle to
non-constant one by simple assignment: void foo(const pugi::xml_node& n) {
pugi::xml_node nc = n; } , so const-correctness here mainly provides additional
documentation.

6.1. Setting node data
As discussed before, nodes can have name and value, both of which are strings. Depending on
node type, name or value may be absent. node_document nodes do not have a name or value,
node_element and node_declaration nodes always have a name but never have a value,
node_pcdata, node_cdata, node_comment and node_doctype nodes never have a name but

ptrdiff_t xml_node::offset_debug() const;
C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 50/104

always have a value (it may be empty though), node_pi nodes always have a name and a value
(again, value may be empty). In order to set node’s name or value, you can use the following
functions:

Both functions try to set the name/value to the specified string, and return the operation
result. The operation fails if the node can not have name or value (for instance, when trying to
call set_name on a node_pcdata node), if the node handle is null, or if there is insufficient
memory to handle the request. The provided string is copied into document managed memory
and can be destroyed after the function returns (for example, you can safely pass stack-
allocated buffers to these functions). The name/value content is not verified, so take care to use
only valid XML names, or the document may become malformed.

This is an example of setting node name and value (samples/modify_base.cpp):

6.2. Setting attribute data
All attributes have name and value, both of which are strings (value may be empty). You can
set them with the following functions:

Both functions try to set the name/value to the specified string, and return the operation
result. The operation fails if the attribute handle is null, or if there is insufficient memory to
handle the request. The provided string is copied into document managed memory and can be

bool xml_node::set_name(const char_t* rhs);
bool xml_node::set_value(const char_t* rhs);

C++

pugi::xml_node node = doc.child("node");

// change node name
std::cout << node.set_name("notnode");
std::cout << ", new node name: " << node.name() << std::endl;

// change comment text
std::cout << doc.last_child().set_value("useless comment");
std::cout << ", new comment text: " << doc.last_child().value() << std::endl;

// we can't change value of the element or name of the comment
std::cout << node.set_value("1") << ", " << doc.last_child().set_name("2") <<
std::endl;

C++

bool xml_attribute::set_name(const char_t* rhs);
bool xml_attribute::set_value(const char_t* rhs);

C++

https://pugixml.org/docs/samples/modify_base.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 51/104

destroyed after the function returns (for example, you can safely pass stack-allocated buffers
to these functions). The name/value content is not verified, so take care to use only valid XML
names, or the document may become malformed.

In addition to string functions, several functions are provided for handling attributes with
numbers and booleans as values:

The above functions convert the argument to string and then call the base set_value
function. Integers are converted to a decimal form, floating-point numbers are converted to
either decimal or scientific form, depending on the number magnitude, boolean values are
converted to either "true" or "false" .

CAUTION
Number conversion functions depend on current C locale as set with
setlocale , so may generate unexpected results if the locale is different
from "C" .

NOTE
set_value overloads with long long type are only available if your
platform has reliable support for the type, including string conversions.

For convenience, all set_value functions have the corresponding assignment operators:

These operators simply call the right set_value function and return the attribute they’re
called on; the return value of set_value is ignored, so errors are ignored.

bool xml_attribute::set_value(int rhs);
bool xml_attribute::set_value(unsigned int rhs);
bool xml_attribute::set_value(long rhs);
bool xml_attribute::set_value(unsigned long rhs);
bool xml_attribute::set_value(double rhs);
bool xml_attribute::set_value(float rhs);
bool xml_attribute::set_value(bool rhs);
bool xml_attribute::set_value(long long rhs);
bool xml_attribute::set_value(unsigned long long rhs);

C++

xml_attribute& xml_attribute::operator=(const char_t* rhs);
xml_attribute& xml_attribute::operator=(int rhs);
xml_attribute& xml_attribute::operator=(unsigned int rhs);
xml_attribute& xml_attribute::operator=(long rhs);
xml_attribute& xml_attribute::operator=(unsigned long rhs);
xml_attribute& xml_attribute::operator=(double rhs);
xml_attribute& xml_attribute::operator=(float rhs);
xml_attribute& xml_attribute::operator=(bool rhs);
xml_attribute& xml_attribute::operator=(long long rhs);
xml_attribute& xml_attribute::operator=(unsigned long long rhs);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 52/104

This is an example of setting attribute name and value (samples/modify_base.cpp):

6.3. Adding nodes/attributes
Nodes and attributes do not exist without a document tree, so you can’t create them without
adding them to some document. A node or attribute can be created at the end of
node/attribute list or before/after some other node:

append_attribute and append_child create a new node/attribute at the end of the
corresponding list of the node the method is called on; prepend_attribute and
prepend_child create a new node/attribute at the beginning of the list;
insert_attribute_after , insert_attribute_before , insert_child_after and
insert_attribute_before add the node/attribute before or after the specified
node/attribute.

pugi::xml_attribute attr = node.attribute("id");

// change attribute name/value
std::cout << attr.set_name("key") << ", " << attr.set_value("345");
std::cout << ", new attribute: " << attr.name() << "=" << attr.value() << std::endl;

// we can use numbers or booleans
attr.set_value(1.234);
std::cout << "new attribute value: " << attr.value() << std::endl;

// we can also use assignment operators for more concise code
attr = true;
std::cout << "final attribute value: " << attr.value() << std::endl;

C++

xml_attribute xml_node::append_attribute(const char_t* name);
xml_attribute xml_node::prepend_attribute(const char_t* name);
xml_attribute xml_node::insert_attribute_after(const char_t* name, const xml_attribute&
attr);
xml_attribute xml_node::insert_attribute_before(const char_t* name, const
xml_attribute& attr);

xml_node xml_node::append_child(xml_node_type type = node_element);
xml_node xml_node::prepend_child(xml_node_type type = node_element);
xml_node xml_node::insert_child_after(xml_node_type type, const xml_node& node);
xml_node xml_node::insert_child_before(xml_node_type type, const xml_node& node);

xml_node xml_node::append_child(const char_t* name);
xml_node xml_node::prepend_child(const char_t* name);
xml_node xml_node::insert_child_after(const char_t* name, const xml_node& node);
xml_node xml_node::insert_child_before(const char_t* name, const xml_node& node);

C++

https://pugixml.org/docs/samples/modify_base.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 53/104

Attribute functions create an attribute with the specified name; you can specify the empty
name and change the name later if you want to. Node functions with the type argument
create the node with the specified type; since node type can’t be changed, you have to know
the desired type beforehand. Also note that not all types can be added as children; see below
for clarification. Node functions with the name argument create the element node
(node_element) with the specified name.

All functions return the handle to the created object on success, and null handle on failure.
There are several reasons for failure:

Adding fails if the target node is null;

Only node_element nodes can contain attributes, so attribute adding fails if node is not an
element;

Only node_document and node_element nodes can contain children, so child node adding
fails if the target node is not an element or a document;

node_document and node_null nodes can not be inserted as children, so passing
node_document or node_null value as type results in operation failure;

node_declaration nodes can only be added as children of the document node; attempt to
insert declaration node as a child of an element node fails;

Adding node/attribute results in memory allocation, which may fail;

Insertion functions fail if the specified node or attribute is null or is not in the target node’s
children/attribute list.

Even if the operation fails, the document remains in consistent state, but the requested
node/attribute is not added.

CAUTION

attribute() and child() functions do not add attributes or nodes to the
tree, so code like node.attribute("id") = 123; will not do anything if
node does not have an attribute with name "id" . Make sure you’re
operating with existing attributes/nodes by adding them if necessary.

This is an example of adding new attributes/nodes to the document (samples/modify_add.cpp):

https://pugixml.org/docs/samples/modify_add.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 54/104

6.4. Removing nodes/attributes
If you do not want your document to contain some node or attribute, you can remove it with
one of the following functions:

remove_attribute removes the attribute from the attribute list of the node, and returns the
operation result. remove_child removes the child node with the entire subtree (including all
descendant nodes and attributes) from the document, and returns the operation result.
Removing fails if one of the following is true:

The node the function is called on is null;

The attribute/node to be removed is null;

The attribute/node to be removed is not in the node’s attribute/child list.

Removing the attribute or node invalidates all handles to the same underlying object, and also
invalidates all iterators pointing to the same object. Removing node also invalidates all past-
the-end iterators to its attribute or child node list. Be careful to ensure that all such handles
and iterators either do not exist or are not used after the attribute/node is removed.

If you want to remove the attribute or child node by its name, two additional helper functions
are available:

// add node with some name
pugi::xml_node node = doc.append_child("node");

// add description node with text child
pugi::xml_node descr = node.append_child("description");
descr.append_child(pugi::node_pcdata).set_value("Simple node");

// add param node before the description
pugi::xml_node param = node.insert_child_before("param", descr);

// add attributes to param node
param.append_attribute("name") = "version";
param.append_attribute("value") = 1.1;
param.insert_attribute_after("type", param.attribute("name")) = "float";

C++

bool xml_node::remove_attribute(const xml_attribute& a);
bool xml_node::remove_child(const xml_node& n);

C++

bool xml_node::remove_attribute(const char_t* name);
bool xml_node::remove_child(const char_t* name);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 55/104

These functions look for the first attribute or child with the specified name, and then remove
it, returning the result. If there is no attribute or child with such name, the function returns
false ; if there are two nodes with the given name, only the first node is deleted. If you want
to delete all nodes with the specified name, you can use code like this: while
(node.remove_child("tool")) ; .

This is an example of removing attributes/nodes from the document
(samples/modify_remove.cpp):

6.5. Working with text contents
pugixml provides a special class, xml_text , to work with text contents stored as a value of
some node, i.e. <node><description>This is a node</description></node> . Working
with text objects to retrieve data is described in the documentation for accessing document
data; this section describes the modification interface of xml_text .

Once you have an xml_text object, you can set the text contents using the following function:

This function tries to set the contents to the specified string, and returns the operation result.
The operation fails if the text object was retrieved from a node that can not have a value and is
not an element node (i.e. it is a node_declaration node), if the text object is empty, or if there is
insufficient memory to handle the request. The provided string is copied into document
managed memory and can be destroyed after the function returns (for example, you can
safely pass stack-allocated buffers to this function). Note that if the text object was retrieved
from an element node, this function creates the PCDATA child node if necessary (i.e. if the
element node does not have a PCDATA/CDATA child already).

In addition to a string function, several functions are provided for handling text with numbers
and booleans as contents:

// remove description node with the whole subtree
pugi::xml_node node = doc.child("node");
node.remove_child("description");

// remove id attribute
pugi::xml_node param = node.child("param");
param.remove_attribute("value");

// we can also remove nodes/attributes by handles
pugi::xml_attribute id = param.attribute("name");
param.remove_attribute(id);

C++

bool xml_text::set(const char_t* rhs);
C++

https://pugixml.org/docs/samples/modify_remove.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 56/104

The above functions convert the argument to string and then call the base set function.
These functions have the same semantics as similar xml_attribute functions. You can refer
to documentation for the attribute functions for details.

For convenience, all set functions have the corresponding assignment operators:

These operators simply call the right set function and return the attribute they’re called on;
the return value of set is ignored, so errors are ignored.

This is an example of using xml_text object to modify text contents (samples/text.cpp):

6.6. Cloning nodes/attributes
With the help of previously described functions, it is possible to create trees with any contents
and structure, including cloning the existing data. However since this is an often needed
operation, pugixml provides built-in node/attribute cloning facilities. Since nodes and

bool xml_text::set(int rhs);
bool xml_text::set(unsigned int rhs);
bool xml_text::set(long rhs);
bool xml_text::set(unsigned long rhs);
bool xml_text::set(double rhs);
bool xml_text::set(float rhs);
bool xml_text::set(bool rhs);
bool xml_text::set(long long rhs);
bool xml_text::set(unsigned long long rhs);

C++

xml_text& xml_text::operator=(const char_t* rhs);
xml_text& xml_text::operator=(int rhs);
xml_text& xml_text::operator=(unsigned int rhs);
xml_text& xml_text::operator=(long rhs);
xml_text& xml_text::operator=(unsigned long rhs);
xml_text& xml_text::operator=(double rhs);
xml_text& xml_text::operator=(float rhs);
xml_text& xml_text::operator=(bool rhs);
xml_text& xml_text::operator=(long long rhs);
xml_text& xml_text::operator=(unsigned long long rhs);

C++

// change project version
project.child("version").text() = 1.2;

// add description element and set the contents
// note that we do not have to explicitly add the node_pcdata child
project.append_child("description").text().set("a test project");

C++

https://pugixml.org/docs/samples/text.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 57/104

attributes do not exist without a document tree, you can’t create a standalone copy - you have
to immediately insert it somewhere in the tree. For this, you can use one of the following
functions:

These functions mirror the structure of append_child , prepend_child ,
insert_child_before and related functions - they take the handle to the prototype object,
which is to be cloned, insert a new attribute/node at the appropriate place, and then copy the
attribute data or the whole node subtree to the new object. The functions return the handle to
the resulting duplicate object, or null handle on failure.

The attribute is copied along with the name and value; the node is copied along with its type,
name and value; additionally attribute list and all children are recursively cloned, resulting in
the deep subtree clone. The prototype object can be a part of the same document, or a part of
any other document.

The failure conditions resemble those of append_child , insert_child_before and related
functions, consult their documentation for more information. There are additional caveats
specific to cloning functions:

Cloning null handles results in operation failure;

Node cloning starts with insertion of the node of the same type as that of the prototype; for
this reason, cloning functions can not be directly used to clone entire documents, since
node_document is not a valid insertion type. The example below provides a workaround.

It is possible to copy a subtree as a child of some node inside this subtree, i.e.
node.append_copy(node.parent().parent()); . This is a valid operation, and it results
in a clone of the subtree in the state before cloning started, i.e. no infinite recursion takes
place.

This is an example with one possible implementation of include tags in XML
(samples/include.cpp). It illustrates node cloning and usage of other document modification
functions:

xml_attribute xml_node::append_copy(const xml_attribute& proto);
xml_attribute xml_node::prepend_copy(const xml_attribute& proto);
xml_attribute xml_node::insert_copy_after(const xml_attribute& proto, const
xml_attribute& attr);
xml_attribute xml_node::insert_copy_before(const xml_attribute& proto, const
xml_attribute& attr);

xml_node xml_node::append_copy(const xml_node& proto);
xml_node xml_node::prepend_copy(const xml_node& proto);
xml_node xml_node::insert_copy_after(const xml_node& proto, const xml_node& node);
xml_node xml_node::insert_copy_before(const xml_node& proto, const xml_node& node);

C++

https://pugixml.org/docs/samples/include.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 58/104

6.7. Moving nodes

bool load_preprocess(pugi::xml_document& doc, const char* path);

bool preprocess(pugi::xml_node node)
{
 for (pugi::xml_node child = node.first_child(); child;)
 {
 if (child.type() == pugi::node_pi && strcmp(child.name(), "include") == 0)
 {
 pugi::xml_node include = child;

 // load new preprocessed document (note: ideally this should handle
relative paths)
 const char* path = include.value();

 pugi::xml_document doc;
 if (!load_preprocess(doc, path)) return false;

 // insert the comment marker above include directive
 node.insert_child_before(pugi::node_comment, include).set_value(path);

 // copy the document above the include directive (this retains the original
order!)
 for (pugi::xml_node ic = doc.first_child(); ic; ic = ic.next_sibling())
 {
 node.insert_copy_before(ic, include);
 }

 // remove the include node and move to the next child
 child = child.next_sibling();

 node.remove_child(include);
 }
 else
 {
 if (!preprocess(child)) return false;

 child = child.next_sibling();
 }
 }

 return true;
}

bool load_preprocess(pugi::xml_document& doc, const char* path)
{
 pugi::xml_parse_result result = doc.load_file(path, pugi::parse_default |
pugi::parse_pi); // for <?include?>

 return result ? preprocess(doc) : false;
}

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 59/104

Sometimes instead of cloning a node you need to move an existing node to a different position
in a tree. This can be accomplished by copying the node and removing the original; however,
this is expensive since it results in a lot of extra operations. For moving nodes within the same
document tree, you can use of the following functions instead:

These functions mirror the structure of append_copy , prepend_copy , insert_copy_before
and insert_copy_after - they take the handle to the moved object and move it to the
appropriate place with all attributes and/or child nodes. The functions return the handle to the
resulting object (which is the same as the moved object), or null handle on failure.

The failure conditions resemble those of append_child , insert_child_before and related
functions, consult their documentation for more information. There are additional caveats
specific to moving functions:

Moving null handles results in operation failure;

Moving is only possible for nodes that belong to the same document; attempting to move
nodes between documents will fail.

insert_move_after and insert_move_before functions fail if the moved node is the
same as the node argument (this operation would be a no-op otherwise).

It is impossible to move a subtree to a child of some node inside this subtree, i.e.
node.append_move(node.parent().parent()); will fail.

6.8. Assembling document from fragments
pugixml provides several ways to assemble an XML document from other XML documents.
Assuming there is a set of document fragments, represented as in-memory buffers, the
implementation choices are as follows:

Use a temporary document to parse the data from a string, then clone the nodes to a
destination node. For example:

xml_node xml_node::append_move(const xml_node& moved);
xml_node xml_node::prepend_move(const xml_node& moved);
xml_node xml_node::insert_move_after(const xml_node& moved, const xml_node& node);
xml_node xml_node::insert_move_before(const xml_node& moved, const xml_node& node);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 60/104

Cache the parsing step - instead of keeping in-memory buffers, keep document objects that
already contain the parsed fragment:

Use xml_node::append_buffer directly:

The first method is more convenient, but slower than the other two. The relative performance
of append_copy and append_buffer depends on the buffer format - usually
append_buffer is faster if the buffer is in native encoding (UTF-8 or wchar_t, depending on
PUGIXML_WCHAR_MODE). At the same time it might be less efficient in terms of memory usage -
the implementation makes a copy of the provided buffer, and the copy has the same lifetime
as the document - the memory used by that copy will be reclaimed after the document is
destroyed, but no sooner. Even deleting all nodes in the document, including the appended
ones, won’t reclaim the memory.

append_buffer behaves in the same way as xml_document::load_buffer - the input buffer is
a byte buffer, with size in bytes; the buffer is not modified and can be freed after the function
returns.

Since append_buffer needs to append child nodes to the current node, it only works if the
current node is either document or element node. Calling append_buffer on a node with any
other type results in an error with status_append_invalid_root status.

7. Saving document

bool append_fragment(pugi::xml_node target, const char* buffer, size_t size)
{
 pugi::xml_document doc;
 if (!doc.load_buffer(buffer, size)) return false;

 for (pugi::xml_node child = doc.first_child(); child; child =
child.next_sibling())
 target.append_copy(child);
}

C++

bool append_fragment(pugi::xml_node target, const pugi::xml_document&
cached_fragment)
{
 for (pugi::xml_node child = cached_fragment.first_child(); child; child =
child.next_sibling())
 target.append_copy(child);
}

C++

xml_parse_result xml_node::append_buffer(const void* contents, size_t size, unsigned
int options = parse_default, xml_encoding encoding = encoding_auto);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 61/104

Often after creating a new document or loading the existing one and processing it, it is
necessary to save the result back to file. Also it is occasionally useful to output the whole
document or a subtree to some stream; use cases include debug printing, serialization via
network or other text-oriented medium, etc. pugixml provides several functions to output any
subtree of the document to a file, stream or another generic transport interface; these
functions allow to customize the output format (see Output options), and also perform
necessary encoding conversions (see Encodings). This section documents the relevant
functionality.

Before writing to the destination the node/attribute data is properly formatted according to
the node type; all special XML symbols, such as < and & , are properly escaped (unless
format_no_escapes flag is set). In order to guard against forgotten node/attribute names,
empty node/attribute names are printed as ":anonymous" . For well-formed output, make
sure all node and attribute names are set to meaningful values.

CDATA sections with values that contain "]]>" are split into several sections as follows:
section with value "pre]]>post" is written as <![CDATA[pre]]]]><![CDATA[>post]]> .
While this alters the structure of the document (if you load the document after saving it, there
will be two CDATA sections instead of one), this is the only way to escape CDATA contents.

7.1. Saving document to a �le
If you want to save the whole document to a file, you can use one of the following functions:

These functions accept file path as its first argument, and also three optional arguments,
which specify indentation and other output options (see Output options) and output data
encoding (see Encodings). The path has the target operating system format, so it can be a
relative or absolute one, it should have the delimiters of the target system, it should have the
exact case if the target file system is case-sensitive, etc.

File path is passed to the system file opening function as is in case of the first function (which
accepts const char* path); the second function either uses a special file opening function if
it is provided by the runtime library or converts the path to UTF-8 and uses the system file
opening function.

save_file opens the target file for writing, outputs the requested header (by default a
document declaration is output, unless the document already has one), and then saves the
document contents. If the file could not be opened, the function returns false . Calling

bool xml_document::save_file(const char* path, const char_t* indent = "\t", unsigned
int flags = format_default, xml_encoding encoding = encoding_auto) const;
bool xml_document::save_file(const wchar_t* path, const char_t* indent = "\t", unsigned
int flags = format_default, xml_encoding encoding = encoding_auto) const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 62/104

save_file is equivalent to creating an xml_writer_file object with FILE* handle as the
only constructor argument and then calling save ; see Saving document via writer interface
for writer interface details.

This is a simple example of saving XML document to file (samples/save_file.cpp):

7.2. Saving document to C++ IOstreams
To enhance interoperability pugixml provides functions for saving document to any object
which implements C++ std::ostream interface. This allows you to save documents to any
standard C++ stream (i.e. file stream) or any third-party compliant implementation (i.e. Boost
Iostreams). Most notably, this allows for easy debug output, since you can use std::cout
stream as saving target. There are two functions, one works with narrow character streams,
another handles wide character ones:

save with std::ostream argument saves the document to the stream in the same way as
save_file (i.e. with requested header and with encoding conversions). On the other hand,
save with std::wstream argument saves the document to the wide stream with
encoding_wchar encoding. Because of this, using save with wide character streams requires
careful (usually platform-specific) stream setup (i.e. using the imbue function). Generally use
of wide streams is discouraged, however it provides you with the ability to save documents to
non-Unicode encodings, i.e. you can save Shift-JIS encoded data if you set the correct locale.

Calling save with stream target is equivalent to creating an xml_writer_stream object with
stream as the only constructor argument and then calling save ; see Saving document via
writer interface for writer interface details.

This is a simple example of saving XML document to standard output
(samples/save_stream.cpp):

// save document to file
std::cout << "Saving result: " << doc.save_file("save_file_output.xml") << std::endl;

C++

void xml_document::save(std::ostream& stream, const char_t* indent = "\t", unsigned int
flags = format_default, xml_encoding encoding = encoding_auto) const;
void xml_document::save(std::wostream& stream, const char_t* indent = "\t", unsigned
int flags = format_default) const;

C++

// save document to standard output
std::cout << "Document:\n";
doc.save(std::cout);

C++

https://pugixml.org/docs/samples/save_file.cpp
https://pugixml.org/docs/samples/save_stream.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 63/104

7.3. Saving document via writer interface
All of the above saving functions are implemented in terms of writer interface. This is a simple
interface with a single function, which is called several times during output process with
chunks of document data as input:

In order to output the document via some custom transport, for example sockets, you should
create an object which implements xml_writer interface and pass it to save function.
xml_writer::write function is called with a buffer as an input, where data points to buffer
start, and size is equal to the buffer size in bytes. write implementation must write the
buffer to the transport; it can not save the passed buffer pointer, as the buffer contents will
change after write returns. The buffer contains the chunk of document data in the desired
encoding.

write function is called with relatively large blocks (size is usually several kilobytes, except
for the last block that may be small), so there is often no need for additional buffering in the
implementation.

This is a simple example of custom writer for saving document data to STL string
(samples/save_custom_writer.cpp); read the sample code for more complex examples:

7.4. Saving a single subtree
While the previously described functions save the whole document to the destination, it is
easy to save a single subtree. The following functions are provided:

class xml_writer
{
public:
 virtual void write(const void* data, size_t size) = 0;
};

void xml_document::save(xml_writer& writer, const char_t* indent = "\t", unsigned int
flags = format_default, xml_encoding encoding = encoding_auto) const;

C++

struct xml_string_writer: pugi::xml_writer
{
 std::string result;

 virtual void write(const void* data, size_t size)
 {
 result.append(static_cast<const char*>(data), size);
 }
};

C++

https://pugixml.org/docs/samples/save_custom_writer.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 64/104

These functions have the same arguments with the same meaning as the corresponding
xml_document::save functions, and allow you to save the subtree to either a C++ IOstream
or to any object that implements xml_writer interface.

Saving a subtree differs from saving the whole document: the process behaves as if
format_write_bom is off, and format_no_declaration is on, even if actual values of the flags are
different. This means that BOM is not written to the destination, and document declaration is
only written if it is the node itself or is one of node’s children. Note that this also holds if you’re
saving a document; this example (samples/save_subtree.cpp) illustrates the difference:

7.5. Output options
All saving functions accept the optional parameter flags . This is a bitmask that customizes
the output format; you can select the way the document nodes are printed and select the
needed additional information that is output before the document contents.

NOTE
You should use the usual bitwise arithmetics to manipulate the bitmask: to
enable a flag, use mask | flag ; to disable a flag, use mask & ~flag .

These flags control the resulting tree contents:

void xml_node::print(std::ostream& os, const char_t* indent = "\t", unsigned int flags
= format_default, xml_encoding encoding = encoding_auto, unsigned int depth = 0) const;
void xml_node::print(std::wostream& os, const char_t* indent = "\t", unsigned int flags
= format_default, unsigned int depth = 0) const;
void xml_node::print(xml_writer& writer, const char_t* indent = "\t", unsigned int
flags = format_default, xml_encoding encoding = encoding_auto, unsigned int depth = 0)
const;

C++

// get a test document
pugi::xml_document doc;
doc.load_string("<foo bar='baz'><call>hey</call></foo>");

// print document to standard output (prints <?xml version="1.0"?><foo bar="baz">
<call>hey</call></foo>)
doc.save(std::cout, "", pugi::format_raw);
std::cout << std::endl;

// print document to standard output as a regular node (prints <foo bar="baz">
<call>hey</call></foo>)
doc.print(std::cout, "", pugi::format_raw);
std::cout << std::endl;

// print a subtree to standard output (prints <call>hey</call>)
doc.child("foo").child("call").print(std::cout, "", pugi::format_raw);
std::cout << std::endl;

C++

https://pugixml.org/docs/samples/save_subtree.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 65/104

format_indent determines if all nodes should be indented with the indentation string
(this is an additional parameter for all saving functions, and is "\t" by default). If this flag
is on, the indentation string is printed several times before every node, where the amount
of indentation depends on the node’s depth relative to the output subtree. This flag has no
effect if format_raw is enabled. This flag is on by default.

format_indent_attributes determines if all attributes should be printed on a new line,
indented with the indentation string according to the attribute’s depth. This flag implies
format_indent. This flag has no effect if format_raw is enabled. This flag is off by default.

format_raw switches between formatted and raw output. If this flag is on, the nodes are
not indented in any way, and also no newlines that are not part of document text are
printed. Raw mode can be used for serialization where the result is not intended to be read
by humans; also it can be useful if the document was parsed with parse_ws_pcdata flag, to
preserve the original document formatting as much as possible. This flag is off by default.

format_no_escapes disables output escaping for attribute values and PCDATA contents. If
this flag is off, special symbols (" , & , < , >) and all non-printable characters (those with
codepoint values less than 32) are converted to XML escape sequences (i.e. &) during
output. If this flag is on, no text processing is performed; therefore, output XML can be
malformed if output contents contains invalid symbols (i.e. having a stray < in the PCDATA
will make the output malformed). This flag is off by default.

format_no_empty_element_tags determines if start/end tags should be output instead of
empty element tags for empty elements (that is, elements with no children). This flag is off
by default.

These flags control the additional output information:

format_no_declaration disables default node declaration output. By default, if the
document is saved via save or save_file function, and it does not have any document
declaration, a default declaration is output before the document contents. Enabling this flag
disables this declaration. This flag has no effect in xml_node::print functions: they never
output the default declaration. This flag is off by default.

format_write_bom enables Byte Order Mark (BOM) output. By default, no BOM is output,
so in case of non UTF-8 encodings the resulting document’s encoding may not be
recognized by some parsers and text editors, if they do not implement sophisticated
encoding detection. Enabling this flag adds an encoding-specific BOM to the output. This
flag has no effect in xml_node::print functions: they never output the BOM. This flag is
off by default.

format_save_file_text changes the file mode when using save_file function. By
default, file is opened in binary mode, which means that the output file will contain
platform-independent newline \n (ASCII 10). If this flag is on, file is opened in text mode,

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 66/104

which on some systems changes the newline format (i.e. on Windows you can use this flag
to output XML documents with \r\n (ASCII 13 10) newlines. This flag is off by default.

Additionally, there is one predefined option mask:

format_default is the default set of flags, i.e. it has all options set to their default values.
It sets formatted output with indentation, without BOM and with default node declaration,
if necessary.

This is an example that shows the outputs of different output options
(samples/save_options.cpp):

// get a test document
pugi::xml_document doc;
doc.load_string("<foo bar='baz'><call>hey</call></foo>");

// default options; prints
// <?xml version="1.0"?>
// <foo bar="baz">
// <call>hey</call>
// </foo>
doc.save(std::cout);
std::cout << std::endl;

// default options with custom indentation string; prints
// <?xml version="1.0"?>
// <foo bar="baz">
// --<call>hey</call>
// </foo>
doc.save(std::cout, "--");
std::cout << std::endl;

// default options without indentation; prints
// <?xml version="1.0"?>
// <foo bar="baz">
// <call>hey</call>
// </foo>
doc.save(std::cout, "\t", pugi::format_default & ~pugi::format_indent); // can also
pass "" instead of indentation string for the same effect
std::cout << std::endl;

// raw output; prints
// <?xml version="1.0"?><foo bar="baz"><call>hey</call></foo>
doc.save(std::cout, "\t", pugi::format_raw);
std::cout << std::endl << std::endl;

// raw output without declaration; prints
// <foo bar="baz"><call>hey</call></foo>
doc.save(std::cout, "\t", pugi::format_raw | pugi::format_no_declaration);
std::cout << std::endl;

C++

https://pugixml.org/docs/samples/save_options.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 67/104

7.6. Encodings
pugixml supports all popular Unicode encodings (UTF-8, UTF-16 (big and little endian), UTF-32
(big and little endian); UCS-2 is naturally supported since it’s a strict subset of UTF-16) and
handles all encoding conversions during output. The output encoding is set via the encoding
parameter of saving functions, which is of type xml_encoding . The possible values for the
encoding are documented in Encodings; the only flag that has a different meaning is
encoding_auto .

While all other flags set the exact encoding, encoding_auto is meant for automatic encoding
detection. The automatic detection does not make sense for output encoding, since there is
usually nothing to infer the actual encoding from, so here encoding_auto means UTF-8
encoding, which is the most popular encoding for XML data storage. This is also the default
value of output encoding; specify another value if you do not want UTF-8 encoded output.

Also note that wide stream saving functions do not have encoding argument and always
assume encoding_wchar encoding.

NOTE

The current behavior for Unicode conversion is to skip all invalid UTF
sequences during conversion. This behavior should not be relied upon; if your
node/attribute names do not contain any valid UTF sequences, they may be
output as if they are empty, which will result in malformed XML document.

7.7. Customizing document declaration
When you are saving the document using xml_document::save() or
xml_document::save_file() , a default XML document declaration is output, if
format_no_declaration is not specified and if the document does not have a declaration
node. However, the default declaration is not customizable. If you want to customize the
declaration output, you need to create the declaration node yourself.

NOTE

By default the declaration node is not added to the document during parsing.
If you just need to preserve the original declaration node, you have to add the
flag parse_declaration to the parsing flags; the resulting document will contain
the original declaration node, which will be output during saving.

Declaration node is a node with type node_declaration; it behaves like an element node in that
it has attributes with values (but it does not have child nodes). Therefore setting custom
version, encoding or standalone declaration involves adding attributes and setting attribute
values.

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 68/104

This is an example that shows how to create a custom declaration node
(samples/save_declaration.cpp):

8. XPath
If the task at hand is to select a subset of document nodes that match some criteria, it is
possible to code a function using the existing traversal functionality for any practical criteria.
However, often either a data-driven approach is desirable, in case the criteria are not
predefined and come from a file, or it is inconvenient to use traversal interfaces and a higher-
level DSL is required. There is a standard language for XML processing, XPath, that can be
useful for these cases. pugixml implements an almost complete subset of XPath 1.0. Because of
differences in document object model and some performance implications, there are minor
violations of the official specifications, which can be found in Conformance to W3C
specification. The rest of this section describes the interface for XPath functionality. Please
note that if you wish to learn to use XPath language, you have to look for other tutorials or
manuals; for example, you can read W3Schools XPath tutorial (http://www.w3schools.com/xpath/),
XPath tutorial at tizag.com (http://www.tizag.com/xmlTutorial/xpathtutorial.php), and the XPath 1.0
specification (http://www.w3.org/TR/xpath/).

8.1. XPath types
Each XPath expression can have one of the following types: boolean, number, string or node
set. Boolean type corresponds to bool type, number type corresponds to double type, string
type corresponds to either std::string or std::wstring , depending on whether wide
character interface is enabled, and node set corresponds to xpath_node_set type. There is an
enumeration, xpath_value_type , which can take the values xpath_type_boolean ,
xpath_type_number , xpath_type_string or xpath_type_node_set , accordingly.

// get a test document
pugi::xml_document doc;
doc.load_string("<foo bar='baz'><call>hey</call></foo>");

// add a custom declaration node
pugi::xml_node decl = doc.prepend_child(pugi::node_declaration);
decl.append_attribute("version") = "1.0";
decl.append_attribute("encoding") = "UTF-8";
decl.append_attribute("standalone") = "no";

// <?xml version="1.0" encoding="UTF-8" standalone="no"?>
// <foo bar="baz">
// <call>hey</call>
// </foo>
doc.save(std::cout);
std::cout << std::endl;

C++

https://pugixml.org/docs/samples/save_declaration.cpp
http://www.w3schools.com/xpath/
http://www.tizag.com/xmlTutorial/xpathtutorial.php
http://www.w3.org/TR/xpath/

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 69/104

Because an XPath node can be either a node or an attribute, there is a special type,
xpath_node , which is a discriminated union of these types. A value of this type contains two
node handles, one of xml_node type, and another one of xml_attribute type; at most one of
them can be non-null. The accessors to get these handles are available:

XPath nodes can be null, in which case both accessors return null handles.

Note that as per XPath specification, each XPath node has a parent, which can be retrieved via
this function:

parent function returns the node’s parent if the XPath node corresponds to xml_node
handle (equivalent to node().parent()), or the node to which the attribute belongs to, if the
XPath node corresponds to xml_attribute handle. For null nodes, parent returns null
handle.

Like node and attribute handles, XPath node handles can be implicitly cast to boolean-like
object to check if it is a null node, and also can be compared for equality with each other.

You can also create XPath nodes with one of the three constructors: the default constructor,
the constructor that takes node argument, and the constructor that takes attribute and node
arguments (in which case the attribute must belong to the attribute list of the node). The
constructor from xml_node is implicit, so you can usually pass xml_node to functions that
expect xpath_node . Apart from that you usually don’t need to create your own XPath node
objects, since they are returned to you via selection functions.

XPath expressions operate not on single nodes, but instead on node sets. A node set is a
collection of nodes, which can be optionally ordered in either a forward document order or a
reverse one. Document order is defined in XPath specification; an XPath node is before
another node in document order if it appears before it in XML representation of the
corresponding document.

Node sets are represented by xpath_node_set object, which has an interface that resembles
one of sequential random-access containers. It has an iterator type along with usual
begin/past-the-end iterator accessors:

xml_node xpath_node::node() const;
xml_attribute xpath_node::attribute() const;

C++

xml_node xpath_node::parent() const;
C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 70/104

And it also can be iterated via indices, just like std::vector :

All of the above operations have the same semantics as that of std::vector : the iterators are
random-access, all of the above operations are constant time, and accessing the element at
index that is greater or equal than the set size results in undefined behavior. You can use both
iterator-based and index-based access for iteration, however the iterator-based one can be
faster.

The order of iteration depends on the order of nodes inside the set; the order can be queried
via the following function:

type function returns the current order of nodes; type_sorted means that the nodes are in
forward document order, type_sorted_reverse means that the nodes are in reverse
document order, and type_unsorted means that neither order is guaranteed (nodes can
accidentally be in a sorted order even if type() returns type_unsorted). If you require a
specific order of iteration, you can change it via sort function:

Calling sort sorts the nodes in either forward or reverse document order, depending on the
argument; after this call type() will return type_sorted or type_sorted_reverse .

Often the actual iteration is not needed; instead, only the first element in document order is
required. For this, a special accessor is provided:

typedef const xpath_node* xpath_node_set::const_iterator;
const_iterator xpath_node_set::begin() const;
const_iterator xpath_node_set::end() const;

C++

const xpath_node& xpath_node_set::operator[](size_t index) const;
size_t xpath_node_set::size() const;
bool xpath_node_set::empty() const;

C++

enum xpath_node_set::type_t {type_unsorted, type_sorted, type_sorted_reverse};
type_t xpath_node_set::type() const;

C++

void xpath_node_set::sort(bool reverse = false);
C++

xpath_node xpath_node_set::first() const;
C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 71/104

This function returns the first node in forward document order from the set, or null node if
the set is empty. Note that while the result of the node does not depend on the order of nodes
in the set (i.e. on the result of type()), the complexity does - if the set is sorted, the complexity
is constant, otherwise it is linear in the number of elements or worse.

While in the majority of cases the node set is returned by XPath functions, sometimes there is
a need to manually construct a node set. For such cases, a constructor is provided which takes
an iterator range (const_iterator is a typedef for const xpath_node*), and an optional
type:

The constructor copies the specified range and sets the specified type. The objects in the range
are not checked in any way; you’ll have to ensure that the range contains no duplicates, and
that the objects are sorted according to the type parameter. Otherwise XPath operations with
this set may produce unexpected results.

8.2. Selecting nodes via XPath expression
If you want to select nodes that match some XPath expression, you can do it with the following
functions:

select_nodes function compiles the expression and then executes it with the node as a
context node, and returns the resulting node set. select_node returns only the first node in
document order from the result, and is equivalent to calling select_nodes(query).first() .
If the XPath expression does not match anything, or the node handle is null, select_nodes
returns an empty set, and select_node returns null XPath node.

If exception handling is not disabled, both functions throw xpath_exception if the query can
not be compiled or if it returns a value with type other than node set; see Error handling for
details.

While compiling expressions is fast, the compilation time can introduce a significant overhead
if the same expression is used many times on small subtrees. If you’re doing many similar
queries, consider compiling them into query objects (see Using query objects for further

xpath_node_set::xpath_node_set(const_iterator begin, const_iterator end, type_t type =
type_unsorted);

C++

xpath_node xml_node::select_node(const char_t* query, xpath_variable_set* variables =
0) const;
xpath_node_set xml_node::select_nodes(const char_t* query, xpath_variable_set*
variables = 0) const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 72/104

reference). Once you get a compiled query object, you can pass it to select functions instead of
an expression string:

If exception handling is not disabled, both functions throw xpath_exception if the query
returns a value with type other than node set.

This is an example of selecting nodes using XPath expressions (samples/xpath_select.cpp):

8.3. Using query objects
When you call select_nodes with an expression string as an argument, a query object is
created behind the scenes. A query object represents a compiled XPath expression. Query
objects can be needed in the following circumstances:

You can precompile expressions to query objects to save compilation time if it becomes an
issue;

You can use query objects to evaluate XPath expressions which result in booleans, numbers
or strings;

You can get the type of expression value via query object.

Query objects correspond to xpath_query type. They are immutable and non-copyable: they
are bound to the expression at creation time and can not be cloned. If you want to put query
objects in a container, either allocate them on heap via new operator and store pointers to
xpath_query in the container, or use a C11 compiler (query objects are movable in C11).

xpath_node xml_node::select_node(const xpath_query& query) const;
xpath_node_set xml_node::select_nodes(const xpath_query& query) const;

C++

pugi::xpath_node_set tools = doc.select_nodes("/Profile/Tools/Tool[@AllowRemote='true'
and @DeriveCaptionFrom='lastparam']");

std::cout << "Tools:\n";

for (pugi::xpath_node_set::const_iterator it = tools.begin(); it != tools.end(); ++it)
{
 pugi::xpath_node node = *it;
 std::cout << node.node().attribute("Filename").value() << "\n";
}

pugi::xpath_node build_tool = doc.select_node("//Tool[contains(Description, 'build
system')]");

if (build_tool)
 std::cout << "Build tool: " << build_tool.node().attribute("Filename").value() <<
"\n";

C++

https://pugixml.org/docs/samples/xpath_select.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 73/104

You can create a query object with the constructor that takes XPath expression as an
argument:

The expression is compiled and the compiled representation is stored in the new query object.
If compilation fails, xpath_exception is thrown if exception handling is not disabled (see Error
handling for details). After the query is created, you can query the type of the evaluation result
using the following function:

You can evaluate the query using one of the following functions:

All functions take the context node as an argument, compute the expression and return the
result, converted to the requested type. According to XPath specification, value of any type can
be converted to boolean, number or string value, but no type other than node set can be
converted to node set. Because of this, evaluate_boolean , evaluate_number and
evaluate_string always return a result, but evaluate_node_set and evaluate_node
result in an error if the return type is not node set (see Error handling).

NOTE

Calling node.select_nodes("query") is equivalent to calling
xpath_query("query").evaluate_node_set(node) . Calling
node.select_node("query") is equivalent to calling
xpath_query("query").evaluate_node(node) .

Note that evaluate_string function returns the STL string; as such, it’s not available in
PUGIXML_NO_STL mode and also usually allocates memory. There is another string evaluation
function:

explicit xpath_query::xpath_query(const char_t* query, xpath_variable_set* variables =
0);

C++

xpath_value_type xpath_query::return_type() const;
C++

bool xpath_query::evaluate_boolean(const xpath_node& n) const;
double xpath_query::evaluate_number(const xpath_node& n) const;
string_t xpath_query::evaluate_string(const xpath_node& n) const;
xpath_node_set xpath_query::evaluate_node_set(const xpath_node& n) const;
xpath_node xpath_query::evaluate_node(const xpath_node& n) const;

C++

size_t xpath_query::evaluate_string(char_t* buffer, size_t capacity, const xpath_node&
n) const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 74/104

This function evaluates the string, and then writes the result to buffer (but at most
capacity characters); then it returns the full size of the result in characters, including the
terminating zero. If capacity is not 0, the resulting buffer is always zero-terminated. You can
use this function as follows:

First call the function with buffer = 0 and capacity = 0 ; then allocate the returned
amount of characters, and call the function again, passing the allocated storage and the
amount of characters;

First call the function with small buffer and buffer capacity; then, if the result is larger than
the capacity, the output has been trimmed, so allocate a larger buffer and call the function
again.

This is an example of using query objects (samples/xpath_query.cpp):

8.4. Using variables
XPath queries may contain references to variables; this is useful if you want to use queries
that depend on some dynamic parameter without manually preparing the complete query
string, or if you want to reuse the same query object for similar queries.

// Select nodes via compiled query
pugi::xpath_query query_remote_tools("/Profile/Tools/Tool[@AllowRemote='true']");

pugi::xpath_node_set tools = query_remote_tools.evaluate_node_set(doc);
std::cout << "Remote tool: ";
tools[2].node().print(std::cout);

// Evaluate numbers via compiled query
pugi::xpath_query query_timeouts("sum(//Tool/@Timeout)");
std::cout << query_timeouts.evaluate_number(doc) << std::endl;

// Evaluate strings via compiled query for different context nodes
pugi::xpath_query query_name_valid("string-length(substring-before(@Filename, '_')) > 0
and @OutputFileMasks");
pugi::xpath_query query_name("concat(substring-before(@Filename, '_'), ' produces ',
@OutputFileMasks)");

for (pugi::xml_node tool = doc.first_element_by_path("Profile/Tools/Tool"); tool; tool
= tool.next_sibling())
{
 std::string s = query_name.evaluate_string(tool);

 if (query_name_valid.evaluate_boolean(tool)) std::cout << s << std::endl;
}

C++

https://pugixml.org/docs/samples/xpath_query.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 75/104

Variable references have the form $name ; in order to use them, you have to provide a
variable set, which includes all variables present in the query with correct types. This set is
passed to xpath_query constructor or to select_nodes / select_node functions:

If you’re using query objects, you can change the variable values before evaluate / select
calls to change the query behavior.

NOTE
The variable set pointer is stored in the query object; you have to ensure that
the lifetime of the set exceeds that of query object.

Variable sets correspond to xpath_variable_set type, which is essentially a variable
container.

You can add new variables with the following function:

The function tries to add a new variable with the specified name and type; if the variable with
such name does not exist in the set, the function adds a new variable and returns the variable
handle; if there is already a variable with the specified name, the function returns the variable
handle if variable has the specified type. Otherwise the function returns null pointer; it also
returns null pointer on allocation failure.

New variables are assigned the default value which depends on the type: 0 for numbers,
false for booleans, empty string for strings and empty set for node sets.

You can get the existing variables with the following functions:

The functions return the variable handle, or null pointer if the variable with the specified
name is not found.

explicit xpath_query::xpath_query(const char_t* query, xpath_variable_set* variables =
0);
xpath_node xml_node::select_node(const char_t* query, xpath_variable_set* variables =
0) const;
xpath_node_set xml_node::select_nodes(const char_t* query, xpath_variable_set*
variables = 0) const;

C++

xpath_variable* xpath_variable_set::add(const char_t* name, xpath_value_type type);
C++

xpath_variable* xpath_variable_set::get(const char_t* name);
const xpath_variable* xpath_variable_set::get(const char_t* name) const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 76/104

Additionally, there are the helper functions for setting the variable value by name; they try to
add the variable with the corresponding type, if it does not exist, and to set the value. If the
variable with the same name but with different type is already present, they return false ;
they also return false on allocation failure. Note that these functions do not perform any
type conversions.

The variable values are copied to the internal variable storage, so you can modify or destroy
them after the functions return.

If setting variables by name is not efficient enough, or if you have to inspect variable
information or get variable values, you can use variable handles. A variable corresponds to
the xpath_variable type, and a variable handle is simply a pointer to xpath_variable .

In order to get variable information, you can use one of the following functions:

Note that each variable has a distinct type which is specified upon variable creation and can
not be changed later.

In order to get variable value, you should use one of the following functions, depending on the
variable type:

These functions return the value of the variable. Note that no type conversions are performed;
if the type mismatch occurs, a dummy value is returned (false for booleans, NaN for
numbers, empty string for strings and empty set for node sets).

In order to set variable value, you should use one of the following functions, depending on the
variable type:

bool xpath_variable_set::set(const char_t* name, bool value);
bool xpath_variable_set::set(const char_t* name, double value);
bool xpath_variable_set::set(const char_t* name, const char_t* value);
bool xpath_variable_set::set(const char_t* name, const xpath_node_set& value);

C++

const char_t* xpath_variable::name() const;
xpath_value_type xpath_variable::type() const;

C++

bool xpath_variable::get_boolean() const;
double xpath_variable::get_number() const;
const char_t* xpath_variable::get_string() const;
const xpath_node_set& xpath_variable::get_node_set() const;

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 77/104

These functions modify the variable value. Note that no type conversions are performed; if the
type mismatch occurs, the functions return false ; they also return false on allocation
failure. The variable values are copied to the internal variable storage, so you can modify or
destroy them after the functions return.

This is an example of using variables in XPath queries (samples/xpath_variables.cpp):

8.5. Error handling
There are two different mechanisms for error handling in XPath implementation; the
mechanism used depends on whether exception support is disabled (this is controlled with
PUGIXML_NO_EXCEPTIONS define).

By default, XPath functions throw xpath_exception object in case of errors; additionally, in
the event any memory allocation fails, an std::bad_alloc exception is thrown. Also
xpath_exception is thrown if the query is evaluated to a node set, but the return type is not

bool xpath_variable::set(bool value);
bool xpath_variable::set(double value);
bool xpath_variable::set(const char_t* value);
bool xpath_variable::set(const xpath_node_set& value);

C++

// Select nodes via compiled query
pugi::xpath_variable_set vars;
vars.add("remote", pugi::xpath_type_boolean);

pugi::xpath_query query_remote_tools("/Profile/Tools/Tool[@AllowRemote =
string($remote)]", &vars);

vars.set("remote", true);
pugi::xpath_node_set tools_remote = query_remote_tools.evaluate_node_set(doc);

vars.set("remote", false);
pugi::xpath_node_set tools_local = query_remote_tools.evaluate_node_set(doc);

std::cout << "Remote tool: ";
tools_remote[2].node().print(std::cout);

std::cout << "Local tool: ";
tools_local[0].node().print(std::cout);

// You can pass the context directly to select_nodes/select_node
pugi::xpath_node_set tools_local_imm =
doc.select_nodes("/Profile/Tools/Tool[@AllowRemote = string($remote)]", &vars);

std::cout << "Local tool imm: ";
tools_local_imm[0].node().print(std::cout);

C++

https://pugixml.org/docs/samples/xpath_variables.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 78/104

node set. If the query constructor succeeds (i.e. no exception is thrown), the query object is
valid. Otherwise you can get the error details via one of the following functions:

If exceptions are disabled, then in the event of parsing failure the query is initialized to invalid
state; you can test if the query object is valid by using it in a boolean expression: if (query)
{ … } . Additionally, you can get parsing result via the result() accessor:

Without exceptions, evaluating invalid query results in false , empty string, NaN or an
empty node set, depending on the type; evaluating a query as a node set results in an empty
node set if the return type is not node set.

The information about parsing result is returned via xpath_parse_result object. It contains
parsing status and the offset of last successfully parsed character from the beginning of the
source stream:

Parsing result is represented as the error message; it is either a null pointer, in case there is no
error, or the error message in the form of ASCII zero-terminated string.

description() member function can be used to get the error message; it never returns the
null pointer, so you can safely use description() even if query parsing succeeded. Note that
description() returns a char string even in PUGIXML_WCHAR_MODE ; you’ll have to call
as_wide to get the wchar_t string.

In addition to the error message, parsing result has an offset member, which contains the
offset of last successfully parsed character. This offset is in units of pugi::char_t (bytes for
character mode, wide characters for wide character mode).

Parsing result object can be implicitly converted to bool like this: if (result) { … } else {
… } .

virtual const char* xpath_exception::what() const throw();
const xpath_parse_result& xpath_exception::result() const;

C++

const xpath_parse_result& xpath_query::result() const;
C++

struct xpath_parse_result
{
 const char* error;
 ptrdiff_t offset;

 operator bool() const;
 const char* description() const;
};

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 79/104

This is an example of XPath error handling (samples/xpath_error.cpp):

8.6. Conformance to W3C speci�cation
Because of the differences in document object models, performance considerations and
implementation complexity, pugixml does not provide a fully conformant XPath 1.0
implementation. This is the current list of incompatibilities:

Consecutive text nodes sharing the same parent are not merged, i.e. in <node>text1 <!
[CDATA[data]]> text2</node> node should have one text node child, but instead has
three.

Since the document type declaration is not used for parsing, id() function always returns
an empty node set.

Namespace nodes are not supported (affects namespace:: axis).

Name tests are performed on QNames in XML document instead of expanded names; for
<foo xmlns:ns1='uri' xmlns:ns2='uri'><ns1:child/><ns2:child/></foo> , query
foo/ns1:* will return only the first child, not both of them. Compliant XPath

// Exception is thrown for incorrect query syntax
try
{
 doc.select_nodes("//nodes[#true()]");
}
catch (const pugi::xpath_exception& e)
{
 std::cout << "Select failed: " << e.what() << std::endl;
}

// Exception is thrown for incorrect query semantics
try
{
 doc.select_nodes("(123)/next");
}
catch (const pugi::xpath_exception& e)
{
 std::cout << "Select failed: " << e.what() << std::endl;
}

// Exception is thrown for query with incorrect return type
try
{
 doc.select_nodes("123");
}
catch (const pugi::xpath_exception& e)
{
 std::cout << "Select failed: " << e.what() << std::endl;
}

C++

https://pugixml.org/docs/samples/xpath_error.cpp

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 80/104

implementations can return both nodes if the user provides appropriate namespace
declarations.

String functions consider a character to be either a single char value or a single wchar_t
value, depending on the library configuration; this means that some string functions are
not fully Unicode-aware. This affects substring() , string-length() and translate()
functions.

9. Changelog

v1.9
Maintenance release. Changes:

Specification changes:

1. xml_document::load(const char*) (deprecated in 1.5) now has deprecated
attribute; use xml_document::load_string instead

2. xml_node::select_single_node (deprecated in 1.5) now has deprecated attribute;
use xml_node::select_node instead

New features:

1. Add move semantics support for xml_document and improve move semantics support
for other objects

2. CMake build now exports include directories

3. CMake build with BUILD_SHARED_LIBS=ON now uses dllexport attribute for MSVC

XPath improvements:

1. Rework parser/evaluator to not rely on exceptional control flow; longjmp is no longer
used when exceptions are disabled

2. Improve error messages for certain invalid expressions such as .[1] or (1

3. Minor performance improvements

Compatibility improvements:

1. Fix Texas Instruments compiler warnings

2. Fix compilation issues with limits.h for some versions of gcc

3. Fix compilation issues with Clang/C2

4. Fix implicit fallthrough warnings in gcc 7

5. Fix unknown attribute directive warnings in gcc 8

2018-04-04

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 81/104

6. Fix cray++ compiler errors

7. Fix unsigned integer overflow errors with -fsanitize=integer

8. Fix undefined behavior sanitizer issues in compact mode

v1.8
Maintenance release. Changes:

Specification changes:

1. When printing empty elements, a space is no longer added before / in format_raw mode

New features:

1. Added parse_embed_pcdata parsing mode in which PCDATA value is stored in the
element node if possible (significantly reducing memory consumption for some
documents)

2. Added auto-detection support for Latin-1 (ISO-8859-1) encoding during parsing

3. Added format_no_empty_element_tags formatting flag that outputs start/end tags
instead of empty element tags for empty elements

Performance improvements:

1. Minor memory allocation improvements (yielding up to 1% memory savings in some
cases)

Compatibility improvements:

1. Fixed compilation issues for Borland C++ 5.4

2. Fixed compilation issues for some distributions of MinGW 3.8

3. Fixed various Clang/GCC warnings

4. Enabled move semantics support for XPath objects for MSVC 2010 and above

v1.7
Major release, featuring performance and memory improvements along with some new
features. Changes:

Compact mode:

1. Introduced a new tree storage mode that takes significantly less memory (2-5x smaller
DOM) at some performance cost.

2. The mode can be enabled using PUGIXML_COMPACT define.

2016-11-24

2015-10-19

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 82/104

New integer parsing/formatting implementation:

1. Functions that convert from and to integers (e.g. as_int / set_value) do not rely on
CRT any more.

2. New implementation is 3-5x faster and is always correct wrt overflow or underflow.
This is a behavior change - where previously as_uint() would return UINT_MAX on a
value "-1", it now returns 0.

New features:

1. XPath objects (xpath_query , xpath_node_set , xpath_variable_set) are now
movable if your compiler supports C++11. Additionally, xpath_variable_set is
copyable.

2. Added format_indent_attributes that makes the resulting XML friendlier to line
diff/merge tools.

3. Added a variant of xml_node::attribute function with a hint that can improve
lookup performance.

4. Custom allocation functions are now allowed (but not required) to throw instead of
returning a null pointer.

Bug fixes:

1. Fix Clang 3.7 crashes in out-of-memory cases (C++ DR 1748)

2. Fix XPath crashes on SPARC64 (and other 32-bit architectures where doubles have to be
aligned to 8 bytes)

3. Fix xpath_node_set assignment to provide strong exception guarantee

4. Fix saving for custom xml_writer implementations that can throw from write()

v1.6
Maintenance release. Changes:

Specification changes:

1. Attribute/text values now use more digits when printing floating point numbers to
guarantee round-tripping.

2. Text nodes no longer get extra surrounding whitespace when pretty-printing nodes
with mixed contents

Bug fixes:

1. Fixed translate and normalize-space XPath functions to no longer return internal NUL
characters

2015-04-10

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 83/104

2. Fixed buffer overrun on malformed comments inside DOCTYPE sections

3. DOCTYPE parsing can no longer run out of stack space on malformed inputs (XML
parsing is now using bounded stack space)

4. Adjusted processing instruction output to avoid malformed documents if the PI value
contains ?>

v1.5
Major release, featuring a lot of performance improvements and some new features.

Specification changes:

1. xml_document::load(const char_t*) was renamed to load_string ; the old
method is still available and will be deprecated in a future release

2. xml_node::select_single_node was renamed to select_node ; the old method is
still available and will be deprecated in a future release.

New features:

1. Added xml_node::append_move and other functions for moving nodes within a
document

2. Added xpath_query::evaluate_node for evaluating queries with a single node as a
result

Performance improvements:

1. Optimized XML parsing (10-40% faster with clang/gcc, up to 10% faster with MSVC)

2. Optimized memory consumption when copying nodes in the same document (string
contents is now shared)

3. Optimized node copying (10% faster for cross-document copies, 3x faster for inter-
document copies; also it now consumes a constant amount of stack space)

4. Optimized node output (60% faster; also it now consumes a constant amount of stack
space)

5. Optimized XPath allocation (query evaluation now results in fewer temporary
allocations)

6. Optimized XPath sorting (node set sorting is 2-3x faster in some cases)

7. Optimized XPath evaluation (XPathMark suite is 100x faster; some commonly used
queries are 3-4x faster)

Compatibility improvements:

1. Fixed xml_node::offset_debug for corner cases

2014-11-27

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 84/104

2. Fixed undefined behavior while calling memcpy in some cases

3. Fixed MSVC 2015 compilation warnings

4. Fixed contrib/foreach.hpp for Boost 1.56.0

Bug fixes

1. Adjusted comment output to avoid malformed documents if the comment value
contains --

2. Fix XPath sorting for documents that were constructed using append_buffer

3. Fix load_file for wide-character paths with non-ASCII characters in MinGW with
C++11 mode enabled

v1.4
Major release, featuring various new features, bug fixes and compatibility improvements.

Specification changes:

1. Documents without element nodes are now rejected with
status_no_document_element error, unless parse_fragment option is used

New features:

1. Added XML fragment parsing (parse_fragment flag)

2. Added PCDATA whitespace trimming (parse_trim_pcdata flag)

3. Added long long support for xml_attribute and xml_text (as_llong , as_ullong
and set_value / set overloads)

4. Added hexadecimal integer parsing support for
as_int / as_uint / as_llong / as_ullong

5. Added xml_node::append_buffer to improve performance of assembling documents
from fragments

6. xml_named_node_iterator is now bidirectional

7. Reduced XPath stack consumption during compilation and evaluation (useful for
embedded systems)

Compatibility improvements:

1. Improved support for platforms without wchar_t support

2. Fixed several false positives in clang static analysis

3. Fixed several compilation warnings for various GCC versions

2014-02-27

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 85/104

Bug fixes:

1. Fixed undefined pointer arithmetic in XPath implementation

2. Fixed non-seekable iostream support for certain stream types, i.e. Boost file_source
with pipe input

3. Fixed xpath_query::return_type for some expressions

4. Fixed dllexport issues with xml_named_node_iterator

5. Fixed find_child_by_attribute assertion for attributes with null name/value

v1.2
Major release, featuring header-only mode, various interface enhancements (i.e. PCDATA
manipulation and C++11 iteration), many other features and compatibility improvements.

New features:

1. Added xml_text helper class for working with PCDATA/CDATA contents of an element
node

2. Added optional header-only mode (controlled by PUGIXML_HEADER_ONLY define)

3. Added xml_node::children() and xml_node::attributes() for C++11 ranged for
loop or BOOST_FOREACH

4. Added support for Latin-1 (ISO-8859-1) encoding conversion during loading and saving

5. Added custom default values for xml_attribute::as_* (they are returned if the
attribute does not exist)

6. Added parse_ws_pcdata_single flag for preserving whitespace-only PCDATA in case
it’s the only child

7. Added format_save_file_text for xml_document::save_file to open files as text
instead of binary (changes newlines on Windows)

8. Added format_no_escapes flag to disable special symbol escaping (complements
~parse_escapes)

9. Added support for loading document from streams that do not support seeking

10. Added PUGIXML_MEMORY_* constants for tweaking allocation behavior (useful for
embedded systems)

11. Added PUGIXML_VERSION preprocessor define

Compatibility improvements:

2012-05-01

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 86/104

1. Parser does not require setjmp support (improves compatibility with some embedded
platforms, enables /clr:pure compilation)

2. STL forward declarations are no longer used (fixes SunCC/RWSTL compilation, fixes
clang compilation in C++11 mode)

3. Fixed AirPlay SDK, Android, Windows Mobile (WinCE) and C++/CLI compilation

4. Fixed several compilation warnings for various GCC versions, Intel C++ compiler and
Clang

Bug fixes:

1. Fixed unsafe bool conversion to avoid problems on C++/CLI

2. Iterator dereference operator is const now (fixes Boost filter_iterator support)

3. xml_document::save_file now checks for file I/O errors during saving

v1.0
Major release, featuring many XPath enhancements, wide character filename support,
miscellaneous performance improvements, bug fixes and more.

XPath:

1. XPath implementation is moved to pugixml.cpp (which is the only source file now);
use PUGIXML_NO_XPATH if you want to disable XPath to reduce code size

2. XPath is now supported without exceptions (PUGIXML_NO_EXCEPTIONS); the error
handling mechanism depends on the presence of exception support

3. XPath is now supported without STL (PUGIXML_NO_STL)

4. Introduced variable support

5. Introduced new xpath_query::evaluate_string , which works without STL

6. Introduced new xpath_node_set constructor (from an iterator range)

7. Evaluation function now accept attribute context nodes

8. All internal allocations use custom allocation functions

9. Improved error reporting; now a last parsed offset is returned together with the parsing
error

Bug fixes:

1. Fixed memory leak for loading from streams with stream exceptions turned on

2. Fixed custom deallocation function calling with null pointer in one case

2010-11-01

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 87/104

3. Fixed missing attributes for iterator category functions; all functions/classes can now be
DLL-exported

4. Worked around Digital Mars compiler bug, which lead to minor read overfetches in
several functions

5. load_file now works with 2+ Gb files in MSVC/MinGW

6. XPath: fixed memory leaks for incorrect queries

7. XPath: fixed xpath_node() attribute constructor with empty attribute argument

8. XPath: fixed lang() function for non-ASCII arguments

Specification changes:

1. CDATA nodes containing]]> are printed as several nodes; while this changes the
internal structure, this is the only way to escape CDATA contents

2. Memory allocation errors during parsing now preserve last parsed offset (to give an
idea about parsing progress)

3. If an element node has the only child, and it is of CDATA type, then the extra indentation
is omitted (previously this behavior only held for PCDATA children)

Additional functionality:

1. Added xml_parse_result default constructor

2. Added xml_document::load_file and xml_document::save_file with wide
character paths

3. Added as_utf8 and as_wide overloads for std::wstring / std::string arguments

4. Added DOCTYPE node type (node_doctype) and a special parse flag, parse_doctype ,
to add such nodes to the document during parsing

5. Added parse_full parse flag mask, which extends parse_default with all node type
parsing flags except parse_ws_pcdata

6. Added xml_node::hash_value() and xml_attribute::hash_value() functions for
use in hash-based containers

7. Added internal_object() and additional constructor for both xml_node and
xml_attribute for easier marshalling (useful for language bindings)

8. Added xml_document::document_element() function

9. Added xml_node::prepend_attribute , xml_node::prepend_child and
xml_node::prepend_copy functions

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 88/104

10. Added xml_node::append_child , xml_node::prepend_child ,
xml_node::insert_child_before and xml_node::insert_child_after overloads
for element nodes (with name instead of type)

11. Added xml_document::reset() function

Performance improvements:

1. xml_node::root() and xml_node::offset_debug() are now O(1) instead of O(logN)

2. Minor parsing optimizations

3. Minor memory optimization for strings in DOM tree (set_name / set_value)

4. Memory optimization for string memory reclaiming in DOM tree
(set_name / set_value now reallocate the buffer if memory waste is too big)

5. XPath: optimized document order sorting

6. XPath: optimized child/attribute axis step

7. XPath: optimized number-to-string conversions in MSVC

8. XPath: optimized concat for many arguments

9. XPath: optimized evaluation allocation mechanism: constant and document strings are
not heap-allocated

10. XPath: optimized evaluation allocation mechanism: all temporaries' allocations use fast
stack-like allocator

Compatibility:

1. Removed wildcard functions (xml_node::child_w , xml_node::attribute_w , etc.)

2. Removed xml_node::all_elements_by_name

3. Removed xpath_type_t enumeration; use xpath_value_type instead

4. Removed format_write_bom_utf8 enumeration; use format_write_bom instead

5. Removed xml_document::precompute_document_order ,
xml_attribute::document_order and xml_node::document_order functions;
document order sort optimization is now automatic

6. Removed xml_document::parse functions and transfer_ownership struct; use
xml_document::load_buffer_inplace and
xml_document::load_buffer_inplace_own instead

7. Removed as_utf16 function; use as_wide instead

v0.9 2010-07-01

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 89/104

Major release, featuring extended and improved Unicode support, miscellaneous performance
improvements, bug fixes and more.

Major Unicode improvements:

1. Introduced encoding support (automatic/manual encoding detection on load, manual
encoding selection on save, conversion from/to UTF8, UTF16 LE/BE, UTF32 LE/BE)

2. Introduced wchar_t mode (you can set PUGIXML_WCHAR_MODE define to switch
pugixml internal encoding from UTF8 to wchar_t ; all functions are switched to their
Unicode variants)

3. Load/save functions now support wide streams

Bug fixes:

1. Fixed document corruption on failed parsing bug

2. XPath string/number conversion improvements (increased precision, fixed crash for
huge numbers)

3. Improved DOCTYPE parsing: now parser recognizes all well-formed DOCTYPE
declarations

4. Fixed xml_attribute::as_uint() for large numbers (i.e. 2 -1)

5. Fixed xml_node::first_element_by_path for path components that are prefixes of
node names, but are not exactly equal to them.

Specification changes:

1. parse() API changed to
load_buffer / load_buffer_inplace / load_buffer_inplace_own ; load_buffer
APIs do not require zero-terminated strings.

2. Renamed as_utf16 to as_wide

3. Changed xml_node::offset_debug return type and xml_parse_result::offset
type to ptrdiff_t

4. Nodes/attributes with empty names are now printed as :anonymous

Performance improvements:

1. Optimized document parsing and saving

2. Changed internal memory management: internal allocator is used for both metadata
and name/value data; allocated pages are deleted if all allocations from them are
deleted

3. Optimized memory consumption: sizeof(xml_node_struct) reduced from 40 bytes
to 32 bytes on x86

32

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 90/104

4. Optimized debug mode parsing/saving by order of magnitude

Miscellaneous:

1. All STL includes except <exception> in pugixml.hpp are replaced with forward
declarations

2. xml_node::remove_child and xml_node::remove_attribute now return the
operation result

Compatibility:

1. parse() and as_utf16 are left for compatibility (these functions are deprecated and
will be removed in version 1.0)

2. Wildcard functions, document_order / precompute_document_order functions,
all_elements_by_name function and format_write_bom_utf8 flag are deprecated
and will be removed in version 1.0

3. xpath_type_t enumeration was renamed to xpath_value_type ; xpath_type_t is
deprecated and will be removed in version 1.0

v0.5
Major bugfix release. Changes:

XPath bugfixes:

1. Fixed translate() , lang() and concat() functions (infinite loops/crashes)

2. Fixed compilation of queries with empty literal strings ("")

3. Fixed axis tests: they never add empty nodes/attributes to the resulting node set now

4. Fixed string-value evaluation for node-set (the result excluded some text descendants)

5. Fixed self:: axis (it behaved like ancestor-or-self::)

6. Fixed following:: and preceding:: axes (they included descendent and ancestor
nodes, respectively)

7. Minor fix for namespace-uri() function (namespace declaration scope includes the
parent element of namespace declaration attribute)

8. Some incorrect queries are no longer parsed now (i.e. foo: *)

9. Fixed text() /etc. node test parsing bug (i.e. foo[text()] failed to compile)

10. Fixed root step (/) - it now selects empty node set if query is evaluated on empty node

11. Fixed string to number conversion ("123 " converted to NaN, "123 .456" converted
to 123.456 - now the results are 123 and NaN, respectively)

2009-11-08

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 91/104

12. Node set copying now preserves sorted type; leads to better performance on some
queries

Miscellaneous bugfixes:

1. Fixed xml_node::offset_debug for PI nodes

2. Added empty attribute checks to xml_node::remove_attribute

3. Fixed node_pi and node_declaration copying

4. Const-correctness fixes

Specification changes:

1. xpath_node::select_nodes() and related functions now throw exception if
expression return type is not node set (instead of assertion)

2. xml_node::traverse() now sets depth to -1 for both begin() and end() callbacks
(was 0 at begin() and -1 at end())

3. In case of non-raw node printing a newline is output after PCDATA inside nodes if the
PCDATA has siblings

4. UTF8 → wchar_t conversion now considers 5-byte UTF8-like sequences as invalid

New features:

1. Added xpath_node_set::operator[] for index-based iteration

2. Added xpath_query::return_type()

3. Added getter accessors for memory-management functions

v0.42
Maintenance release. Changes:

Bug fixes:

1. Fixed deallocation in case of custom allocation functions or if delete[] / free are
incompatible

2. XPath parser fixed for incorrect queries (i.e. incorrect XPath queries should now always
fail to compile)

3. Const-correctness fixes for find_child_by_attribute

4. Improved compatibility (miscellaneous warning fixes, fixed <cstring> include
dependency for GCC)

5. Fixed iterator begin/end and print function to work correctly for empty nodes

2009-09-17

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 92/104

New features:

1. Added PUGIXML_API / PUGIXML_CLASS / PUGIXML_FUNCTION configuration macros to
control class/function attributes

2. Added xml_attribute::set_value overloads for different types

v0.41
Maintenance release. Changes:

Bug fixes:

1. Fixed bug with node printing (occasionally some content was not written to output
stream)

v0.4
Changes:

Bug fixes:

1. Documentation fix in samples for parse() with manual lifetime control

2. Fixed document order sorting in XPath (it caused wrong order of nodes after
xpath_node_set::sort and wrong results of some XPath queries)

Node printing changes:

1. Single quotes are no longer escaped when printing nodes

2. Symbols in second half of ASCII table are no longer escaped when printing nodes;
because of this, format_utf8 flag is deleted as it’s no longer needed and
format_write_bom is renamed to format_write_bom_utf8 .

3. Reworked node printing - now it works via xml_writer interface; implementations for
FILE* and std::ostream are available. As a side-effect, xml_document::save_file
now works without STL.

New features:

1. Added unsigned integer support for attributes (xml_attribute::as_uint ,
xml_attribute::operator=)

2. Now document declaration (<?xml … ?>) is parsed as node with type
node_declaration when parse_declaration flag is specified (access to
encoding/version is performed as if they were attributes, i.e.
doc.child("xml").attribute("version").as_float()); corresponding flags for
node printing were also added

2009-02-08

2009-01-18

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 93/104

3. Added support for custom memory management (see
set_memory_management_functions for details)

4. Implemented node/attribute copying (see xml_node::insert_copy_* and
xml_node::append_copy for details)

5. Added find_child_by_attribute and find_child_by_attribute_w to simplify
parsing code in some cases (i.e. COLLADA files)

6. Added file offset information querying for debugging purposes (now you’re able to
determine exact location of any xml_node in parsed file, see
xml_node::offset_debug for details)

7. Improved error handling for parsing - now load() , load_file() and parse()
return xml_parse_result , which contains error code and last parsed offset; this does
not break old interface as xml_parse_result can be implicitly casted to bool .

v0.34
Maintenance release. Changes:

Bug fixes:

1. Fixed bug with loading from text-mode iostreams

2. Fixed leak when transfer_ownership is true and parsing is failing

3. Fixed bug in saving (\r and \n are now escaped in attribute values)

4. Renamed free() to destroy() - some macro conflicts were reported

New features:

1. Improved compatibility (supported Digital Mars C++, MSVC 6, CodeWarrior 8, PGI C++,
Comeau, supported PS3 and XBox360)

2. PUGIXML_NO_EXCEPTION flag for platforms without exception handling

v0.3
Refactored, reworked and improved version. Changes:

Interface:

1. Added XPath

2. Added tree modification functions

3. Added no STL compilation mode

4. Added saving document to file

2007-10-31

2007-02-21

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 94/104

5. Refactored parsing flags

6. Removed xml_parser class in favor of xml_document

7. Added transfer ownership parsing mode

8. Modified the way xml_tree_walker works

9. Iterators are now non-constant

Implementation:

1. Support of several compilers and platforms

2. Refactored and sped up parsing core

3. Improved standard compliancy

4. Added XPath implementation

5. Fixed several bugs

v0.2
First public release. Changes:

Bug fixes:

1. Fixed child_value() (for empty nodes)

2. Fixed xml_parser_impl warning at W4

New features:

1. Introduced child_value(name) and child_value_w(name)

2. parse_eol_pcdata and parse_eol_attribute flags + parse_minimal optimizations

3. Optimizations of strconv_t

v0.1
First private release for testing purposes

10. API Reference
This is the reference for all macros, types, enumerations, classes and functions in pugixml.
Each symbol is a link that leads to the relevant section of the manual.

10.1. Macros

2006-11-06

2006-07-15

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 95/104

10.2. Types

10.3. Enumerations

#define PUGIXML_WCHAR_MODE
#define PUGIXML_COMPACT
#define PUGIXML_NO_XPATH
#define PUGIXML_NO_STL
#define PUGIXML_NO_EXCEPTIONS
#define PUGIXML_API
#define PUGIXML_CLASS
#define PUGIXML_FUNCTION
#define PUGIXML_MEMORY_PAGE_SIZE
#define PUGIXML_MEMORY_OUTPUT_STACK
#define PUGIXML_MEMORY_XPATH_PAGE_SIZE
#define PUGIXML_HEADER_ONLY
#define PUGIXML_HAS_LONG_LONG

C++

typedef configuration-defined-type char_t;
typedef configuration-defined-type string_t;
typedef void* (*allocation_function)(size_t size);
typedef void (*deallocation_function)(void* ptr);

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 96/104

10.4. Constants

enum xml_node_type
 node_null
 node_document
 node_element
 node_pcdata
 node_cdata
 node_comment
 node_pi
 node_declaration
 node_doctype

enum xml_parse_status
 status_ok
 status_file_not_found
 status_io_error
 status_out_of_memory
 status_internal_error
 status_unrecognized_tag
 status_bad_pi
 status_bad_comment
 status_bad_cdata
 status_bad_doctype
 status_bad_pcdata
 status_bad_start_element
 status_bad_attribute
 status_bad_end_element
 status_end_element_mismatch
 status_append_invalid_root
 status_no_document_element

enum xml_encoding
 encoding_auto
 encoding_utf8
 encoding_utf16_le
 encoding_utf16_be
 encoding_utf16
 encoding_utf32_le
 encoding_utf32_be
 encoding_utf32
 encoding_wchar
 encoding_latin1

enum xpath_value_type
 xpath_type_none
 xpath_type_node_set
 xpath_type_number
 xpath_type_string
 xpath_type_boolean

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 97/104

10.5. Classes

// Formatting options bit flags:
const unsigned int format_default
const unsigned int format_indent
const unsigned int format_indent_attributes
const unsigned int format_no_declaration
const unsigned int format_no_empty_element_tags
const unsigned int format_no_escapes
const unsigned int format_raw
const unsigned int format_save_file_text
const unsigned int format_write_bom

// Parsing options bit flags:
const unsigned int parse_cdata
const unsigned int parse_comments
const unsigned int parse_declaration
const unsigned int parse_default
const unsigned int parse_doctype
const unsigned int parse_eol
const unsigned int parse_escapes
const unsigned int parse_fragment
const unsigned int parse_full
const unsigned int parse_minimal
const unsigned int parse_pi
const unsigned int parse_trim_pcdata
const unsigned int parse_ws_pcdata
const unsigned int parse_ws_pcdata_single
const unsigned int parse_embed_pcdata
const unsigned int parse_wconv_attribute
const unsigned int parse_wnorm_attribute

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 98/104

class xml_attribute
 xml_attribute();

 bool empty() const;
 operator unspecified_bool_type() const;

 bool operator==(const xml_attribute& r) const;
 bool operator!=(const xml_attribute& r) const;
 bool operator<(const xml_attribute& r) const;
 bool operator>(const xml_attribute& r) const;
 bool operator<=(const xml_attribute& r) const;
 bool operator>=(const xml_attribute& r) const;

 size_t hash_value() const;

 xml_attribute next_attribute() const;
 xml_attribute previous_attribute() const;

 const char_t* name() const;
 const char_t* value() const;

 const char_t* as_string(const char_t* def = "") const;
 int as_int(int def = 0) const;
 unsigned int as_uint(unsigned int def = 0) const;
 double as_double(double def = 0) const;
 float as_float(float def = 0) const;
 bool as_bool(bool def = false) const;
 long long as_llong(long long def = 0) const;
 unsigned long long as_ullong(unsigned long long def = 0) const;

 bool set_name(const char_t* rhs);
 bool set_value(const char_t* rhs);
 bool set_value(int rhs);
 bool set_value(unsigned int rhs);
 bool set_value(long rhs);
 bool set_value(unsigned long rhs);
 bool set_value(double rhs);
 bool set_value(float rhs);
 bool set_value(bool rhs);
 bool set_value(long long rhs);
 bool set_value(unsigned long long rhs);

 xml_attribute& operator=(const char_t* rhs);
 xml_attribute& operator=(int rhs);
 xml_attribute& operator=(unsigned int rhs);
 xml_attribute& operator=(long rhs);
 xml_attribute& operator=(unsigned long rhs);
 xml_attribute& operator=(double rhs);
 xml_attribute& operator=(float rhs);
 xml_attribute& operator=(bool rhs);
 xml_attribute& operator=(long long rhs);
 xml_attribute& operator=(unsnigned long long rhs);

class xml_node
 xml_node();

C++

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 99/104

 bool empty() const;
 operator unspecified_bool_type() const;

 bool operator==(const xml_node& r) const;
 bool operator!=(const xml_node& r) const;
 bool operator<(const xml_node& r) const;
 bool operator>(const xml_node& r) const;
 bool operator<=(const xml_node& r) const;
 bool operator>=(const xml_node& r) const;

 size_t hash_value() const;

 xml_node_type type() const;

 const char_t* name() const;
 const char_t* value() const;

 xml_node parent() const;
 xml_node first_child() const;
 xml_node last_child() const;
 xml_node next_sibling() const;
 xml_node previous_sibling() const;

 xml_attribute first_attribute() const;
 xml_attribute last_attribute() const;

 implementation-defined-type children() const;
 implementation-defined-type children(const char_t* name) const;
 implementation-defined-type attributes() const;

 xml_node child(const char_t* name) const;
 xml_attribute attribute(const char_t* name) const;
 xml_node next_sibling(const char_t* name) const;
 xml_node previous_sibling(const char_t* name) const;
 xml_node find_child_by_attribute(const char_t* name, const char_t* attr_name, const
char_t* attr_value) const;
 xml_node find_child_by_attribute(const char_t* attr_name, const char_t* attr_value)
const;

 const char_t* child_value() const;
 const char_t* child_value(const char_t* name) const;
 xml_text text() const;

 typedef xml_node_iterator iterator;
 iterator begin() const;
 iterator end() const;

 typedef xml_attribute_iterator attribute_iterator;
 attribute_iterator attributes_begin() const;
 attribute_iterator attributes_end() const;

 bool traverse(xml_tree_walker& walker);

 template <typename Predicate> xml_attribute find_attribute(Predicate pred) const;
 template <typename Predicate> xml_node find_child(Predicate pred) const;
 template <typename Predicate> xml_node find_node(Predicate pred) const;

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 100/104

 string_t path(char_t delimiter = '/') const;
 xml_node xml_node::first_element_by_path(const char_t* path, char_t delimiter =
'/') const;
 xml_node root() const;
 ptrdiff_t offset_debug() const;

 bool set_name(const char_t* rhs);
 bool set_value(const char_t* rhs);

 xml_attribute append_attribute(const char_t* name);
 xml_attribute prepend_attribute(const char_t* name);
 xml_attribute insert_attribute_after(const char_t* name, const xml_attribute&
attr);
 xml_attribute insert_attribute_before(const char_t* name, const xml_attribute&
attr);

 xml_node append_child(xml_node_type type = node_element);
 xml_node prepend_child(xml_node_type type = node_element);
 xml_node insert_child_after(xml_node_type type, const xml_node& node);
 xml_node insert_child_before(xml_node_type type, const xml_node& node);

 xml_node append_child(const char_t* name);
 xml_node prepend_child(const char_t* name);
 xml_node insert_child_after(const char_t* name, const xml_node& node);
 xml_node insert_child_before(const char_t* name, const xml_node& node);

 xml_attribute append_copy(const xml_attribute& proto);
 xml_attribute prepend_copy(const xml_attribute& proto);
 xml_attribute insert_copy_after(const xml_attribute& proto, const xml_attribute&
attr);
 xml_attribute insert_copy_before(const xml_attribute& proto, const xml_attribute&
attr);

 xml_node append_copy(const xml_node& proto);
 xml_node prepend_copy(const xml_node& proto);
 xml_node insert_copy_after(const xml_node& proto, const xml_node& node);
 xml_node insert_copy_before(const xml_node& proto, const xml_node& node);

 xml_node append_move(const xml_node& moved);
 xml_node prepend_move(const xml_node& moved);
 xml_node insert_move_after(const xml_node& moved, const xml_node& node);
 xml_node insert_move_before(const xml_node& moved, const xml_node& node);

 bool remove_attribute(const xml_attribute& a);
 bool remove_attribute(const char_t* name);
 bool remove_child(const xml_node& n);
 bool remove_child(const char_t* name);

 xml_parse_result append_buffer(const void* contents, size_t size, unsigned int
options = parse_default, xml_encoding encoding = encoding_auto);

 void print(xml_writer& writer, const char_t* indent = "\t", unsigned int flags =
format_default, xml_encoding encoding = encoding_auto, unsigned int depth = 0) const;
 void print(std::ostream& os, const char_t* indent = "\t", unsigned int flags =
format_default, xml_encoding encoding = encoding_auto, unsigned int depth = 0) const;
 void print(std::wostream& os, const char_t* indent = "\t", unsigned int flags =
format_default, unsigned int depth = 0) const;

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 101/104

 xpath_node select_node(const char_t* query, xpath_variable_set* variables = 0)
const;
 xpath_node select_node(const xpath_query& query) const;
 xpath_node_set select_nodes(const char_t* query, xpath_variable_set* variables = 0)
const;
 xpath_node_set select_nodes(const xpath_query& query) const;

class xml_document
 xml_document();
 ~xml_document();

 void reset();
 void reset(const xml_document& proto);

 xml_parse_result load(std::istream& stream, unsigned int options = parse_default,
xml_encoding encoding = encoding_auto);
 xml_parse_result load(std::wistream& stream, unsigned int options = parse_default);

 xml_parse_result load_string(const char_t* contents, unsigned int options =
parse_default);

 xml_parse_result load_file(const char* path, unsigned int options = parse_default,
xml_encoding encoding = encoding_auto);
 xml_parse_result load_file(const wchar_t* path, unsigned int options =
parse_default, xml_encoding encoding = encoding_auto);

 xml_parse_result load_buffer(const void* contents, size_t size, unsigned int
options = parse_default, xml_encoding encoding = encoding_auto);
 xml_parse_result load_buffer_inplace(void* contents, size_t size, unsigned int
options = parse_default, xml_encoding encoding = encoding_auto);
 xml_parse_result load_buffer_inplace_own(void* contents, size_t size, unsigned int
options = parse_default, xml_encoding encoding = encoding_auto);

 bool save_file(const char* path, const char_t* indent = "\t", unsigned int flags =
format_default, xml_encoding encoding = encoding_auto) const;
 bool save_file(const wchar_t* path, const char_t* indent = "\t", unsigned int flags
= format_default, xml_encoding encoding = encoding_auto) const;

 void save(std::ostream& stream, const char_t* indent = "\t", unsigned int flags =
format_default, xml_encoding encoding = encoding_auto) const;
 void save(std::wostream& stream, const char_t* indent = "\t", unsigned int flags =
format_default) const;

 void save(xml_writer& writer, const char_t* indent = "\t", unsigned int flags =
format_default, xml_encoding encoding = encoding_auto) const;

 xml_node document_element() const;

struct xml_parse_result
 xml_parse_status status;
 ptrdiff_t offset;
 xml_encoding encoding;

 operator bool() const;
 const char* description() const;

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 102/104

class xml_node_iterator
class xml_attribute_iterator

class xml_tree_walker
 virtual bool begin(xml_node& node);
 virtual bool for_each(xml_node& node) = 0;
 virtual bool end(xml_node& node);

 int depth() const;

class xml_text
 bool empty() const;
 operator xml_text::unspecified_bool_type() const;

 const char_t* xml_text::get() const;

 const char_t* as_string(const char_t* def = "") const;
 int as_int(int def = 0) const;
 unsigned int as_uint(unsigned int def = 0) const;
 double as_double(double def = 0) const;
 float as_float(float def = 0) const;
 bool as_bool(bool def = false) const;
 long long as_llong(long long def = 0) const;
 unsigned long long as_ullong(unsigned long long def = 0) const;

 bool set(const char_t* rhs);

 bool set(int rhs);
 bool set(unsigned int rhs);
 bool set(long rhs);
 bool set(unsigned long rhs);
 bool set(double rhs);
 bool set(float rhs);
 bool set(bool rhs);
 bool set(long long rhs);
 bool set(unsigned long long rhs);

 xml_text& operator=(const char_t* rhs);
 xml_text& operator=(int rhs);
 xml_text& operator=(unsigned int rhs);
 xml_text& operator=(long rhs);
 xml_text& operator=(unsigned long rhs);
 xml_text& operator=(double rhs);
 xml_text& operator=(float rhs);
 xml_text& operator=(bool rhs);
 xml_text& operator=(long long rhs);
 xml_text& operator=(unsigned long long rhs);

 xml_node data() const;

class xml_writer
 virtual void write(const void* data, size_t size) = 0;

class xml_writer_file: public xml_writer
 xml_writer_file(void* file);

class xml_writer_stream: public xml_writer

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 103/104

 xml_writer_stream(std::ostream& stream);
 xml_writer_stream(std::wostream& stream);

struct xpath_parse_result
 const char* error;
 ptrdiff_t offset;

 operator bool() const;
 const char* description() const;

class xpath_query
 explicit xpath_query(const char_t* query, xpath_variable_set* variables = 0);

 bool evaluate_boolean(const xpath_node& n) const;
 double evaluate_number(const xpath_node& n) const;
 string_t evaluate_string(const xpath_node& n) const;
 size_t evaluate_string(char_t* buffer, size_t capacity, const xpath_node& n) const;
 xpath_node_set evaluate_node_set(const xpath_node& n) const;
 xpath_node evaluate_node(const xpath_node& n) const;

 xpath_value_type return_type() const;

 const xpath_parse_result& result() const;
 operator unspecified_bool_type() const;

class xpath_exception: public std::exception
 virtual const char* what() const throw();

 const xpath_parse_result& result() const;

class xpath_node
 xpath_node();
 xpath_node(const xml_node& node);
 xpath_node(const xml_attribute& attribute, const xml_node& parent);

 xml_node node() const;
 xml_attribute attribute() const;
 xml_node parent() const;

 operator unspecified_bool_type() const;
 bool operator==(const xpath_node& n) const;
 bool operator!=(const xpath_node& n) const;

class xpath_node_set
 xpath_node_set();
 xpath_node_set(const_iterator begin, const_iterator end, type_t type =
type_unsorted);

 typedef const xpath_node* const_iterator;
 const_iterator begin() const;
 const_iterator end() const;

 const xpath_node& operator[](size_t index) const;
 size_t size() const;
 bool empty() const;

 xpath_node first() const;

9/3/2018 pugixml 1.9 manual

file:///Y:/Downloads/[New]/PugiXml_Manual.html 104/104

10.6. Functions

 enum type_t {type_unsorted, type_sorted, type_sorted_reverse};
 type_t type() const;
 void sort(bool reverse = false);

class xpath_variable
 const char_t* name() const;
 xpath_value_type type() const;

 bool get_boolean() const;
 double get_number() const;
 const char_t* get_string() const;
 const xpath_node_set& get_node_set() const;

 bool set(bool value);
 bool set(double value);
 bool set(const char_t* value);
 bool set(const xpath_node_set& value);

class xpath_variable_set
 xpath_variable* add(const char_t* name, xpath_value_type type);

 bool set(const char_t* name, bool value);
 bool set(const char_t* name, double value);
 bool set(const char_t* name, const char_t* value);
 bool set(const char_t* name, const xpath_node_set& value);

 xpath_variable* get(const char_t* name);
 const xpath_variable* get(const char_t* name) const;

std::string as_utf8(const wchar_t* str);
std::string as_utf8(const std::wstring& str);
std::wstring as_wide(const char* str);
std::wstring as_wide(const std::string& str);
void set_memory_management_functions(allocation_function allocate,
deallocation_function deallocate);
allocation_function get_memory_allocation_function();
deallocation_function get_memory_deallocation_function();

C++

1. All trademarks used are properties of their respective owners.

Last updated 2018-04-04 08:26:07 DST

