
UNCLASSIFIED

The Janus C++ Library – An Interface Class for
DAVE-ML Compliant XML-Based Flight Model

Datasets

Geoff Brian and Shane D Hill

Aerospace Division
Defence Science and Technology Group

DST-Group–TN–1658

ABSTRACT

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical
language for exchanging flight vehicle dynamic model data. It has been developed in conjunc-
tion with the ANSI/AIAA S-119-2011 Flight Dynamics Model Exchange Standard prepared
by the American Institute of Aeronautics and Astronautics (AIAA) Modeling and Simulation
Technical Committee (MSTC). The purpose of DAVE-ML is to provide a framework to encode
entire flight vehicle simulation data packages for exchange between simulation applications and
the long-term archiving of model data. This document describes an application programming
interface (API) to the DAVE-ML dataset structure that has been developed by the Defence
Science and Technology (DST) Group. The API is known as ‘Janus’.

RELEASE LIMITATION

Approved for Public Release

UNCLASSIFIED

UNCLASSIFIED

Published by

Aerospace Division
Defence Science and Technology Group
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

Telephone: 1300 333 362
Facsimile: (03) 9626 7999

c© Commonwealth of Australia 2017
AR-016-923
July, 2017

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

The Janus C++ Library – An Interface Class for
DAVE-ML Compliant XML-Based Flight Model

Datasets

Executive Summary

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical
language for exchanging flight vehicle dynamic model data. It has been developed in conjunc-
tion with the ANSI/AIAA S-119-2011 Flight Dynamics Model Exchange Standard, prepared
by the American Institute of Aeronautics and Astronautics (AIAA) Modeling and Simulation
Technical Committee (MSTC). The intended purpose of DAVE-ML is to provide a framework
for encoding entire flight vehicle simulation data packages for exchange between simulation ap-
plications and the long-term archiving of model data. Such data packages are commonly used
in research, engineering development, and flight training simulations. DAVE-ML is designed
to provide a programming-language-independent representation of aerospace vehicle charac-
teristics, such as the aerodynamics, mass, propulsion, navigation and control properties.

The Defence Science and Technology (DST) Group has developed an application programming
interface (API) enabling flight modelling and simulation applications to directly interface with
aerospace vehicle datasets encoded using the DAVE-ML syntax. The API is known as ‘Janus’
and is implemented as a C++ library. Janus enables an applications to read DAVE-ML
datasets and interactively extract data. Furthermore, Janus enables DAVE-ML style datasets
to be created using predefined data.

This document describes the usage and structure of the Janus API. It details the process
of instantiating Janus within an application, together with public functions that enable the
application to interact with information stored within DAVE-ML style datasets. The Janus
API provides a capability to simplify the exchange of aerospace vehicle dynamic model data
between simulation applications.

UNCLASSIFIED

UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

UNCLASSIFIED

UNCLASSIFIED

Authors

Geoff Brian
Aerospace Division

Geoff Brian joined the Defence Science and Technology Group in
1989, after graduating from the University of New South Wales
with a Bachelor in Aeronautical Engineering with first class hon-
ours. He has worked in the fields of fixed-wing aircraft flight dy-
namic and performance evaluation, aerodynamics, flight testing,
aircraft modelling and simulation. This work has included sup-
porting in-service military aircraft, including the F-111, F/A-18,
A/P-3C, and PC-9/A; together with fighter, air-to-air refuelling,
transport, and unmanned aerial vehicles acquisition projects.
In 1998 Mr Brian was awarded a United Kingdom Chevening
Scholarship and attended Loughborough University obtaining
a MSc in Industrial Mathematical Modelling with honours. In
2010 he was awarded a Defence Science Fellowship and spent a
year at the NASA Langley Research Center investigating aero-
dynamic parameter identification techniques using NASAs Gen-
eric Transport Model flight test aircraft, and developing mod-
elling and simulation standards for the exchange of aerospace
vehicle data

UNCLASSIFIED

UNCLASSIFIED

Shane Hill
Aerospace Division

Mr. Hill graduated in 1987 with a Bachelor of Engineering,
(Aeronautical Engineering) with Honours from the University of
Sydney. He commenced work at the Defence Science and Tech-
nology Group in 1988, working in the area of Aircraft Flight
Dynamics. Significant achievements have included the develop-
ment of a flight dynamic model for a joined wing aircraft, a six
degree of freedom flight dynamic model of a spinning aircraft
and contributed in the development of flight dynamic models
for F-111C and F/A-18 aircraft. Many years of experience in
aircraft incident investigation work lead Mr. Hill to develop the
Graphical Replay System (GRS) and the Flight-Path Recon-
struction (FPR), software that is widely used within Defence to
reconstruct Black-Box data and visually replay the flight-paths
of aircraft. Mr. Hill moved into the Aircraft Flight Loads area in
1995 where he has been involved with the calibration of F/A-18
and P3 aircraft to record in-flight loads. In 1999 Mr. Hill lead
a small team of engineers at Lockheed Martin Tactical Aircraft
Systems, Fort Worth, to review the F-111 structural paramet-
ric load equations, used to develop load spectrums F-111 wing
fatigue tests aimed at determining wing life under Australian
RAAF usage. Currently Mr Hill is the Science Team Leader
(STL) for the Aircraft Modelling and Simulation group and is
involved with the development of aircraft simulation and per-
formance tools used by Australian Defence and international
partners.

UNCLASSIFIED

UNCLASSIFIED

Contents
1 INTRODUCTION . 1

1.1 Background . 1

1.2 Document Revision History . 1

1.3 Purpose . 2

1.4 Scope . 2

1.5 Overview . 2

1.6 Data Types . 3

1.7 Example Usage . 5

2 MODULE DOCUMENTATION . 6

2.1 Janus - Class Instantiation . 6
2.1.1 Detailed Description . 7
2.1.2 Enumeration Type Documentation 7
2.1.3 Function Documentation . 7

2.2 Janus - Level 1 Elements . 13
2.2.1 Detailed Description . 13
2.2.2 Function Documentation . 14

3 NAMESPACE DOCUMENTATION . 20

3.1 janus Namespace Reference . 20
3.1.1 Detailed Description . 21

4 CLASS DOCUMENTATION . 22

4.1 Array Class Reference . 22
4.1.1 Detailed Description . 22
4.1.2 Constructor & Destructor Documentation 22
4.1.3 Member Function Documentation 23

4.2 Author Class Reference . 25
4.2.1 Detailed Description . 25
4.2.2 Constructor & Destructor Documentation 26
4.2.3 Member Function Documentation 27

4.3 Bounds Class Reference . 33
4.3.1 Detailed Description . 34
4.3.2 Constructor & Destructor Documentation 34
4.3.3 Member Function Documentation 35

4.4 BreakpointDef Class Reference . 36
4.4.1 Detailed Description . 37
4.4.2 Constructor & Destructor Documentation 38
4.4.3 Member Function Documentation 38

4.5 CheckData Class Reference . 42
4.5.1 Detailed Description . 42
4.5.2 Constructor & Destructor Documentation 43
4.5.3 Member Function Documentation 44

UNCLASSIFIED

UNCLASSIFIED

4.6 CheckInputs Class Reference . 46
4.6.1 Detailed Description . 46
4.6.2 Constructor & Destructor Documentation 47

4.7 CheckOutputs Class Reference . 47
4.7.1 Detailed Description . 48
4.7.2 Constructor & Destructor Documentation 48

4.8 DimensionDef Class Reference . 49
4.8.1 Detailed Description . 49
4.8.2 Constructor & Destructor Documentation 50
4.8.3 Member Function Documentation 50

4.9 DomFunctions Class Reference . 53
4.9.1 Detailed Description . 53

4.10 ExportMathML Class Reference . 53
4.10.1 Detailed Description . 53

4.11 FileHeader Class Reference . 53
4.11.1 Detailed Description . 54
4.11.2 Constructor & Destructor Documentation 55
4.11.3 Member Function Documentation 56

4.12 Function Class Reference . 62
4.12.1 Detailed Description . 63
4.12.2 Constructor & Destructor Documentation 63
4.12.3 Member Function Documentation 64

4.13 FunctionDefn Class Reference . 71
4.13.1 Detailed Description . 72
4.13.2 Constructor & Destructor Documentation 73
4.13.3 Member Function Documentation 73

4.14 GriddedTableDef Class Reference . 76
4.14.1 Detailed Description . 77
4.14.2 Constructor & Destructor Documentation 78
4.14.3 Member Function Documentation 78

4.15 InDependentVarDef Class Reference . 84
4.15.1 Detailed Description . 85
4.15.2 Constructor & Destructor Documentation 85
4.15.3 Member Function Documentation 86

4.16 InternalValues Class Reference . 89
4.16.1 Detailed Description . 90
4.16.2 Constructor & Destructor Documentation 90

4.17 Janus Class Reference . 91
4.17.1 Detailed Description . 93

4.18 MathMLDataClass Class Reference . 93
4.18.1 Detailed Description . 93

4.19 Modification Class Reference . 93
4.19.1 Detailed Description . 94
4.19.2 Constructor & Destructor Documentation 95
4.19.3 Member Function Documentation 96

UNCLASSIFIED

UNCLASSIFIED

4.20 ParseMathML Class Reference . 99
4.20.1 Detailed Description . 99

4.21 Provenance Class Reference . 99
4.21.1 Detailed Description . 100
4.21.2 Constructor & Destructor Documentation 101
4.21.3 Member Function Documentation 102

4.22 Reference Class Reference . 106
4.22.1 Detailed Description . 107
4.22.2 Constructor & Destructor Documentation 107
4.22.3 Member Function Documentation 108

4.23 Signal Class Reference . 111
4.23.1 Detailed Description . 111
4.23.2 Constructor & Destructor Documentation 112
4.23.3 Member Function Documentation 113

4.24 SignalList Class Reference . 115
4.24.1 Detailed Description . 115
4.24.2 Constructor & Destructor Documentation 116
4.24.3 Member Function Documentation 117

4.25 SolveMathML Class Reference . 120
4.25.1 Detailed Description . 120

4.26 StaticShot Class Reference . 121
4.26.1 Detailed Description . 121
4.26.2 Constructor & Destructor Documentation 122
4.26.3 Member Function Documentation 123

4.27 Uncertainty Class Reference . 126
4.27.1 Detailed Description . 127
4.27.2 Member Enumeration Documentation 128
4.27.3 Constructor & Destructor Documentation 128
4.27.4 Member Function Documentation 129

4.28 UngriddedTableDef Class Reference . 131
4.28.1 Detailed Description . 132
4.28.2 Constructor & Destructor Documentation 133
4.28.3 Member Function Documentation 133

4.29 VariableDef Class Reference . 138
4.29.1 Detailed Description . 140
4.29.2 Member Enumeration Documentation 141
4.29.3 Constructor & Destructor Documentation 143
4.29.4 Member Function Documentation 144

4.30 XmlElementDefinition Class Reference . 161
4.30.1 Detailed Description . 162

5 FILE DOCUMENTATION . 163

5.1 Array.cpp File Reference . 163
5.1.1 Detailed Description . 163

5.2 Array.h File Reference . 163

UNCLASSIFIED

UNCLASSIFIED

5.2.1 Detailed Description . 164

5.3 Author.cpp File Reference . 164
5.3.1 Detailed Description . 164

5.4 Author.h File Reference . 165
5.4.1 Detailed Description . 165

5.5 Bounds.cpp File Reference . 165
5.5.1 Detailed Description . 166

5.6 Bounds.h File Reference . 166
5.6.1 Detailed Description . 166

5.7 BreakpointDef.cpp File Reference . 167
5.7.1 Detailed Description . 167

5.8 BreakpointDef.h File Reference . 167
5.8.1 Detailed Description . 168

5.9 CheckData.cpp File Reference . 168
5.9.1 Detailed Description . 168

5.10 CheckData.h File Reference . 169
5.10.1 Detailed Description . 169

5.11 CheckInputs.h File Reference . 169
5.11.1 Detailed Description . 170

5.12 CheckOutputs.h File Reference . 170
5.12.1 Detailed Description . 170

5.13 DimensionDef.cpp File Reference . 171
5.13.1 Detailed Description . 171

5.14 DimensionDef.h File Reference . 171
5.14.1 Detailed Description . 171

5.15 DomFunctions.h File Reference . 172
5.15.1 Detailed Description . 172

5.16 DomTypes.h File Reference . 172
5.16.1 Detailed Description . 172

5.17 ElementDefinitionEnum.h File Reference . 172
5.17.1 Detailed Description . 173

5.18 ExportMathML.cpp File Reference . 173
5.18.1 Detailed Description . 173

5.19 ExportMathML.h File Reference . 173
5.19.1 Detailed Description . 173

5.20 FileHeader.cpp File Reference . 173
5.20.1 Detailed Description . 174

5.21 FileHeader.h File Reference . 174
5.21.1 Detailed Description . 174

5.22 Function.cpp File Reference . 175
5.22.1 Detailed Description . 175

5.23 Function.h File Reference . 175

UNCLASSIFIED

UNCLASSIFIED

5.23.1 Detailed Description . 176

5.24 FunctionDefn.cpp File Reference . 176
5.24.1 Detailed Description . 176

5.25 FunctionDefn.h File Reference . 176
5.25.1 Detailed Description . 177

5.26 GetDescriptors.cpp File Reference . 177
5.26.1 Detailed Description . 177

5.27 GriddedTableDef.cpp File Reference . 178
5.27.1 Detailed Description . 178

5.28 GriddedTableDef.h File Reference . 178
5.28.1 Detailed Description . 179

5.29 InDependentVarDef.cpp File Reference . 179
5.29.1 Detailed Description . 179

5.30 InDependentVarDef.h File Reference . 180
5.30.1 Detailed Description . 180

5.31 InternalValues.h File Reference . 180
5.31.1 Detailed Description . 181

5.32 Janus.cpp File Reference . 181
5.32.1 Detailed Description . 181

5.33 Janus.h File Reference . 182
5.33.1 Detailed Description . 182

5.34 JanusDeprecated.cpp File Reference . 183
5.34.1 Detailed Description . 183

5.35 JanusDeprecated.h File Reference . 183
5.35.1 Detailed Description . 186

5.36 LinearInterpolation.cpp File Reference . 186
5.36.1 Detailed Description . 186

5.37 MathMLDataClass.cpp File Reference . 186
5.37.1 Detailed Description . 187

5.38 MathMLDataClass.h File Reference . 187
5.38.1 Detailed Description . 187
5.38.2 Enumeration Type Documentation 187
5.38.3 Variable Documentation . 188

5.39 Modification.cpp File Reference . 188
5.39.1 Detailed Description . 188

5.40 Modification.h File Reference . 188
5.40.1 Detailed Description . 189

5.41 ParseMathML.cpp File Reference . 189
5.41.1 Detailed Description . 189

5.42 ParseMathML.h File Reference . 190
5.42.1 Detailed Description . 190

5.43 PolyInterpolation.cpp File Reference . 190

UNCLASSIFIED

UNCLASSIFIED

5.43.1 Detailed Description . 190

5.44 Provenance.cpp File Reference . 191
5.44.1 Detailed Description . 191

5.45 Provenance.h File Reference . 191
5.45.1 Detailed Description . 192

5.46 Reference.cpp File Reference . 192
5.46.1 Detailed Description . 192

5.47 Reference.h File Reference . 192
5.47.1 Detailed Description . 193

5.48 Signal.cpp File Reference . 193
5.48.1 Detailed Description . 193

5.49 Signal.h File Reference . 194
5.49.1 Detailed Description . 194

5.50 SignalList.cpp File Reference . 194
5.50.1 Detailed Description . 195

5.51 SignalList.h File Reference . 195
5.51.1 Detailed Description . 195

5.52 SolveMathML.cpp File Reference . 195
5.52.1 Detailed Description . 196

5.53 SolveMathML.h File Reference . 196
5.53.1 Detailed Description . 196

5.54 StaticShot.cpp File Reference . 196
5.54.1 Detailed Description . 197

5.55 StaticShot.h File Reference . 197
5.55.1 Detailed Description . 197

5.56 Uncertainty.cpp File Reference . 197
5.56.1 Detailed Description . 198

5.57 Uncertainty.h File Reference . 198
5.57.1 Detailed Description . 199

5.58 UngriddedInterpolation.cpp File Reference . 199
5.58.1 Detailed Description . 199

5.59 UngriddedTableDef.cpp File Reference . 200
5.59.1 Detailed Description . 200

5.60 UngriddedTableDef.h File Reference . 200
5.60.1 Detailed Description . 201

5.61 VariableDef.cpp File Reference . 201
5.61.1 Detailed Description . 202

5.62 VariableDef.h File Reference . 202
5.62.1 Detailed Description . 202

5.63 XmlElementDefinition.h File Reference . 203
5.63.1 Detailed Description . 203

UNCLASSIFIED

UNCLASSIFIED

6 CONCLUSION . 204

7 ACKNOWLEDGEMENTS . 204

8 CONTACT . 204

9 REFERENCES . 205

APPENDIX A: DEPRECATED FUNCTIONS . 207

A.1 Janus - XML File Documentation . 207
A.1.1 Detailed Description . 208
A.1.2 Enumeration Type Documentation 208
A.1.3 Function Documentation . 210

A.2 Janus - XML Tabulated Functions . 219
A.2.1 Detailed Description . 219
A.2.2 Function Documentation . 219

A.3 Janus - Output Variables Functions . 222
A.3.1 Detailed Description . 222
A.3.2 Function Documentation . 223

A.4 Janus - Variables of All Types . 233
A.4.1 Detailed Description . 233
A.4.2 Function Documentation . 234

A.5 Janus - Independent Variables . 242
A.5.1 Detailed Description . 242
A.5.2 Function Documentation . 243

UNCLASSIFIED

UNCLASSIFIED

Notation

AD Aerospace Division

ADF Australian Defence Force

AIAA American Institute of Aeronautics and Astronautics

API application programming interface

APS Aircraft Performance and Survivability Branch

DAVE-ML Dynamic Aerospace Vehicle Exchange Markup Language

DoF degree of freedom

DOM Document Object Model

DST Group Defence Science and Technology Group

DTD Document Type Description

MathML Mathematical Markup Language

MSTC Modeling and Simulation Technical Committee

NaN Not-a-Number

SI Systeme International d’Unites

XML eXtensible Markup Language

UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

1 Introduction

1.1 Background

Defence Science and Technology (DST) Group Aircraft Performance and Survivability Branch
(APS) has reviewed its flight model development and maintenance processes, in conjunction
with the requirements of Defence flight model users [1], and decided to align its future flight
model dataset structures with the American Institute of Aeronautics and Astronautics (AIAA)
modelling and simulation standard [2] and the related Dynamic Aerospace Vehicle Exchange
Markup Language (DAVE-ML) Document Type Description (DTD) [3], [4]. Ball Solutions
Group was contracted to develop a programming library to provide an application program-
ming interface (API) to the DAVE-ML dataset structure, [5], which is being used by DST APS
for the development of performance, flight dynamic and other aircraft models. The library was
implemented as a C++ class known as ‘Janus.’ As the DAVE-ML standard has developed,
and as the needs of users have dictated, further development of the Janus library has been
performed by DST.

1.2 Document Revision History

Version Effect Date
0.90 Original Draft Release 23 July 2004
0.91 additional function documentation 15 October 2004
0.92 additional function documentation, including simple

code examples
14 December 2004

0.93 modified API to include 3 types of output variables, re-
placed dependent variable access procedures with output
variable access

22 December 04

0.94 multi-dimensional polynomial interpolation added 11 January 2005
0.95 ungridded interpolation added 7 February 2005
0.96 basic MathML logic capability added 11 February 2005
0.97 namespaces added 12 March 2005
0.98 file header processing and output 29 March 2005
0.99 string array handling added 30 June 2005
1.00 encrypted XML handling added 18 July 2005
1.08 updated to DAVE-ML Ver 2.0RC1 14 July 2008
1.09 updated to build using Xerces-C version 2.x or 3.x 17 April 2009
1.10 converted to sub-class structure, updated to DAVE-ML

Ver 2.0RC2, numerous minor improvements
31 March 2010

2.00 updated to DAVE-ML Ver 2.2, improved management of
MathML capability and underlying code structure

4 September 2014

The original version of this document was prepared by Ball Solutions Group, ABN 66 072
963 690, for DST Group, APS of Aerospace Division (AD), in accordance with Attachment
A to Contracts No. 123394 and 139826 [5]. Amendments to the document and to the code
were performed later by Quantitative Aeronautics, ABN 65 088 688 680, also under contract

UNCLASSIFIED 1

DST-Group–TN–1658

UNCLASSIFIED

to DST, APS of AD [6]. Subsequent amendments to the document and to the code were
produced by DST, APS of AD.

1.3 Purpose

This document outlines the usage and structure of the Janus C/C++ programming lib-
rary.

1.4 Scope

The elements of the Janus library described in this document are:

1. Methods of instancing the Janus class,

2. The related lower level classes, instanced within a Janus class, which contain and provide
access to data extracted from a Document Object Model (DOM) based on the content
of a DAVE-ML-compliant dataset,

3. Public types in the classes,

4. Public functions in the classes, and

5. Source file components applicable to each function.

1.5 Overview

The Janus library provides a flight modelling programmer with direct access to an eXtensible
Markup Language (XML) dataset that conforms to the AIAA modelling standard as imple-
mented under the DAVE-ML DTD version 2.2 [4], in the form of a C++ class. It was initially
developed under Linux using the gcc 3.3.4 compiler, and has been tested and used under Mi-
crosoft Windows 2000, XP, Vista, and Windows 7 using the Visual C++ compiler, and in
the Cygwin environment using the gcc 3.4.4 compiler. Development has since migrated to the
newer versions of the gcc compiler under Linux. The class remains backwards compatible with
earlier versions of both Linux and Microsoft environments. To load and parse an XML file, the
Janus class makes use of the Pugi XML parser library, currently tested at version 1.5, which
replaces the previously used Apache Xerces-C++ 1 validating XML parser library.

When initialised, which requires the calling program to supply an XML dataset file name, the
library creates and loads a DOM from the file using the PugiXML 2 parser and then extracts
numerical and string data from the DOM and stores it in vectors of classes for access from the
calling program through the Janus interface. Depending on the dataset and the application,
further initialisation may be required after first instantiation. During the initialisation process,
problems with the XML file or its contents will cause a standard exception to be thrown, with
a relevant message provided. If the calling program does not catch and process this error,

1https://xerces.apache.org/xerces-c/ - Apache Software License, Version 2.0
2http://pugixml.org/ - MIT license

2 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

execution will abort. After initialisation, the Janus library discards the DOM, and therefore,
it only operates on the state of the dataset as at initialisation, or on changes made through
the Janus interface.

With initialisation complete, the calling program can supply the current state values of relev-
ant independent variables through the Janus and VariableDef interfaces and receive in return
output variable values compatible with all the independent variables. The forms of the data
and the interpolation, curve fitting or function evaluation required to generate the dependent
variable values are controlled by the XML data file content, and are transparent to both the
calling program and the user. For these functions, which may be called repeatedly during
program execution, speed of execution is a priority and so limited error checking or notifica-
tion is performed. Wherever error checking is performed, errors are notified using standard
exceptions.

At any stage after initialisation, the Janus instance and its sub-classes may be queried for
details of any variable or function, including units, names, descriptions, minima, maxima, and
interpolation or extrapolation attributes.

The XML dataset may include details of uncertainty in all variables and functions, from which
the library can compute the current uncertainty associated with any variable.

Check data included within an XML dataset may be used by the library to validate the
processes it performs.

1.6 Data Types

To the modeller whose code uses a Janus instance to determine variable values, the underlying
form of the XML dataset is irrelevant. However, the dataset developer needs to take account
not just of the DAVE-ML DTD, which guides production of a well-formed valid dataset, but
also of how Janus treats each data type. The three main data types that will be encountered
are:

1. Gridded data, arranged in up to 32 dimensions on a regular grid, which can be inter-
polated or extrapolated using linear (the default), discrete or low order polynomial data
fitting;

2. Ungridded data, a cloud of arbitrarily located data points forming a convex hull, which
is partitioned using Delaunay triangulation 3 and interpolated multi-linearly; and

3. Functional representation in Mathematical Markup Language (MathML) 4 form, which
is evaluated in accordance with the mathematical operators shown in the dataset. At
present Janus implements only the more common operators and qualifiers defined in the
MathML DTD. Other operators will be added on request from users. It deals only with
real number data, but includes logical operators that return Boolean qualifiers within a
calculation element.

For every dataset to be accessed, there will be a preferred data type based on the form of
the data and its possible applications. In choosing how to represent a particular piece of

3http://www.qhull.org/ - Qhull License
4https://www.w3.org/Math/

UNCLASSIFIED 3

DST-Group–TN–1658

UNCLASSIFIED

data within the XML dataset, the modeller should consider how to best make use of Janus’s
capabilities. Where relevant to computational comparisons below, the software is considered as
running on a ‘typical’ engineering-use PC circa 2009, under either Linux, Windows + Cygwin
(Mingw) or Microsoft Visual C++. Some aspects that may be relevant are:

1. Gridded data using linear interpolation is generally the fastest to evaluate, with Janus
performing several million evaluations per second on a representative aerodynamic data-
set. As the number of degrees of freedom is increased for datasets of equivalent com-
plexity, function evaluation speed typically reduces by forty percent for each additional
degree of freedom.

2. Polynomial or spline interpolation of gridded data is typically about forty percent of the
speed of linear interpolation of the same data.

3. Ungridded data is generally the slowest to evaluate. For one degree of freedom (DoF)
data, an ungridded interpolation is typically an order of magnitude slower than grid-
ded interpolation of the same data based on the same breakpoints. This is because
of the added complexity of the barycentric coordinate computation used to weight the
contributing data points. In addition, as the number of degrees of freedom increases
for datasets of equivalent complexity, function evaluation speed typically reduces by an
order of magnitude for each additional DoF.

4. Extrapolation of any form of data is inherently risky; however, gridded data extrapol-
ation is much safer than ungridded data extrapolation. Because the ungridded data is
processed in barycentric coordinates, not Cartesian coordinates, and checking Cartesian
directions wastes processing time, Janus will only extrapolate such data if all independ-
ent variables of the function are set to be extrapolated in both directions.

5. MathML functions, including piecewise representations, are evaluated at speeds similar
to gridded data of equivalent complexity. However, high order polynomial evaluation
can be computationally costly. Luckily, high order polynomials are almost always a bad
choice for representation of aeronautical data.

6. An extension to the DAVE-ML standard allows arrays of strings to be stored in and
accessed from gridded tables. The applications of this are quite limited, and the related
function documentation should be fully complied with for successful use.

7. An extension to the DAVE-ML standard allows scale factors to be applied to the outputs
of functional computations. This was implemented in response to pressing user requests;
however, it is not recommended in normal use.

8. Computation of uncertainty may be quite slow, since propagation of errors through
the data structure requires repeated function evaluations and, in some cases, numerical
differentiation. Where computation speed is an issue, it may not be appropriate to
request uncertainty for each computation.

9. An extension to the DAVE-ML standard allows data to be managed as vectors or n-
dimensional matrices, [9].

4 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

1.7 Example Usage

Examples of usage of the individual components of the Janus library are included throughout
this report. The code below provides a minimalist example of usage of the complete Janus
system to select an output, enter the required inputs, and compute the corresponding output
data value.

#include <iostream>
#include "Janus.h"

using namespace std
using namespace janus;

int main(int, char**)
{

Janus janus("~/pika/pika.xml");

VariableDef jAlpha = janus.getVariableDef("alpha_");
VariableDef jCL = janus.getVariabeDef(janus.getVariableDef("CL");

double alpha = 5.0 * pi / 180.0;
jAlpha.setValue(alpha);
double CL = jCL.getValue();
cout << "CL = " << CL << endl;

return 0;
}

The “test” subdirectory in the Janus distribution also contains various complete code examples
that can be compiled directly.

UNCLASSIFIED 5

DST-Group–TN–1658

UNCLASSIFIED

2 Module Documentation

This section presents functions to permit an application to interface with an DAVE-ML com-
pliant XML file using the Janus API software. It details functions for instantiating an instance
of the Janus API, together with high-level functions for interfacing with data stored within
the instance.

A number of interface functions have been deprecated as the functionality of the Janus API
has been revised and further developed. These functions are presented in Appendix A of this
report. Support for these functions has been retained within Janus to provide backwards com-
patibility for applications that were developed using previous versions of the API. However,
it is recommended that these functions should not be used when developing new applications,
instead the various components should be accessed through the specific class interfaces.

2.1 Janus - Class Instantiation

Enumerations

Functions

• virtual void clear ()

• virtual size_t exportToBuffer (std::ostringstream &documentBuffer)

• virtual size_t exportToBuffer (unsigned char ∗&documentBuffer)

• virtual size_t exportToFile (const dstoute::aFileString &dataFileName)

• DomFunctions::XmlNode getDomDocument () const

• const char ∗ getJanusVersion (VersionType versionType=HEX) const

• const dstoute::aFileString & getXmlFileName () const

• void initiateDocumentObjectModel (const dstoute::aString &documentType="DAVEfunc")

• bool isJanusInitialised () const

• Janus ()

• Janus (const dstoute::aFileString &documentName, const dstoute::aFileString &keyFi-
leName="")

• Janus (unsigned char ∗documentBuffer, size_t documentBufferSize)

• Janus (const Janus &rhs)

• Janus & operator= (const Janus &rhs)

• virtual void setXmlFileBuffer (unsigned char ∗documentBuffer, const size_t &document-
BufferSize)

• virtual void setXmlFileName (const dstoute::aFileString &documentName, const dstoute::aFileString
&keyFileName="")

• virtual ∼Janus ()

6 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

2.1.1 Detailed Description

The instantiation functions relate to the construction and destruction of a Janus instance.
They perform XML initialisation using the pugiXML parser loading the supplied XML file or
data buffer to a DOM structure and create vectors and numeric arrays based on the XML
data.

The instantiation process will throw standard exceptions if the XML file or the data buffer
do not load or parse successfully. If the calling program does not catch these exceptions,
the program will abort. An example of exception handling, applicable to all forms of Janus
instantiation, is:

try {
prop.setXmlFileName(fileName);

}
catch (exception &excep) {

cerr << excep.what() << " \n\n";
return 1;

}

2.1.2 Enumeration Type Documentation

2.1.2.1 enum ExportObjectType

This enum is used to indicate the Export Object options.

Enumerator

FILE a data file
BUFFER a data Buffer

2.1.2.2 enum VersionType

This enum is used to indicate whether a short, long, or HEX library version description string
is required.

Enumerator

SHORT a short, purely numeric string, eg "0.97"
LONG a longer, alpha-numeric string, eg "Janus V-0.97"
HEX a hexadecimal, eg 0x000907

2.1.3 Function Documentation

2.1.3.1 void clear () [virtual]

Initialise all Janus member variables as per the empty constructor.

UNCLASSIFIED 7

DST-Group–TN–1658

UNCLASSIFIED

2.1.3.2 virtual size_t exportToBuffer (std::ostringstream & documentBuffer)
[inline], [virtual]

This function exports the contents of the Janus instance to an XML data buffer complying
with the DAVE-ML syntax as defined by the DAVE-ML DTD.

This function may be overloaded by equivalent functions for projects that inherit Janus.

Parameters

documentBuffer an address to a ostringstream buffer that data will be written. This
data is not ’\0’ terminated.

Returns

The size of the buffer will be returned. If size is zero then the export of the buffer has
failed.

2.1.3.3 virtual size_t exportToBuffer (unsigned char ∗& documentBuffer)
[inline], [virtual]

This function exports the contents of the Janus instance to an XML data buffer complying
with the DAVE-ML syntax as defined by the DAVE-ML DTD.

This function may be overloaded by equivalent functions for projects that inherit Janus.

Parameters

documentBuffer an address to a unsigned char∗ buffer that data will be written. The
memory allocated to the buffer within this function MUST be managed
(freed) by the external application. The buffer will be ’\0’ terminated.

Returns

The size of the buffer will be returned. If size is zero then the export of the buffer has
failed.

2.1.3.4 virtual size_t exportToFile (const dstoute::aFileString &
dataFileName) [inline], [virtual]

This function exports the contents of the Janus instance to an XML text file complying with
the DAVE-ML syntax as defined by the DAVE-ML DTD.

This function may be overloaded by equivalent functions for projects that inherit Janus.

Parameters

dataFileName the name of the file to which the data will be written.

8 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The value returned will be greater than zero if the data has been successfully exported
to the file, else it will be zero.

2.1.3.5 DomFunctions::XmlNode getDomDocument () const [inline]

This function permits a calling routine or application to gain access to the parent document
of an instantiated DOM.
Returns

a DomFunctions::XmlDoc pointer to the DOM document is returned

2.1.3.6 const char ∗ getJanusVersion (VersionType versionType = HEX)
const

This function allows the calling program to retrieve the version number of the Janus library
that is in use. It is particularly useful for dynamically linked programs that may use several
different library versions.

Parameters

versionType determines whether a short, long or hexadecimal string is returned.

Returns

a character pointer to the version description string.

2.1.3.7 const dstoute::aFileString& getXmlFileName () const [inline]

If the instance has been fully initialised, the fully-qualified name of the XML dataset file from
which it was initialised is returned by this function.

Returns

The XML file name e.g. "∼/pika/pika_prop.xml"

2.1.3.8 void initiateDocumentObjectModel (const dstoute::aString &
documentType = "DAVEfunc") [inline]

This function is used to initiate a Document Object Model that stores data for exporting to
an XML file.

UNCLASSIFIED 9

DST-Group–TN–1658

UNCLASSIFIED

Parameters

documentType this is a string indicating the document type definition of the read or
exported XML file. The default document type is DAVEfunc indicating
that the XML file is encoded using the DAVE-ML syntax as defined in
the DAVEfunc.dtd. XML syntax and applications that build upon Janus
may define alternative document types, and accompanying document
type definitions, such as THAMESfunc, which is the Time History for
Aircraft Modelling Exchange Syntax.

2.1.3.9 bool isJanusInitialised () const [inline]

This function permits a calling program to determine if this instance of Janus has been in-
stantiated or is empty.

Returns

a boolean indicating if the Janus instance has been instantiated.

2.1.3.10 Janus ()

The empty constructor can be used to instance the Janus class without supplying a name for
the XML file from which the DOM is to be constructed, but in this state is not useful for
any class functions. It will require an XML file name to be supplied before any further use
of the instanced class. This form of the constructor is principally for use within higher level
instances, where memory needs to be allocated before the data to fill it is specified.

See also

setXmlFileName

2.1.3.11 Janus (const dstoute::aFileString & documentName, const
dstoute::aFileString & keyFileName = "")

The constructor, when called with the XML document name, does the XML initialisation and
then loads the DOM structure. A minimal example is:
#include <string>
#include "Janus.h"

using namespace std;

int main (int argc, char* args[])
{

char fileName[] = "~/pika/pika_prop.xml";
Janus prop(fileName);

return 0;
}

When the XML file name is supplied, either at instantiation or afterwards when using setXm-
lFileName, the DOM is parsed against DAVEfunc.dtd before data structures are set up. The

10 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

constructor calls private functions within the class to set up instances representing fileHeader,
variableDef, breakpointDef, griddedTableDef, ungriddedTableDef, function and checkData DOM
Level 1 elements.

Parameters

documentName is the XML file name, e.g. "∼/pika/pika_prop.xml"
keyFileName is name of a file containing a RSA public key. It is used for interacting

with encrypted DAVE-ML data files.

2.1.3.12 Janus (unsigned char ∗ documentBuffer, size_t documentBufferSize
)

The constructor, when called with the XML document name, does the XML initialisation and
then loads the DOM structure. A minimal example is:
#include <string>
#include "Janus.h"

using namespace std;

int main (int argc, char* args[])
{

unsigned char* buffer;
...
Janus prop(buffer, bufferSize);

return 0;
}

When the XML file name is supplied, either at instantiation or afterwards when using setXm-
lFileName, the DOM is parsed against DAVEfunc.dtd before data structures are set up. The
constructor calls private functions within the class to set up instances representing fileHeader,
variableDef, breakpointDef, griddedTableDef, ungriddedTableDef, function and checkData DOM
Level 1 elements.

Parameters

documentBuffer is the XML buffer."
documentBufferSize is the XML buffer size or length."

2.1.3.13 Janus (const Janus & rhs)

The copy constructor may be used to duplicate the data stored within a Janus instance.

Parameters

rhs is a reference to the Janus instance being copied.

UNCLASSIFIED 11

DST-Group–TN–1658

UNCLASSIFIED

See also

operator=

2.1.3.14 Janus & operator= (const Janus & rhs)

The assignment operator may be used to duplicate the data stored within a Janus instance.

Parameters

rhs is a reference to the Janus instance being copied.

2.1.3.15 void setXmlFileBuffer (unsigned char ∗ documentBuffer, const
size_t & documentBufferSize) [virtual]

An uninitialised instance of Janus is populated using a nominated XML data buffer through
this function. The DOM for this Janus instance is loaded from the buffer, parsed against the
DAVEfunc.dtd before data arrays are set up.

If an instance has previously been initialised then the check performed at load time throws a
standard exception.

If the instance of Janus is not being inherited by another process then the data buffer is deleted
after it has been parsed successfully.

Parameters

documentBuffer is the XML data buffer
documentBufferSize is the size of the buffer in bytes

2.1.3.16 void setXmlFileName (const dstoute::aFileString & documentName,
const dstoute::aFileString & keyFileName = "") [virtual]

An uninitialised instance of Janus is populated using a nominated XML file through this
function. The DOM for this Janus instance is loaded from the named file, parsed against the
DAVEfunc.dtd before data arrays are set up.

If another XML file name is supplied to an instance that has already been initialised then the
check performed at load time throws a standard exception.

Parameters

documentName is the XML file name, e.g. "∼/pika/pika_prop.xml"
keyFileName is name of a file containing a RSA public key. It is used for interacting

with encrypted DAVE-ML data files.

12 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

2.1.3.17 ∼Janus () [virtual]

After deleting memory allocations, the parser instance is released. The destructor is called
automatically when the instance goes out of scope.

2.2 Janus - Level 1 Elements

Functions

• void displayCheckDataSummary (const CheckData &checkData)

• VariableDef ∗ findVariableDef (const dstoute::aString &varID)

• BreakpointDefList & getBreakpointDef ()

• const CheckData & getCheckData (const bool &evaluate=true)

• const FileHeader & getFileHeader () const

• const FunctionList & getFunction () const

• Function & getFunction (size_t index)

• GriddedTableDefList & getGriddedTableDef ()

• PropertyDefList & getPropertyDef ()

• PropertyDef & getPropertyDef (size_t index)

• PropertyDef & getPropertyDef (const dstoute::aString &ptyID)

• UngriddedTableDefList & getUngriddedTableDef ()

• VariableDefList & getVariableDef ()

• VariableDef & getVariableDef (size_t index)

• VariableDef & getVariableDef (const dstoute::aString &varID)

• int getVariableIndex (const dstoute::aString &varID) const

2.2.1 Detailed Description

There are seven DAVE-ML DTD Level 1 elements that attach directly to the DAVEfunc
root element and provide the basic structure of the DOM. These functions provide access to
each of these elements, so that lower-level functions can access the raw data of the element
contents. These functions are generally used within the Janus instance, and some of them are
not normally called by external programs.

UNCLASSIFIED 13

DST-Group–TN–1658

UNCLASSIFIED

2.2.2 Function Documentation

2.2.2.1 void displayCheckDataSummary (const CheckData & checkData
)

The DAVE-ML DTD permits an XML dataset to contain sets of input signal values and the
corresponding output signal values (and, optionally, the corresponding internal values). These
sets of data may be used to validate the functional processes represented by the remainder
of the XML dataset. A dataset that includes one or more checkData elements can therefore
be self-validating. This function provides a means for calling programs to display a summary
of the check data contained within a Janus instance. Not all datasets contain a checkData
element.

Parameters

checkData A reference to the CheckData instance within a Janus instance.

2.2.2.2 VariableDef ∗ findVariableDef (const dstoute::aString & varID)

This function searches the list of VariableDefs within a Janus instance for an entry corres-
ponding to the varID variable identifier specified.

Parameters

varID is a C++ string containing the varID of the variableDef within the list of
VariableDef instances to be returned from the Janus instance. A null pointer is
returned if there is no corresponding variableDef for the varID specified.

Returns

The pointer to the selected VariableDef is returned, otherwise 0.

2.2.2.3 BreakpointDefList& getBreakpointDef () [inline]

This function returns the list of the breakpoint definitions, breakpointDef, storing gridded table
break point data. A breakpointDef contains identification and cross-reference data, as well as a
set of independent variable values associated with one of the dimensions of a gridded table of
data. A breakpoint definition may be used by more than one gridded table function. Provided
it has been instantiated without error, each Janus instance contains one breakpointDef vector
of instances. However, the vector may have zero length in a dataset that does not include
gridded data.

14 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A reference to the list of BreakpointDef instances is returned.

2.2.2.4 const CheckData & getCheckData (const bool & evaluate = true
)

The DAVE-ML DTD permits an XML dataset to contain sets of input signal values and the
corresponding output signal values (and, optionally, the corresponding internal values). These
sets of data may be used to validate the functional processes represented by the remainder of
the XML dataset. A dataset that includes one or more checkData elements can therefore be
self-validating. This function provides a means for calling programs to access all check data
contained within a Janus instance. Not all datasets contain a checkData element.

Returns

A reference to the CheckData instance within a Janus instance is returned.

2.2.2.5 const FileHeader& getFileHeader () const [inline]

This function permits a calling program to retrieve the header information for a DAVE-ML
compliant XML dataset. Descriptive material is contained in the file header. This includes
file authorship, modification records, and cross-references to source material. FileHeader and
lower level class functions may be used through the returned reference to access the fileHeader
contents. Provided it has been instantiated without error, each Janus instance contains one
FileHeader instance.

Returns

A reference to the FileHeader instance is returned.

2.2.2.6 const FunctionList& getFunction () const [inline]

The function elements contained in a DOM that complies with the DAVE-ML DTD, indicate
how an output value is to be computed from independent inputs and tabulated data, either
gridded or ungridded. Each function has an optional description, optional provenance data,
and either a simple table of input/output values or references to more complete (possibly
multiple) input, output, and function data elements. In general, calling programs should
access function-based data through variableDef procedures rather than directly through the
Function instance and its lower-level procedures. Provided it has been instantiated without
error, each Janus instance contains a vector of Function instances; however, the vector may
have zero length.

UNCLASSIFIED 15

DST-Group–TN–1658

UNCLASSIFIED

Returns

A reference to the list of Function instances is returned.

2.2.2.7 Function& getFunction (size_t index) [inline]

As well as accessing the complete vector of Function instances within a Janus instance, an
individual Function may be accessed by index.

Parameters

index is the index of a required Function within the vector of Function instances
contained in a Janus instance. It has a range from 0 to (getFunction().size() - 1)

Returns

The selected Function is returned by reference.

2.2.2.8 GriddedTableDefList& getGriddedTableDef () [inline]

Within the DOM, a griddedTableDef contains points arranged in an orthogonal (possibly multi-
dimensional) array, where the independent variables are defined by separate breakpoint vectors.
This table definition may be specified within a function, or separately so that it may be used
by multiple functions. Janus handles both forms similarly. The table data points are specified
as comma-separated values in floating-point notation (0.93638E-06) in a single long sequence
as if the table had been unravelled with the last-specified dimension changing most rapidly.
Line breaks and comments are ignored by Janus. Provided it has been instantiated without
error, each Janus instance contains one GriddedTableDef vector of instances; however, the
vector may have zero length.

Returns

A reference to the list of GriddedTableDef instances is returned.

2.2.2.9 PropertyDefList& getPropertyDef () [inline]

The propertyDef elements contained in a DOM that complies with the DAVE-ML DTD, defines
a descriptive parameter that may be used describe a property or object associated with an
model. It can be used to encode non-numeric parameters. In general, calling programs should
access property-based data through the PropertyDef instance and its lower-level procedures.
Provided it has been instantiated and initialised without error, each Janus instance contains
a ParameterDef vector of instances with zero or more entries.

16 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A reference to the list of PropertyDef instances is returned.

2.2.2.10 PropertyDef& getPropertyDef (size_t index) [inline]

As well as accessing the complete vector of PropertyDefs within a Janus instance, an individual
PropertyDef may be accessed by index.

Parameters

index is the offset of a required PropertyDef within the vector of PropertyDef instances
contained in a Janus instance. It has a range from 0 to (getPropertyDef().size() -
1)

Returns

The selected PropertyDef is returned by reference.

2.2.2.11 PropertyDef& getPropertyDef (const dstoute::aString & ptyID
)

As well as accessing the complete vector of PropertyDefs within a Janus instance, an individual
PropertyDef may be accessed by ptyID.

Parameters

ptyID is a C++ string containing the ptyID of a required PropertyDef within the vector
of PropertyDef instances contained in a Janus instance. Where no PropertyDef
contains a ptyID matching the input, a standard exception will be thrown.

Returns

The selected PropertyDef is returned by reference.

2.2.2.12 UngriddedTableDefList& getUngriddedTableDef () [inline]

Within the DOM, an ungriddedTableDef contains points that are not in an orthogonal grid
pattern; thus, the independent variable coordinates are specified for each dependent variable
value. The table data point values are specified as comma-separated values in floating-point
notation. Provided it has been instantiated without error, each Janus instance contains one
UngriddedTableDef vector of instances; however, the vector may have zero length.

UNCLASSIFIED 17

DST-Group–TN–1658

UNCLASSIFIED

Returns

A reference to the list of UngriddedTableDef instances is returned.

2.2.2.13 VariableDefList& getVariableDef () [inline]

The variableDef elements contained in a DOM that complies with the DAVE-ML DTD identify
the input and output signals used by function blocks. They also provide MathML content
markup to indicate that a calculation is required to arrive at the value of the variable, using
other variables as inputs. The variable definition can include statistical information regarding
the uncertainty of the values that it might take on, when measured after any calculation
is performed. In general, calling programs should access variable-based data through the
VariableDef instance and its lower-level procedures. Provided it has been instantiated and
initialised without error, each Janus instance contains one VariableDef vector of instances, of
length not less than one.

Returns

A reference to the list of VariableDef instances is returned.

2.2.2.14 VariableDef& getVariableDef (size_t index) [inline]

As well as accessing the complete vector of VariableDefs within a Janus instance, an individual
VariableDef may be accessed by index.

Parameters

index is the offset of a required VariableDef within the vector of VariableDef instances
contained in a Janus instance. It has a range from 0 to (getVariableDef().size() - 1)

Returns

The selected VariableDef is returned by reference.

2.2.2.15 VariableDef& getVariableDef (const dstoute::aString & varID)

As well as accessing the complete vector of VariableDefs within a Janus instance, an individual
VariableDef may be accessed by varID.

Parameters

varID is a C++ string containing the varID of a required VariableDef within the vector
of VariableDef instances contained in a Janus instance. Where no VariableDef
contains a varID matching the input, a standard exception will be thrown.

18 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The selected VariableDef is returned by reference.

2.2.2.16 int getVariableIndex (const dstoute::aString & varID) const
[inline]

A variable’s varID attribute is uniquely related to the variableDef and may be used as an
index. This function is used by a calling program to establish the numeric index associated
with a variable definition. If the varID is known for a variable definition then knowing the
index provides a more efficient means of interfacing with the variableDef as it eliminates the
need to perform string comparisons. The returned integer value may be used to address all
variable’-related attributes, child nodes or data elements.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the variable of which it is an attribute.

Returns

An index in the range from 0 to (getNumberOfVariables() - 1), corresponding to the
variable whose varIDmatches the input varID. If the input does not match any dependent
variable ID within the DOM, the returned value is -1.

UNCLASSIFIED 19

DST-Group–TN–1658

UNCLASSIFIED

3 Namespace Documentation

This section documents the janus namespace.

3.1 janus Namespace Reference

Classes

• class Array

• class Author

• class Bounds

• class BreakpointDef

• class CheckData

• class CheckInputs

• class CheckOutputs

• class DimensionDef

• class FileHeader

• class Function

• class FunctionDefn

• class GriddedTableDef

• class InDependentVarDef

• class InternalValues

• class Janus

• class Model

• class Modification

• class PropertyDef

• class Provenance

• class Reference

• class Signal

• class SignalList

• class StatespaceFn

• class StaticShot

• class TransferFn

• class Uncertainty

• class UngriddedTableDef

• class VariableDef

• class XmlElementDefinition

20 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

3.1.1 Detailed Description

The Janus class, all functions within it, and various subordinate classes are included in the
janus namespace. Because Janus is a library, it is expected to be used in conjunction with
external classes and the namespace provides a way of avoiding possible naming clashes with
those classes.

UNCLASSIFIED 21

DST-Group–TN–1658

UNCLASSIFIED

4 Class Documentation

This section documents the public interface functions for the various Janus API classes.

4.1 Array Class Reference

#include <Array.h>

Inherits XmlElementDefinition.

Inherited by Denominator, and Numerator.

Public Member Functions

• Array ()

• Array (const DomFunctions::XmlNode &elementDefinition)

• void exportDefinition (DomFunctions::XmlNode &documentElement, const dstoute::aString
&elementTag="")

• size_t getArraySize () const

• const dstoute::aStringList & getStringDataTable () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• void setStringDataTable (const dstoute::aStringList stringDataTable)

4.1.1 Detailed Description

An Array instance holds in its allocated memory alphanumeric data derived from an array
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.

It includes entries arranged as follows: Entries for a vector represent the row entries of that
vector. Entries for a matrix are specified such that the column entries of the first row are
listed followed by column entries for subsequent rows until the base matrix is complete. This
sequence is repeated for higher order matrix dimensions until all entries of the matrix are
specified.

The Array class is only used within the janus namespace, and should only be referenced
through the Janus class.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 Array ()

The empty constructor can be used to instance the Array class without supplying the DOM
array element from which the instance is constructed, but in this state it is not useful for any

22 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

class functions. It is necessary to populate the class from a DOM containing an array element
before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.1.2.2 Array (const DomFunctions::XmlNode & elementDefinition)

The constructor, when called with an argument pointing to an array element within a DOM,
instantiates the Array class and fills it with alphanumeric data from the DOM. String-based
numeric data are converted to double-precision linear vectors.

Parameters

elementDefinition is an address of an array component node within the DOM.

4.1.3 Member Function Documentation

4.1.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement,
const dstoute::aString & elementTag = "")

This function is used to export the array data to a DAVE-ML compliant XML dataset file as
defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.
elementTag a string defining the XML element tag name

4.1.3.2 size_t getArraySize () const [inline]

This function returns the number of entries stored in an array.

UNCLASSIFIED 23

DST-Group–TN–1658

UNCLASSIFIED

Returns

The number of entries stored in an array.

4.1.3.3 const dstoute::aStringList& getStringDataTable () const
[inline]

This function provides access to a vector of alphanumeric data stored in an Array instance.
This vector contains the data strings in the same sequence as they were presented in the
dataTable of the corresponding XML dataset.

Returns

The string list containing the alphanumeric content of the Array instance is returned by
reference.

4.1.3.4 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of Array is filled with data from a particular array element within a
DOM by this function. If another array element pointer is supplied to an instance that has
already been initialised, data corruption will occur and the entire Janus instance will become
unusable.

Parameters

elementDefinition is an address of an array component node within the DOM.

4.1.3.5 void setStringDataTable (const dstoute::aStringList stringDataTable)
[inline]

This function permits the string data table of the array element to be reset for this Array
instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

stringDataTable a string list containing data table entries.

The documentation for this class was generated from the following files:

• Array.h

• Array.cpp

24 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.2 Author Class Reference

#include <Author.h>

Inherits XmlElementDefinition.

Public Member Functions

• Author ()

• Author (const DomFunctions::XmlNode &authorElement)

• void exportDefinition (DomFunctions::XmlNode &documentElement, const dstoute::aString
&authorTag="author")

• const dstoute::aStringList & getAddress () const

• const dstoute::aString & getAddress (const size_t &index) const

• size_t getAddressCount () const

• const dstoute::aString & getContactInfo (const size_t &index) const

• size_t getContactInfoCount () const

• const dstoute::aString & getContactInfoType (const size_t &index) const

• const dstoute::aString & getContactLocation (const size_t &index) const

• const dstoute::aString & getEmail () const

• const dstoute::aString & getName () const

• const dstoute::aString & getOrg () const

• const dstoute::aString & getXns () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• void setAddress (const dstoute::aStringList &address)

• void setContactInfo (const dstoute::aStringList &contactInfo)

• void setContactInfoType (const dstoute::aStringList &contactInfoType)

• void setContactLocation (const dstoute::aStringList &contactLocation)

• void setEmail (const dstoute::aString &email)

• void setName (const dstoute::aString &name)

• void setOrg (const dstoute::aString &org)

• void setXns (const dstoute::aString &xns)

4.2.1 Detailed Description

An Author instance holds in its allocated memory alphanumeric data derived from an author
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance may describe an author of a complete dataset, or of a component of a dataset, or
of a modification to a dataset. Author contact details may be expressed in either address

UNCLASSIFIED 25

DST-Group–TN–1658

UNCLASSIFIED

or contactInfo forms. The contactInfo form is newer, more flexible and generally preferred.
The class also provides the functions that allow a calling Janus instance to access these data
elements.

The Author class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader, Modification or Provenance classes.

Typical usage might be:
Janus test(xmlFileName);
int nAuthors = test.getFileHeader().getAuthorCount();
cout << "Number of authors : " << nAuthors << "\n\n";
for (size_t i = 0 ; i < nAuthors ; i++) {

Author author = test.getFileHeader().getAuthor(i);
cout << " Author " << i << " : Name : "

<< author.getName() << "\n"
<< " Organisation : "
<< author.getOrg() << "\n"
<< " Email : "
<< author.getEmail() << "\n\n";

for (size_t j = 0 ; j < author.getAddressCount() ; j++) {
cout << " Address " << j << " : "

<< author.getAddress(j) << "\n\n";
}
for (size_t j = 0 ; j < author.getContactInfoCount() ; j++) {

cout << " Contact " << j << " type : "
<< author.getContactInfoType(j) << "\n"
<< " location : "
<< author.getContactLocation(j) << "\n"
<< " content : "
<< author.getContactInfo(j)
<< "\n\n";

}
}

4.2.2 Constructor & Destructor Documentation

4.2.2.1 Author ()

The empty constructor can be used to instance the Author class without supplying the DOM
author element from which the instance is constructed, but in this state is not useful for any
class functions. It is necessary to populate the class from a DOM containing an author element
before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.2.2.2 Author (const DomFunctions::XmlNode & authorElement)

The constructor, when called with an argument pointing to an author element within a DOM,
instantiates the Author class and fills it with alphanumeric data from the DOM.

26 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

authorElement is an address of an author component node within the DOM.

4.2.3 Member Function Documentation

4.2.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement,
const dstoute::aString & authorTag = "author")

This function is used to export the author data to a DAVE-ML compliant XML dataset file
as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.
authorTag a string specifying the tag to use when exporting the Author element.

The default tag is author, with other an alternative being pilot when
used by higher-level applications such as Thames.

4.2.3.2 const dstoute::aStringList& getAddress () const [inline]

This function returns the address list from an Author instance.
Returns

The address list is passed as a reference to string list of address entries.

4.2.3.3 const dstoute::aString& getAddress (const size_t & index) const
[inline]

This function returns a selected address component from an Author instance.

Parameters

index has a range from zero to (getAddressCount() - 1), and selects the required
address component. An attempt to access a non-existent address will throw a
standard out_of_range exception.

UNCLASSIFIED 27

DST-Group–TN–1658

UNCLASSIFIED

Returns

The selected address string is passed by reference.

4.2.3.4 size_t getAddressCount () const [inline]

This function returns the number of addresses listed in an Author instance. An instance can
have no, one or multiple address components. The address and contactInfo components are
mutually exclusive alternatives. If the instance has not been populated from a DOM element,
zero is returned.
Returns

An integer number, zero or more in a populated instance.

See also

getContactInfoCount

4.2.3.5 const dstoute::aString& getContactInfo (const size_t & index) const
[inline]

This function returns the content of a selected contactInfo component from an Author in-
stance.

Parameters

index has a range from zero to (getContactInfoCount() - 1), and selects the required
contactInfo component. An attempt to access a non-existent contactInfo will
throw a standard out_of_range exception.

Returns

The selected contactInfo content string is passed by reference.

4.2.3.6 size_t getContactInfoCount () const [inline]

This function returns the number of contactInfo components listed in the referenced Author
instance. An instance can have no, one or multiple contactInfo components. The contactInfo
and address components are mutually exclusive alternatives. If the instance has not been
populated from a DOM element, zero is returned.

Returns

An integer number, zero or more in a populated instance.

28 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

getAddressCount

4.2.3.7 const dstoute::aString& getContactInfoType (const size_t & index)
const [inline]

This function returns the contactInfoType of a selected contactInfo component from an Author
instance.

Parameters

index has a range from zero to (getContactInfoCount() - 1), and selects the required
contactInfo component. An attempt to access a non-existent contactInfo will
throw a standard out_of_range exception.

Returns

The selected contactInfoType string is passed by reference.

4.2.3.8 const dstoute::aString& getContactLocation (const size_t & index)
const [inline]

This function returns the contactLocation of a selected contactInfo component from an Author
instance.

Parameters

index has a range from zero to (getContactInfoCount() - 1), and selects the required
contactInfo component. An attempt to access a non-existent contactInfo will
throw a standard out_of_range exception.

Returns

The selected contactLocation string is passed by reference.

4.2.3.9 const dstoute::aString& getEmail () const [inline]

This function returns the author’s email attribute from the referenced Author instance. The
email attribute contains the author’s email address. This is an optional attribute.

UNCLASSIFIED 29

DST-Group–TN–1658

UNCLASSIFIED

Returns

The email string is passed by reference. If the Author instance has not been initialised
or does not contain an email attribute, an empty string is returned.

4.2.3.10 const dstoute::aString& getName () const [inline]

This function returns the author’s name from the referenced Author instance. If the instance
has not been initialised from a DOM, an empty string is returned.

Returns

The name string is passed by reference.

4.2.3.11 const dstoute::aString& getOrg () const [inline]

This function returns the author’s org attribute from the referenced Author instance. The
org attribute is a descriptive string identifying the author’s employing organisation. If the
instance has not been initialised from a DOM, an empty string is returned.

Returns

The org string is passed by reference.

4.2.3.12 const dstoute::aString& getXns () const [inline]

This function returns the author’s xns attribute from the referenced Author instance. The
xns attribute is a descriptive string containing the author’s eXtensible Name Service identifier.
This is an optional attribute.

Returns

The xns string is passed by reference. If the Author instance has not been initialised or
does not contain an xns attribute, an empty string is returned.

4.2.3.13 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of Author is filled with data from a particular author element within
a DOM by this function. If another author element pointer is supplied to an instance that has
already been initialised, the instance will be re-initialised with the new data. However, this is
not a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address of an author component node within the DOM.

30 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.2.3.14 void setAddress (const dstoute::aStringList & address)
[inline]

This function permits the address vector of the author element to be reset for this Author
instance. An alternative is to populate the contactInfo entries of the Author instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

address a string list containing address entries for the named author.

4.2.3.15 void setContactInfo (const dstoute::aStringList & contactInfo)
[inline]

This function permits the vector of contactInfo of the author element to be reset for this
Author instance. The element content is set through this function, with the type and location
attributes populated using the setContactInfoType() and setContactLocation() functions. An
alternative is to populate the address entries of the Author instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

contactInfo a string list containing contact information for the named author.

4.2.3.16 void setContactInfoType (const dstoute::aStringList &
contactInfoType) [inline]

This function permits the vector of contactInfoType data of the author element to be reset for
this Author instance. These data are an attribute of the contactInfo element.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

contactInfoType a string list containing contact type information (as defined in the
DAVE-ML dtd) for the named author.

UNCLASSIFIED 31

DST-Group–TN–1658

UNCLASSIFIED

4.2.3.17 void setContactLocation (const dstoute::aStringList & contactLocation
) [inline]

This function permits the vector of contactLocation data of the author element to be reset for
this Author instance. These data are an attribute of the contactInfo element.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

contactLocation a string list containing contact location information (as defined in the
DAVE-ML dtd) for the named author.

4.2.3.18 void setEmail (const dstoute::aString & email) [inline]

This function permits the author’s email attribute of the author element to be reset for this
Author instance. The email attribute contains the author’s email address. This is an optional
attribute.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

email a string detailing the address to be stored in the author’s email attribute.

4.2.3.19 void setName (const dstoute::aString & name) [inline]

This function permits the name attribute of the author element to be reset for this Author
instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

name a string detailing the author’s name.

4.2.3.20 void setOrg (const dstoute::aString & org) [inline]

This function permits the org attribute of the author element to be reset for this Author
instance.

If the instance has not been initialised from a DOM then this function permits it to be set

32 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

before being written to an output XML based file.

Parameters

org a string detailing the name of the author’s organisation.

4.2.3.21 void setXns (const dstoute::aString & xns) [inline]

This function permits the xns attribute of the author element to be reset for this Author
instance. The xns attribute is a descriptive string containing the author’s eXtensible Name
Service identifier. This is an optional attribute.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

xns a string detailing the author’s xns attribute.

The documentation for this class was generated from the following files:

• Author.h

• Author.cpp

4.3 Bounds Class Reference

#include <Bounds.h>

Inherits XmlElementDefinition.

Public Member Functions

• Bounds ()

• Bounds (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• double getBound (const int &functionIndex=-1) const

• const dstoute::aString & getVarID () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

• virtual ∼Bounds ()

UNCLASSIFIED 33

DST-Group–TN–1658

UNCLASSIFIED

4.3.1 Detailed Description

A Bounds instance holds in its allocated memory alphanumeric data derived from a bounds
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
element contains some description of the statistical limits to the values the citing parameter
element might take on. This can be in the form of a scalar value, a variableDef that provides
a functional definition of the bound, a variableRef that refers to such a functional definition,
or a private table whose elements correlate with those of a tabular function defining the citing
parameter. The class also provides the functions that allow a calling Janus instance to access
these data elements.

The Bounds class is only used within the janus namespace, and should only be referenced
indirectly through the Uncertainty class or through the variable functions within the Janus
class.

One possible usage of the Bounds class might be:
Janus test(xmlFileName);

for (int i = 0 ; i < test.getNumberOfVariables() ; i++) {
Uncertainty::UncertaintyPdf pdf = test.getVariableDef().at(i).

getUncertainty().getPdf();
if (Uncertainty::NORMAL_PDF == pdf) {

double bound = test.getVariableDef().at(i).getUncertainty().
getBounds().getBound();

cout << " Gaussian bound = " << bound << "\n";
}
else if (Uncertainty::UNIFORM_PDF == pdf) {

const vector<Bounds>& bounds = test.getVariableDef().at(i).
getUncertainty().getBounds();

if (1 == bounds.size()) {
double symmetricBound = bounds.at(0).getBound();
cout << " Uniform symmetric bound = " << symmetricBound << "\n";

}
else {

double lowerBound = bounds.at(0).getBound();
double upperBound = bounds.at(1).getBound();
cout << " Uniform bounds range = [" << lowerBound << " to "

<< upperBound << "]\n";
}

}
}

4.3.2 Constructor & Destructor Documentation

4.3.2.1 Bounds ()

The empty constructor can be used to instance the Bounds class without supplying the DOM
bounds element from which the instance is constructed, but in this state is not useful for any
class functions. It is necessary to populate the class from a DOM containing a bounds element
before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

34 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

initialiseDefinition

4.3.2.2 Bounds (const DomFunctions::XmlNode & elementDefinition, Janus ∗
janus)

The constructor, when called with an argument pointing to a bounds element within a DOM,
instantiates the Bounds class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address of an bounds component node within the DOM.
janus is a pointer to the owning Janus instance, used within this class to

evaluate bounds with a functional dependence on the instance state.
It must be passed as a void pointer to avoid circularity of
dependencies at build time.

4.3.2.3 ∼Bounds () [virtual]

Destructor required to free the locally allocated memory of the variableDef

4.3.3 Member Function Documentation

4.3.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the bound data to a DAVE-ML compliant XML dataset file as
defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.3.3.2 double getBound (const int & functionIndex = - 1) const

This function returns the current value of the bound defined by this Bounds instance, based
if necessary on the current state of all variables within the parent Janus instance. It will
perform whatever computations are required to determine the bound. If the bound can not
be determined for any reason, a NaN will be returned.

UNCLASSIFIED 35

DST-Group–TN–1658

UNCLASSIFIED

Parameters

functionIndex is an optional argument, only necessary for tabular bounds included in
either GriddedTableDef or UngriddedTableDef instances. It refers to the
Function instance making use of the table.

Returns

A double precision representation of the current bound value.

4.3.3.3 const dstoute::aString& getVarID () const [inline]

If the bound is expressed in terms of a variableDef or variableRef, this function allows the varID
attribute of the bound’s variable to be determined. If the instance has not been populated, or
if the bound is not expressed in terms of a variableDef of variableRef, an empty string will be
returned.
Returns

The varID attribute string of a variableDef that expresses this bound functionally is
passed by reference.

4.3.3.4 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

An uninitialised instance of Bounds is filled with data from a particular bounds element within
a DOM by this function. If another bounds element pointer is supplied to an instance that has
already been initialised, the instance is re-initialised with the new data. However, this is not
a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address of an bounds component node within the DOM.
janus is a pointer to the owning Janus instance, used within this class to

evaluate bounds with a functional dependence on the instance state.
It must be passed as a void pointer to avoid circularity of
dependencies at build time.

The documentation for this class was generated from the following files:

• Bounds.h

• Bounds.cpp

4.4 BreakpointDef Class Reference

#include <BreakpointDef.h>

36 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Inherits XmlElementDefinition.

Public Member Functions

• BreakpointDef ()

• BreakpointDef (const DomFunctions::XmlNode &elementDefinition)

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const dstoute::aString & getBpID () const

• const std::vector< double > & getBpVals () const

• const dstoute::aString & getDescription () const

• const dstoute::aString & getName () const

• size_t getNumberOfBpVals () const

• const dstoute::aString & getUnits () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• void setBpID (const dstoute::aString &bpID)

• void setBpVals (const std::vector< double > bpVals)

• void setDescription (const dstoute::aString &description)

• void setName (const dstoute::aString &name)

• void setUnits (const dstoute::aString &units)

4.4.1 Detailed Description

A BreakpointDef instance holds in its allocated memory alphanumeric data derived from
a breakpointDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes numeric break points for gridded tables, and associated alphanumeric
identification data.

A breakpointDef is where gridded table breakpoints are defined; that is, a set of independent
variable values associated with one dimension of a gridded table of data. An example would
be the Mach or angle-of-attack values that define the coordinates of each data point in a
two-dimensional coefficient value table. These are separate from function data, and thus they
may be reused. The independentVarPts element used within some DAVE-ML functionDefn
elements is equivalent to a breakpointDef element, and is also represented as a BreakpointDef
within Janus.

The BreakpointDef class is only used within the janus namespace, and should only be refer-
enced through the Janus class.

Janus exists to handle data for a modelling process. Therefore, in normal computational usage
it is unnecessary (and undesirable) for a calling program to be aware of the existence of this
class. However, functions do exist to access BreakpointDef contents directly, which may be
useful during dataset development. A possible usage might be:

UNCLASSIFIED 37

DST-Group–TN–1658

UNCLASSIFIED

Janus test(xmlFileName);
const vector<BreakpointDef>& breakpointDef = test.getBreakpointDef();
for (int i = 0 ; i < breakpointDef.size() ; i++) {

cout << " bpID = " << breakpointDef.at(i).getBpID()
<< ", units = " << breakpointDef.at(i).getUnits() << "\n";

cout << " values = [" << breakpointDef.at(i).getBpVals() << "]\n";
}

4.4.2 Constructor & Destructor Documentation

4.4.2.1 BreakpointDef ()

The empty constructor can be used to instance the BreakpointDef class without supplying the
DOM breakpointDef element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
breakpointDef element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.4.2.2 BreakpointDef (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a breakpointDef element within a
DOM, instantiates the BreakpointDef class and fills it with alphanumeric data from the DOM.
The string content of the bpVals element is converted to a double precision numeric vector
within the instance.

Parameters

elementDefinition is an address of an breakpointDef component node within the DOM.

4.4.3 Member Function Documentation

4.4.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the breakpointDef data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

38 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.4.3.2 const dstoute::aString& getBpID () const [inline]

This function provides access to the bpID attribute of a breakpointDef. This attribute is used
for indexing breakpoints within an XML dataset. If the instance has not been initialised from
a DOM, an empty string is returned.

Returns

The bpID string is passed by reference.

4.4.3.3 const std::vector< double>& getBpVals () const [inline]

This function provides access to the breakpoint values within a BreakpointDef instance. The
breakpoints are a vector of monotonically increasing values used as the independent terms in
function based on a gridded table. The function is not generally accessed directly by users,
but is employed by the Janus class in performing function evaluations.

Returns

A reference to the bpVals vector from this BreakpointDef instance.

4.4.3.4 const dstoute::aString& getDescription () const [inline]

This function provides access to the description child of the breakpointDef element represented
by this BreakpointDef instance. A breakpointDef’s optional description child element consists
of a string of arbitrary length, which can include tabs and new lines as well as alphanumeric
data. This means text formatting embedded in the XML source will also appear in the returned
description. If no description is specified in the XML dataset, or the BreakpointDef has not
been initialised from the DOM, an empty string is returned.

Returns

The description string is passed by reference.

4.4.3.5 const dstoute::aString& getName () const [inline]

This function provides access to the name attribute of the breakpointDef element represented
by this BreakpointDef instance. The name attribute is optional. If the instance has not been
initialised from a DOM, or if no name attribute is present, an empty string is returned.

Returns

The name string is passed by reference.

4.4.3.6 size_t getNumberOfBpVals () const [inline]

This function provides the number of breakpoint values within a BreakpointDef instance. The
breakpoints are a vector of monotonically increasing values used as the independent terms in
function based on a gridded table. The function is not generally accessed directly by users,
but is employed by the Janus class in performing function evaluations.

UNCLASSIFIED 39

DST-Group–TN–1658

UNCLASSIFIED

Returns

The number of breakpoint values stored in the bpVals vector from this BreakpointDef
instance.

4.4.3.7 const dstoute::aString& getUnits () const [inline]

This function provides access to the units attribute of a breakpointDef represented by this
BreakpointDef instance. A breakpoint array’s units attribute is a string of arbitrary length,
but normally short, and complying with the format requirements chosen by AD APS [7] in
accordance with Systeme International d’Unites (SI) and other systems. The units attribute
is optional. If the instance has not been initialised from a DOM, or if no units attribute is
present, an empty string is returned.

Returns

The units string is passed by reference.

4.4.3.8 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of BreakpointDef is filled with data from a particular breakpointDef
element within a DOM by this function. The string content of the bpVals element is converted
to a double precision numeric vector within the instance. If another breakpointDef element
pointer is supplied to an instance that has already been initialised, the instance will be re-
initialised with the new data. However, this is not a recommended procedure, since optional
elements may not be replaced.

Parameters

elementDefinition is an address of an breakpointDef component node within the DOM.

4.4.3.9 void setBpID (const dstoute::aString & bpID) [inline]

This function permits the bpID attribute of the breakpointDef element to be reset for this
BreakpointDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

bpID The breakpoint identifier bpID string.

40 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.4.3.10 void setBpVals (const std::vector< double > bpVals) [inline]

This function permits the breakpoint values vector (bpVals) element of the breakpointDef
element to be reset for this BreakpointDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

bpVals The vector of numerical breakpoint values.

4.4.3.11 void setDescription (const dstoute::aString & description)
[inline]

This function permits the description element of the breakpointDef element to be reset for this
BreakpointDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

description The description string.

4.4.3.12 void setName (const dstoute::aString & name) [inline]

This function permits the name attribute of the breakpointDef element to be reset for this
BreakpointDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

name The name string.

4.4.3.13 void setUnits (const dstoute::aString & units) [inline]

This function permits the units attribute of the breakpointDef element to be reset for this
BreakpointDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

UNCLASSIFIED 41

DST-Group–TN–1658

UNCLASSIFIED

Parameters

units The units identifier string.

The documentation for this class was generated from the following files:

• BreakpointDef.h

• BreakpointDef.cpp

4.5 CheckData Class Reference

#include <CheckData.h>

Inherits XmlElementDefinition.

Public Member Functions

• CheckData ()

• CheckData (const DomFunctions::XmlNode &elementDefinition)

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const Provenance & getProvenance () const

• StaticShotList & getStaticShot ()

• const StaticShot & getStaticShot (const size_t &index) const

• size_t getStaticShotCount () const

• const bool & hasProvenance () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• void setStaticShot (const StaticShotList staticShot)

4.5.1 Detailed Description

Check data is used for XML dataset content verification. A CheckData instance holds in
its allocated memory alphanumeric data derived from a checkData element of a DOM cor-
responding to a DAVE-ML compliant XML dataset source file. It will include static check
cases, trim shots, and dynamic check case information. At present only static check cases
are implemented, using staticShot children of the top-level checkData element. The functions
within this class provide access to the raw check data, as well as actually performing whatever
checks may be done on the dataset using the checkData. The provenance sub-element is now
deprecated and has been moved to individual staticShots; it is allowed here for backwards
compatibility.

The CheckData class is only used within the janus namespace, and should normally only be
referenced through the Janus class.

42 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Typical usage of the checking functions:
Janus test(xmlFileName);
CheckData checkData = test.getCheckData();
int nss = checkData.getStaticShotCount();
cout << " Number of static shots = " << nss << endl;
for (int j = 0 ; j < nss ; j++) {

StaticShot staticShot = checkData.getStaticShot(j);
int nInvalid = staticShot.getInvalidVariableCount();
if (0 < nInvalid) {

for (int k = 0 ; k < nInvalid ; k++) {
string failVarID =

staticShot.getInvalidVariable(k);
cout << " Problem at varID : " << failVarID << endl;

}
} else {

cout << " No problems from static shot " << j << " ... " << endl;
}

}

4.5.2 Constructor & Destructor Documentation

4.5.2.1 CheckData ()

The empty constructor can be used to instance the CheckData class without supplying the
DOM checkData element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
checkData element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.5.2.2 CheckData (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a checkData element within a
DOM, instantiates the CheckData class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address to a checkData component node within the DOM.

UNCLASSIFIED 43

DST-Group–TN–1658

UNCLASSIFIED

4.5.3 Member Function Documentation

4.5.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the checkData data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.5.3.2 const Provenance& getProvenance () const [inline]

This function provides access to the provenance or provenanceRef element contained in a
DAVE-ML checkData element. The element is deprecated in this location; however, access
through this function is retained for compatibility with older datasets. There may be zero or
one of these elements attached to the checkData element in a valid dataset. If the instance
has not been initialised or the checkData element has no provenance, an empty Provenance
instance is returned.
Returns

The Provenance instance is returned by reference.

See also

Provenance

4.5.3.3 StaticShotList& getStaticShot () [inline]

This function provides access to the staticShot elements referenced by a DAVE-ML checkData
element. There may be zero, one or many staticShot elements within the checkData component
of a valid XML dataset.
Returns

A list containing the StaticShot instances is returned by reference.

See also

StaticShot

4.5.3.4 const StaticShot& getStaticShot (const size_t & index) const
[inline]

This function provides access to a staticShot element referenced by a DAVE-ML checkData
element. There may be zero, one or many staticShot elements within the checkData component
of a valid XML dataset.

44 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

index has a range from zero to (getStaticShotCount() - 1), and selects the required
StaticShot instance. Attempting to access a StaticShot outside the available range
will throw a standard out_of_range exception.

Returns

The requested StaticShot instance is returned by reference.

See also

StaticShot

4.5.3.5 size_t getStaticShotCount () const [inline]

This function allows the number of staticShot elements referenced by a checkData element
to be determined. If the CheckData instance has not been populated from a DOM, zero is
returned. Because future checkData may include other cases than static shots, a checkData
element without any staticShot components may still be valid.

Returns

An integer number, zero or more in a populated instance.

See also

StaticShot

4.5.3.6 const bool& hasProvenance () const [inline]

This function indicates whether the checkData element of a DAVE-ML dataset includes either
provenance or provenanceRef children. For DAVE-ML version 2.0RC3 and subsequent releases,
the use of provenance or provenanceRef at the checkData level is deprecated.

Returns

A boolean indication of the presence of checkData’s provenance.

4.5.3.7 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of CheckData is filled with data from a particular checkData element
within a DOM by this function. If another checkData element pointer is supplied to an instance
that has already been initialised, the instance will be re-initialised with the new data. However,
this is not a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address to a checkData component node within the DOM.

UNCLASSIFIED 45

DST-Group–TN–1658

UNCLASSIFIED

4.5.3.8 void setStaticShot (const StaticShotList staticShot) [inline]

This function permits the staticShot instance vector of the checkData element to be reset for
this CheckData instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

staticShot The list of staticShot instances.

The documentation for this class was generated from the following files:

• CheckData.h

• CheckData.cpp

4.6 CheckInputs Class Reference

#include <CheckInputs.h>

Inherits SignalList.

Public Member Functions

• CheckInputs ()

• CheckInputs (const DomFunctions::XmlNode &checkInputsElement)

4.6.1 Detailed Description

A CheckInputs instance functions as a container for the Signal class through the use of the
Signals class. It provides the functions that allow a calling StaticShot instance to access the
signal elements that define the input values for a check case. A checkInputs element must
contain signal elements that include signalName and signalUnits elements.

The CheckInputs class is only used within the janus namespace, and should only be referenced
indirectly through the StaticShot class.

Typical usage:
Janus test(xmlFileName);
const CheckData& checkData = test.getCheckData();
size_t nss = checkData.getStaticShotCount();
for (size_t j = 0 ; j < nss ; j++) {

const StaticShot& staticShot = checkData.getStaticShot(j);
const CheckInputs& checkInputs = staticShot.getCheckInputs();
size_t ncinp = checkInputs.getSignalCount();
cout << " staticShot[" << j << "] : " << endl

46 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

<< " Name = "
<< staticShot.getName() << endl
<< " Number of check inputs = " << ncinp << endl;

for (size_t k = 0 ; k < ncinp ; k++) {
cout << " checkInputs[" << k << "] : " << endl

<< " signalName = "
<< checkInputs.getName(k) << endl
<< " signalUnits = "
<< checkInputs.getUnits(k) << endl
<< " signalValue = "
<< checkInputs.getValue(k) << endl
<< endl;

}
}

4.6.2 Constructor & Destructor Documentation

4.6.2.1 CheckInputs () [inline]

The empty constructor can be used to instance the CheckInputs class without supplying the
DOM checkInputs element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
checkInputs element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

setCheckInputsFromDom

4.6.2.2 CheckInputs (const DomFunctions::XmlNode & checkInputsElement)
[inline]

The constructor, when called with an argument pointing to a checkInputs element within
a DOM, instantiates the CheckInputs class and fills it with alphanumeric data from the
DOM.

Parameters

checkInputsElement is an address to a checkInputs component node within the DOM.

The documentation for this class was generated from the following file:

• CheckInputs.h

4.7 CheckOutputs Class Reference

#include <CheckOutputs.h>

Inherits SignalList.

UNCLASSIFIED 47

DST-Group–TN–1658

UNCLASSIFIED

Public Member Functions

• CheckOutputs ()

• CheckOutputs (const DomFunctions::XmlNode &checkOutputsElement)

4.7.1 Detailed Description

A CheckOutputs instance functions as a container for the Signal class through the use of the
Signals class. It provides the functions that allow a calling StaticShot instance to access the
signal elements that define the output values for a check case. A checkOutputs element must
contain signal elements that include signalName and signalUnits elements.

The CheckOutputs class is only used within the janus namespace, and should only be refer-
enced indirectly through the StaticShot class.

Typical usage:
Janus test(xmlFileName);
CheckData checkData = test.getCheckData();
size_t nss = checkData.getStaticShotCount();
for (size_t j = 0 ; j < nss ; j++) {

StaticShot staticShot = checkData.getStaticShot(j);
CheckOutputs checkOutputs = staticShot.getCheckOutputs();
size_t ncout = checkOutputs.getSignalCount();
cout << " staticShot[" << j << "] : " << endl

<< " Name = "
<< staticShot.getName() << endl
<< " Number of check outputs = " << ncout << endl;

for (size_t k = 0 ; k < ncout ; k++) {
cout << " checkOutputs[" << k << "] : " << endl

<< " signalName = "
<< checkOutputs.getName(k) << endl
<< " signalUnits = "
<< checkOutputs.getUnits(k) << endl
<< " signalValue = "
<< checkOutputs.getValue(k) << endl
<< " tol = "
<< checkOutputs.getTolerance(k) << endl
<< endl;

}
}

4.7.2 Constructor & Destructor Documentation

4.7.2.1 CheckOutputs () [inline]

The empty constructor can be used to instance the CheckOutputs class without supplying the
DOM checkOutputs element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
checkOutputs element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

48 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

initialiseDefinition

4.7.2.2 CheckOutputs (const DomFunctions::XmlNode & checkOutputsElement
) [inline]

The constructor, when called with an argument pointing to a checkOutputs element within
a DOM, instantiates the CheckOutputs class and fills it with alphanumeric data from the
DOM.

Parameters

checkOutputsElement is an address to a checkOutputs component node within the DOM.

The documentation for this class was generated from the following file:

• CheckOutputs.h

4.8 DimensionDef Class Reference

#include <DimensionDef.h>

Inherits XmlElementDefinition.

Public Member Functions

• DimensionDef ()

• DimensionDef (const DomFunctions::XmlNode &elementDefinition)

• void exportDefinition (DomFunctions::XmlNode &documentElement, const bool &is-
Reference=false)

• size_t getDim (const size_t &index) const

• size_t getDimCount () const

• const dstoute::aString & getDimID () const

• size_t getDimTotal () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• void setDimID (const dstoute::aString &dimID)

• void setDimRecords (const std::vector< size_t > &dimRecords)

4.8.1 Detailed Description

A DimensionDef instance holds in its allocated memory alphanumeric data derived from a
dimensionDef element of a DOM corresponding to a DAVE-ML compliant XML dataset source

UNCLASSIFIED 49

DST-Group–TN–1658

UNCLASSIFIED

file. It includes descriptive, alphanumeric identification and cross-reference data.

The DimensionDef class is only used within the janus namespace, and should only be referenced
through the Janus class.

4.8.2 Constructor & Destructor Documentation

4.8.2.1 DimensionDef ()

The empty constructor can be used to instance the DimensionDef class without supplying the
DOM dimensionDef element from which the instance is constructed, but in this state it not
useful for any class functions. It is necessary to populate the class from a DOM containing a
dimensionDef element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.8.2.2 DimensionDef (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a dimensionDef element within
a DOM, instantiates the DimensionDef class and fills it with alphanumeric data from the
DOM.

Parameters

elementDefinition is an addressto a dimensionDef component node within the DOM.

4.8.3 Member Function Documentation

4.8.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement,
const bool & isReference = false)

This function is used to export the dimensionDef data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.
isReference a boolean flag indicating the dimensionDef element should be treated

as a reference.

50 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.8.3.2 size_t getDim (const size_t & index) const [inline]

This function returns a reference to the selected dimension record within the DimensionDef
instance.

Parameters

index has a range from zero to (getDimCount() - 1), and selects the required dimension
record. An attempt to access a non-existent dimension record will throw a
standard out_of_range exception.

Returns

The requested dimension record is returned by reference.

4.8.3.3 size_t getDimCount () const [inline]

This function returns the number of dimension records listed in a DimensionDef. If the instance
has not been populated from a DOM element, zero is returned.

Returns

An unsigned integer (size_t) number, one or more in a populated instance.

4.8.3.4 const dstoute::aString& getDimID () const [inline]

This function provides access to the dimID attribute of the dimensionDef element represented
by this DimensionDef instance. An dimensionDef’s dimID attribute is normally a short string
without whitespace, such as "matrix_3x3", which uniquely defines the dimensionDef. It is used
for indexing dimension tables within an XML dataset, and provides underlying cross-references.
If the instance has not been initialised from a DOM, an empty string is returned.

Returns

The dimID string is returned by reference.

4.8.3.5 size_t getDimTotal () const [inline]

This function returns the combined total of the dimensions defined for the DimensionDef
instance. This is the multiple of each of the elements.

UNCLASSIFIED 51

DST-Group–TN–1658

UNCLASSIFIED

Returns

An unsigned integer (size_t) number, multiplying each dimension value in a populated
instance.

4.8.3.6 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of DimensionDef is filled with data from a particular dimensionDef
element within a DOM by this function. If another dimensionDef element pointer is supplied
to an instance that has already been initialised, data corruption may occur.

Parameters

elementDefinition is an address to a dimensionDef component node within the DOM.

4.8.3.7 void setDimID (const dstoute::aString & dimID) [inline]

This function permits the dimension identifier dimID of the dimensionDef element to be reset
for this DimensionDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

dimID a string identifier representing the instance of the dimensionDef.

4.8.3.8 void setDimRecords (const std::vector< size_t > & dimRecords)
[inline]

This function permits the dimension records of the dimensionDef element to be reset for this
DimensionDef instance.

If the instance has not been initialised from a DOM then this function permits them to be set
before being written to an output XML based file.

Parameters

dimRecords a vector of unsigned integers (size_t) representing the sizes of each
dimension defined for a vector or matrix array.

The documentation for this class was generated from the following files:

• DimensionDef.h

52 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• DimensionDef.cpp

4.9 DomFunctions Class Reference

#include <DomFunctions.h>

4.9.1 Detailed Description

This class contains common functions for interacting with a Document Object Model (DOM)
containing data from a DAVE-ML compliant XML dataset source file.

The DomFunctions class is only used within Janus.

The documentation for this class was generated from the following file:

• DomFunctions.h

4.10 ExportMathML Class Reference

#include <ExportMathML.h>

4.10.1 Detailed Description

This class contains functions for exporting mathematics procedures defined using the MathML
syntax to a DOM. Data detailing each MathML operation is stored in a MathMLDataClass
structure. This includes the sub-elements to which the operator is to be applied. Functions
to process both scalar and matrix data are included.

The ExportMathML class is only used within the Janus.

The documentation for this class was generated from the following files:

• ExportMathML.h

• ExportMathML.cpp

4.11 FileHeader Class Reference

#include <FileHeader.h>

Inherits XmlElementDefinition.

UNCLASSIFIED 53

DST-Group–TN–1658

UNCLASSIFIED

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• FileHeader ()

• FileHeader (const DomFunctions::XmlNode &elementDefinition)

• const AuthorList & getAuthor () const

• const Author & getAuthor (const size_t &index) const

• size_t getAuthorCount () const

• const dstoute::aString getClassification () const

• const dstoute::aString & getCreationDate () const

• const dstoute::aString getDataAssumptions () const

• const dstoute::aString & getDescription () const

• const dstoute::aString & getFileVersion () const

• const ModificationList & getModification () const

• const Modification & getModification (const size_t &index) const

• size_t getModificationCount () const

• const dstoute::aString & getName () const

• const ProvenanceList & getProvenance () const

• const Provenance & getProvenance (const size_t &index) const

• size_t getProvenanceCount () const

• const ReferenceList & getReference () const

• const Reference & getReference (const size_t &index) const

• size_t getReferenceCount () const

• const dstoute::aString getTag () const

• const dstoute::aString getType () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

4.11.1 Detailed Description

A FileHeader instance holds in its allocated memory alphanumeric data derived from the
fileHeader element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. There is always one FileHeader instance for each Janus instance. It requires at least one
author, a creation date and a version indicator; optional content are description, references
and modification records. The class also provides the functions that allow a calling Janus
instance to access these data elements.

The FileHeader class is only used within the janus namespace, and should only be referenced
indirectly through the Janus class.

A typical usage is:

54 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Janus test(xmlFileName);
FileHeader header = test.getFileHeader();
int nAuthors = header.getAuthorCount();
cout << "Number of authors : " << nAuthors << "\n\n";
for (int i = 0 ; i < nAuthors ; i++) {

Author author = header.getAuthor(i);
cout << " Author " << i << " : Name : "

<< author.getName() << "\n"
<< " Organisation : "
<< author.getOrg() << "\n"

}
cout << " File creation date : "

<< header.getCreationDate() << "\n"
<< " File version : "
<< header.getFileVersion() << "\n"
<< " File description : "
<< header.getDescription() << "\n"
<< " Number of reference records : "
<< header.getReferenceCount() << "\n"
<< " Number of modification records : "
<< header.getModificationCount() << "\n";

4.11.2 Constructor & Destructor Documentation

4.11.2.1 FileHeader ()

The empty constructor can be used to instance the FileHeader class without supplying the
DOM fileHeader element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
fileHeader element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.11.2.2 FileHeader (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a fileHeader element within a DOM,
instantiates the FileHeader class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address to the Level 1 element within a DOM that is tagged as a
fileHeader. There should always be one such element.

UNCLASSIFIED 55

DST-Group–TN–1658

UNCLASSIFIED

4.11.3 Member Function Documentation

4.11.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the FileHeader data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address pointer to the parent DOM node/element.

4.11.3.2 const AuthorList& getAuthor () const [inline]

This function returns a reference to the list of authors defined within the FileHeader in-
stance.
Returns

The list authors is returned by reference.

See also

Author

4.11.3.3 const Author& getAuthor (const size_t & index) const
[inline]

This function returns a reference to the selected Author instance within the FileHeader in-
stance.

Parameters

index has a range from zero to (getAuthorCount() - 1), and selects the required Author
instance. An attempt to access a non-existent author will throw a standard
out_of_range exception.

Returns

The requested Author instance is returned by reference.

56 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Author

4.11.3.4 size_t getAuthorCount () const [inline]

This function returns the number of primary authors listed in a FileHeader. If the instance
has not been populated from a DOM element, zero is returned.

Returns

An integer number, one or more in a populated instance.

See also

Author

4.11.3.5 const dstoute::aString getClassification () const [inline]

The classification element is an optional document identifier defining the security classification
for the information stored with the XML dataset. This function returns the classification
element of the referenced file header, if one has been supplied in the XML dataset. If not, it
returns an empty string.

Returns

The classification string is returned by reference.

4.11.3.6 const dstoute::aString& getCreationDate () const [inline]

This function returns the creationDate element of the fileHeader element (fileCreationDate is
a deprecated alternative). The format of the dataset string is determined by the XML dataset
builder, but DAVE-ML recommends the ISO 8601 form ("2004-01-02" to refer to 2 January
2004). If the FileHeader has not been populated from a DOM element , the function returns
an empty string.

Returns

The creationDate string is returned by reference.

4.11.3.7 const dstoute::aString getDataAssumptions () const [inline]

The dataAssumptions element is an optional identifier documenting assumptions associated
with the information stored with the XML dataset. This function returns the dataAssumptions
element of the referenced file header, if one has been supplied in the XML dataset. If not, it
returns an empty string.

Returns

The dataAssumptions string is returned by reference.

UNCLASSIFIED 57

DST-Group–TN–1658

UNCLASSIFIED

4.11.3.8 const dstoute::aString& getDescription () const [inline]

This function returns the description from a fileHeader element, if one has been supplied in
the XML dataset. The description consists of a string of arbitrary length, which can include
tabs and new lines as well as alphanumeric data. This means text formatting embedded in
the XML source will also appear in the returned description string. Since description of a file
is optional, the returned string may be blank.

Returns

The description string is returned by reference.

4.11.3.9 const dstoute::aString& getFileVersion () const [inline]

The fileVersion element is an optional document identifier for a fileHeader. The format of the
version string is determined by the XML dataset builder. This function returns the fileVersion
element of the referenced file header, if one has been supplied in the XML dataset. If not, it
returns an empty string.

Returns

The fileVersion string is returned by reference.

4.11.3.10 const ModificationList& getModification () const [inline]

This function provides access to the modificationRecord elements contained in a DAVE-ML
fileHeader element, through the Modification class structure.

Returns

The list of modification records is returned by reference.

See also

Modification

4.11.3.11 const Modification& getModification (const size_t & index) const
[inline]

This function provides access to the modificationRecord elements contained in a DAVE-ML
fileHeader element, through the Modification class structure.

Parameters

index has a range from 0 to (getModificationCount() - 1), and selects the required
modificationRecord. An attempt to access a non-existent modificationRecord will
throw a standard out_of_range exception.

58 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The requested Modification instance is returned by reference.

See also

Modification

4.11.3.12 size_t getModificationCount () const [inline]

This function returns the number ofmodificationRecord records at the top level of the fileHeader
component of the XML dataset. A fileHeader can include no, one or multiple modification-
Record components. If the FileHeader has not been populated from a DOM element, zero is
returned.
Returns

An integer number, zero or more in a populated instance.

See also

Modification

4.11.3.13 const dstoute::aString& getName () const [inline]

This function returns the optional name attribute of the FileHeader instance, if one has been
supplied in the XML dataset. If not, or if the instance has not been initialised from a DOM,
it returns an empty string.

Returns

The name string is passed by reference.

4.11.3.14 const ProvenanceList& getProvenance () const [inline]

This function provides access to the provenance elements contained in a DAVE-ML fileHeader
element, through the Provenance class structure.

Returns

The list of provenence records is returned by reference.

See also

Provenance

4.11.3.15 const Provenance& getProvenance (const size_t & index) const
[inline]

This function provides access to the provenance elements contained in a DAVE-ML fileHeader
element, through the Provenance class structure.

UNCLASSIFIED 59

DST-Group–TN–1658

UNCLASSIFIED

Parameters

index has a range from 0 to (getProvenanceCount() - 1), and selects the required
provenance record. An attempt to access a non-existent provenance will throw a
standard out_of_range exception.

Returns

The requested Provenence instance is returned by reference.

See also

Provenance

4.11.3.16 size_t getProvenanceCount () const [inline]

This function returns the number of provenance elements contained in a DAVE-ML fileHeader
element. It does NOT include provenance elements contained in other elements of the dataset.
There may be zero or more of these elements in a valid file header.

Returns

The integer count of provenance elements contained in a fileHeader element is returned.
Possible values are zero or more.

See also

Provenance

4.11.3.17 const ReferenceList& getReference () const [inline]

This function provides access to the reference records contained in the XML dataset file header,
through the Reference class structure.

Returns

The list of references is returned by reference.

See also

Reference

4.11.3.18 const Reference& getReference (const size_t & index) const
[inline]

This function provides access to the reference records contained in the XML dataset file header,
through the Reference class structure.

Parameters

index has a range from 0 to (getReferenceCount() - 1), and selects the required
reference record. An attempt to access a non-existent reference will throw a
standard out_of_range exception.

60 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The requested Reference instance is returned by reference.

See also

Reference

4.11.3.19 size_t getReferenceCount () const [inline]

This function returns the number of reference elements listed in a fileHeader element. A
fileHeader can include no, one or multiple reference components. If the FileHeader has not
been populated from a DOM element, zero is returned.

Returns

An integer number, zero or more in a populated instance.

See also

Reference

4.11.3.20 const dstoute::aString getTag () const [inline]

The tag element is an optional identifier that is used to identify the several DAVE-ML com-
pliant XML dataset source files as being part of the same version of an aircraft model. This
is similar to a tag used in source code version control.

This function returns the tag element of the referenced file header, if one has been supplied in
the XML dataset. If not, it returns an empty string.

Returns

The tag string is returned by reference.

4.11.3.21 const dstoute::aString getType () const [inline]

The type element is an optional parameter that is used to identify different types of DAVE-
ML compliant XML dataset source files by aircraft type; for example, fixed wing verses rotary
wing.

This function returns the type element of the referenced file header, if one has been supplied
in the XML dataset. If not, it returns an empty string.

Returns

The type string is returned by reference.

4.11.3.22 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of FileHeader is filled with data from the fileHeader element within
a DOM by this function. If a fileHeader element pointer is supplied to an instance that has

UNCLASSIFIED 61

DST-Group–TN–1658

UNCLASSIFIED

already been initialised, the instance will be re-initialised with the new data. However, this is
not a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address to the Level 1 element within a DOM that is tagged as a
fileHeader. There should always be one such element.

The documentation for this class was generated from the following files:

• FileHeader.h

• FileHeader.cpp

4.12 Function Class Reference

#include <Function.h>

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• Function ()

• Function (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• const std::vector< double > & getData () const

• const dstoute::aString & getDefnName () const

• const size_t & getDependentDataColumnNumber () const

• int getDependentVarRef () const

• const dstoute::aString & getDescription () const

• size_t getIndependentVarCount () const

• const InDependentVarDefList & getInDependentVarDef () const

• ExtrapolateMethod getIndependentVarExtrapolate (const size_t &index) const

• InterpolateMethod getIndependentVarInterpolate (const size_t &index) const

• const double & getIndependentVarMax (const size_t &index) const

• const double & getIndependentVarMin (const size_t &index) const

• int getIndependentVarRef (const size_t &index) const

• const dstoute::aString & getName () const

• const Provenance & getProvenance () const

• int getTableRef () const

• const ElementDefinitionEnum & getTableType () const

62 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• const bool & hasProvenance () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• const bool & isAllInterpolationLinear () const

4.12.1 Detailed Description

A Function instance holds in its allocated memory alphanumeric data derived from a func-
tion element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
Each function has optional description, optional provenance, and either a simple input/output
values or references to more complete (possible multiple) input, output, and function data
elements.

The Function class is only used within the janus namespace, and should only be referenced
through the Janus class.

Where a function is defined directly using dependentVarPts and independentVarPts, these are
converted during initialisation to externally-defined gridded tables and breakpoints respect-
ively. Any data tables defined within the functionDefn are also converted to external tables.
Because of these processes, a Function instance never contains primary data, only references
to external tables, breakpoints and variables. However, because it is possible (but heavily dis-
couraged) to apply output scale factors to tabulated data with Janus, a copy of the relevant
external table with current scale factors applied is maintained within each Janus Function
instance.

Janus exists to abstract data form and handling from a modelling process. Therefore, in
normal computational usage, it is unnecessary and undesirable for a calling program to even
be aware of the existence of this class. However, functions do exist to access Function contents
directly, which may be useful during dataset development. A possible usage might be:
Janus test(xmlFileName);
const vector<Function>& function = test.getFunction();
for (int i = 0 ; i < function.size() ; i++) {

cout << " Function " << i << " :\n"
<< " name = " << function.at(i).getName() << "\n"
<< " description = " << function.at(i).getDescription() << "\n";

cout << " Number of independent variables = "
<< function.at(i).getIndependentVarCount() << "\n";

for (int j = 0 ; j < function.at(i).getIndependentVarCount() ; j++) {
cout << " Input variable " << j << " varID = "

<< test.getVariableDef().
at(function.at(i).getIndependentVarRef(j)).getVarID()

<< "\n";
}

}

4.12.2 Constructor & Destructor Documentation

4.12.2.1 Function ()

The empty constructor can be used to instance the Function class without supplying the DOM
function element from which the instance is constructed, but in this state is not useful for any

UNCLASSIFIED 63

DST-Group–TN–1658

UNCLASSIFIED

class functions. It is necessary to populate the class from a DOM containing a function element
before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.12.2.2 Function (const DomFunctions::XmlNode & elementDefinition,
Janus ∗ janus)

The constructor, when called with an argument pointing to a function element within a DOM,
instantiates the Function class and fills it with alphanumeric data from the DOM. String-
based cross-references as implemented in the XML dataset are converted to index-based cross-
references to improve computational performance.

Parameters

elementDefinition is an address of a function component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state. It must be passed
as a void pointer to avoid circularity of dependencies at build time.

4.12.3 Member Function Documentation

4.12.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the Function data to a DAVE-ML compliant XML dataset file
as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.12.3.2 const vector< double > & getData () const

This function returns the tabular data for the table associated with a Function instance. For
a gridded table this represents all the data as a continuous sequence, while for an ungridded
table this represents the dependent data column of the table.

64 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The data for the table is returned as a reference to a vector of double numeric values.

4.12.3.3 const dstoute::aString& getDefnName () const [inline]

This function provides access to the optional name attribute of the functionDefn that is a child
of a function. If the function definition has no name attribute or has not been initialised from
a DOM, an empty string is returned.

Returns

The functionDefn name string is returned by reference.

4.12.3.4 const size_t& getDependentDataColumnNumber () const
[inline]

This function returns the column number associated with the dependent data of an ungridded
table, that has been defined for the functionDefn instance using an ungridded table refer-
ence. This parameter may be non-zero if the ungridded table has multiple dependent data
columns.
Returns

The column index (size_t) of the particular dependent data parameter within the the
list of dependent data of an ungridded table associated with the functionDefn instance.

4.12.3.5 int getDependentVarRef () const

Each Function instance involves one dependent variable and one or more independent variables.
Within the Function, the dependent variable is referenced by an index into the vector of
VariableDef instances within the encompassing Janus instance.

Returns

An integer index to the dependent variable of the referenced Function within the encom-
passing Janus instance.

4.12.3.6 const dstoute::aString& getDescription () const [inline]

This function provides access to the optional description of the function element represented by
this Function instance. A function’s description child element consists of a string of arbitrary
length, which can include tabs and new lines as well as alphanumeric data. This means text
formatting embedded in the XML source will also appear in the returned description. If no
description is specified in the XML dataset, or the Function has not been initialised from the
DOM, an empty string is returned.

Returns

The description string is returned by reference.

UNCLASSIFIED 65

DST-Group–TN–1658

UNCLASSIFIED

4.12.3.7 size_t getIndependentVarCount () const [inline]

This function returns the number of independentVarRef or independentVarPts elements used
in a function. If the instance has not been populated from a DOM, zero is returned. In all
other cases, there must be one or more independent variables.

Returns

An integer number, one or more in a populated instance.

4.12.3.8 const InDependentVarDefList& getInDependentVarDef () const
[inline]

This function provides access to the independent variable definitions instances that have been
defined for the function instance. An empty vector will be returned if the Function instance
has not been populated from a DOM. In all other cases, the vector will contain at least one
independent variable instance.

Returns

A list of independent variable definitions instances.

See also

InDependentVarDef

4.12.3.9 ExtrapolateMethod getIndependentVarExtrapolate (const size_t &
index) const [inline]

The extrapolate attribute of an independent variable describes any allowable extrapolation in
the independent variable’s degree of freedom beyond a function’s tabulated data range. The
extrapolate attribute is optional for all degrees of freedom for any function within the XML
dataset, and if it is not set for any particular degree of freedom then the enum representing
its value within the Function instance defaults to NEITHER.

When the returned value is NEITHER, MINEX, or MAXEX, constraining the independent
variable at both ends, the maximum, or the minimum respectively, the constrained independent
variable value used for the function evaluation will be the more limiting of:

Min Constraints Max Constraints
lowest independentVarPts or highest independentVarPts or
lowest breakpoint highest breakpoint
min attribute max attribute

Parameters

index has a range from 0 to (getIndependentVarCount() - 1), and selects the required
independent variable. Attempting to access an independent variable outside the
available range will throw a standard out_of_range exception.

66 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

An Extrapolation enum containing the extrapolation constraint on the independent vari-
able selected, determined as tabulated above.

See also

getIndependentVarExtrapolateFlag

4.12.3.10 InterpolateMethod getIndependentVarInterpolate (const size_t &
index) const [inline]

The interpolate attribute of an independent variable describes the form of interpolation ap-
plicable to that variable’s degree of freedom within the range of the tabulated dataset. The
extrapolate attribute is optional for all degrees of freedom for any function within the XML
dataset, and if it is not set for any particular degree of freedom then the enum representing
its value within the Function instance defaults to LINEAR.

Parameters

index is an integer in the range from 0 through (getIndependentVarCount() - 1), and
selects the required independent variable. Attempting to access an independent
variable outside the available range will throw a standard out_of_range exception.

Returns

An Interpolation enum containing the interpolation technique applicable to the inde-
pendent variable selected.

4.12.3.11 const double& getIndependentVarMax (const size_t & index)
const [inline]

The max attribute of a function’s independent variable describes an upper limit for the inde-
pendent variable’s value during computation of the output. This function makes that limit
available to the calling program. The max attribute is optional for all degrees of freedom for
a function, and if it is not set for any particular degree of freedom then the data may be
extrapolated upwards without limit in that degree of freedom unless the extrapolate attribute
indicates otherwise.

Note that a variable may be an independent input for multiple functions, and may have a
different max in each such function. Also, the max need not coincide with the maximum
independentVarPts or breakpoint (xmax) for its degree of freedom.

The value (x) of an independent variable used for evaluation of a function is never greater
than max, no matter what the input value is or what other constraints are applied. Within
this constraint, the max attribute interacts with both the highest available value for its vari-
able and the variable’s extrapolate attribute (see getIndependentVarExtrapolate()), to define
the input value used in a function evaluation. Whenever a constraint is activated during a
function evaluation, the extrapolation flag for that degree of freedom is changed, and can

UNCLASSIFIED 67

DST-Group–TN–1658

UNCLASSIFIED

be checked by the calling program (see getIndependentVarExtrapolateFlag()). The various
possible combinations of constraining attributes and data limits are:

extrapolate x relative values x used in extrapolation flag
attribute computation after computation
any value x < max < xmax x NEITHER

x < xmax < max x NEITHER
neither / min max < x < xmax max MAXEX

max < xmax < x max MAXEX
xmax < x < max xmax XMAX
xmax < max < x xmax XMAX

max / both max < x < xmax max MAXEX
max < xmax < x max MAXEX
xmax < x < max x XMAX
xmax < max < x max MAXEX

If a max limit has not been specified for a variable, this function returns DBL_MAX.

Parameters

index is an integer in the range from 0 through (getIndependentVarCount() - 1), and
selects the required independent variable. Attempting to access an independent
variable outside the available range will throw a standard out_of_range exception.

Returns

A double precision value for the selected variable’s maximum limit.

4.12.3.12 const double& getIndependentVarMin (const size_t & index)
const [inline]

The min attribute of a function’s independent variable describes a lower limit for the inde-
pendent variable’s value during computation of the output. This function makes that limit
available to the calling program. The min attribute is optional for all degrees of freedom for
a function, and if it is not set for any particular degree of freedom then the data may be ex-
trapolated downwards without limit in that degree of freedom unless the extrapolate attribute
indicates otherwise.

Note that a variable may be an independent input for multiple functions, and may have a
different min in each such function. Also, the min need not coincide with the minimum
independentVarPts or breakpoint (xmin) for its degree of freedom.

The value (x) of an independent variable used for evaluation of a function is never less than
min, no matter what the input value is or what other constraints are applied. Within this
constraint, the min attribute interacts with both the lowest available value for its variable and
the variable’s extrapolate attribute (see getIndependentVarExtrapolate()), to define the input
value used in a function evaluation. Whenever a constraint is activated during a function
evaluation, the extrapolation flag for that degree of freedom is changed, and can be checked

68 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

by the calling program (see getIndependentVarExtrapolateFlag()). The various possible com-
binations of constraining attributes and data limits are:

extrapolate x relative values x used in extrapolation flag
attribute computation after computation
any value xmin < min < x x NEITHER

min < xmin < x x NEITHER
neither / max xmin < x < min min MINEX

x < xmin < min min MINEX
min < x < xmin xmin XMIN
x < min < xmin xmin XMIN

min / both xmin < x < min min MINEX
x < xmin < min min MINEX
min < x < xmin x XMIN
x < min < xmin min MINEX

If a min limit has not been specified for a variable, this function returns -DBL_MAX.

Parameters

index is an integer in the range from 0 through (getIndependentVarCount() - 1), and
selects the required independent variable. Attempting to access an independent
variable outside the available range will throw a standard out_of_range exception.

Returns

A double precision value for the selected variable’s minimum limit.

4.12.3.13 int getIndependentVarRef (const size_t & index) const

This function provides access to the independentVarRef or independentVarPts elements used
in a function. Within the Function, these variables are referenced by indices into the vector
of VariableDef instances within the encompassing Janus instance.

Parameters

index is an integer in the range from 0 through (getIndependentVarCount() - 1), and
selects the required independent variable. Attempting to access an independent
variable outside the available range will throw a standard out_of_range exception.

UNCLASSIFIED 69

DST-Group–TN–1658

UNCLASSIFIED

Returns

An integer index to the selected independent variable of the referenced Function within
the encompassing Janus instance.

4.12.3.14 const dstoute::aString& getName () const [inline]

This function provides access to name attribute of a function. If the function has not been
initialised from a DOM, an empty string is returned.

Returns

The name string is returned by reference.

4.12.3.15 const Provenance& getProvenance () const [inline]

This function provides access to the Provenance instance associated with a Function instance.
There may be zero or one of these elements for each function in a valid dataset, defined either
directly or by reference.

Returns

The Provenance instance is returned by reference.

See also

Provenance

4.12.3.16 int getTableRef () const

This function provides access to a table forming the basis for evaluation of a function. Within
the Function, the table is referenced by an index into the vector of table definition instances
encompassed within the Janus instance.

Returns

An integer index to the table used by the referenced Function encompassed within the
Janus instance.

4.12.3.17 const ElementDefinitionEnum& getTableType () const
[inline]

This function returns the type of the table that is associated with the Function instance,
being either a gridded table or an ungridded table. This functionality is used internally when
instantiating a Janus instance and returning data from a Function instance.

Returns

An enumeration defining the table type associated with the Function instance.

70 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.12.3.18 const bool& hasProvenance () const [inline]

This function indicates whether a function element of a DAVE-ML dataset includes either
provenance or provenanceRef.

Returns

A boolean variable, ’true’ if the function includes a provenance, defined either directly
or by reference.

See also

Provenance

4.12.3.19 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

This function populates a Function instance based on the corresponding function element of
the DOM, defines the cross-references from the Function to variables and breakpoints, and sets
up arrays which will later be used in run-time function evaluation. If another functionElement
pointer is supplied to an instance that has already been initialised, data corruption will occur
and the entire Janus instance will become unusable.

Parameters

elementDefinition is an address of a function component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state. It must be passed
as a void pointer to avoid circularity of dependencies at build time.

4.12.3.20 const bool& isAllInterpolationLinear () const [inline]

This function indicates whether the referenced Function instance requires linear or lower order
interpolation in all independent variables. It is a convenience function, saving checking and
speeding up the interpolation process in the most common case.

Returns

A boolean variable, "true" if linear interpolation is required in all degrees of freedom.

The documentation for this class was generated from the following files:

• Function.h

• Function.cpp

4.13 FunctionDefn Class Reference

#include <FunctionDefn.h>

UNCLASSIFIED 71

DST-Group–TN–1658

UNCLASSIFIED

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• FunctionDefn ()

• FunctionDefn (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• const size_t & getDependentDataColumnNumber () const

• const dstoute::aString & getName () const

• int getTableIndex () const

• const dstoute::aString & getTableReference () const

• const ElementDefinitionEnum & getTableType () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• void setTableIndex (int tableIndex)

• void setTableReference (const dstoute::aString &xReference)

• void setTableType (const ElementDefinitionEnum &tableType)

4.13.1 Detailed Description

A FunctionDefn instance holds in its allocated memory alphanumeric data derived from a
functionDefn element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. Each function stores function data elements.

The FunctionDefn class is only used within the janus namespace, and should only be referenced
through the Janus class.

Janus exists to abstract data form and handling from a modelling process. Therefore, in
normal computational usage, it is unnecessary and undesirable for a calling program to even
be aware of the existence of this class. However, functions do exist to access FunctionDefn
contents directly, which may be useful during dataset development. A possible usage might
be:

Janus test(xmlFileName);
const vector<Function>& function = test.getFunction();
for (int i = 0 ; i < function.size() ; i++) {

cout << " Function " << i << " :\n"
<< " name = " << function.at(i).getName() << "\n"
<< " description = " << function.at(i).getDescription() << "\n";

cout << " Number of independent variables = "
<< function.at(i).getIndependentVarCount() << "\n";

for (int j = 0 ; j < function.at(i).getIndependentVarCount() ; j++) {
cout << " Input variable " << j << " varID = "

<< test.getVariableDef().
at(function.at(i).getIndependentVarRef(j)).getVarID()

<< "\n";
}

}

72 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.13.2 Constructor & Destructor Documentation

4.13.2.1 FunctionDefn ()

The empty constructor can be used to instance the FunctionDefn class without supplying
the DOM function element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
functionDef element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.13.2.2 FunctionDefn (const DomFunctions::XmlNode & elementDefinition,
Janus ∗ janus)

The constructor, when called with an argument pointing to a functionDefn element within a
DOM, instantiates the FunctionDefn class and fills it with alphanumeric data from the DOM.
String-based cross-references as implemented in the XML dataset are converted to index-based
cross-references to improve computational performance.

Parameters

elementDefinition is an address of a functionDefn component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.13.3 Member Function Documentation

4.13.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the functionDefn data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

UNCLASSIFIED 73

DST-Group–TN–1658

UNCLASSIFIED

4.13.3.2 const size_t& getDependentDataColumnNumber () const
[inline]

This function returns the column number associated with the dependent data of an ungridded
table, that has been defined for the functionDefn instance using an ungridded table refer-
ence. This parameter may be non-zero if the ungridded table has multiple dependent data
columns.
Returns

The column index (size_t) of the particular dependent data parameter within the the
list of dependent data of an ungridded table associated with the functionDefn instance.

4.13.3.3 const dstoute::aString& getName () const [inline]

This function provides access to name attribute of a functionDefn. If the functionDefn has
not been initialised from a DOM, an empty string is returned.

Returns

The name string is returned by reference.

4.13.3.4 int getTableIndex () const [inline]

This function returns an index to the table forming the basis of the functionDefn instance. This
index identifies the particular table within the list of tables encoded within the Janus instance.
This function is used internally within Janus when evaluating a Function instance.

Returns

An integer index to the table used to evaluate a Function instance.

4.13.3.5 const dstoute::aString& getTableReference () const [inline]

This function returns a reference identifier for the table forming the basis of the functionDefn
instance. The reference is the table identifier, being either the gtID attribute of a gridded table,
or the utID attribute of an ungridded table. This reference is used internally within Janus to
identify the particular table within the list of tables encoded within the Janus instance.

Returns

A string representing the tables identifier.

4.13.3.6 const ElementDefinitionEnum& getTableType () const
[inline]

This function returns an enumeration defining the type of data table associated with the func-
tionDefn instance. The enumeration will differentiate the data table as being either gridded
or ungridded.

74 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

An enumeration defining the form of the data table.

4.13.3.7 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

This functionDefn populates a FunctionDefn instance based on the corresponding functionDefn
element of the DOM, defines the cross-references from the Function to variables and break-
points, and sets up arrays that will later be used in run-time function evaluation. If another
functionElement pointer is supplied to an instance that has already been initialised, data
corruption will occur and the entire Janus instance will become unusable.

Parameters

elementDefinition is an address of a function component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.13.3.8 void setTableIndex (int tableIndex) [inline]

This function is used to set the index identifying the table from within the list of tables encoded
in the Janus instance. This function is used internally within Janus while instantiating a
DAVE-ML compliant XML dataset source file.

Parameters

tableIndex is the integer index from the list of tables encoded wthin the Janus instance
of the table associated with the functionDefn instance

4.13.3.9 void setTableReference (const dstoute::aString & xReference)
[inline]

This function is used to set the reference identifier of the table forming the basis of the
functionDefn instance. The reference is the table identifier, being either the gtID attribute if
a gridded table, or the utID attribute of an ungridded table. This function is used internally
within Janus while instantiating a DAVE-ML compliant XML dataset source file.

Parameters

xReference is the reference identifier of the table associated with the functionDefn
instance.

UNCLASSIFIED 75

DST-Group–TN–1658

UNCLASSIFIED

4.13.3.10 void setTableType (const ElementDefinitionEnum & tableType)
[inline]

This function is used to set the form of the data table associated with the functionDefn instance
using a enumeration. This function is used internally within Janus while instantiating a DAVE-
ML compliant XML dataset source file.

Parameters

tableType is a enumeration defining the form of the data table associated with the
functionDefn instance.

The documentation for this class was generated from the following files:

• FunctionDefn.h

• FunctionDefn.cpp

4.14 GriddedTableDef Class Reference

#include <GriddedTableDef.h>

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const std::vector< size_t > & getBreakpointRef () const

• const std::vector< double > & getData () const

• const dstoute::aString & getDescription () const

• const dstoute::aString & getGtID () const

• const dstoute::aString & getName () const

• const Provenance & getProvenance () const

• const dstoute::aStringList & getStringData () const

• Uncertainty & getUncertainty ()

• const dstoute::aString & getUnits () const

• GriddedTableDef ()

• GriddedTableDef (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• const bool & hasProvenance () const

• const bool & hasUncertainty () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• bool isDataTableEmpty () const

76 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• bool isStringDataTableEmpty () const

• void setBreakpointRefs (const std::vector< size_t > breakpointRef)

• void setDescription (const dstoute::aString &description)

• void setGtID (const dstoute::aString >ID)

• void setJanus (Janus ∗janus)
• void setName (const dstoute::aString &name)

• void setTableData (const std::vector< double > dataPoints)

• void setUnits (const dstoute::aString &units)

4.14.1 Detailed Description

A GriddedTableDef instance holds in its allocated memory alphanumeric data derived from
a griddedTableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes points arranged in an orthogonal, multi-dimensional array, where the
independent variable ranges are defined by separate breakpoint vectors. The table data point
values are specified as comma-separated values in floating-point notation (0.93638E-06) in
a single long sequence as if the table had been unravelled with the last-specified dimension
changing most rapidly. Gridded tables in DAVE-ML and Janus are stored in row-major
order, as in C/C++ (Fortran, Matlab and Octave use column-major order). Line breaks and
comments in the XML are ignored. Associated alphanumeric identification and cross-reference
data are also included in the instance.

The GriddedTableDef class is only used within the janus namespace, and should only be
referenced through the Janus class.

Janus exists to abstract data form and handling from a modelling process. Therefore, in
normal computational usage, it is unnecessary and undesirable for a calling program to even
be aware of the existence of this class. However, functions do exist to access GriddedTableDef
contents directly, which may be useful during dataset development. A possible usage might
be:
Janus test(xmlFileName);
const vector<GriddedTableDef>& griddedTableDef = test.getGriddedTableDef();
for (int i = 0 ; i < griddedTableDef.size() ; i++) {

cout << " Gridded table " << i << " :\n"
<< " name = " << griddedTableDef.at(i).getName() << "\n"
<< " gtID = " << griddedTableDef.at(i).getGtID() << "\n"
<< " units = " << griddedTableDef.at(i).getUnits() << "\n"
<< " description = " << griddedTableDef.at(i).getDescription()
<< "\n";

const vector<int>& breakpointRef =
griddedTableDef.at(i).getBreakpointRef();

for (int j = 0 ; j < breakpointRef.size() ; j++) {
cout << " Breakpoint " << j << " bpID = "

<< test.getBreakpointDef().at(breakpointRef.at(j)).getBpID()
<< "\n";

}
const vector<double>& dataTable = griddedTableDef.at(i).getData();
if (0 == dataTable.size()) {

const vector<string>& stringDataTable =
griddedTableDef.at(i).getStringData();

for (int j = 0 ; j < stringDataTable.size() ; j++) {

UNCLASSIFIED 77

DST-Group–TN–1658

UNCLASSIFIED

cout << stringDataTable.at(j) << "\n";
}

}
}

4.14.2 Constructor & Destructor Documentation

4.14.2.1 GriddedTableDef ()

The empty constructor can be used to instance the GriddedTableDef class without supplying
the DOM griddedTableDef element from which the instance is constructed, but in this state is
not useful for any class functions. It is necessary to populate the class from a DOM containing
a griddedTableDef element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.14.2.2 GriddedTableDef (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

The constructor, when called with an argument pointing to a griddedTableDef element within
a DOM, instantiates the GriddedTableDef class and fills it with alphanumeric data from the
DOM. String-based numeric data are converted to double-precision linear vectors.

Parameters

elementDefinition is an address of a griddedTableDef component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.14.3 Member Function Documentation

4.14.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the GriddedTableDef data to a DAVE-ML compliant XML
dataset file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address pointer to the parent DOM node/element.

78 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.14.3.2 const std::vector< size_t>& getBreakpointRef () const
[inline]

This function provides access to the vector of breakpoint indices associated with a Grid-
dedTableDef instance. The vector contains one integer for each relevant breakpointDef, rep-
resenting the position of the relevant breakpointDef in the vector of BreakpointDefs within a
Janus instance.
Returns

The vector of breakpoint indices is returned by reference.

See also

BreakpointDef

4.14.3.3 const std::vector< double>& getData () const [inline]

This function provides access to a vector of numeric data stored in a GriddedTableDef instance.
This vector contains the double precision variables in the same sequence as they were presented
in the dataTable of the corresponding XML dataset.

Returns

The vector of double-precision numeric content of the GriddedTableDef instance is re-
turned by reference.

4.14.3.4 const dstoute::aString& getDescription () const [inline]

This function provides access to the description child of the griddedTableDef element rep-
resented by this GriddedTableDef instance. A griddedTableDef’s optional description child
element consists of a string of arbitrary length, which can include tabs and new lines as well
as alphanumeric data. This means text formatting embedded in the XML source will also
appear in the returned description. If no description is specified in the XML dataset, or the
GriddedTableDef has not been initialised from the DOM, an empty string is returned.

Returns

The description string is returned by reference.

4.14.3.5 const dstoute::aString& getGtID () const [inline]

This function provides access to the gtID attribute of a griddedTableDef. This attribute is
used for indexing gridded tables within an XML dataset. Where a griddedTableDef within the
DOM does not contain a gtID attribute, or where a griddedTable or dependentVarPoints have
been placed in the GriddedTableDef structure, a gtID string is generated and inserted in the
DOM at initialisation time. If the instance has not been initialised from a DOM, an empty
string is returned.

UNCLASSIFIED 79

DST-Group–TN–1658

UNCLASSIFIED

Returns

The gtID string is returned by reference.

4.14.3.6 const dstoute::aString& getName () const [inline]

This function provides access to the name attribute of a griddedTableDef. The name attribute
is optional. If the gridded table has no name attribute or has not been initialised from a DOM,
an empty string is returned.

Returns

The name string is returned by reference.

4.14.3.7 const Provenance& getProvenance () const [inline]

This function provides access to the Provenance instance associated with a GriddedTableDef
instance. There may be zero or one of these elements for each gridded table in a valid dataset,
defined either directly or by reference.

Returns

The Provenance instance is returned by reference.

See also

Provenance

4.14.3.8 const dstoute::aStringList& getStringData () const [inline]

This function provides access to a vector of alphanumeric data stored in a GriddedTableDef
instance. This vector contains the data strings in the same sequence as they were presented
in the dataTable of the corresponding XML dataset.

Returns

The list of strings containing alphanumeric content of the GriddedTableDef instance is
returned by reference.

4.14.3.9 Uncertainty& getUncertainty () [inline]

This function provides access to the Uncertainty instance associated with a GriddedTableDef
instance. There may be zero or one uncertainty element for each griddedTableDef in a valid
dataset. For griddedTableDefs without uncertainty, for griddedTables, and for dependentVarPts,
the corresponding GriddedTableDef instance includes an empty Uncertainty instance.

Returns

The Uncertainty instance is returned by reference.

80 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Uncertainty

4.14.3.10 const dstoute::aString& getUnits () const [inline]

This function provides access to the units attribute of the griddedTableDef represented by this
GriddedTableDef instance. A gridded table’s units attribute is a string of arbitrary length,
but normally short, and complying with the format requirements chosen by AD APS [7] in
accordance with SI and other systems. If the instance has not been initialised from a DOM,
or if no units attribute is present, an empty string is returned.

Returns

The units string is returned by reference.

4.14.3.11 const bool& hasProvenance () const [inline]

This function indicates whether a griddedTableDef element of a DAVE-ML dataset includes
either provenance or provenanceRef element.

Returns

A boolean variable, ’true’ if the griddedTableDef includes a provenance, defined either
directly or by reference.

See also

Provenance

4.14.3.12 const bool& hasUncertainty () const [inline]

This function indicates whether a griddedTableDef element of a DAVE-ML dataset includes an
uncertainty child element. A variable described by a griddedTableDef without an uncertainty
element may still have uncertainty, if it is dependent on other variables or tables with defined
uncertainty.

Returns

A boolean variable, ’true’ if a griddedTableDef definition includes an uncertainty child
element.

See also

Uncertainty

4.14.3.13 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

An uninitialised instance of GriddedTableDef is filled with data from a particular griddedTableDef
element within a DOM by this function. If another griddedTableDef element pointer is sup-
plied to an instance that has already been initialised, data corruption will occur and the entire

UNCLASSIFIED 81

DST-Group–TN–1658

UNCLASSIFIED

Janus instance will become unusable. This function can also be used with the deprecated
griddedTable element. For backwards compatibility, Janus converts a griddedTable to the equi-
valent griddedTableDef within this function. Where a griddedTableDef or griddedTable lacks a
gtID attribute, this function will generate a random gtID string for indexing within the Janus
class.

Parameters

elementDefinition is an address of a griddedTableDef component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.14.3.14 bool isDataTableEmpty () const [inline]

This function indicates whether the numeric table associated with the griddedTableDef element
of a DAVE-ML dataset contains data or is empty.

Returns

A boolean variable, ’true’ if the numeric table is empty.

4.14.3.15 bool isStringDataTableEmpty () const [inline]

This function indicates whether the alphanumeric table associated with the griddedTableDef
element of a DAVE-ML dataset contains data or is empty.

Returns

A boolean variable, ’true’ if the alphanumeric table is empty.

4.14.3.16 void setBreakpointRefs (const std::vector< size_t > breakpointRef)
[inline]

This function permits a vector of breakpointRef’s to be manually set for the griddedTableDef
element of this GriddedTableDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

breakpointRef a vector if breakpointRef indices (size_t) representing the position of the
breakpoint identifier in the breakpoint list managed by the Janus instance.

82 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.14.3.17 void setDescription (const dstoute::aString & description)
[inline]

This function permits the optional description of the griddedTableDef element to be reset
for this GriddedTableDef instance. A griddedTableDef’s description child element consists of
a string of arbitrary length, which can include tabs and new lines as well as alphanumeric
data. This means pretty formatting of the XML source will also appear in the returned
description.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

description a string representation of the description.

4.14.3.18 void setGtID (const dstoute::aString & gtID) [inline]

This function permits the gtID index attribute of the griddedTableDef element to be reset for
this GriddedTableDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

gtID a string detailing the gtID index attribute.

4.14.3.19 void setJanus (Janus ∗ janus) [inline]

This function permits the pointer to the base Janus class to be set manually. This function is
used internally within a Janus instance by the Function class when it is instantiating a locally
defined gridded table.

Parameters

janus a pointer to the base Janus instance

4.14.3.20 void setName (const dstoute::aString & name) [inline]

This function permits the name attribute of the griddedTableDef element to be reset for this
GriddedTableDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set

UNCLASSIFIED 83

DST-Group–TN–1658

UNCLASSIFIED

before being written to an output XML based file.

Parameters

name a string detailing the name attribute.

4.14.3.21 void setTableData (const std::vector< double > dataPoints)
[inline]

This function permits a vector of data points to be manually set for the griddedTableDef
element of this GriddedTableDef instance. The data points are interpreted as the numeric
data table associated with a gridded table.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

dataPoints a vector if numeric data values representing the data table for the
griddedTableDef.

4.14.3.22 void setUnits (const dstoute::aString & units) [inline]

This function permits the units attribute of the griddedTableDef element to be reset for this
GriddedTableDef instance.

If the instance has not been initialised from a DOM then this function permits it to be set
before being written to an output XML based file.

Parameters

units a string detailing the units attribute.

The documentation for this class was generated from the following files:

• GriddedTableDef.h

• GriddedTableDef.cpp

4.15 InDependentVarDef Class Reference

#include <InDependentVarDef.h>

Inherits XmlElementDefinition.

84 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement, const bool &asPts=true)

• const std::vector< double > & getData () const

• ExtrapolateMethod getExtrapolationMethod () const

• InterpolateMethod getInterpolationMethod () const

• const double & getMax () const

• const double & getMin () const

• const dstoute::aString & getName () const

• const dstoute::aString & getSign () const

• const dstoute::aString & getUnits () const

• int getVariableReference () const

• const dstoute::aString & getVarID () const

• InDependentVarDef ()

• InDependentVarDef (const DomFunctions::XmlNode &elementDefinition)

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, const bool
&isIndependentVarDef=true)

• void setVariableReference (int varRef)

4.15.1 Detailed Description

This code is used during initialisation of the Janus class, and provides access to the In-
Dependent variable definitions contained in a DOM that complies with the DAVE-ML DTD.

A breakpointDef is where gridded table breakpoints are given. Since these are separate from
function data, they may be reused.

bpVals is a set of breakpoints; that is, a set of independent variable values associated with
one dimension of a gridded table of data. An example would be the Mach or angle-of-attack
values that define the coordinates of each data point in a two-dimensional coefficient value
table.

4.15.2 Constructor & Destructor Documentation

4.15.2.1 InDependentVarDef ()

The empty constructor can be used to instance the BreakpointDef class without supplying the
DOM breakpointDef element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
breakpointDef element before any further use of the instanced class.

UNCLASSIFIED 85

DST-Group–TN–1658

UNCLASSIFIED

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.15.2.2 InDependentVarDef (const DomFunctions::XmlNode &
elementDefinition)

The constructor, when called with an argument pointing to a breakpointDef element within a
DOM, instantiates the BreakpointDef class and fills it with alphanumeric data from the DOM.
The string content of the bpVals element is converted to a double precision numeric vector
within the instance.

Parameters

elementDefinition is an address of an independentVarElement component within the
DOM.

4.15.3 Member Function Documentation

4.15.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement,
const bool & asPts = true)

This function is used to export the InDependentVarDef data to a DAVE-ML compliant XML
dataset file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.
asPts a boolean indicating whether data is exported as points or the entry is

exported as a reference to predefined data.

4.15.3.2 const std::vector< double>& getData () const [inline]

This function provides access to the array of data values stored within this instance of the
InDependentVarDef class.

86 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

a vector of numeric values, representing the data for this InDependentVarDef instance,
is returned by reference.

4.15.3.3 ExtrapolateMethod getExtrapolationMethod () const [inline]

This function provides access to the extrapolate attribute of a independentVarPts. The data for
the independentVarPts is stored as breakpoints, and hence uses the breakpointDef construct.
The extrapolate attribute is optional. If the independentVarPts has no extrapolate attribute
or has not been initialised from a DOM, a ’neither’ string is returned.

Returns

An expolation enum containing the extrappolation technique applicable to the independ-
ent variable selected.

4.15.3.4 InterpolateMethod getInterpolationMethod () const [inline]

This function provides access to the interpolate attribute of a independentVarPts. The data for
the independentVarPts is stored as breakpoints, and hence uses the breakpointDef construct.
The interpolate attribute is optional. If the independentVarPts has no interpolate attribute
or has not been initialised from a DOM, a ’linear’ string is returned.

Returns

An interpolation enum containing the interpolation technique applicable to the inde-
pendent variable selected.

4.15.3.5 const double& getMax () const [inline]

This function provides access to the max attribute of a independentVarPts element. This
is used to bound the interpolation or extrapolation of breakpoint data when evaluating a
Function element.

Returns

The max bound condition is returned by reference.

4.15.3.6 const double& getMin () const [inline]

This function provides access to themin attribute of a independentVarPts element. This is used
to bound the interpolation or extrapolation of breakpoint data when evaluating a Function
element.

Returns

The min bound condition is returned by reference.

UNCLASSIFIED 87

DST-Group–TN–1658

UNCLASSIFIED

4.15.3.7 const dstoute::aString& getName () const [inline]

This function provides access to the name attribute of the breakpointDef element represented
by this BreakpointDef instance. The name attribute is optional. If the instance has not been
initialised from a DOM, or if no name attribute is present, an empty string is returned.

Returns

The name string is passed by reference.

4.15.3.8 const dstoute::aString& getSign () const [inline]

This function provides access to the sign attribute of a independentVarPts. The data for the
independentVarPts is stored as breakpoints, and hence uses the breakpointDef construct. The
sign attribute is optional. If the independentVarPts has no sign attribute or has not been
initialised from a DOM, an empty string is returned.

Returns

The sign string is returned by reference.

4.15.3.9 const dstoute::aString& getUnits () const [inline]

This function provides access to the units attribute of a InDependentVarDef represented by
this InDependentVarDef instance. A breakpoint array’s units attribute is a string of arbitrary
length, but normally short, and complying with the format requirements chosen by AD
FS! (FS!) [7] in accordance with SI and other systems. The units attribute is optional. If the
instance has not been initialised from a DOM, or if no units attribute is present, an empty
string is returned.

Returns

The units string is passed by reference.

4.15.3.10 int getVariableReference () const [inline]

This function provides access to the variableDef reference for this instance of the InDepend-
entVarDef class. This is the index of the variableDef entry within the list of variableDef
elements managed by the base Janus instance.

Returns

the index of the variableDef associated with this instance of the InDependentVarDef
class.

4.15.3.11 const dstoute::aString& getVarID () const [inline]

This function provides access to the varID attribute of a InDependentVarDef. This attribute is
used for indexing variableDefs within an XML dataset. If the instance has not been initialised
from a DOM, an empty string is returned.

88 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The varID string is passed by reference.

4.15.3.12 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, const bool & isIndependentVarDef = true)

An uninitialised instance of InDependentVarDef is filled with data from a particular InDe-
pendentVarDef element within a DOM by this function. The string content of the bpVals
element is converted to a double precision numeric vector within the instance. If another In-
DependentVarDef element pointer is supplied to an instance that has already been initialised,
the instance will be re-initialised with the new data. However, this is not a recommended
procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address of a breakpointDef component within the DOM.
isIndependentVarDef is a boolean indicating whether the definition represents an

independent (TRUE) or a dependent variable (FALSE).

4.15.3.13 void setVariableReference (int varRef) [inline]

This function is used to set the index of the variableDef associated with this instance of the In-
DependentVarDef class. This is the index of the variableDef entry within the list of variableDef
elements managed by the base Janus instance. This function is called when instantiating grid-
ded and ungridded table elements.

Parameters

varRef a index of the variableDef associated with this instance of the
InDependentVarDef class

The documentation for this class was generated from the following files:

• InDependentVarDef.h

• InDependentVarDef.cpp

4.16 InternalValues Class Reference

#include <InternalValues.h>

Inherits SignalList.

UNCLASSIFIED 89

DST-Group–TN–1658

UNCLASSIFIED

Public Member Functions

• InternalValues ()

• InternalValues (const DomFunctions::XmlNode &internalValuesElement)

4.16.1 Detailed Description

An InternalValues instance functions as a container for the Signal class, and provides the
functions that allow a calling StaticShot instance to access the signal elements that define the
internal values for a check case. A internalValues element must contain signal elements that
include varID (signalID is deprecated) elements.

The InternalValues class is only used within the janus namespace, and should only be refer-
enced indirectly through the StaticShot class.

Typical usage:

Janus test(xmlFileName);
const CheckData& checkData = test.getCheckData();
size_t nss = checkData.getStaticShotCount();
for (size_t j = 0 ; j < nss ; j++) {

const StaticShot& staticShot = checkData.getStaticShot(j);
const InternalValues& internalValues = staticShot.getInternalValues();
size_t nciv = internalValues.getSignalCount();
cout << " staticShot[" << j << "] : " << endl

<< " Name = "
<< staticShot.getName() << endl
<< " Number of check internal values = " << nciv << endl;

for (size_t k = 0 ; k < nciv ; k++) {
cout << " internalValues[" << k << "] : " << endl

<< " signalVarID = "
<< internalValues.getVarID(k) << endl
<< " signalValue = "
<< internalValues.getValue(k) << endl
<< " signalTol = "
<< internalValues.getTolerance(k)
<< endl << endl;

}
}

4.16.2 Constructor & Destructor Documentation

4.16.2.1 InternalValues () [inline]

The empty constructor can be used to instance the InternalValues class without supplying the
DOM internalValues element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
internalValues element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

90 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.16.2.2 InternalValues (const DomFunctions::XmlNode &
internalValuesElement) [inline]

The constructor, when called with an argument pointing to a internalValues element within
a DOM, instantiates the InternalValues class and fills it with alphanumeric data from the
DOM.

Parameters

internalValuesElement is an address of an internalValues component within the DOM.

The documentation for this class was generated from the following file:

• InternalValues.h

4.17 Janus Class Reference

#include <Janus.h>

Inherits XmlElementDefinition.

Public Types

Public Member Functions

• virtual void clear ()

• void displayCheckDataSummary (const CheckData &checkData)

• virtual size_t exportToBuffer (std::ostringstream &documentBuffer)

• virtual size_t exportToBuffer (unsigned char ∗&documentBuffer)

• virtual size_t exportToFile (const dstoute::aFileString &dataFileName)

• VariableDef ∗ findVariableDef (const dstoute::aString &varID)

• BreakpointDefList & getBreakpointDef ()

• const CheckData & getCheckData (const bool &evaluate=true)

• DomFunctions::XmlNode getDomDocument () const

• const FileHeader & getFileHeader () const

• const FunctionList & getFunction () const

• Function & getFunction (size_t index)

• GriddedTableDefList & getGriddedTableDef ()

• const char ∗ getJanusVersion (VersionType versionType=HEX) const

• PropertyDefList & getPropertyDef ()

• PropertyDef & getPropertyDef (size_t index)

UNCLASSIFIED 91

DST-Group–TN–1658

UNCLASSIFIED

• PropertyDef & getPropertyDef (const dstoute::aString &ptyID)

• UngriddedTableDefList & getUngriddedTableDef ()

• VariableDefList & getVariableDef ()

• VariableDef & getVariableDef (size_t index)

• VariableDef & getVariableDef (const dstoute::aString &varID)

• int getVariableIndex (const dstoute::aString &varID) const

• const dstoute::aFileString & getXmlFileName () const

• void initiateDocumentObjectModel (const dstoute::aString &documentType="DAVEfunc")

• bool isJanusInitialised () const

• Janus ()

• Janus (const dstoute::aFileString &documentName, const dstoute::aFileString &keyFi-
leName="")

• Janus (unsigned char ∗documentBuffer, size_t documentBufferSize)

• Janus (const Janus &rhs)

• Janus & operator= (const Janus &rhs)

• virtual void setXmlFileBuffer (unsigned char ∗documentBuffer, const size_t &document-
BufferSize)

• virtual void setXmlFileName (const dstoute::aFileString &documentName, const dstoute::aFileString
&keyFileName="")

• virtual ∼Janus ()

Protected Member Functions

• virtual void exportToDocumentObjectModel (const dstoute::aString &documentType="DAVEfunc")

• std::vector< size_t > getAllAncestors (size_t ix)

• std::vector< size_t > getAllDescendents (size_t index)

• std::vector< size_t > getIndependentAncestors (size_t ix)

• double getLinearInterpolation (Function &function, const std::vector< double > &data-
Table)

• Uncertainty::UncertaintyPdf getPdfFromAntecedents (size_t index)

• double getPolyInterpolation (Function &function, const std::vector< double > &data-
Table)

• double getUngriddedInterpolation (Function &function, const std::vector< double >
&dataColumn)

• virtual void initialiseDependencies ()

• void isJanusInitialised (bool isInitialised)

• virtual void parseDOM ()

• void releaseJanusDomParser ()

92 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• const Provenance & retrieveProvenanceReference (const dstoute::aString &parentID,
size_t provIndex)

• bool writeDocumentObjectModel (const dstoute::aFileString &dataFileName) const

• bool writeDocumentObjectModel (std::ostringstream &sstr) const

4.17.1 Detailed Description

Janus is an XML dataset interface class. A Janus instance holds in its allocated memory the
DOM corresponding to a DAVE-ML compliant XML dataset source file, and data structures
derived from that DOM. It also provides the functions that allow a calling program to access
the DOM and related data structures, including means of evaluating output variable values
that are dependent on supplied input variable values. The DOM is normally only accessed
during initialisation, which transfers its contents to more easily accessible structures within
the class.

The documentation for this class was generated from the following files:

• Janus.h

• GetDescriptors.cpp

• Janus.cpp

• VariableDefLuaScript.cpp

4.18 MathMLDataClass Class Reference

#include <MathMLDataClass.h>

4.18.1 Detailed Description

A MathMLDataClass instance holds in its allocated memory alphanumeric data derived from
MathML elements of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. The data may include tags defining the MathML element and its attributes, a list of
children associated with the MathML element, and call-backs to functions to evaluate the
element.

The MathMLDataClass class is only used within the Janus.

The documentation for this class was generated from the following files:

• MathMLDataClass.h

• MathMLDataClass.cpp

4.19 Modification Class Reference

#include <Modification.h>

UNCLASSIFIED 93

DST-Group–TN–1658

UNCLASSIFIED

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const AuthorList & getAuthor () const

• const Author & getAuthor (const size_t &index) const

• size_t getAuthorCount () const

• const dstoute::aString & getDate () const

• const dstoute::aString & getDescription () const

• size_t getExtraDocCount () const

• const dstoute::aString & getExtraDocRefID (const size_t &index) const

• const dstoute::aString & getModID () const

• const dstoute::aString & getRefID () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• Modification ()

• Modification (const DomFunctions::XmlNode &elementDefinition)

4.19.1 Detailed Description

A Modification instance holds in its allocated memory alphanumeric data derived from a
modificationRecord element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. The instance describes the author and content of a modification to a dataset.
The class also provides the functions that allow a calling Janus instance to access these data
elements.

The Modification class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader class.

A typical usage is:
Janus test(xmlFileName);
FileHeader header = test.getFileHeader();
int nMod = header.getModificationCount();
cout << " Number of modification records : " << nMod << "\n\n";

for (int i = 0 ; i < nMod ; i++) {
Modification modification = header.getModification(i);
cout << " Modification Record " << i << " : \n"

<< " modID : "
<< modification.getModID() << "\n"
<< " date : "
<< modification.getDate() << "\n"
<< " refID : "
<< modification.getRefID() << "\n\n";

int nModAuthors = modification.getAuthorCount();
for (int j = 0 ; j < nModAuthors ; j ++) {

Author author = modification.getAuthor(j);
cout << " Author " << j << " : Name : "

94 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

<< author.getName() << "\n"
<< " Organisation : "
<< author.getOrg() << "\n";

}
cout << " description : "

<< modification.getDescription()
<< "\n" << "\n";

int nExdoc = modification.getExtraDocCount();
cout << " Number of extra documents related to modification : "

<< nExdoc << "\n\n";

for (int j = 0 ; j < nExdoc ; j++) {
cout << " Extra document " << j << " refID : "

<< modification.getExtraDocRefID(j) << "\n";
}
cout << "\n";

}

4.19.2 Constructor & Destructor Documentation

4.19.2.1 Modification ()

The empty constructor can be used to instance the Modification class without supplying the
DOM modificationRecord element from which the instance is constructed, but in this state is
not useful for any class functions. It is necessary to populate the class from a DOM containing
a modificationRecord element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.19.2.2 Modification (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a modificationRecord element
within a DOM, instantiates the Modification class and fills it with alphanumeric data from
the DOM.

Parameters

elementDefinition is an address of a modificationRecord component within the DOM.

UNCLASSIFIED 95

DST-Group–TN–1658

UNCLASSIFIED

4.19.3 Member Function Documentation

4.19.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the Function data to a DAVE-ML compliant XML dataset file
as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.19.3.2 const AuthorList& getAuthor () const [inline]

This function returns a reference to the is of Author instances within a Modification in-
stance.
Returns

The list of Author instances is returned by reference.

See also

Author

4.19.3.3 const Author& getAuthor (const size_t & index) const
[inline]

This function returns a reference to the selected Author instance within a Modification in-
stance.

Parameters

index has a range from zero to (getAuthorCount() - 1), and selects the required Author
instance. An attempt to access a non-existent author will throw a standard
out_of_range exception.

Returns

The requested Author instance is returned by reference.

96 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Author

4.19.3.4 size_t getAuthorCount () const [inline]

This function returns the number of authors listed in a Modification. If the instance has not
been populated from a DOM element, zero is returned.

Returns

An integer number, one or more in a populated instance.

See also

Author

4.19.3.5 const dstoute::aString& getDate () const [inline]

This function returns the date attribute of a modificationRecord. The format of the dataset
string is determined by the XML dataset builder, but DAVE-ML recommends the ISO 8601
form ("2004-01-02" to refer to 2 January 2004). If the Modification has not been populated
from the DOM element, the function returns an empty string.

Returns

The date string is returned by reference.

4.19.3.6 const dstoute::aString& getDescription () const [inline]

This function returns the description from a modificationRecord, if one has been supplied in
the XML dataset. The description consists of a string of arbitrary length, which can include
tabs and new lines as well as alphanumeric data. This means text formatting embedded in
the XML source will also appear in the returned description string. If the modificationRecord
contains no description, the returned string is blank.

Returns

The description string is returned by reference.

4.19.3.7 size_t getExtraDocCount () const [inline]

This function returns the number of extraDocRef elements listed in a modificationRecord. A
Modification can have no, one or multiple extraDocRef components. If the instance has not
been populated from a DOM element, zero is returned.

Returns

An integer number, zero or more in a populated instance.

UNCLASSIFIED 97

DST-Group–TN–1658

UNCLASSIFIED

4.19.3.8 const dstoute::aString& getExtraDocRefID (const size_t & index)
const [inline]

This function returns the refID of a selected extraDocRef component from amodificationRecord.
A Modification can have no, one or multiple extraDocRef components. The refID provides
cross-referencing to reference definitions elsewhere in the FileHeader.

Parameters

index has a range from zero to (getExtraDocCount() - 1), and selects the required
extraDocRef record. An attempt to access a non-existent extraDocRef will throw a
standard out_of_range exception.

Returns

The requested refID string is returned by reference.

See also

Reference

4.19.3.9 const dstoute::aString& getModID () const [inline]

A modID is a single letter used to identify all modified data associated with a modification
record. It allows modificationRecord elements to be referenced by elements other than their
immediate parent. This function returns the modID of the Modification instance.

Returns

The modID string is returned by reference.

4.19.3.10 const dstoute::aString& getRefID () const [inline]

The refID attribute is an optional document reference for a modificationRecord. It may be
used for cross-referencing a list of references contained in the fileHeader. This function returns
the refID of a modificationRecord, if one has been supplied in the XML dataset. If not, it
returns an empty string.

Returns

The refID string is returned by reference.

98 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Reference
FileHeader

4.19.3.11 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of Modification is filled with data from a particular modificationRe-
cord element within a DOM by this function. If another modificationRecord element pointer
is supplied to an instance that has already been initialised, the instance will be re-initialised
with the new data. However, this is not a recommended procedure, since optional elements
may not be replaced.

Parameters

elementDefinition is an address of a modificationRecord component within the DOM.

The documentation for this class was generated from the following files:

• Modification.h

• Modification.cpp

4.20 ParseMathML Class Reference

#include <ParseMathML.h>

4.20.1 Detailed Description

This class contains functions for parsing mathematics procedures defined using the MathML
syntax. Data detailing each MathML operation is stored in a MathMLDataClass structure.
This includes the sub-elements to which the operator is to be applied. Functions to process
both scalar and matrix data are included.

The ParseMathML class is only used within the Janus.

The documentation for this class was generated from the following files:

• ParseMathML.h

• ParseMathML.cpp

4.21 Provenance Class Reference

#include <Provenance.h>

Inherits XmlElementDefinition.

UNCLASSIFIED 99

DST-Group–TN–1658

UNCLASSIFIED

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement, const bool &is-
Reference=false)

• const AuthorList & getAuthor () const

• const Author & getAuthor (const size_t &index) const

• size_t getAuthorCount () const

• const dstoute::aString & getCreationDate () const

• const dstoute::aString & getDescription () const

• size_t getDocumentRefCount () const

• const dstoute::aStringList & getDocumentRefID () const

• const dstoute::aString & getDocumentRefID (const size_t &index) const

• const dstoute::aStringList & getModificationModID () const

• const dstoute::aString & getModificationModID (const size_t &index) const

• size_t getModificationRefCount () const

• const dstoute::aString & getProvID () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• Provenance ()

• Provenance (const DomFunctions::XmlNode &elementDefinition)

4.21.1 Detailed Description

A Provenance instance holds in its allocated memory alphanumeric data derived from a proven-
ance element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
Provenances may apply to a complete dataset or to individual components within a data-
set. Not all provenances will contain all possible provenance components. The Provenance
instance also provides the functions that allow a calling Janus instance to access these data
elements.

The Provenance class is only used within the janus namespace, and should only be refer-
enced indirectly through the FileHeader, VariableDef, GriddedTableDef, UngriddedTableDef,
Function or CheckData classes.

A typical usage is:
Janus test(xmlFileName);
FileHeader header = test.getFileHeader();
int nProv = header.getProvenanceCount();
cout << " Number of header provenance elements : " << nProv << "\n\n";

for (int i = 0 ; i < nProv ; i++) {
Provenance provenance = header.getProvenance(i);
cout << " Header Provenance " << i << " : \n"

<< " provID : "
<< provenance.getProvID() << "\n"
<< " creationDate : "
<< provenance.getCreationDate() << "\n";

100 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

for (int j = 0 ; j < provenance.getAuthorCount() ; j++) {
cout << " author " << j << " : "

<< provenance.getAuthor(j).getName() << "\n";
}
cout << " description : \n"

<< provenance.getDescription() << "\n\n";
}

for (int i = 0 ; i < test.getNumberOfFunctions() ; i++) {
cout << " Function \" "

<< test.getFunctionName(i) << "\" \n";
if (true == test.getFunction().at(i).hasProvenance()) {

Provenance provenance = test.getFunction().at(i).getProvenance();
cout << " Provenance \n"

<< " provID : "
<< provenance.getProvID() << "\n"
<< " creation date : "
<< provenance.getCreationDate() << "\n";

for (int j = 0 ; j < provenance.getAuthorCount() ; j++) {
cout << " author " << j << " : "

<< provenance.getAuthor(j).getName() << "\n";
}
cout << " description : \n"

<< provenance.getDescription() << "\n\n";
}

}

4.21.2 Constructor & Destructor Documentation

4.21.2.1 Provenance ()

The empty constructor can be used to instance the Provenance class without supplying the
DOM provenence element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
provenance element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.21.2.2 Provenance (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a provenance element within a
DOM, instantiates the Provenance class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address of a provenance component within the DOM.

UNCLASSIFIED 101

DST-Group–TN–1658

UNCLASSIFIED

4.21.3 Member Function Documentation

4.21.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement,
const bool & isReference = false)

This function is used to export the provenance data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.
isReference a boolean flag indicating the provenance element should be treated as

a reference.

4.21.3.2 const AuthorList& getAuthor () const [inline]

This function returns a reference to the ist of Author instances within a Provenance in-
stance.
Returns

The list of Author instances is returned by reference.

See also

Author

4.21.3.3 const Author& getAuthor (const size_t & index) const
[inline]

This function returns a reference to the selected Author instance within a Provenance in-
stance.

Parameters

index has a range from zero to (getAuthorCount() - 1), and selects the required Author
instance. An attempt to access a non-existent author will throw a standard
out_of_range exception.

Returns

The requested Author instance is returned by reference.

102 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Author

4.21.3.4 size_t getAuthorCount () const [inline]

This function returns the number of authors listed in a Provenance. If the instance has not
been populated from a DOM element, zero is returned.

Returns

An integer number, one or more in a populated instance.

See also

Author

4.21.3.5 const dstoute::aString& getCreationDate () const [inline]

This function returns the creationDate attribute of a provenance element (fileCreationDate is
a deprecated alternative). The format of the dataset string is determined by the XML dataset
builder, but DAVE-ML recommends the ISO 8601 form ("2004-01-02" to refer to 2 January
2004). If the Provenance has not been populated from a DOM element , the function returns
an empty string.

Returns

The creationDate string is returned by reference.

4.21.3.6 const dstoute::aString& getDescription () const [inline]

This function returns the description from a provenance element, if one has been supplied in
the XML dataset. The description consists of a string of arbitrary length, which can include
tabs and new lines as well as alphanumeric data. This means text formatting embedded in the
XML source will also appear in the returned description string. If the provenance contains no
description, the returned string is blank.

Returns

The description string is returned by reference.

4.21.3.7 size_t getDocumentRefCount () const [inline]

This function returns the number of document references listed in a a provenance element. A
provenance can include no, one or multiple documentRef components. If the Provenance has
not been populated from a DOM element, zero is returned.

Returns

An integer number, zero or more in a populated instance.

UNCLASSIFIED 103

DST-Group–TN–1658

UNCLASSIFIED

4.21.3.8 const dstoute::aStringList& getDocumentRefID () const
[inline]

This function returns the list of refID’s from the documentRef child element of a provenance
element (docID is a deprecated alternative). The refID’s allows reference elements elsewhere
in the DOM to be referenced by elements other than their immediate parent.

Returns

The list of refID strings from the selected documentRef is returned by reference.

See also

Reference

4.21.3.9 const dstoute::aString& getDocumentRefID (const size_t & index)
const [inline]

This function returns the selected refID from the documentRef child element of a provenance
element (docID is a deprecated alternative). The refID allows reference elements elsewhere in
the DOM to be referenced by elements other than their immediate parent.

Parameters

index has a range from zero to (getDocumentRefCount() - 1), and selects the required
documentRef from which the refID string is to be returned. An attempt to access
a non-existent documentRef will throw a standard out_of_range exception.

Returns

The refID string from the selected documentRef is returned by reference.

See also

Reference

4.21.3.10 const dstoute::aStringList& getModificationModID () const
[inline]

This function returns the list of modID’s from the modificationRef child element of a proven-
ance element. The modID allows modificationRecord elements elsewhere in the DOM to be
referenced by elements other than their immediate parent.

Returns

The list of modID strings from the selected modificationRef is returned by reference.

104 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Modification

4.21.3.11 const dstoute::aString& getModificationModID (const size_t &
index) const [inline]

This function returns the selected modID from the modificationRef child element of a proven-
ance element. The modID allows modificationRecord elements elsewhere in the DOM to be
referenced by elements other than their immediate parent.

Parameters

index has a range from zero to (getModificationRefCount() - 1), and selects the
required modificationRef from which the modID string is to be returned. An
attempt to access a non-existent modificationRef will throw a standard
out_of_range exception.

Returns

The modID string from the selected modificationRef is returned by reference.

See also

Modification

4.21.3.12 size_t getModificationRefCount () const [inline]

This function returns the number of modification references listed in a provenance element.
A provenance can include no, one or multiple modificationRef components. If the Provenance
has not been populated from a DOM element, zero is returned.

Returns

An integer number, zero or more in a populated instance.

4.21.3.13 const dstoute::aString& getProvID () const [inline]

The provID allows provenance elements to be referenced by elements other than their imme-
diate parent. It is an optional attribute. This function returns the provID of the referenced
provenance element, if one has been supplied in the XML dataset. If not, it returns an empty
string.

UNCLASSIFIED 105

DST-Group–TN–1658

UNCLASSIFIED

Returns

The provID string is returned by reference.

4.21.3.14 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of Provenance is filled with data from a particular provenance element
within a DOM by this function. If another provenance element pointer is supplied to an
instance that has already been initialised, the instance will be re-initialised with the new
data. However, this is not a recommended procedure, since optional elements may not be
replaced.

Parameters

elementDefinition is an address of a provenance component within the DOM.

The documentation for this class was generated from the following files:

• Provenance.h

• Provenance.cpp

4.22 Reference Class Reference

#include <Reference.h>

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const dstoute::aString & getAccession () const

• const dstoute::aString & getAuthor () const

• const dstoute::aString & getClassification () const

• const dstoute::aString & getDate () const

• const dstoute::aString & getDescription () const

• const dstoute::aString & getHref () const

• const dstoute::aString & getRefID () const

• const dstoute::aString & getTitle () const

• const dstoute::aString & getXLink () const

• const dstoute::aString & getXLinkType () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

106 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• Reference ()

• Reference (const DomFunctions::XmlNode &elementDefinition)

4.22.1 Detailed Description

A Reference instance holds in its allocated memory alphanumeric data derived from a reference
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance describes an external document relevant to the dataset. The class also provides the
functions that allow a calling Janus instance to access these data elements.

The Reference class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader class. A typical usage is:
Janus test(xmlFileName);
FileHeader header = test.getFileHeader();
int nRef = header.getReferenceCount();
cout << " Number of reference records : " << nRef << "\n\n";

for (int i = 0 ; i < nRef ; i++) {
Reference reference = header.getReference(i);
cout << " Reference " << i << " : \n"

<< " xmlns:xlink : "
<< reference.getXLink() << "\n"
<< " xlink:type : "
<< reference.XLinkType() << "\n"
<< " refID : "
<< reference.getRefID() << "\n"
<< " author : "
<< reference.getAuthor() << "\n"
<< " title : "
<< reference.getTitle() << "\n"
<< " date : "
<< reference.getDate() << "\n"
<< " classification : "
<< reference.getClassification() << "\n"
<< " accession : "
<< reference.getAccession() << "\n"
<< " xlink:href : "
<< reference.getHref() << "\n"
<< " description : "
<< reference.getDescription() << "\n"
<< "\n";

}

4.22.2 Constructor & Destructor Documentation

4.22.2.1 Reference ()

The empty constructor can be used to instance the Reference class without supplying the
DOM reference element from which the instance is constructed, but in this state is not useful
for any class functions. It is necessary to populate the class from a DOM containing a reference
element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

UNCLASSIFIED 107

DST-Group–TN–1658

UNCLASSIFIED

See also

initialiseDefinition

4.22.2.2 Reference (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a reference element within a DOM,
instantiates the Reference class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address of a reference component within the DOM.

4.22.3 Member Function Documentation

4.22.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the author data to a DAVE-ML compliant XML dataset file
as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.22.3.2 const dstoute::aString& getAccession () const [inline]

This function returns the accession attribute of a reference element. The accession attribute is a
string containing the accession number (ISBN or organisation report number) of the referenced
document. This is an optional attribute. If the Reference instance does not contain a accession
attribute, or has not been initialised from a DOM, an empty string is returned.

Returns

The accession string is returned by reference.

4.22.3.3 const dstoute::aString& getAuthor () const [inline]

This function returns the author attribute of a reference element. The author attribute is a
string containing the name of the author of the referenced document. If the instance has not
been initialised from a DOM, an empty string is returned.

108 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The author string is returned by reference.

4.22.3.4 const dstoute::aString& getClassification () const [inline]

This function returns the classification attribute of a reference element. The classification
attribute is a string containing the security classification of the referenced document. This is
an optional attribute. If the Reference instance does not contain a classification attribute, or
has not been initialised from a DOM, an empty string is returned.

Returns

The classification string is returned by reference.

4.22.3.5 const dstoute::aString& getDate () const [inline]

This function returns the date attribute of a reference element. The date attribute is a string
containing the publication date of the referenced document. If the instance has not been
initialised from a DOM, an empty string is returned.

Returns

The date string is returned by reference.

4.22.3.6 const dstoute::aString& getDescription () const [inline]

This function returns the description child element of a reference instance. The description
child element is a (possibly lengthy) string containing information regarding the referenced
document, whose format within the XML dataset will be preserved by this function. It is an
optional attribute. If the Reference instance does not contain a description attribute, or has
not been initialised from a DOM, an empty string is returned.

Returns

The description string is returned by reference.

4.22.3.7 const dstoute::aString& getHref () const [inline]

This function returns the xlink:href attribute of a reference element. The xlink:href attribute is
a string containing a URL of an on-line copy of the referenced document. This is an optional
attribute. If the Reference instance does not contain a xlink:href attribute, or has not been
initialised from a DOM, an empty string is returned.

UNCLASSIFIED 109

DST-Group–TN–1658

UNCLASSIFIED

Returns

The xlink:href string is returned by reference.

4.22.3.8 const dstoute::aString& getRefID () const [inline]

This function returns the refID associated with a Reference instance. The refID allows ref-
erence elements to be cited by elements throughout the DOM, by elements other than their
immediate parent, fileHeader. If the instance has not been initialised from a DOM, an empty
string is returned.

Returns

The refID string is returned by reference.

4.22.3.9 const dstoute::aString& getTitle () const [inline]

This function returns the title attribute of a reference element. The title attribute is a string
containing the title of the referenced document. If the instance has not been initialised from
a DOM, an empty string is returned.

Returns

The title string is returned by reference.

4.22.3.10 const dstoute::aString& getXLink () const [inline]

This function returns the xmlns:xlink associated with a Reference instance. If the instance has
not been initialised from a DOM, the string is is set to "http://www.w3.org/19999/xlink",
and returned.
Returns

The xmlns:xlink string is returned by reference.

4.22.3.11 const dstoute::aString& getXLinkType () const [inline]

This function returns the xlink:type associated with a Reference instance. If the instance has
not been initialised from a DOM, the string is is set to "simple", and returned.

Returns

The xlink:type string is returned by reference.

4.22.3.12 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of Reference is filled with data from a particular reference element
within a DOM by this function. If another reference element pointer is supplied to an instance

110 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

that has already been initialised, the instance will be re-initialised with the new data. However,
this is not a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address of a reference component within the DOM.

The documentation for this class was generated from the following files:

• Reference.h

• Reference.cpp

4.23 Signal Class Reference

#include <Signal.h>

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const dstoute::aString & getName () const

• const double & getTolerance () const

• const dstoute::aString & getUnits () const

• const double & getValue () const

• const dstoute::aString & getVarID () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, const Sig-
nalTypeEnum &signalType)

• Signal ()

• Signal (const DomFunctions::XmlNode &elementDefinition, const SignalTypeEnum &sig-
nalType)

4.23.1 Detailed Description

A Signal instance holds in its allocated memory alphanumeric data derived from a signal
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance may describe inputs, internal values of a computation, or outputs. The class also
provides the functions that allow a calling StaticShot instance to access these data elements.
A signal must have signalName and signalUnits if it is a child of checkInputs or checkOutputs.
Alternatively, if it is a child of internalValues, it must have a varID (signalID is deprecated).
This class accepts whichever of these children it finds in the XML dataset, and leaves applic-
ability to its parents to sort out.

UNCLASSIFIED 111

DST-Group–TN–1658

UNCLASSIFIED

The Signal class is only used within the janus namespace, and should only be referenced indir-
ectly through the StaticShot, CheckInputs, InternalValues and CheckOutputs classes.

Typical usage:
Janus test(xmlFileName);
CheckData checkData = test.getCheckData();
size_t nss = checkData.getStaticShotCount();
for (size_t j = 0 ; j < nss ; j++) {

StaticShot staticShot = checkData.getStaticShot(j);
CheckOutputs checkOutputs = staticShot.getCheckOutputs();
size_t ncout = checkOutputs.getSignalCount();
cout << " staticShot[" << j << "] : " << endl

<< " Name = "
<< staticShot.getName() << endl
<< " Number of check outputs = " << ncout << endl;

for (size_t k = 0 ; k < ncout ; k++) {
cout << " checkOutputs[" << k << "] : " << endl

<< " signalName = "
<< checkOutputs.getName(k) << endl
<< " signalUnits = "
<< checkOutputs.getUnits(k) << endl
<< " signalValue = "
<< checkOutputs.getValue(k) << endl
<< " signalTol = "
<< checkOutputs.getTolerance(k) << endl
<< endl;

}
}

4.23.2 Constructor & Destructor Documentation

4.23.2.1 Signal ()

The empty constructor can be used to instance the Signal class without supplying the DOM
signal element from which the instance is constructed, but in this state is not useful for any
class functions. It is necessary to populate the class from a DOM containing a signal element
before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.23.2.2 Signal (const DomFunctions::XmlNode & elementDefinition, const
SignalTypeEnum & signalType)

The constructor, when called with an argument pointing to a signal element within a DOM,
instantiates the Signal class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address of a signal component within the DOM.

112 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

signalType is a enumeration identifying the signal as either an input, and output,
or an internal value.

4.23.3 Member Function Documentation

4.23.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the Signal data to a DAVE-ML compliant XML dataset file as
defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.23.3.2 const dstoute::aString& getName () const [inline]

This function returns the content of the signal’s signalName child element. If the instance has
not been initialised from a DOM, an empty string is returned.

Returns

The signalName content string is returned by reference.

4.23.3.3 const double& getTolerance () const [inline]

This function returns the content of a signal’s tol child element, if the signal is part of either
an internalValues or a checkOutputs element. If the Signal has not been populated from a
DOM, NaN will be returned. If the signal is part of a checkInputs element, or a tolerance is
not specified for the signal within the XML dataset, this function will return zero.

Returns

A double precision variable containing the tolerance on the signal value is returned.

4.23.3.4 const dstoute::aString& getUnits () const [inline]

This function returns the content of the signal’s signalUnits child element. The signalUnits
content is a string of arbitrary length, but normally short, and complying with the format
requirements chosen by AD APS [7] in accordance with SI and other systems. If the Signal
has not been initialised from a DOM, an empty string is returned.

UNCLASSIFIED 113

DST-Group–TN–1658

UNCLASSIFIED

Returns

The signalUnits content string is returned by reference.

4.23.3.5 const double& getValue () const [inline]

This function returns the content of the signal’s signalValue child element. It represent the
numeric value that a particular variable from the XML dataset should return for the check
case that forms the parent of this signal. If the Signal has not been populated from a DOM
element, NaN is returned.

Returns

A double precision variable containing the signal value is returned.

4.23.3.6 const dstoute::aString& getVarID () const [inline]

This function returns the content of the signal’s varID child element. The varID is a unique
(per list of check case elements), short string not including whitespace that indicates the
VariableDef the signal corresponds with, and is used for signal indexing. If the signal element
owns a (deprecated alternative) signalID child element, that will be returned by this function.
If the Signal has not been initialised from a DOM, an empty string is returned.

Returns

The varID or signalID content string is returned by reference.

4.23.3.7 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, const SignalTypeEnum & signalType)

An uninitialised instance of Signal is filled with data from a particular signal element within
a DOM by this function. If another signal element pointer is supplied to an instance that has
already been initialised, the instance will be re-initialised with the new data. However, this is
not a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address of a signal component within the DOM.
signalType is a enumeration identifying the signal as either an input, and output,

or an internal value.

The documentation for this class was generated from the following files:

• Signal.h

• Signal.cpp

114 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.24 SignalList Class Reference

#include <SignalList.h>

Inherits XmlElementDefinition.

Inherited by CheckInputs, CheckOutputs, and InternalValues.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• int getIndex (const dstoute::aString &name) const

• const dstoute::aString & getName (const size_t &index) const

• const Signals & getSignal () const

• size_t getSignalCount () const

• const double & getTolerance (const size_t &index) const

• const dstoute::aString & getUnits (const size_t &index) const

• const double & getValue (const size_t &index) const

• const dstoute::aString & getVarID (const size_t &index) const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, const Sig-
nalTypeEnum &signalType)

• SignalList ()

• SignalList (const DomFunctions::XmlNode &elementDefinition, const SignalTypeEnum
&signalType)

4.24.1 Detailed Description

A SignalList instance functions as a container for the Signal class, and provides the functions
that allow a calling StaticShot instance to access the signal elements that define either the
input or output values for a check case. A signalList element contains a list of signal elements,
that include signalName, signalUnits, signalValue elements. An optional tol element may be
included.

The SignalList class is only used within the janus namespace, and is inherited by the CheckIn-
puts and CheckOutputs classes. It should only be referenced indirectly through the StaticShot
class.

Typical usage:
Janus test(xmlFileName);
CheckData checkData = test.getCheckData();
size_t nss = checkData.getStaticShotCount();
for (size_t j = 0 ; j < nss ; j++) {

StaticShot staticShot = checkData.getStaticShot(j);
CheckOutputs checkOutputs = staticShot.getCheckOutputs();
size_t ncout = checkOutputs.getSignalCount();
cout << " staticShot[" << j << "] : " << endl

UNCLASSIFIED 115

DST-Group–TN–1658

UNCLASSIFIED

<< " Name = "
<< staticShot.getName() << endl
<< " Number of check outputs = " << ncout << endl;

for (size_t k = 0 ; k < ncout ; k++) {
cout << " checkOutputs[" << k << "] : " << endl

<< " signalName = "
<< checkOutputs.getName(k) << endl
<< " signalUnits = "
<< checkOutputs.getUnits(k) << endl
<< " signalValue = "
<< checkOutputs.getValue(k) << endl
<< " tol = "
<< checkOutputs.getTolerance(k) << endl
<< endl;

}
}

4.24.2 Constructor & Destructor Documentation

4.24.2.1 SignalList ()

The empty constructor can be used to instance the SignalList class without supplying the
DOM signal elements from which the instance is constructed, but in this state is not useful
for any class functions. It is necessary to populate the class from a DOM containing a signal
elements list before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseElement

4.24.2.2 SignalList (const DomFunctions::XmlNode & elementDefinition,
const SignalTypeEnum & signalType)

The constructor, when called with an argument pointing to signal elements within a DOM,
instantiates the SignalList class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address of a list of signal components within the DOM.
signalType is a enumeration identifying the signal as either an input, and output,

or an internal value.

116 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.24.3 Member Function Documentation

4.24.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the SignalList data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.24.3.2 int getIndex (const dstoute::aString & name) const

This function returns the index number within the SignalList instance that corresponds with
a specified signal name.

Parameters

name is a string containing name of the signal of interest.

Returns

An integer value for the index corresponding to the specified name is returned. If the
specified name does not appear in any signal within the SignalList instance, -1 is returned.

See also

Signal

4.24.3.3 const dstoute::aString& getName (const size_t & index) const
[inline]

This function returns the signalName from a Signal associated with the referenced SignalList
instance. If the Signal has not been initialised from a DOM, an empty string is returned.

Parameters

index has a range from zero to (getSignalCount() - 1), and selects the required Signal
component. Attempting to access a Signal outside the available range will throw a
standard out_of_range exception.

Returns

The selected signalName string is returned by reference.

UNCLASSIFIED 117

DST-Group–TN–1658

UNCLASSIFIED

See also

Signal

4.24.3.4 const Signals& getSignal () const [inline]

This function provides access to the signal definitions instances that have been defined for
the singnalList instance. An empty vector will be returned if the Signal instance has not
been populated from a DOM. In all other cases, the vector will contain at least one signal
instance.
Returns

An vector of signal definitions instances.

See also

Signal

4.24.3.5 size_t getSignalCount () const [inline]

This function provides the number of signals making up the referenced SignalList instance. If
the instance has not been populated from a DOM element, zero is returned. For a full check
case, this function will return the number of output variables, explicit or implicit, in the XML
dataset.
Returns

An integer number, one or more in a populated instance.

See also

Signal

4.24.3.6 const double& getTolerance (const size_t & index) const
[inline]

This function returns the tol component from a Signal associated with the referenced SignalList
instance. If the Signal has not been populated from a DOM, NaN will be returned. If a
tolerance is not specified for the signal within the XML dataset, this function will return
zero.

Parameters

index has a range from zero to (getSignalCount() - 1), and selects the required Signal
component. Attempting to access a Signal outside the available range will throw a
standard out_of_range exception.

Returns

A double precision variable containing the tolerance on the requested signal value is
returned.

118 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Signal

4.24.3.7 const dstoute::aString& getUnits (const size_t & index) const
[inline]

This function returns the signalUnits from a Signal associated with the referenced SignalList
instance. If the Signal has not been initialised from a DOM, an empty string is returned.

Parameters

index has a range from zero to (getSignalCount() - 1), and selects the required Signal
component. Attempting to access a Signal outside the available range will throw a
standard out_of_range exception.

Returns

The selected signalUnits string is returned by reference.

See also

Signal

4.24.3.8 const double& getValue (const size_t & index) const [inline]

This function returns the signalValue from a Signal associated with the referenced SignalList
instance. If the Signal has not been populated from a DOM element, NaN is returned.

Parameters

index has a range from zero to (getSignalCount() - 1), and selects the required Signal
component. Attempting to access a Signal outside the available range will throw a
standard out_of_range exception.

Returns

A double precision variable containing the requested signal value is returned.

See also

Signal

4.24.3.9 const dstoute::aString& getVarID (const size_t & index) const
[inline]

This function returns the varID from a Signal associated with the referenced SignalList in-
stance. If the Signal has not been initialised from a DOM, an empty string is returned.

UNCLASSIFIED 119

DST-Group–TN–1658

UNCLASSIFIED

Parameters

index has a range from zero to (getSignalCount() - 1), and selects the required Signal
component. Attempting to access a Signal outside the available range will throw a
standard out_of_range exception.

Returns

The selected varID string is returned by reference.

See also

Signal

4.24.3.10 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, const SignalTypeEnum & signalType)

An uninitialised instance of SignalList is filled with data from a particular list of signal elements
within a DOM by this function. If another list of signal elements pointer is supplied to an
instance that has already been initialised, the instance will be re-initialised with the new
data.

Parameters

elementDefinition is an address of a list of signal components within the DOM.
signalType is a enumeration identifying the signal as either an input, and output,

or an internal value.

The documentation for this class was generated from the following files:

• SignalList.h

• SignalList.cpp

4.25 SolveMathML Class Reference

#include <SolveMathML.h>

4.25.1 Detailed Description

This class contains functions for solving mathematics procedures defined using the MathML
syntax. Data detailing each MathML operation is stored in a MathMLDataClass structure.
This includes the sub-elements to which the operator is to be applied. Functions to process
both scalar and matrix data are included.

The SolveMathML class is only used within the Janus.

The documentation for this class was generated from the following files:

120 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• SolveMathML.h

• SolveMathML.cpp

4.26 StaticShot Class Reference

#include <StaticShot.h>

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const CheckInputs & getCheckInputs () const

• const CheckOutputs & getCheckOutputs () const

• const dstoute::aString & getDescription () const

• const InternalValues & getInternalValues () const

• const dstoute::aString & getInvalidVariable (const size_t &index) const

• size_t getInvalidVariableCount () const

• const dstoute::aString & getName () const

• const Provenance & getProvenance () const

• const dstoute::aString & getRefID () const

• bool hasInternalValues () const

• const bool & hasProvenance () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition)

• StaticShot ()

• StaticShot (const DomFunctions::XmlNode &elementDefinition)

• void verifyStaticShot (Janus ∗janus)

4.26.1 Detailed Description

XML datset content verification - static input / output correlation. A StaticShot instance
holds in its allocated memory alphanumeric data derived from a staticShot element of a DOM
corresponding to a DAVE-ML compliant XML dataset source file. The instance describes the
inputs and outputs, and possibly internal values, of a DAVE-ML model at a particular instant
of time. The class also provides the functions that allow a calling Janus instance to access
these data elements.

The StaticShot class is only used within the janus namespace, and should only be referenced
indirectly through the CheckData class.

UNCLASSIFIED 121

DST-Group–TN–1658

UNCLASSIFIED

Units used in the staticShot element need not be identical to those used in the remainder of
the dataset.

Typical usage:
Janus test(xmlFileName);
CheckData checkData = test.getCheckData();
size_t nss = checkData.getStaticShotCount();
for (size_t j = 0 ; j < nss ; j++) {

StaticShot staticShot = checkData.getStaticShot(j);
size_t nInvalid = staticShot.getInvalidVariableCount();
if (0 < nInvalid) {

for (size_t k = 0 ; k < nInvalid ; k++) {
string failVarID = staticShot.getInvalidVariable(k);
cout << " Problem at varID : " << failVarID << endl;

}
}
else {

cout << " No problems from static shot " << j << " ... " << endl;
}

}

4.26.2 Constructor & Destructor Documentation

4.26.2.1 StaticShot ()

The empty constructor can be used to instance the StaticShot class without supplying the
DOM staticShot element from which the instance is constructed, but in this state is not useful
for any class functions. It is necessary to populate the class from a DOM containing a staticShot
element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.26.2.2 StaticShot (const DomFunctions::XmlNode & elementDefinition
)

The constructor, when called with an argument pointing to a staticShot element within a DOM,
instantiates the StaticShot class and fills it with alphanumeric data from the DOM.

Parameters

elementDefinition is an address of a staticShot component within the DOM.

122 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.26.3 Member Function Documentation

4.26.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the StaticShot data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.26.3.2 const CheckInputs& getCheckInputs () const [inline]

This function provides access to the checkInputs element contained in a DAVE-ML staticShot
element. There must be one of these elements for each static shot in a valid dataset.
Returns

The CheckInputs instance is returned by reference.

4.26.3.3 const CheckOutputs& getCheckOutputs () const [inline]

This function provides access to the checkOutputs element contained in a DAVE-ML staticShot
element. There must be one of these elements for each static shot in a valid dataset.
Returns

The CheckOutputs instance is returned by reference.

4.26.3.4 const dstoute::aString& getDescription () const [inline]

This function returns the description of the referenced staticShot element, if one has been
supplied in the XML dataset. If not, or if the StaticShot has not been initialised from a DOM,
it returns an empty string.

Returns

The description string is returned by reference.

4.26.3.5 const InternalValues& getInternalValues () const [inline]

This function provides access to the internalValues element contained in a DAVE-ML stat-
icShot element. There may be zero or one of these elements for each static shot in a valid
dataset.

UNCLASSIFIED 123

DST-Group–TN–1658

UNCLASSIFIED

Returns

The InternalValues instance is returned by reference.

4.26.3.6 const aString & getInvalidVariable (const size_t & index)
const

This function uses the results computed by setStaticShotVerification() to indicate which in-
ternal or output values, computed in accordance with a DAVE-ML compliant dataset, are
incompatible with the values contained in this staticShot element. It is used in conjunction
with getInvalidVariableCount and other CheckData functions.

Parameters

index has a range from 0 to (getInvalidVariableCount() - 1), and selects the invalid
variable whose identity is required.

Returns

A string is returned by reference, containing either the name or varID attribute, as
applicable, of the selected invalid variable.

4.26.3.7 size_t getInvalidVariableCount () const

This function uses the results computed by setStaticShotVerification() to indicate how many
internal or output values computed in accordance with a DAVE-ML compliant dataset are
incompatible with the values contained in this staticShot element.

Returns

An positive integer value is returned, being the total number of internal or output vari-
ableDefs in the dataset whose values are not compatible, within the specified tolerences,
with the specified staticShot values.

See also

getInvalidVariable
setStaticShotVerification

4.26.3.8 const dstoute::aString& getName () const [inline]

This function returns the name attribute of a staticShot. If the static shot has not been
initialised from a DOM, an empty string is returned.

124 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The name string is returned by reference.

4.26.3.9 const Provenance& getProvenance () const [inline]

This function provides access to the Provenance instance associated with a StaticShot instance.
There may be zero or one of these elements for each static shot in a valid dataset, defined
either directly or by reference.

Returns

The Provenence instance is returned by reference.

See also

Provenance

4.26.3.10 const dstoute::aString& getRefID () const [inline]

The refID attribute is an optional document reference for a staticShot. This function returns
the refID of a staticShot element, if one has been supplied in the XML dataset. If not, or if
the StaticShot has not been initialised from a DOM, it returns an empty string.

Returns

The refID string is returned by reference.

4.26.3.11 bool hasInternalValues () const

This function indicates whether a staticShot element of a DAVE-ML dataset includes intern-
alValues.

Returns

A boolean variable, ’true’ if the staticShot includes internal values.

4.26.3.12 const bool& hasProvenance () const [inline]

This function indicates whether a staticShot element of a DAVE-ML dataset includes either
provenance or provenanceRef.

Returns

A boolean variable, ’true’ if the staticShot includes a provenance, defined either directly
or by reference.

See also

Provenance

UNCLASSIFIED 125

DST-Group–TN–1658

UNCLASSIFIED

4.26.3.13 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition)

An uninitialised instance of StaticShot is filled with data from a particular staticShot element
within a DOM by this function. If another staticShot element pointer is supplied to an instance
that has already been initialised, the instance will be re-initialised with the new data. However,
this is not a recommended procedure, since optional elements may not be replaced.

Parameters

elementDefinition is an address of a staticShot component within the DOM.

4.26.3.14 void verifyStaticShot (Janus ∗ janus)

This function uses the contents of a staticShot element within a DAVE-ML compliant dataset
to verify the functional relationships within the remainder of the dataset. It is called as part of
the Janus instantiation process to flag problems in the dataset content. It should not normally
be called directly by other classes. The results of the tests performed are placed in internal
arrays for access by other Janus functions.

See also

getInvalidVariableCount
getInvalidVariable

The documentation for this class was generated from the following files:

• StaticShot.h

• StaticShot.cpp

4.27 Uncertainty Class Reference

#include <Uncertainty.h>

Inherits XmlElementDefinition.

Public Types

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const BoundsList & getBounds () const

• const correlationPairList & getCorrelation () const

• const dstoute::aStringList & getCorrelationVarList () const

126 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• const UncertaintyEffect & getEffect () const

• const size_t & getNumSigmas () const

• const UncertaintyPdf & getPdf () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

• const bool & isSet () const

• void setBoundsSize (const int n)

• void setPdf (const UncertaintyPdf &pdf)

• Uncertainty ()

• Uncertainty (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

4.27.1 Detailed Description

A Uncertainty instance holds in its allocated memory alphanumeric data derived from a un-
certainty element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
The element is used in function and parameter definitions to describe statistical variance in
the possible value of that function or parameter value. Only Gaussian (normal) or uniform dis-
tributions of continuous random variable distribution functions are supported. The class also
provides the functions that allow a calling Janus instance to access these data elements.

The Uncertainty class is only used within the janus namespace, and should only be referenced
indirectly through the Janus class.

a possible usage is:

Janus test(xmlFileName);
int nv = test.getNumberOfVariables();
Uncertainty::UncertaintyPdf uncertaintyPdf;
for (int i = 0 ; i < nv ; i++) {

VariableDef& variableDef = test.getVariableDef(i);
cout << " Variable : "

<< test.getVariableID(i) << endl
<< " Value = "
<< test.getVariableByIndex(i) << endl
<< " uncertaintyPdf = ";

Uncertainty::UncertaintyPdf& uncertaintyPdf =
variableDef.getUncertainty().getPdf();

switch(uncertaintyPdf) {
case Uncertainty::UNIFORM_PDF:

cout << "UNIFORM_PDF";
break;

case Uncertainty::NORMAL_PDF:
cout << "NORMAL_PDF";
break;

case Uncertainty::UNKNOWN_PDF:
cout << "UNKNOWN_PDF";
break;

case Uncertainty::ERROR_PDF:
cout << "ERROR_PDF";
break;

default:
break;

}
}

UNCLASSIFIED 127

DST-Group–TN–1658

UNCLASSIFIED

4.27.2 Member Enumeration Documentation

4.27.2.1 enum UncertaintyPdf

This enum defines the probability distribution functions that may be found in a DAVE-ML
compliant dataset.

Enumerator

NORMAL_PDF A normal or Gaussian probability distribution, defined in terms of
its mean and standard deviation.

UNIFORM_PDF A uniform or constant probability distribution, defined in terms
of the bounds of the interval over which it applies.

UNKNOWN_PDF A probability distribution that has not been specified in terms
of the previous two allowable distributions.

ERROR_PDF Error flag, generally associated with incompatible combinations of
PDFs within the XML dataset.

4.27.3 Constructor & Destructor Documentation

4.27.3.1 Uncertainty ()

The empty constructor can be used to instance the Uncertainty class without supplying the
DOM uncertainty element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing a
uncertainty element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.27.3.2 Uncertainty (const DomFunctions::XmlNode & elementDefinition,
Janus ∗ janus)

The constructor, when called with an argument pointing to a uncertainty element within
a DOM, instantiates the Uncertainty class and fills it with alphanumeric data from the
DOM.

Parameters

elementDefinition is an address of an uncertainty component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to

evaluate bounds with a functional dependence on the instance state.

128 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.27.4 Member Function Documentation

4.27.4.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the Uncertainty data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

4.27.4.2 const BoundsList& getBounds () const [inline]

This function provides access to the bounds vector of the Uncertainty instance. A Gaussian
PDF will have a vector length of one, and a uniform PDF will have a vector length of one or
two, depending on the bounds symmetry or asymmetry about the variable value.

Returns

A list of double precision values, containing one or two elements, is returned by reference.

4.27.4.3 const correlationPairList& getCorrelation () const [inline]

This function applies only to Gaussian PDF uncertainties. It allows access to an array of
indices and coefficients for variables whose Gaussian uncertainties are correlated with the
uncertainty of the variable associated with this Uncertainty instance.

The correlation coefficients, which indicate the degree of non-randomness in the relationship
between the variable associated with this Uncertainty instance and other variableDefs in-
stances, are stored together with the index to the variableDef from the global list as a pair;
that is, the variableDef index and the associated correlation coefficient are combined as a cor-
relationPair having the form pair<size_t, double> with the first element being the index and
the second the coefficient. This approach replaces the correlation and correlatesWith arrays
that contained the same information separately.

Returns

The list of correlation pairs for this Uncertainty instance is returned as a reference to a
vector of correlation pairs.

4.27.4.4 const dstoute::aStringList& getCorrelationVarList () const
[inline]

This function applies only to Gaussian PDF uncertainties. It allows access to a list of the
identifiers, varIDs, for variables that are correlated with the variable associated with this
Uncertainty instance. It is used internally within the class when initialising the correlation

UNCLASSIFIED 129

DST-Group–TN–1658

UNCLASSIFIED

pairs - variable index and coefficient. This function permits external applications to retrieve
this data for information.
Returns

The correlation varID list is returned by reference as a list of strings.

4.27.4.5 const UncertaintyEffect& getEffect () const [inline]

This function returns the effect of the referenced uncertainty element. It indicates how bounds
should be interpreted (e.g. additive, multiplicative, percentage or absolute uncertainty).

Returns

An UncertaintyEffect enum. Where the Uncertainty instance has not been initialised,
UNKNOWN_UNCERTAINTY is returned.

4.27.4.6 const size_t& getNumSigmas () const [inline]

This function applies only to Gaussian PDF uncertainties. It indicates how many standard
deviations are represented by the corresponding bounds magnitude.

Returns

The numSigmas attribute of the uncertainty instance is returned as an integer.

4.27.4.7 const UncertaintyPdf& getPdf () const [inline]

This function indicates whether the referenced Uncertainty instance describes Gaussian, uni-
form or unknown uncertainty. In the case of a variable that has its uncertainty defined directly
through an uncertainty child element (see hasUncertainty()), this function returns that defin-
ition’s uncertainty type. For a variableDef that does not include an uncertainty child element,
this function returns an uncertainty type determined by considering all variables and functions
on which this variable depends.

Returns

An UncertaintyPdf enum. Where the Uncertainty instance has not been initialised,
UNKNOWN_PDF is returned.

4.27.4.8 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

An uninitialised instance of Uncertainty is filled with data from a particular uncertainty ele-
ment within a DOM by this function. If another uncertainty element pointer is supplied to
an instance that has already been initialised, the instance will be re-initialised with the new
data. However, this is not a recommended procedure.

Parameters

elementDefinition is an address of an uncertainty component within the DOM.

130 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

janus is a pointer to the owning Janus instance, used within this class to
evaluate bounds with a functional dependence on the instance state.

4.27.4.9 const bool& isSet () const [inline]

This function is used to determine whether a PDF has been explicitly applied to a variable
at the output stage. This is in contrast to a variable whose PDF is propagated through the
computations from its independent variable values.

Returns

A boolean value, ’true’ if the referenced variable has an explicitly-specified PDF.

4.27.4.10 void setBoundsSize (const int n) [inline]

This function is used by Janus during initialisation, when setting up uncertainty dependencies.
It should not be used by other classes or external programs.

Parameters

n sets the length of the vector required for a Bounds instance. Possible values are 1, for
symmetric bounds, or 2, for asymmetric bounds.

4.27.4.11 void setPdf (const UncertaintyPdf & pdf) [inline]

This function is used by Janus during initialisation, when setting up uncertainty dependencies.
It should not be used by other classes or external programs.

Parameters

pdf describes the type of probability associated with this Uncertainty instance, as
derived from its antecedent variables during the Janus initialization process.

The documentation for this class was generated from the following files:

• Uncertainty.h

• Uncertainty.cpp

4.28 UngriddedTableDef Class Reference

#include <UngriddedTableDef.h>

UNCLASSIFIED 131

DST-Group–TN–1658

UNCLASSIFIED

Inherits XmlElementDefinition.

Public Member Functions

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const std::vector< std::vector< double > > & getData () const

• const std::vector< int > & getDataPointModID () const

• const size_t & getDataTableColumnCount () const

• const std::vector< std::vector< size_t > > & getDelaunay () const

• const std::vector< double > & getDependentData (const size_t &dataColumn=0) const

• const dstoute::aString & getDescription () const

• const DomFunctions::XmlNode & getDOMElement ()

• const dstomath::DMatrix & getIndependentData () const

• const size_t & getIndependentVarCount () const

• const dstoute::aString & getName () const

• const Provenance & getProvenance () const

• Uncertainty & getUncertainty ()

• const dstoute::aString & getUnits () const

• const dstoute::aString & getUtID () const

• const bool & hasProvenance () const

• const bool & hasUncertainty () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)
• UngriddedTableDef ()

• UngriddedTableDef (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

4.28.1 Detailed Description

A UngriddedTableDef instance holds in its allocated memory alphanumeric data derived from
a ungriddedTableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes points that are not in an orthogonal grid pattern; thus, the independ-
ent variable coordinates are specified for each dependent variable value. The table data point
values are specified as comma-separated values in floating-point notation. Associated alpha-
numeric identification and cross-reference data are also included in the instance.

The UngriddedTableDef class is only used within the janus namespace, and should only be
referenced through the Janus class.

Janus exists to abstract data form and handling from a modelling process. Therefore, in normal
computational usage, it is unnecessary and undesirable for a calling program to even be aware
of the existence of this class. However, functions do exist to access UngriddedTableDef contents
directly, which may be useful during dataset development. A possible usage might be:

132 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Janus test(xmlFileName);
const vector<UngriddedTableDef>& ungriddedTableDef =

test.getUngriddedTableDef();
for (int i = 0 ; i < ungriddedTableDef.size() ; i++) {

cout << " Ungridded table " << i << " :\n"
<< " name = " << ungriddedTableDef.at(i).getName() << "\n"
<< " gtID = " << ungriddedTableDef.at(i).getGtID() << "\n"
<< " units = " << ungriddedTableDef.at(i).getUnits() << "\n"
<< " description = " << ungriddedTableDef.at(i).getDescription()
<< "\n";

}

4.28.2 Constructor & Destructor Documentation

4.28.2.1 UngriddedTableDef ()

The empty constructor can be used to instance the UngriddedTableDef class without supplying
the DOM ungriddedTableDef element from which the instance is constructed, but in this state is
not useful for any class functions. It is necessary to populate the class from a DOM containing
a ungriddedTableDef element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

See also

initialiseDefinition

4.28.2.2 UngriddedTableDef (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

The constructor, when called with an argument pointing to a ungriddedTableDef element
within a DOM, instantiates the UngriddedTableDef class and fills it with alphanumeric data
from the DOM.

Parameters

elementDefinition is an address of an ungriddedTableDef component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.28.3 Member Function Documentation

4.28.3.1 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the UngriddedTableDef data to a DAVE-ML compliant XML
dataset file as defined by the DAVE-ML document type definition (DTD).

UNCLASSIFIED 133

DST-Group–TN–1658

UNCLASSIFIED

Parameters

documentElement an address to the parent DOM node/element.

4.28.3.2 const std::vector< std::vector<double> >& getData () const
[inline]

This function provides access to the vector of data points associated with an UngriddedTableDef
instance. Each element of the vector is itself a vector of double precision values representing
the contents of a dataPoint element from the DOM.
Returns

A vector of dataPoint vectors is returned by reference.

4.28.3.3 const std::vector<int>& getDataPointModID () const
[inline]

This function provides access to the list of modification record indices associated with each of
the data point records defined for this ungriddedTable instance.

Returns

A vector of indices (int) listing the modification record indices of the ungridded table
dataPoint records is returned by reference.

4.28.3.4 const size_t& getDataTableColumnCount () const [inline]

This function provides returns the count of columns making up the ungridded table.

Returns

The count (size_t) of data columns is returned by reference.

4.28.3.5 const std::vector< std::vector<size_t> >& getDelaunay () const
[inline]

This function provides access to the matrix of delaunay simplex vertices associated with an
UngriddedTableDef instance.

Returns

A vector of vectors of simplex vertex indices is returned by reference.

4.28.3.6 const std::vector<double>& getDependentData (const size_t &
dataColumn = 0) const [inline]

This function provides access to the list of dependent data for a nominated dependent data
column of this ungridded table.

134 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

dataColumn the index of the dependent data column starting from 0. A default column
entry of 0 is used if this parameter is not provided.

Returns

A vector of data (double) listing the dependent values for the ungridded table dependent
data column of interest is returned by reference.

4.28.3.7 const dstoute::aString& getDescription () const [inline]

This function provides access to the description child of the ungriddedTableDef element rep-
resented by this UngriddedTableDef instance. An ungriddedTableDef’s optional description
child element consists of a string of arbitrary length, which can include tabs and new lines as
well as alphanumeric data. This means text formatting embedded in the XML source will also
appear in the returned description. If no description is specified in the XML dataset, or the
UngriddedTableDef has not been initialised from the DOM, an empty string is returned.

Returns

The description string is returned by reference.

4.28.3.8 const DomFunctions::XmlNode& getDOMElement () [inline]

This function provides access to the document object model element, as a pointer, associated
with this instance of the UngriddedTableDef. It is used internally within Janus when instanti-
ating a DAVE-ML compliant XML file that contains ungridded tables. It should not be used
by external applications as the pointer will be invalidated once a file has been successfully
instantiated, and therefore may cause the external application to fail.

Returns

A pointer (DomFunctions::XmlNode) to the DOM element associated with this instance
of the UngriddedTableDef.

4.28.3.9 const dstomath::DMatrix& getIndependentData () const
[inline]

This function provides access to the independent data for this ungridded table.

UNCLASSIFIED 135

DST-Group–TN–1658

UNCLASSIFIED

Returns

A matrix of data (double) listing the independent values for the ungridded table is
returned by reference.

4.28.3.10 const size_t& getIndependentVarCount () const [inline]

This function provides access to the independentVarCount attribute of the ungriddedTableDef
represented by this UngriddedTableDef instance. An ungridded table’s independentVarCount
attribute is a count of the number of independent data variables defined in the dataPoint
elements. If the instance has not been initialised from a DOM, or if no independentVarCount
attribute is present, a zero value is returned.

Returns

The independentVarCount value is returned by reference.

4.28.3.11 const dstoute::aString& getName () const [inline]

This function provides access to the name attribute of a ungriddedTableDef. The name attrib-
ute is optional. If the ungridded table has no name attribute or has not been initialised from
a DOM, an empty string is returned.

Returns

The name string is returned by reference.

4.28.3.12 const Provenance& getProvenance () const [inline]

This function provides access to the Provenance instance associated with a UngriddedTableDef
instance. There may be zero or one of these elements for each ungridded table in a valid
dataset.
Returns

The Provenence class instance is returned by reference.

See also

Provenance

4.28.3.13 Uncertainty& getUncertainty () [inline]

This function provides access to the Uncertainty instance associated with a UngriddedTableDef
instance. There may be zero or one of these elements for each ungriddedTableDef in a valid
dataset. For ungriddedTableDefs without uncertainty, and for ungriddedTables, the corres-
ponding UngriddedTableDef instance includes an empty Uncertainty instance.

Returns

The Uncertainty instance is returned by reference.

136 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Uncertainty

4.28.3.14 const dstoute::aString& getUnits () const [inline]

This function provides access to the units attribute of the ungriddedTableDef represented by
this UngriddedTableDef instance. An ungridded table’s units attribute is a string of arbitrary
length, but normally short, and complying with the format requirements chosen by DST AD
APS [7] in accordance with SI and other systems. If the instance has not been initialised from
a DOM, or if no units attribute is present, an empty string is returned.

Returns

The units string is returned by reference.

4.28.3.15 const dstoute::aString& getUtID () const [inline]

This function provides access to the utID attribute of an ungriddedTableDef. This attribute
is used for indexing ungridded tables within an XML dataset. Where an ungriddedTableDef
within the DOM does not contain a utID attribute, or where an ungriddedTable has been
placed in the UngriddedTableDef structure, a utID string is generated and inserted in the
DOM at initialisation time. If the instance has not been initialised from a DOM, an empty
string is returned.

Returns

The utID string is returned by reference.

4.28.3.16 const bool& hasProvenance () const [inline]

This function indicates whether an ungriddedTableDef element of a DAVE-ML dataset includes
either provenance or provenanceRef.

Returns

A boolean variable, ’true’ if the ungriddedTableDef includes a provenance, defined either
directly or by reference.

See also

Provenance

4.28.3.17 const bool& hasUncertainty () const [inline]

This function indicates whether a ungriddedTableDef element of a DAVE-ML dataset includes
an uncertainty child element. A variable described by a ungriddedTableDef without an uncer-
tainty element may still have uncertainty, if it is dependent on other variables or tables with
defined uncertainty.

UNCLASSIFIED 137

DST-Group–TN–1658

UNCLASSIFIED

Returns

A boolean variable, ’true’ if a ungriddedTableDef definition includes an uncertainty child
element.

See also

Uncertainty

4.28.3.18 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

An uninitialised instance of UngriddedTableDef is filled with data from a particular ungrid-
dedTableDef element within a DOM by this function. If another ungriddedTableDef element
pointer is supplied to an instance that has already been initialised, data corruption will oc-
cur and the entire Janus instance will become unusable. This function can also be used
with the deprecated ungriddedTable element. For backwards compatibility, Janus converts an
ungriddedTable to the equivalent ungriddedTableDef within this function. Where an ungrid-
dedTableDef or ungriddedTable lacks a utID attribute, this function will generate a random
utID string for indexing within the Janus class.

Parameters

elementDefinition is an address of an ungriddedTableDef component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

The documentation for this class was generated from the following files:

• UngriddedTableDef.h

• UngriddedTableDef.cpp

4.29 VariableDef Class Reference

#include <VariableDef.h>

Inherits XmlElementDefinition.

Public Types

Public Member Functions

• void addDependentVarRef (const int &ix)

• void exportDefinition (DomFunctions::XmlNode &documentElement)

• const dstoute::aString & getAlias () const

• size_t getAncestorCount () const

138 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• const std::vector< size_t > & getAncestorsRef () const

• const dstoute::aString & getAxisSystem () const

• double getCorrelationCoefficient (const size_t &index)

• std::vector< size_t > & getDependentVarRef ()

• const dstoute::aString & getDescription () const

• const DimensionDef & getDimension () const

• const DomFunctions::XmlNode & getDOMElement ()

• int getFunctionRef () const

• size_t getIndependentVarCount () const

• const std::vector< size_t > & getIndependentVarRef () const

• const double & getInitialValue () const

• const dstomath::DMatrix & getMatrix ()

• const double & getMaxValue () const

• const double & getMinValue () const

• const Model & getModel () const

• const dstoute::aString & getName () const

• const double & getOutputScaleFactor () const

• const Provenance & getProvenance () const

• const dstoute::aString & getSign () const

• const dstoute::aString & getStringValue ()

• const dstoute::aString & getSymbol () const

• const VariableType & getType () const

• Uncertainty & getUncertainty ()

• double getUncertaintyValue (const size_t &numSigmas)

• double getUncertaintyValue (const bool &isUpperBound)

• const dstoute::aString & getUnits () const

• double getValue () const

• double getValueMetric () const

• double getValueSI () const

• VariableFlag getVariableFlag () const

• const dstoute::aString & getVarID () const

• const dstomath::DVector & getVector ()

• const bool & hasDescendantsRefs ()

• const bool & hasDimension () const

• const bool & hasProvenance () const

• const bool & hasUncertainty () const

• void initialiseDefinition (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

UNCLASSIFIED 139

DST-Group–TN–1658

UNCLASSIFIED

• const bool & isControl () const

• const bool & isCurrent ()

• const bool & isDisturbance () const

• const bool & isInput () const

• bool isMatrix ()

• const bool & isOutput () const

• const bool & isState () const

• const bool & isStateDeriv () const

• const bool & isStdAIAA () const

• bool isValue ()

• bool isVector ()

• void setAncestorsRef (const std::vector< size_t > &ancestorsRef)

• void setDescendantsRef (const std::vector< size_t > &descendantsRef)

• void setForced (bool isForced)

• void setForceUseOfMatrixCode (bool useMatrixOps=true)

• void setFunctionRef (const int &functionRef)

• void setHasUncertainty (const bool &hasUncertaintyArg)

• void setMathMLDependencies ()

• void setNotCurrent ()

• void setOutputScaleFactor (const double &factor)

• void setType (const VariableType &variableType)

• void setValue (const double &x, bool isForced=false)

• void setValue (const dstomath::DVector &x, bool isForced=false)

• void setValue (const dstomath::DMatrix &x, bool isForced=false)

• void setValueMetric (const double &xSI)

• void setValueSI (const double &xSI)

• void setVarIndex (const int &index)

• VariableDef ()

• VariableDef (const DomFunctions::XmlNode &elementDefinition, Janus ∗janus)

4.29.1 Detailed Description

A VariableDef instance holds in its allocated memory alphanumeric data derived from a vari-
ableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
It includes descriptive, alphanumeric identification and cross-reference data, and may include
a calculation process tree for variables computed through MathML.

The VariableDef class is only used within the janus namespace, and should only be referenced
through the Janus class.

140 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

To determine the characteristics of a dataset’s variables, typical usage is:
Janus test(xmlFileName);
vector<VariableDef> variableDef = test.getVariableDef();
for (size_t i = 0 ; i < variableDef.size() ; i++) {

cout << " Variable " << i << " : \n"
<< " ID : "
<< variableDef.at(i).getVarID() << "\n"
<< " Name : "
<< variableDef.at(i).getName() << "\n"
<< " Description : "
<< variableDef.at(i).getDescription() << "\n"
<< " Units : "
<< variableDef.at(i).getUnits() << "\n" << " Type : ";

switch (variableDef.at(i).getType()) {
case VariableDef::ISINPUT:

cout << "ISINPUT \n";
break;

case VariableDef::ISCONTROL:
cout << "ISCONTROL \n";
break;

case VariableDef::ISDISTURBANCE:
cout << "ISDISTURBANCE \n";
break;

case VariableDef::ISOUTPUT:
cout << "ISOUTPUT \n";
break;

case VariableDef::FUNCTION:
cout << "FUNCTION \n";
break;

case VariableDef::FUNCTION_INTERNAL:
cout << "FUNCTION_INTERNAL \n";
break;

case VariableDef::FUNCTION_OUTPUT:
cout << "FUNCTION_OUTPUT \n";
break;

case VariableDef::MATHML:
cout << "MATHML \n";
break;

case VariableDef::MATHML_INTERNAL:
cout << "MATHML_INTERNAL \n";
break;

case VariableDef::MATHML_OUTPUT:
cout << "MATHML_OUTPUT \n";
break;

default:
cout << "\n";

}
cout << " Axis System : "

<< variableDef.at(i).getAxisSystem() << "\n"
<< " Initial Value: "
<< variableDef.at(i).getInitialValue() << "\n" << "\n";

}

4.29.2 Member Enumeration Documentation

4.29.2.1 enum VariableFlag

This enum is deprecated, and is only used by deprecated functions. In new programs, the
variable characteristics it describes should be determined by direct interrogation of the related
VariableDef instance. It is used by calling programs to indicate the characteristics of a variable
relative to its use in equations of motion. One of these enums may be accessed for each

UNCLASSIFIED 141

DST-Group–TN–1658

UNCLASSIFIED

VariableDef to describe the associated variable.

Enumerator

ISSTATE This variableDef represents a state variable in a dynamic model, either the
output of an integrator (for continuous models) or a discretely updated state (for
discrete models).

ISSTATEDERIV This variableDef represents a state derivative variable in a dynamic
model, for continuous models only.

ISSTDAIAA This variableDef name is in accordance with "Standard Simulation Vari-
able Names", Annex 1 of "Standards for the Exchange of Simulation Data", a draft
AIAA standard. The name should be recognizable exterior to this class by code
complying with the standard.

ISSTATE_STDAIAA This variableDef represents a state variable, and is named in
accordance with "Standard Simulation Variable Names".

ISSTATEDERIV_STDAIAA This variableDef represents a state derivative vari-
able, and is named in accordance with "Standard Simulation Variable Names".

ISERRORFLAG Used as a flag, indicates function or variable index out of range.

4.29.2.2 enum VariableType

This enum lists the types of variables that may be included in a DAVE-ML compliant XML
dataset, based on the manner in which the variable value is determined. Calling programs
may use it to determine whether a variable is an input, or an output of various types. Each
VariableDef instance contains one of these enums, set during instantiation, to indicate the
source of the associated variable.

Enumerator

FUNCTION This variableDef is referenced as a dependent variable by a function
definition, and its value will therefore be determined by a function evaluation, using
either gridded or ungridded data. It will be available as a Janus output.

FUNCTION_INTERNAL This variableDef is referenced as a dependent variable
by a function definition, and its value will therefore be determined by a function
evaluation, using either gridded or ungridded data. It is also referenced as an
independent variable by another variable evaluation, and is not available as a Janus
output.

FUNCTION_OUTPUT This variableDef is the result of a gridded or ungridded
function evaluation, but is also used as an independent variable for another com-
putation. It also has been explicitly defined as an output by its child node.

MATHML This variableDef includes a calculation child element, and its value will
therefore be determined by a MathML function evaluation. It will be available as
a Janus output.

MATHML_INTERNAL This variableDef includes a calculation child element, and
its value will therefore be determined by a MathML function evaluation. It is also
referenced as an independent variable by another computation, and is not available
as a Janus output.

MATHML_OUTPUT This variableDef is the result of a MathML computation, but
is also used as an independent variable for another computation. It also has been

142 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

explicitly defined as an output by its child node.
SCRIPT This variableDef includes a calculation child element, and its value will there-

fore be determined by a script function evaluation. It will be available as a Janus
output.

SCRIPT_INTERNAL This variableDef includes a calculation child element, and
its value will therefore be determined by a script function evaluation. It is also
referenced as an independent variable by another computation, and is not available
as a Janus output.

SCRIPT_OUTPUT This variableDef is the result of a script computation, but is
also used as an independent variable for another computation. It also has been
explicitly defined as an output by its child node.

ARRAY This variableDef is defined as either a vector or a matrix.
ARRAY_INTERNAL This variableDef is defined as either a vector or a matrix. It

is available as an independent variable for another variable. It has not explicitly
been defined as an output variable, and therefore, is not available as a Janus output.

ARRAY_OUTPUT This variableDef is defined as either a vector or a matrix. It
is available as an independent variable for another variable. It has explicitly been
defined as an output variable, and therefore, is available as a Janus output.

MODEL This variableDef is defined as a dynamic system model.
MODEL_INTERNAL This variableDef is defined as a dynamics system model. It

is available as an independent variable for another variable. It has not explicitly
been defined as an output variable, and therefore, is not available as a Janus output.

MODEL_OUTPUT This variableDef is defined as a dynamic system model. It is
available as an independent variable for another variable. It has explicitly been
defined as an output variable, and therefore, is available as a Janus output.

ISINPUT This variableDef has none of the possible output attributes and should be
treated as an input.

ISCONTROL This variableDef has none of the possible output attributes and should
be treated as a control.

ISDISTURBANCE This variableDef has none of the possible output attributes and
should be treated as a disturbance.

ISOUTPUT This variableDef is explicitly defined as an output by its child node, and
is not the product of either a tabulated function or MathML evaluation.

4.29.3 Constructor & Destructor Documentation

4.29.3.1 VariableDef ()

The empty constructor can be used to instance the VariableDef class without supplying the
DOM variableDef element from which the instance is constructed, but in this state is not
useful for any class functions. It is necessary to populate the class from a DOM containing an
variableDef element before any further use of the instanced class.

This form of the constructor is principally for use within higher level instances, where memory
needs to be allocated before the data to fill it is specified.

UNCLASSIFIED 143

DST-Group–TN–1658

UNCLASSIFIED

See also

initialiseDefinition

4.29.3.2 VariableDef (const DomFunctions::XmlNode & elementDefinition,
Janus ∗ janus)

The constructor, when called with an argument pointing to a variableDef element within
a DOM, instantiates the VariableDef class and fills it with alphanumeric data from the
DOM.

Parameters

elementDefinition is an address of a variableDef component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.29.4 Member Function Documentation

4.29.4.1 void addDependentVarRef (const int & ix) [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during initialisation, setting up cross-references of immediately dependent variables.
Use in other circumstances may result in data corruption.

Parameters

ix is a VariableDef index associated with a dependent variable within the Janus
instance, computed by Janus during the final stages of initialisation for each
VariableDef and passed to it for use during computation.

4.29.4.2 void exportDefinition (DomFunctions::XmlNode & documentElement
)

This function is used to export the variableDef data to a DAVE-ML compliant XML dataset
file as defined by the DAVE-ML document type definition (DTD).

Parameters

documentElement an address to the parent DOM node/element.

144 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.29.4.3 const dstoute::aString& getAlias () const [inline]

This function provides access to the optional alias attribute of the variableDef represented
by this VariableDef instance. A variable’s alias attribute is a string of arbitrary length, but
normally short, providing an alternative name (possibly facility specific) for the signal repres-
ented by the variable. If no alias is specified in the XML dataset, or the VariableDef has not
been initialised from the DOM, an empty string is returned.

Returns

The alias string is returned by reference.

4.29.4.4 size_t getAncestorCount () const [inline]

This function returns the number of input variables that ultimately contribute to computation
of the value of this variable. If the instance has not been populated from a DOM, zero is
returned. In all other cases, there must be zero or more independent variables.

Returns

An integer number, zero or more in a populated instance.

4.29.4.5 const std::vector<size_t>& getAncestorsRef () const [inline]

This function provides access to the indices within the parent Janus instance of those input
variables that ultimately contribute to computation of the value of this variable. These are
the variables that must be set using setValue() before a valid result can be computed using
getValue.

Returns

The vector of ultimate independent variable indices is returned by reference.

4.29.4.6 const dstoute::aString& getAxisSystem () const [inline]

This function provides access to the optional axisSystem attribute of the variableDef repres-
ented by this VariableDef instance. A variable’s axisSystem attribute is a string of arbitrary
length, but normally short, and complying with certain format requirements chosen by DST
AD APS . Typical values include "Body" or "Intermediate". If no axis system is specified in
the XML dataset, or the VariableDef has not been initialised from the DOM, an empty string
is returned.

UNCLASSIFIED 145

DST-Group–TN–1658

UNCLASSIFIED

Returns

The axisSystem string is returned by reference.

4.29.4.7 double getCorrelationCoefficient (const size_t & index)

This function provides access to the level of correlation between the Gaussian uncertainty
of the variable associated with this VariableDef and the Gaussian uncertainty of any other
variable in the XML dataset.

Parameters

index has a range from 0 to (Janus::getNumberOfVariables() - 1), and selects the other
variable to be addressed from the VariableDef vector within the parent Janus
instance.

Returns

The correlation coefficient relating the two variables’ uncertainties is returned as a double.
Where correlation has not been specified in the XML dataset, the coefficient is returned
as zero.

4.29.4.8 std::vector<size_t>& getDependentVarRef () [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance, providing cross-referencing to those VariableDefs whose output values depend directly
on the value within this VariableDef. It may be useful to external programs during XML
dataset development.

Returns

A vector of integer indices is returned. If the calling VariableDef has no dependents, the
vector will be of zero length.

4.29.4.9 const dstoute::aString& getDescription () const [inline]

This function provides access to the optional description of the variableDef element repres-
ented by this VariableDef instance. A variableDef’s description child element consists of a
string of arbitrary length, which can include tabs and new lines as well as alphanumeric data.
This means text formatting embedded in the XML source will also appear in the returned
description. If no description is specified in the XML dataset, or the VariableDef has not been
initialised from the DOM, an empty string is returned.

146 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The description string is returned by reference.

4.29.4.10 const DimensionDef& getDimension () const [inline]

This function provides access to the DimensionDef instance associated with a VariableDef
instance. There may be zero or one of these elements for each variable definition in a valid
dataset, either provided directly or cross-referenced through a dimensionRef element.

Returns

The DimensionDef instance is returned by reference.

See also

DimensionDef

4.29.4.11 const DomFunctions::XmlNode& getDOMElement ()
[inline]

This function provides access to the DOMElement node associated with the instance of the
variableDef component. The function is used internally within Janus while initialising a DAVE-
ML compliant \ XML dataset source file.

Returns

The DOMElement node in a DOM for the variableDef component is returned as a pointer.

4.29.4.12 int getFunctionRef () const [inline]

This function allows a calling program to determine the function, if any, which a variableDef’s
value is based. It should not be required during normal computations, but is used internally
within the Janus instance and may be used by other programs during XML dataset develop-
ment.
Returns

The index to Function instance, within the top-level Janus instance, upon which this
VariableDef instance depends is returned. If the VariableDef is not based on a tabular
function, -1 is returned.

4.29.4.13 size_t getIndependentVarCount () const [inline]

This function returns the number of independent variables that directly contribute to compu-
tation of the value of this variable. If the instance has not been populated from a DOM, zero
is returned. In all other cases, there must be zero or more independent variables.

Returns

An integer number, zero or more in a populated instance.

UNCLASSIFIED 147

DST-Group–TN–1658

UNCLASSIFIED

4.29.4.14 const std::vector<size_t>& getIndependentVarRef () const
[inline]

This function provides access to the indices within the parent Janus instance of those inde-
pendent variables that directly contribute to computation of the value of this variable.

Returns

The vector of directly contributing independent variable indices is returned by reference.

4.29.4.15 const double& getInitialValue () const [inline]

This function provides access to the optional initialValue attribute of the variableDef repres-
ented by this VariableDef instance. A variable’s initialValue attribute specifies an initial value
for the signal represented by the variable. It is also used to store the value of a signal that
remains constant. If the initial value is not specified in the XML dataset, or the VariableDef
has not been initialised from the DOM, the a NaN value is returned.

Returns

A double precision floating point number is returned.

4.29.4.16 const DMatrix & getMatrix ()

This function fulfils the basic purpose of the Janus class. It is used during run-time to evaluate
the variable associated with this VariableDef. It returns a data matrix based on the current
state of the Janus instance, irrespective of variable type. It provides the major functionality
of the Janus library. As well as returning the requested data values, it sets contributing values
within the parent Janus instance and flags them as valid.

Returns

A double precision matrix (DMatrix) containing the values of the variable after all rel-
evant computations based on the current input state of the parent Janus instance.

4.29.4.17 const double& getMaxValue () const [inline]

This function provides access to the optional maxValue attribute of the variableDef represented
by this VariableDef instance. A variable’s maxValue attribute provides a maximum boundary
value that may be returned when evaluating the variableDef.

Returns

A double precision floating point number is returned.

4.29.4.18 const double& getMinValue () const [inline]

This function provides access to the optional minValue attribute of the variableDef represented
by this VariableDef instance. A variable’s minValue attribute provides a minimum boundary
value that may be returned when evaluating the variableDef.

148 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A double precision floating point number is returned.

4.29.4.19 const Model& getModel () const [inline]

This function provides access to the dynamic system model instance associated with a Vari-
ableDef instance. There may be zero or one of these elements for each variable definition in a
valid dataset.
Returns

The Model instance is returned by reference.

See also

Model

4.29.4.20 const dstoute::aString& getName () const [inline]

This function provides access to the name attribute of the variableDef element represented
by this VariableDef instance. A variable’s name attribute is a string of arbitrary length,
but normally short. It is not used for indexing, and therefore need not be unique (although
uniqueness may aid both programmer and user), but should comply with the ANSI/AIAA
S-119-2011 standard [2] . If the instance has not been initialised from a DOM, an empty
string is returned.

Returns

The name string is returned by reference.

4.29.4.21 const double& getOutputScaleFactor () const [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during computation, accessing the output scale factor within a VariableDef instance
so that values that result from MathML computations can be appropriately scaled. The whole
concept of output scale factors is fraught with problems, and they should not be used unless
absolutely necessary.

Returns

The current multiplicative constant to be applied to this variable during computation of
its value is returned as a double precision number.

4.29.4.22 const Provenance& getProvenance () const [inline]

This function provides access to the Provenance instance associated with a VariableDef in-
stance. There may be zero or one of these elements for each variable definition in a valid
dataset, either provided directly or cross-referenced through a provenanceRef element.

UNCLASSIFIED 149

DST-Group–TN–1658

UNCLASSIFIED

Returns

The Provenance instance is returned by reference.

See also

Provenance

4.29.4.23 const dstoute::aString& getSign () const [inline]

This function provides access to the optional sign attribute of the variableDef represented
by this VariableDef instance. A variable’s sign attribute is a string of arbitrary length, but
normally short, describing the sign convention for the signal represented by the variable.
Typical values include "TED +ve" or "LWD +ve". If no sign convention is specified in the
XML dataset, or the VariableDef has not been initialised from the DOM, an empty string is
returned.
Returns

The sign string is returned by reference.

4.29.4.24 const aString & getStringValue ()

As an extension to the normal behaviour of a DAVE-ML gridded table, support has been
included for managing a table of strings in a similar manner to numeric tabular data. The
strings are accessed in the same way as a numeric tabular function. The array of strings may be
multi-dimensionsional, and its breakpoints in each dimension should be monotonic sequences
of integers (1, 2, 3, . . . n is a good choice), where the product of the breakpoint array lengths
equals the number of strings. The independent variables must lie within the ranges of their
corresponding breakpoints, and must be set to require “discrete’’ interpolation.

The strings can be delimited by any of: tab, newline, comma, semicolon. DO NOT start or
end the strings with excess whitespace.

Janus detects a string table by looking for non-numeric characters, so a table consisting entirely
of numeric data will never be detected as a string.

Returns

The required row of the string table, selected based on the current input state of the
parent Janus instance, is returned by reference.

4.29.4.25 const dstoute::aString& getSymbol () const [inline]

This function provides access to the optional symbol attribute of the variableDef represented
by this VariableDef instance. A variable’s symbol attribute contains a Unicode representation
of the symbol associated with a signal represented by the variable. A typical example might
be α associated with angle of attack. If no symbol is specified in the XML dataset, or the Vari-
ableDef has not been initialised from the DOM, a blank Unicode character is returned.

150 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The symbol Unicode character is returned by reference.

4.29.4.26 const VariableType& getType () const [inline]

A variable that is specified as an output, a function evaluation result, or a MathML function
should not normally have its value set directly by the calling program. This function allows
the caller to determine a variable’s status in this regard.

Returns

The VariableType is returned on successful completion.

4.29.4.27 Uncertainty& getUncertainty () [inline]

This function provides access to the Uncertainty instance associated with a VariableDef in-
stance. There may be zero or one uncertainty element for each variableDef in a valid data-
set. For variableDefs without uncertainty, the corresponding VariableDef instance includes an
empty Uncertainty instance.

Returns

The Uncertainty instance is returned by reference.

See also

Uncertainty

4.29.4.28 double getUncertaintyValue (const size_t & numSigmas)
[inline]

This function is used during run-time to evaluate the Gaussian uncertainty of the variable
associated with this VariableDef. It returns a value based on the current state of the Janus
instance. It supplements the major functionality of the Janus library. As well as returning the
requested value, it sets contributing values within the parent Janus instance and flags them
as valid. A variable with uniform uncertainty set, either directly or indirectly, will return a
Gaussian uncertainty of zero. A variable with no uncertainty set, either directly or indirectly,
will also return zero.
Returns

A double precision value containing the value of the Gaussian uncertainty after all rel-
evant computations based on the current input state of the parent Janus instance.

4.29.4.29 double getUncertaintyValue (const bool & isUpperBound)
[inline]

This function is used during run-time to evaluate the uniform uncertainty of the variable
associated with this VariableDef. It returns a value based on the current state of the Janus
instance. It supplements the major functionality of the Janus library. As well as returning the

UNCLASSIFIED 151

DST-Group–TN–1658

UNCLASSIFIED

requested value, it sets contributing values within the parent Janus instance and flags them
as valid. A variable with Gaussian uncertainty set, either directly or indirectly, will return a
uniform bound of zero. A variable with no uncertainty set, either directly or indirectly, will
also return zero.

Returns

A double precision value containing the value of the uniform uncertainty after all relevant
computations based on the current input state of the parent Janus instance.

4.29.4.30 const dstoute::aString& getUnits () const [inline]

This function provides access to the units attribute of the variableDef represented by this
VariableDef instance. A variable’s units attribute is a string of arbitrary length, but normally
short, and complying with the format requirements chosen by DST AD APS [7] in accordance
with SI and other systems. If the instance has not been initialised from a DOM, an empty
string is returned.

Returns

The units string is returned by reference.

4.29.4.31 double getValue () const

This function fulfils the basic purpose of the Janus class. It is used during run-time to evaluate
the variable associated with this VariableDef. It returns a value based on the current state
of the Janus instance, irrespective of variable type. It provides the major functionality of the
Janus library. As well as returning the requested value, it sets contributing values within the
parent Janus instance and flags them as valid.

Returns

A double precision value containing the value of the variable after all relevant computa-
tions based on the current input state of the parent Janus instance.

4.29.4.32 double getValueMetric () const

This function is an alternative to getValue. It is particularly useful for ensuring that all
variables used by a calling program are in consistent units.

With getValueMetric(), fluid volumes will be returned in litres and not m3.

152 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A double precision value containing the value of the variable expressed in Metric units
after all relevant computations based on the current input state of the parent Janus
instance.

4.29.4.33 double getValueSI () const

This function is an alternative to getValue. It is particularly useful for ensuring that all
variables used by a calling program are in consistent units.

Returns

A double precision value containing the value of the variable expressed in SI units after
all relevant computations based on the current input state of the parent Janus instance.

4.29.4.34 VariableDef::VariableFlag getVariableFlag () const

This function is deprecated. In new programs, the variable characteristics it describes should
be determined by direct interrogation of the related VariableDef instance. The function allows
the caller to determine a variable’s status in respect of the flags specified in VariableFlag.

Returns

A copy of the VariableFlag enum.

See also

VariableFlag

4.29.4.35 const dstoute::aString& getVarID () const [inline]

This function provides access to the varID attribute of the variableDef element represented
by this VariableDef instance. A variable’s varID attribute is normally a short string without
whitespace, such as "MACH02", that uniquely defines the variable. It is used for indexing
variables within an XML dataset, and provides underlying cross-references for most of the
Janus library functionality. If the instance has not been initialised from a DOM, an empty
string is returned.

Returns

The varID string is returned by reference.

4.29.4.36 const DVector & getVector ()

This function fulfils the basic purpose of the Janus class. It is used during run-time to evaluate
the variable associated with this VariableDef. It returns a data matrix based on the current
state of the Janus instance, irrespective of variable type. It provides the major functionality
of the Janus library. As well as returning the requested data values, it sets contributing values
within the parent Janus instance and flags them as valid.

UNCLASSIFIED 153

DST-Group–TN–1658

UNCLASSIFIED

Returns

A double precision vector (DVector) containing the values of the variable after all relevant
computations based on the current input state of the parent Janus instance.

4.29.4.37 const bool& hasDescendantsRefs () [inline]

This function indicates if this VariableDef instance has descendants.
Returns

A boolean variable of, ’true’ is returned if the variableDef has desendants.

4.29.4.38 const bool& hasDimension () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset includes either
dimensionDef or dimensionRef.

Returns

A boolean variable, ’true’ if the function includes a dimensionDef, defined either directly
or by reference.

See also

DimensionDef

4.29.4.39 const bool& hasProvenance () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset includes either
provenance or provenanceRef.

Returns

A boolean variable, ’true’ if the function includes a provenance, defined either directly
or by reference.

See also

Provenance

4.29.4.40 const bool& hasUncertainty () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset includes an
uncertainty child element. A variable described by a variableDef without an uncertainty ele-
ment may still have uncertainty, if it is dependent on other variables or tables with defined
uncertainty.

Returns

A boolean variable, ’true’ if a variable definition includes an uncertainty child element.

154 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

See also

Uncertainty

4.29.4.41 void initialiseDefinition (const DomFunctions::XmlNode &
elementDefinition, Janus ∗ janus)

An uninitialised instance of VariableDef is filled with data from a particular variableDef element
within a DOM by this function. If another variableDef element pointer is supplied to an
instance that has already been initialised, data corruption may occur.

Parameters

elementDefinition is an address of a variableDef component within the DOM.
janus is a pointer to the owning Janus instance, used within this class to set

up cross-references depending on the instance state.

4.29.4.42 const bool& isControl () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been form-
ally designated as a control for the represented model, using the isControl child element.

Returns

A boolean variable, ’true’ if a variable definition includes formal designation as a model
control.

4.29.4.43 const bool& isCurrent () [inline]

This function indicates to the calling function is the variable has been evaluated and its value
is current, or whether the variable needs to be re-evaluated.

4.29.4.44 const bool& isDisturbance () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been form-
ally designated as a disturbance to the represented model, using the isDisturbance child ele-
ment.
Returns

A boolean variable, ’true’ if a variable definition includes formal designation as a model
disturbance.

4.29.4.45 const bool& isInput () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been form-
ally designated as an input to the represented model, using the isInput child element.

UNCLASSIFIED 155

DST-Group–TN–1658

UNCLASSIFIED

Returns

A boolean variable, ’true’ if a variable definition includes formal designation as a model
input.

4.29.4.46 bool isMatrix ()

Returns true if the VariableDef is a matrix or vector.

4.29.4.47 const bool& isOutput () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been form-
ally designated as an output of the represented model, using the isOutput child element.

Returns

A boolean variable, ’true’ if a variable definition includes formal designation as a model
output.

4.29.4.48 const bool& isState () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been form-
ally designated as a state (i.e. the output of an integrator or a discrete time step computation)
of the represented model, using the isState child element. Model states need not be formally
designated as such.

Returns

A boolean variable, ’true’ if a variable definition includes formal designation as a model
state.

4.29.4.49 const bool& isStateDeriv () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been fomally
designated as a state derivative of the represented model, using the isStateDeriv child element.
State derivatives need not be formally designated as such.

Returns

A boolean variable, ’true’ if a variable definition includes formal designation as a model
state derivative.

4.29.4.50 const bool& isStdAIAA () const [inline]

This function indicates whether a variableDef element of a DAVE-ML dataset has been form-
ally designated, using the isStdAIAA child element, as complying with the AIAA standard
naming convention "Standard Simulation Variable Names", Annex 1 of "Standards for the
Exchange of Simulation Data". The name should be recognizable exterior to this class by

156 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

code complying with the standard. Variable names need be neither compliant with the AIAA
convention nor formally designated as such.

Returns

A boolean variable, ’true’ if a variable definition includes formal designation as compliant
with the AIAA standard naming convention.

4.29.4.51 bool isValue ()

Returns true if the VariableDef is a single double value.

4.29.4.52 bool isVector ()

Returns true if the VariableDef is a vector.

4.29.4.53 void setAncestorsRef (const std::vector< size_t > & ancestorsRef)
[inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during initialisation, setting up cross-references of ultimately contributing variables.
Use in other circumstances may result in data corruption.

Parameters

ancestorsRef is a vector of VariableDef indices within the Janus instance, computed by
Janus during the final stages of initialisation and passed to each
VariableDef for use during computation.

4.29.4.54 void setDescendantsRef (const std::vector< size_t > &
descendantsRef) [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during initialisation, setting up cross-references of ultimately dependent variables.
Use in other circumstances may result in data corruption.

Parameters

descendantsRef is a vector of variableDef indices within the Janus instance, computed by
Janus during the final stages of initialisation and passed to each
VariableDef instance for use during computation.

UNCLASSIFIED 157

DST-Group–TN–1658

UNCLASSIFIED

4.29.4.55 void setForced (bool isForced) [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance, maintaining consistency between variable condition flags as different input variables
are set and different output variables are computed. Use in other circumstances may result in
data corruption.

4.29.4.56 void setForceUseOfMatrixCode (bool useMatrixOps = true)
[inline]

This is used for speed test purposes only. DO NOT USE.

4.29.4.57 void setFunctionRef (const int & functionRef)

This function allows an external application to set the functionDef for the VariableDef instance.
It is used internally within the Janus instance and may be used by other programs during XML
dataset development.

Parameters

functionRef The index within the top-level Janus instance of a function instance upon
which this VariableDef instance depends.

4.29.4.58 void setHasUncertainty (const bool & hasUncertaintyArg)
[inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during initialisation, setting up a varaible’s Uncertainty based on the XML dataset
content. Use in other circumstances may result in data corruption.

Parameters

hasUncertaintyArg is a Boolean indication of the presence of an uncertainty element
associated with a variableDef in an XML dataset.

4.29.4.59 void setMathMLDependencies ()

The function should not be used by external programs. It is designed for use within a Janus
instance during initialisation, setting up MathML cross-references to variable elements defined
using the ’ci’ tag.

158 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.29.4.60 void setNotCurrent () [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance, maintaining consistency between variable condition flags as different input variables
are set and different output variables are computed. Use in other circumstances may result in
data corruption.

4.29.4.61 void setOutputScaleFactor (const double & factor) [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during computation, changing the output scale factor within a VariableDef instance
so that values that result from MathML computations can be appropriately scaled.

Care should be taken when using this function as use by an external program could result in
corruption of data.

Parameters

factor is a multiplicative constant to be applied to the computed value of this variable
during the computation process.

4.29.4.62 void setType (const VariableType & variableType) [inline]

This function is provided for use with the Carna store modelling library, which requires the
capability to reset a VariableDef type attribute.

Parameters

variableType the type enumeration defined for this variable definition

4.29.4.63 void setValue (const double & x, bool isForced = false)

This function provides the means to set the current value of the variable associated with
this VariableDef. It is the basic means permitting a calling program to pass an independent
variable’s state to a Janus instance prior to function evaluation. This function will throw a
standard exception if an attempt is made to modify the value of a variable that is specified in
the XML dataset as being evaluated by computation.

Parameters

x is the double precision scalar value, vector or matrix to which the current value
of the indexed variable will be set.

isForced a flag indicating whether to force the variable to be set to the value and thereby
override other flags detailing the state of a variable

UNCLASSIFIED 159

DST-Group–TN–1658

UNCLASSIFIED

4.29.4.64 void setValue (const dstomath::DVector & x, bool isForced = false
)

This function provides the means to set the current value of the variable associated with
this VariableDef. It is the basic means permitting a calling program to pass an independent
variable’s state to a Janus instance prior to function evaluation. This function will throw a
standard exception if an attempt is made to modify the value of a variable that is specified in
the XML dataset as being evaluated by computation.

Parameters

x is a vector of double precision values (DVector), to which this variable will be
set.

isForced a flag indicating whether to force the variable to be set to the value and thereby
override other flags detailing the state of a variable

4.29.4.65 void setValue (const dstomath::DMatrix & x, bool isForced = false
)

This function provides the means to set the current value of the variable associated with
this VariableDef. It is the basic means permitting a calling program to pass an independent
variable’s state to a Janus instance prior to function evaluation. This function will throw a
standard exception if an attempt is made to modify the value of a variable that is specified in
the XML dataset as being evaluated by computation.

Parameters

x is a matrix of double precision values (DMatrix), to which this variable will be
set.

isForced a flag indicating whether to force the variable to be set to the value and thereby
override other flags detailing the state of a variable

4.29.4.66 void setValueMetric (const double & xSI)

This function is an alternative to setValue. It will throw a standard exception if an attempt is
made to modify the value of a variable that is specified in the XML dataset as being evaluated
by computation.

With setValueMetric(), fluid volumes will be in litres and not m3.

Parameters

xSI is the double precision value, expressed in SI units, to which the current value of the
indexed variable will be set.

160 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

4.29.4.67 void setValueSI (const double & xSI)

This function is an alternative to setValue. It will throw a standard exception if an attempt is
made to modify the value of a variable that is specified in the XML dataset as being evaluated
by computation.

Parameters

xSI is the double precision value, expressed in SI units, to which the current value of the
indexed variable will be set.

4.29.4.68 void setVarIndex (const int & index) [inline]

This function should not be used by external programs. It is designed for use within a Janus
instance during initialisation, setting up the self-reference for each variable. This is neces-
sary for Gaussian correlation determination. Use in other circumstances will result in data
corruption.

Parameters

index is the offset of this VariableDef instance within the Janus instance, set during
initialisation and passed to each VariableDef instance for use during computation.

The documentation for this class was generated from the following files:

• VariableDef.h

• VariableDef.cpp

• VariableDefExprTkParseMathML.cpp

• VariableDefExprTkScript.cpp

• VariableDefLuaScript.cpp

4.30 XmlElementDefinition Class Reference

#include <XmlElementDefinition.h>

Inherited by Array, Author, Bounds, BreakpointDef, CheckData, DimensionDef, FileHeader,
Function, FunctionDefn, GriddedTableDef, InDependentVarDef, Janus, Model, Modification,
PropertyDef, Provenance, Reference, Signal, SignalList, StatespaceFn, StaticShot, TransferFn,
Uncertainty, UngriddedTableDef, and VariableDef.

UNCLASSIFIED 161

DST-Group–TN–1658

UNCLASSIFIED

4.30.1 Detailed Description

This file contains definitions of virtual functions that are used when instantiating a DAVE-
ML compliant XML file using Janus. The XmlElementDefinition class is inherited by base
element classes, such as FileHeader and VariableDef, which have specific versions of the virtual
functions. These function calls are accessed internally within Janus through the DomFunctions
class and permit abstraction of the process of interacting with the DOM. They do not provide a
capability to external applications to interact with the XML encoded data file or the associated
DOM.

The documentation for this class was generated from the following file:

• XmlElementDefinition.h

162 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5 File Documentation

This section briefly documents each of the files that make up the Janus API library, including
their dependencies on other external and Janus modules.

5.1 Array.cpp File Reference

#include <Ute/aString.h>
#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "JanusConstants.h"
#include "Array.h"

Namespaces

• janus

5.1.1 Detailed Description

An Array instance holds in its allocated memory alphanumeric data derived from an array
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.

It includes entries arranged as follows: Entries for a vector represent the row entries of that
vector. Entries for a matrix are specified such that the column entries of the first row are
listed followed by column entries for subsequent rows until the base matrix is complete. This
sequence is repeated for higher order matrix dimensions until all entries of the matrix are
specified.

The Array class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.2 Array.h File Reference

#include "XmlElementDefinition.h"
#include <Ute/aString.h>

Classes

• class Array

UNCLASSIFIED 163

DST-Group–TN–1658

UNCLASSIFIED

Namespaces

• janus

5.2.1 Detailed Description

An Array instance holds in its allocated memory alphanumeric data derived from an array
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.

It includes entries arranged as follows: Entries for a vector represent the row entries of that
vector. Entries for a matrix are specified such that the column entries of the first row are
listed followed by column entries for subsequent rows until the base matrix is complete. This
sequence is repeated for higher order matrix dimensions until all entries of the matrix are
specified.

The Array class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.3 Author.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "Author.h"

Namespaces

• janus

5.3.1 Detailed Description

An Author instance holds in its allocated memory alphanumeric data derived from an author
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance may describe an author of a complete dataset, or of a component of a dataset, or
of a modification to a dataset. Author contact details may be expressed in either address
or contactInfo forms. The contactInfo form is newer, more flexible and generally preferred.
The class also provides the functions that allow a calling Janus instance to access these data
elements.

The Author class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader, Modification or Provenance classes.

164 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.4 Author.h File Reference

#include <Ute/aString.h>
#include "XmlElementDefinition.h"

Classes

• class Author

Namespaces

• janus

5.4.1 Detailed Description

An Author instance holds in its allocated memory alphanumeric data derived from an author
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance may describe an author of a complete dataset, or of a component of a dataset, or
of a modification to a dataset. Author contact details may be expressed in either address
or contactInfo forms. The contactInfo form is newer, more flexible and generally preferred.
The class also provides the functions that allow a calling Janus instance to access these data
elements.

The Author class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader, Modification or Provenance classes.

5.5 Bounds.cpp File Reference

#include <Ute/aMath.h>
#include <Ute/aString.h>
#include <Ute/aMessageStream.h>
#include "Janus.h"
#include "DomFunctions.h"
#include "Bounds.h"
#include "VariableDef.h"
#include "Function.h"

Namespaces

• janus

UNCLASSIFIED 165

DST-Group–TN–1658

UNCLASSIFIED

5.5.1 Detailed Description

A Bounds instance holds in its allocated memory alphanumeric data derived from a bounds
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
element contains some description of the statistical limits to the values the citing parameter
element might take on. This can be in the form of a scalar value, a variableDef that provides
a functional definition of the bound, a variableRef that refers to such a functional definition,
or a private table whose elements correlate with those of a tabular function defining the citing
parameter. The class also provides the functions that allow a calling Janus instance to access
these data elements.

The Bounds class is only used within the janus namespace, and should only be referenced
indirectly through the Uncertainty class or through the variable functions within the Janus
class.

5.6 Bounds.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"

Classes

• class Bounds

Namespaces

• janus

5.6.1 Detailed Description

A Bounds instance holds in its allocated memory alphanumeric data derived from a bounds
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
element contains some description of the statistical limits to the values the citing parameter
element might take on. This can be in the form of a scalar value, a variableDef that provides
a functional definition of the bound, a variableRef that refers to such a functional definition,
or a private table whose elements correlate with those of a tabular function defining the citing
parameter. The class also provides the functions that allow a calling Janus instance to access
these data elements.

The Bounds class is only used within the janus namespace, and should only be referenced
indirectly through the Uncertainty class or through the variable functions within the Janus
class.

166 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.7 BreakpointDef.cpp File Reference

#include <Ute/aMessageStream.h>
#include "JanusConstants.h"
#include "DomFunctions.h"
#include "BreakpointDef.h"

Namespaces

• janus

5.7.1 Detailed Description

A BreakpointDef instance holds in its allocated memory alphanumeric data derived from
a breakpointDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes numeric break points for gridded tables, and associated alphanumeric
identification data.

A breakpointDef is where gridded table breakpoints are defined; that is, a set of independent
variable values associated with one dimension of a gridded table of data. An example would
be the Mach or angle-of-attack values that define the coordinates of each data point in a
two-dimensional coefficient value table. These are separate from function data, and thus they
may be reused. The independentVarPts element used within some DAVE-ML functionDefn
elements is equivalent to a breakpointDef element, and is also represented as a BreakpointDef
within Janus.

The BreakpointDef class is only used within the janus namespace, and should only be refer-
enced through the Janus class.

Janus exists to handle data for a modelling process. Therefore, in normal computational usage
it is unnecessary (and undesirable) for a calling program to be aware of the existence of this
class. However, functions do exist to access BreakpointDef contents directly, which may be
useful during dataset development.

5.8 BreakpointDef.h File Reference

#include <vector>
#include "XmlElementDefinition.h"

Classes

• class BreakpointDef

UNCLASSIFIED 167

DST-Group–TN–1658

UNCLASSIFIED

Namespaces

• janus

5.8.1 Detailed Description

A BreakpointDef instance holds in its allocated memory alphanumeric data derived from
a breakpointDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes numeric break points for gridded tables, and associated alphanumeric
identification data.

A breakpointDef is where gridded table breakpoints are defined; that is, a set of independent
variable values associated with one dimension of a gridded table of data. An example would
be the Mach or angle-of-attack values that define the coordinates of each data point in a
two-dimensional coefficient value table. These are separate from function data, and thus they
may be reused. The independentVarPts element used within some DAVE-ML functionDefn
elements is equivalent to a breakpointDef element, and is also represented as a BreakpointDef
within Janus.

The BreakpointDef class is only used within the janus namespace, and should only be refer-
enced through the Janus class.

Janus exists to handle data for a modelling process. Therefore, in normal computational usage
it is unnecessary (and undesirable) for a calling program to be aware of the existence of this
class. However, functions do exist to access BreakpointDef contents directly, which may be
useful during dataset development.

5.9 CheckData.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "CheckData.h"

Namespaces

• janus

5.9.1 Detailed Description

Check data is used for XML dataset content verification. A CheckData instance holds in its
allocated memory alphanumeric data derived from a checkData element of a DOM correspond-
ing to a DAVE-ML compliant XML dataset source file. It will include static check cases, trim

168 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

shots, and dynamic check case information. At present only static check cases are implemen-
ted, using staticShot children of the top-level checkData element. The functions within this
class provide access to the raw check data, as well as actually performing whatever checks may
be done on the dataset using the checkData.

The CheckData class is only used within the janus namespace, and should normally only be
referenced through the Janus class.

5.10 CheckData.h File Reference

#include <vector>
#include "XmlElementDefinition.h"
#include "Provenance.h"
#include "StaticShot.h"

Classes

• class CheckData

Namespaces

• janus

5.10.1 Detailed Description

Check data is used for XML dataset content verification. A CheckData instance holds in its
allocated memory alphanumeric data derived from a checkData element of a DOM correspond-
ing to a DAVE-ML compliant XML dataset source file. It will include static check cases, trim
shots, and dynamic check case information. At present only static check cases are implemen-
ted, using staticShot children of the top-level checkData element. The functions within this
class provide access to the raw check data, as well as actually performing whatever checks may
be done on the dataset using the checkData.

The CheckData class is only used within the janus namespace, and should normally only be
referenced through the Janus class.

5.11 CheckInputs.h File Reference

#include "SignalList.h"

UNCLASSIFIED 169

DST-Group–TN–1658

UNCLASSIFIED

Classes

• class CheckInputs

Namespaces

• janus

5.11.1 Detailed Description

A CheckInputs instance functions as a container for the Signal class through the use of the
Signals class. It provides the functions that allow a calling StaticShot instance to access the
signal elements that define the input values for a check case. A checkInputs element must
contain signal elements that include signalName and signalUnits elements.

The CheckInputs class is only used within the janus namespace, and should only be referenced
indirectly through the StaticShot class.

5.12 CheckOutputs.h File Reference

#include "SignalList.h"

Classes

• class CheckOutputs

Namespaces

• janus

5.12.1 Detailed Description

A CheckOutputs instance functions as a container for the Signal class through the use of the
Signals class. It provides the functions that allow a calling StaticShot instance to access the
signal elements that define the output values for a check case. A checkOutputs element must
contain signal elements that include signalName and signalUnits elements.

The CheckOutputs class is only used within the janus namespace, and should only be refer-
enced indirectly through the StaticShot class.

170 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.13 DimensionDef.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "DimensionDef.h"

Namespaces

• janus

5.13.1 Detailed Description

A DimensionDef instance holds in its allocated memory alphanumeric data derived from a
dimensionDef element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. It includes descriptive, alphanumeric identification and cross-reference data.

The DimensionDef class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.14 DimensionDef.h File Reference

#include <vector>
#include "XmlElementDefinition.h"
#include "DomFunctions.h"

Classes

• class DimensionDef

Namespaces

• janus

5.14.1 Detailed Description

A DimensionDef instance holds in its allocated memory alphanumeric data derived from a
dimensionDef element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. It includes descriptive, alphanumeric identification and cross-reference data.

UNCLASSIFIED 171

DST-Group–TN–1658

UNCLASSIFIED

The DimensionDef class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.15 DomFunctions.h File Reference

#include <cstring>
#include <stdexcept>
#include <sstream>
#include <Ute/aString.h>
#include <Ute/aMessageStream.h>
#include "JanusConstants.h"
#include "DomTypes.h"
#include "XmlElementDefinition.h"

5.15.1 Detailed Description

This class contains common functions for interacting with a Document Object Model (DOM)
containing data from a DAVE-ML compliant XML dataset source file.

5.16 DomTypes.h File Reference

#include <Ute/aList.h>
#include "pugixml.hpp"

5.16.1 Detailed Description

This class contains common types for interacting with a Document Object Model (DOM)
containing data from a DAVE-ML compliant XML dataset source file.

5.17 ElementDefinitionEnum.h File Reference

Namespaces

• janus

172 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.17.1 Detailed Description

This file contains enumeration parameters that are used when instantiating a DAVE-ML com-
pliant XML dataset source file from a Document Object Model (DOM).

5.18 ExportMathML.cpp File Reference

#include <iostream>
#include <Ute/aString.h>
#include "ElementDefinitionEnum.h"
#include "ExportMathML.h"
#include "VariableDef.h"
#include "Janus.h"

5.18.1 Detailed Description

This class contains functions for exporting mathematics procedures defined using the MathML
syntax to a DOM. Data detailing each MathML operation and is stored in a MathMLDataClass
structure. This includes the sub-elements to which the operator is to be applied. Functions
to process both scalar and matrix data are included.

5.19 ExportMathML.h File Reference

#include <Ute/aMap.h>
#include "DomTypes.h"

5.19.1 Detailed Description

This class contains functions for exporting mathematics procedures defined using the MathML
syntax to a DOM. Data detailing each MathML operation is stored in a MathMLDataClass
structure. This includes the sub-elements to which the operator is to be applied. Functions
to process both scalar and matrix data are included.

5.20 FileHeader.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "FileHeader.h"

UNCLASSIFIED 173

DST-Group–TN–1658

UNCLASSIFIED

Namespaces

• janus

5.20.1 Detailed Description

A FileHeader instance holds in its allocated memory alphanumeric data derived from the
fileHeader element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. There is always one FileHeader instance for each Janus instance. It requires at least one
author, a creation date and a version indicator; optional content are description, references
and modification records. The class also provides the functions that allow a calling Janus
instance to access these data elements.

The FileHeader class is only used within the janus namespace, and should only be referenced
indirectly through the Janus class.

5.21 FileHeader.h File Reference

#include <vector>
#include "XmlElementDefinition.h"
#include "Author.h"
#include "Provenance.h"
#include "Modification.h"
#include "Reference.h"

Classes

• class FileHeader

Namespaces

• janus

5.21.1 Detailed Description

A FileHeader instance holds in its allocated memory alphanumeric data derived from the
fileHeader element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. There is always one FileHeader instance for each Janus instance. It requires at least one
author, a creation date and a version indicator; optional content are description, references
and modification records. The class also provides the functions that allow a calling Janus
instance to access these data elements.

174 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

The FileHeader class is only used within the janus namespace, and should only be referenced
indirectly through the Janus class.

5.22 Function.cpp File Reference

#include "DomFunctions.h"
#include "Function.h"
#include "Janus.h"
#include <Ute/aMessageStream.h>

Namespaces

• janus

5.22.1 Detailed Description

A Function instance holds in its allocated memory alphanumeric data derived from a func-
tion element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
Each function has optional description, optional provenance, and either a simple input/output
values or references to more complete (possible multiple) input, output, and function data
elements.

The Function class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.23 Function.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"
#include "Provenance.h"
#include "GriddedTableDef.h"
#include "BreakpointDef.h"
#include "FunctionDefn.h"
#include "InDependentVarDef.h"

Classes

• class Function

UNCLASSIFIED 175

DST-Group–TN–1658

UNCLASSIFIED

Namespaces

• janus

5.23.1 Detailed Description

A Function instance holds in its allocated memory alphanumeric data derived from a func-
tion element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
Each function has optional description, optional provenance, and either a simple input/output
values or references to more complete (possible multiple) input, output, and function data
elements.

The Function class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.24 FunctionDefn.cpp File Reference

#include <stdexcept>
#include <sstream>
#include <iostream>
#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "FunctionDefn.h"
#include "Janus.h"

Namespaces

• janus

5.24.1 Detailed Description

A FunctionDefn instance holds in its allocated memory alphanumeric data derived from a
functionDefn element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. Each function stores function data elements.

The FunctionDefn class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.25 FunctionDefn.h File Reference

#include <Ute/aList.h>

176 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

#include "XmlElementDefinition.h"

Classes

• class FunctionDefn

Namespaces

• janus

5.25.1 Detailed Description

A FunctionDefn instance holds in its allocated memory alphanumeric data derived from a
functionDefn element of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. Each function stores function data elements.

The FunctionDefn class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.26 GetDescriptors.cpp File Reference

#include <Ute/aString.h>
#include "Janus.h"

Namespaces

• janus

5.26.1 Detailed Description

This code is used during interrogation of an instance the Janus class, and provides the calling
program access to the descriptive elements contained in a DOM that complies with the DAVE-
ML DTD.

In keeping with the data’s descriptive nature, most returns from these functions are strings,
although there are a few numerical values and an enum.

UNCLASSIFIED 177

DST-Group–TN–1658

UNCLASSIFIED

5.27 GriddedTableDef.cpp File Reference

#include <Ute/aMessageStream.h>
#include "Janus.h"
#include "JanusUtilities.h"
#include "DomFunctions.h"
#include "GriddedTableDef.h"
#include "BreakpointDef.h"

Namespaces

• janus

5.27.1 Detailed Description

A GriddedTableDef instance holds in its allocated memory alphanumeric data derived from
a griddedTableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes points arranged in an orthogonal, multi-dimensional array, where the
independent variable ranges are defined by separate breakpoint vectors. The table data point
values are specified as comma-separated values in floating-point notation (0.93638E-06) in
a single long sequence as if the table had been unravelled with the last-specified dimension
changing most rapidly. Gridded tables in DAVE-ML and Janus are stored in row-major
order, as in C/C++ (Fortran, Matlab and Octave use column-major order). Line breaks and
comments in the XML are ignored. Associated alphanumeric identification and cross-reference
data are also included in the instance.

NOTE: The confidenceBound entry of the griddedTable element is not supported, as it is
expected to be deprecated in future version of the DAVE-ML syntax language document type
definition.

5.28 GriddedTableDef.h File Reference

#include <Ute/aList.h>
#include <Ute/aString.h>
#include "XmlElementDefinition.h"
#include "Provenance.h"
#include "Uncertainty.h"

Classes

• class GriddedTableDef

178 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Namespaces

• janus

5.28.1 Detailed Description

A GriddedTableDef instance holds in its allocated memory alphanumeric data derived from
a griddedTableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes points arranged in an orthogonal, multi-dimensional array, where the
independent variable ranges are defined by separate breakpoint vectors. The table data point
values are specified as comma-separated values in floating-point notation (0.93638E-06) in
a single long sequence as if the table had been unravelled with the last-specified dimension
changing most rapidly. Gridded tables in DAVE-ML and Janus are stored in row-major
order, as in C/C++ (Fortran, Matlab and Octave use column-major order). Line breaks and
comments in the XML are ignored. Associated alphanumeric identification and cross-reference
data are also included in the instance.

NOTE: The confidenceBound entry of the griddedTable element is not supported, as it is
expected to be deprecated in future version of the DAVE-ML syntax language document type
definition.

5.29 InDependentVarDef.cpp File Reference

#include "JanusConstants.h"
#include "DomFunctions.h"
#include "InDependentVarDef.h"
#include <cfloat>
#include <Ute/aBiMap.h>
#include <Ute/aMessageStream.h>
#include <Ute/aMath.h>

Namespaces

• janus

5.29.1 Detailed Description

This code is used during initialisation of the Janus class, and provides access to the In-
Dependent variable definitions contained in a DOM that complies with the DAVE-ML DTD.

A breakpointDef is where gridded table breakpoints are given. Since these are separate from
function data, they may be reused.

UNCLASSIFIED 179

DST-Group–TN–1658

UNCLASSIFIED

bpVals is a set of breakpoints; that is, a set of independent variable values associated with
one dimension of a gridded table of data. An example would be the Mach or angle-of-attack
values that define the coordinates of each data point in a two-dimensional coefficient value
table.

5.30 InDependentVarDef.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"

Classes

• class InDependentVarDef

Namespaces

• janus

5.30.1 Detailed Description

This code is used during initialisation of the Janus class, and provides access to the InDepend-
ent variable definitions contained in a DOM that complies with the DAVE-ML DTD.

A breakpointDef is where gridded table breakpoints are given. Since these are separate from
function data, they may be reused.

bpVals is a set of breakpoints; that is, a set of independent variable values associated with
one dimension of a gridded table of data. An example would be the Mach or angle-of-attack
values that define the coordinates of each data point in a two-dimensional coefficient value
table.

5.31 InternalValues.h File Reference

#include "SignalList.h"

Classes

• class InternalValues

180 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Namespaces

• janus

5.31.1 Detailed Description

An InternalValues instance functions as a container for the Signal class, and provides the
functions that allow a calling StaticShot instance to access the signal elements that define the
internal values for a check case. A internalValues element must contain signal elements that
include varID (signalID is deprecated) elements.

The InternalValues class is only used within the janus namespace, and should only be refer-
enced indirectly through the StaticShot class.

5.32 Janus.cpp File Reference

#include <iostream>
#include <cstdio>
#include <sstream>
#include <stdexcept>
#include "DomFunctions.h"
#include "Janus.h"
#include <Ute/aMessageStream.h>
#include <Ute/aString.h>
#include <Ute/aFile.h>
#include <Ute/aMath.h>
#include <Ute/aCrypt.h>

Namespaces

• janus

5.32.1 Detailed Description

Janus performs XML initialisation the pugiXML parser loading the supplied XML file or
data buffer a DOM structure. It holds the data structure and accesses it on request, doing
interpolation or other computation as required for output. It cleans up on termination.

This header defines all the elements required to use the XML dataset for flight modelling, and
should be included in any source code intended to activate an instance of the Janus class.

UNCLASSIFIED 181

DST-Group–TN–1658

UNCLASSIFIED

5.33 Janus.h File Reference

#include <stdexcept>
#include <vector>
#include <Ute/aString.h>
#include <Ute/aMessageStream.h>
#include "JanusConfig.h"
#include "JanusConstants.h"
#include "XmlElementDefinition.h"
#include "FileHeader.h"
#include "VariableDef.h"
#include "PropertyDef.h"
#include "BreakpointDef.h"
#include "GriddedTableDef.h"
#include "UngriddedTableDef.h"
#include "Function.h"
#include "CheckData.h"
#include "Author.h"
#include "Reference.h"
#include "Provenance.h"
#include "Modification.h"
#include "Uncertainty.h"

Classes

• class Janus

Namespaces

• janus

5.33.1 Detailed Description

Janus performs XML initialisation the pugiXML parser loading the supplied XML file or
data buffer a DOM structure. It holds the data structure and accesses it on request, doing
interpolation or other computation as required for output. It cleans up on termination.

This header defines all the elements required to use the XML dataset for flight modelling, and
should be included in any source code intended to activate an instance of the Janus class.

182 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.34 JanusDeprecated.cpp File Reference

#include "Janus.h"

Namespaces

• janus

5.34.1 Detailed Description

Janus performs XML initialisation the pugiXML parser loading the supplied XML file or
data buffer a DOM structure. It holds the data structure and accesses it on request, doing
interpolation or other computation as required for output. It cleans up on termination.

This header defines all the function definitions that were deprecated when Janus was restruc-
tured using C++ classes to manage elements defined in within the XML dataset.

These function should not be used in new programs. They are retained to retained legacy
code support.

5.35 JanusDeprecated.h File Reference

Enumerations

Functions

• int applyOutputScaleFactorByIndex (size_t index, const double &factor)

• int applyOutputScaleFactorByVarID (const char ∗varID, const double &factor)

• double getCorrelationCoefficient (size_t index, size_t indx1, size_t indx2)

• double getCorrelationCoefficient (size_t indx1, size_t indx2)

• const char ∗ getFunctionDefinitionName (size_t index) const

• const char ∗ getFunctionDescription (size_t index) const

• const char ∗ getFunctionName (size_t index) const

• dstoute::aString getHeaderName ()

• const char ∗ getIndependentVariableAxisSystem (size_t indexf, size_t indexv) const

• double getIndependentVariableByIndex (const size_t &indexf, const size_t &indexv)

• const char ∗ getIndependentVariableDescription (size_t indexf, size_t indexv) const

• janus::ExtrapolateMethod getIndependentVariableExtrapolation (size_t indexf, size_t
indexv)

• const char ∗ getIndependentVariableID (size_t indexf, size_t indexv) const

UNCLASSIFIED 183

DST-Group–TN–1658

UNCLASSIFIED

• int getIndependentVariableIndex (size_t indexf, const char ∗varID) const

• janus::InterpolateMethod getIndependentVariableInterpolation (const size_t &indexf,
const size_t &indexv)

• const char ∗ getIndependentVariableName (size_t indexf, size_t indexv) const

• int getIndependentVariableOrder (const size_t &indexf, const size_t &indexv) const

• const Provenance & getIndependentVariableProvenance (size_t indexf, size_t indexv)
const

• VariableDef::VariableType getIndependentVariableType (const size_t &indexf, const
size_t &indexv) const

• double getIndependentVariableUncertainty (const size_t &indexf, const size_t &indexv,
const size_t &numSigmas)

• double getIndependentVariableUncertainty (const size_t &indexf, const size_t &indexv,
const bool &isUpperBound)

• const char ∗ getIndependentVariableUnits (size_t indexf, size_t indexv) const

• int getNumberOfFunctions () const

• int getNumberOfHeaderProvenances ()

• int getNumberOfIndependentVariables (size_t index) const

• int getNumberOfOutputs () const

• int getNumberOfProvenanceComponents (const char ∗parentID, size_t index, enum
ProvenanceAttribute provenanceAttribute)

• int getNumberOfVariableCorrelations (size_t index)

• size_t getNumberOfVariables () const

• int getNumberOfXmlFileAuthorAddresses (size_t authorNumber)

• int getNumberOfXmlFileAuthorContacts (size_t authorNumber)

• int getNumberOfXmlFileAuthors ()

• int getNumberOfXmlFileModificationAuthorAddresses (size_t index, size_t author)

• int getNumberOfXmlFileModificationAuthorContacts (size_t index, size_t author)

• int getNumberOfXmlFileModificationAuthors (size_t index)

• double getOutputScaleFactorByIndex (size_t index) const

• double getOutputScaleFactorByVarID (const char ∗varID)

• double getOutputVariable (size_t index)

• const char ∗ getOutputVariable (size_t index, int)

• const char ∗ getOutputVariableAxisSystem (size_t index) const

• double getOutputVariableByVarID (const char ∗varID)

• const char ∗ getOutputVariableDescription (size_t index) const

• const char ∗ getOutputVariableID (size_t index) const

• int getOutputVariableIndex (const char ∗varID)

• const char ∗ getOutputVariableName (size_t index) const

184 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

• const Provenance & getOutputVariableProvenance (size_t index) const

• VariableDef::VariableType getOutputVariableType (size_t index) const

• double getOutputVariableUncertainty (size_t index, size_t numSigmas)

• double getOutputVariableUncertainty (size_t index, bool isUpperBound)

• const char ∗ getOutputVariableUnits (size_t index) const

• const char ∗ getProvenance (const char ∗parentID, size_t index, enum ProvenanceAt-
tribute provenanceAttribute, enum AuthorAttribute authorAttribute, size_t authorCon-
tactIndex, size_t componentIndex)

• const char ∗ getVariableAxisSystem (size_t index) const

• double getVariableByIndex (size_t index)

• double getVariableByVarID (const char ∗varID)

• const char ∗ getVariableDescription (size_t index) const

• VariableDef::VariableFlag getVariableFlag (size_t index) const

• const char ∗ getVariableID (size_t index) const

• const char ∗ getVariableName (size_t index) const

• VariableDef::VariableType getVariableType (size_t index) const

• double getVariableUncertainty (size_t index, size_t numSigmas)

• double getVariableUncertainty (size_t index, bool isUpperBound)

• const char ∗ getVariableUnits (size_t index) const

• const char ∗ getXmlFileAuthor (size_t authorNumber, AuthorAttribute authorAttrib-
ute, size_t addressNumber=0)

• const char ∗ getXmlFileCreationDate ()

• const char ∗ getXmlFileDescription ()

• const char ∗ getXmlFileModification (size_t index, ModificationAttribute modification-
Attribute, size_t authorNumber=0, size_t addressNumber=0)

• int getXmlFileModificationCount ()

• int getXmlFileModificationExtraDocCount (size_t index)

• const char ∗ getXmlFileModificationExtraDocRefID (size_t index, size_t indxRef)

• const char ∗ getXmlFileReference (size_t index, ReferenceAttribute referenceAttribute)

• int getXmlFileReferenceCount ()

• int getXmlFileReferenceIndex (const char ∗refID)

• const char ∗ getXmlFileVersion ()

• int setIndependentVariableByIndex (size_t indexf, size_t indexv, const double &x)

• int setRsaKeyFileName (const char ∗fileName, const RsaKeyType keyType)

• int setVariableByID (const char ∗varID, const double &x)

• int setVariableByIndex (size_t index, const double &x)

UNCLASSIFIED 185

DST-Group–TN–1658

UNCLASSIFIED

5.35.1 Detailed Description

Janus performs XML initialisation the pugiXML parser loading the supplied XML file or
data buffer a DOM structure. It holds the data structure and accesses it on request, doing
interpolation or other computation as required for output. It cleans up on termination.

This header defines all the function definitions that were deprecated when Janus was restruc-
tured using C++ classes to manage elements defined in within the XML dataset.

These function should not be used in new programs. They are retained to maintain legacy
code support.

5.36 LinearInterpolation.cpp File Reference

#include <Ute/aMath.h>
#include "InDependentVarDef.h"
#include "Janus.h"

Namespaces

• janus

5.36.1 Detailed Description

This private function performs interpolations when all the degrees of freedom for a function are
specified as linear or first order polynomial, or for the default condition when interpolationType
is not specified.

Given 2∧n uniformly gridded values of a function of n variables, provided to the instance of
the class by either setVariableByIndex or setVariableByID, this private function is called
by getOutputVariable to perform a multi-linear interpolation between the values and returns
the result. It maintains continuity of function across the grid, but not of derivatives of the
function. NB if the fractions based on the grid direction variables are outside the range 0.0 ->
1.0 this function can perform an extrapolation, controlled by the ‘extrapolate’ attribute, with
possibly dubious results depending on the shape of the represented function.

5.37 MathMLDataClass.cpp File Reference

#include <iostream>
#include "Janus.h"
#include "MathMLDataClass.h"
#include "VariableDef.h"

186 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.37.1 Detailed Description

This file defines the data structure used for interpreting MathML mathematics procedures.The
data include a tag defining the MathML element, a list of children associated with the MathML
element, and call-backs to functions to evaluate the element.

5.38 MathMLDataClass.h File Reference

#include <Ute/aList.h>
#include <Ute/aMatrix.h>
#include "SolveMathML.h"

Classes

• struct MathMLData

Namespaces

• janus

Enumerations

Variables

• const double EXPONENTIALE = 2.71828182845905

5.38.1 Detailed Description

This file defines the data structure used for interpreting MathML mathematics procedures.The
data include a tag defining the MathML element, a list of children associated with the MathML
element, and call-backs to functions to evaluate the element.

5.38.2 Enumeration Type Documentation

5.38.2.1 enum MathRetType

The MathRetType enumeration is used to flag the type of argument returned from a mathem-
atical operation. The type is based on the W3C MathML recommendations document. At
present only Real and Boolean types are handled.

UNCLASSIFIED 187

DST-Group–TN–1658

UNCLASSIFIED

5.38.3 Variable Documentation

5.38.3.1 const double EXPONENTIALE = 2.71828182845905

A MathMLDataClass instance holds in its allocated memory alphanumeric data derived from
MathML elements of a DOM corresponding to a DAVE-ML compliant XML dataset source
file. The data may include tags defining the MathML element and its attributes, a list of
children associated with the MathML element, and call-backs to functions to evaluate the
element.

The MathMLDataClass class is only used within the Janus.

5.39 Modification.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "Modification.h"

Namespaces

• janus

5.39.1 Detailed Description

A Modification instance holds in its allocated memory alphanumeric data derived from a
modificationRecord element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. The instance describes the author and content of a modification to a dataset.
A modificationRecord associates a single letter (such as modification "A") with modification
author(s), address, and any optional external reference documents, in keeping with the AIAA
draft standard. The class also provides the functions that allow a calling Janus instance to
access these data elements.

The Modification class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader class.

5.40 Modification.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"
#include "Author.h"

188 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Classes

• class Modification

Namespaces

• janus

5.40.1 Detailed Description

A Modification instance holds in its allocated memory alphanumeric data derived from a
modificationRecord element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. The instance describes the author and content of a modification to a dataset.
A modificationRecord associates a single letter (such as modification "A") with modification
author(s), address, and any optional external reference documents, in keeping with the AIAA
draft standard. The class also provides the functions that allow a calling Janus instance to
access these data elements.

The Modification class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader class.

5.41 ParseMathML.cpp File Reference

#include <iostream>
#include <Ute/aMath.h>
#include <Ute/aMessageStream.h>
#include <Ute/aString.h>
#include "ElementDefinitionEnum.h"
#include "ParseMathML.h"
#include "VariableDef.h"
#include "Janus.h"

5.41.1 Detailed Description

This class contains functions for parsing mathematics procedures defined using the MathML
syntax. Data detailing each MathML operation and is stored in a MathMLDataClass structure.
This includes the sub-elements to which the operator is to be applied. Functions to process
both scalar and matrix data are included.

UNCLASSIFIED 189

DST-Group–TN–1658

UNCLASSIFIED

5.42 ParseMathML.h File Reference

#include <Ute/aMap.h>
#include <Ute/aString.h>
#include "DomTypes.h"

5.42.1 Detailed Description

This class contains functions for parsing mathematics procedures defined using the MathML
syntax. Data detailing each MathML operation is stored in a MathMLDataClass structure.
This includes the sub-elements to which the operator is to be applied. Functions to process
both scalar and matrix data are included.

5.43 PolyInterpolation.cpp File Reference

#include <stdexcept>
#include <sstream>
#include <Ute/aMessageStream.h>
#include "InDependentVarDef.h"
#include "Janus.h"

Namespaces

• janus

5.43.1 Detailed Description

This private function performs interpolations when not all the degrees of freedom for a function
are specified as linear or first order polynomial.

If the interpolation order in the ith degree of freedom is ki, then given Πn
1 (ki + 1) uniformly

gridded values of a function of n variables, provided to the instance of the class by either
setVariableByIndex() or setVariableByID(), this private function is called by getOutputVari-
able() to perform a multi-dimensional polynomial interpolation between the values and returns
the result. At present the maximum polynomial order is limited to 3. The interpolation main-
tains continuity of function across the grid, but not of derivatives of the function.

{Note}: this function can perform an extrapolation, which is controlled by the extrapolate
attribute, but polynomial extrapolation is notoriously inaccurate and unstable and should not
be relied on by users wanting to maintain modelling fidelity.

190 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.44 Provenance.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "Provenance.h"

Namespaces

• janus

5.44.1 Detailed Description

A Provenance instance holds in its allocated memory alphanumeric data derived from a proven-
ance element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
Provenances may apply to a complete dataset or to individual components within a data-
set. Not all provenances will contain all possible provenance components. The Provenance
instance also provides the functions that allow a calling Janus instance to access these data
elements.

The Provenance class is only used within the janus namespace, and should only be refer-
enced indirectly through the FileHeader, VariableDef, GriddedTableDef, UngriddedTableDef,
Function or CheckData classes.

5.45 Provenance.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"
#include "Author.h"

Classes

• class Provenance

Namespaces

• janus

UNCLASSIFIED 191

DST-Group–TN–1658

UNCLASSIFIED

5.45.1 Detailed Description

A Provenance instance holds in its allocated memory alphanumeric data derived from a proven-
ance element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
Provenances may apply to a complete dataset or to individual components within a data-
set. Not all provenances will contain all possible provenance components. The Provenance
instance also provides the functions that allow a calling Janus instance to access these data
elements.

The Provenance class is only used within the janus namespace, and should only be refer-
enced indirectly through the FileHeader, VariableDef, GriddedTableDef, UngriddedTableDef,
Function or CheckData classes.

5.46 Reference.cpp File Reference

#include "DomFunctions.h"
#include "Reference.h"

Namespaces

• janus

5.46.1 Detailed Description

A Reference instance holds in its allocated memory alphanumeric data derived from a reference
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance describes an external document relevant to the dataset. The class also provides the
functions that allow a calling Janus instance to access these data elements.

The Reference class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader class.

5.47 Reference.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"

Classes

• class Reference

192 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Namespaces

• janus

5.47.1 Detailed Description

A Reference instance holds in its allocated memory alphanumeric data derived from a reference
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance describes an external document relevant to the dataset. The class also provides the
functions that allow a calling Janus instance to access these data elements.

The Reference class is only used within the janus namespace, and should only be referenced
indirectly through the FileHeader class.

5.48 Signal.cpp File Reference

#include <Ute/aMessageStream.h>
#include <Ute/aMath.h>
#include "DomFunctions.h"
#include "Signal.h"

Namespaces

• janus

5.48.1 Detailed Description

A Signal instance holds in its allocated memory alphanumeric data derived from a signal
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance may describe inputs, internal values of a computation, or outputs. The class also
provides the functions that allow a calling StaticShot instance to access these data elements. It
is used to document the name, ID, value, tolerance, and units of measure for checkcases.

A signal must have signalName and signalUnits if it is a child of checkInputs or checkOutputs.
Alternatively, if it is a child of internalValues, it must have a varID (signalID is deprecated).
When used in a checkOutputs vector, the tol element must be present. Tolerance is specified
as a maximum absolute difference between the expected and actual value. This class accepts
whichever of these children it finds in the XML dataset, and leaves applicability to its parents
to sort out.

The Signal class is only used within the janus namespace, and should only be referenced
indirectly through the StaticShot, CheckInputs, InternalValues and CheckOutputs classes.

UNCLASSIFIED 193

DST-Group–TN–1658

UNCLASSIFIED

5.49 Signal.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"

Classes

• class Signal

Namespaces

• janus

5.49.1 Detailed Description

A Signal instance holds in its allocated memory alphanumeric data derived from a signal
element of a DOM corresponding to a DAVE-ML compliant XML dataset source file. The
instance may describe inputs, internal values of a computation, or outputs. The class also
provides the functions that allow a calling StaticShot instance to access these data elements. It
is used to document the name, ID, value, tolerance, and units of measure for checkcases.

A signal must have signalName and signalUnits if it is a child of checkInputs or checkOutputs.
Alternatively, if it is a child of internalValues, it must have a varID (signalID is deprecated).
When used in a checkOutputs vector, the tol element must be present. Tolerance is specified
as a maximum absolute difference between the expected and actual value. This class accepts
whichever of these children it finds in the XML dataset, and leaves applicability to its parents
to sort out.

The Signal class is only used within the janus namespace, and should only be referenced
indirectly through the StaticShot, CheckInputs, InternalValues and CheckOutputs classes.

5.50 SignalList.cpp File Reference

#include <Ute/aMessageStream.h>
#include "DomFunctions.h"
#include "SignalList.h"

Namespaces

• janus

194 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.50.1 Detailed Description

A SignalList instance functions as a container for the Signal class, and provides the functions
that allow a calling StaticShot instance to access the signal elements that define either the
input or output values for a check case. A signalList element contains a list of signal elements,
that include signalName, signalUnits, signalValue elements. An optional tol element may be
included.

The SignalList class is only used within the janus namespace, and is inherited by the CheckIn-
puts and CheckOutputs classes. It should only be referenced indirectly through the StaticShot
class.

5.51 SignalList.h File Reference

#include <vector>
#include "XmlElementDefinition.h"
#include "Signal.h"

Classes

• class SignalList

Namespaces

• janus

5.51.1 Detailed Description

A SignalList instance functions as a container for the Signal class, and provides the functions
that allow a calling StaticShot instance to access the signal elements that define either the
input or output values for a check case. A signalList element contains a list of signal elements,
that include signalName, signalUnits, signalValue elements. An optional tol element may be
included.

The SignalList class is only used within the janus namespace, and is inherited by the CheckIn-
puts and CheckOutputs classes. It should only be referenced indirectly through the StaticShot
class.

5.52 SolveMathML.cpp File Reference

#include <iostream>

UNCLASSIFIED 195

DST-Group–TN–1658

UNCLASSIFIED

#include "MathMLDataClass.h"
#include "SolveMathML.h"
#include "VariableDef.h"
#include <Ute/aMath.h>
#include <Ute/aMatrix.h>

5.52.1 Detailed Description

This class contains functions for solving mathematics procedures defined using the MathML
syntax. Data detailing each MathML operation and is stored in a MathMLData structure.
This includes the sub-elements to which the operator is to be applied. Functions to process
both scalar and matrix data are included.

5.53 SolveMathML.h File Reference

#include <Ute/aMap.h>
#include <Ute/aString.h>

5.53.1 Detailed Description

This class contains functions for solving mathematics procedures defined using the MathML
syntax. Data detailing each MathML operation is stored in a MathMLDataClass structure.
This includes the sub-elements to which the operator is to be applied. Functions to process
both scalar and matrix data are included.

5.54 StaticShot.cpp File Reference

#include <stdexcept>
#include <sstream>
#include <iostream>
#include <Ute/aMessageStream.h>
#include <Ute/aUnits.h>
#include "DomFunctions.h"
#include "StaticShot.h"
#include "Janus.h"

Namespaces

• janus

196 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.54.1 Detailed Description

A StaticShot instance holds in its allocated memory alphanumeric data derived from a stat-
icShot element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
The instance describes the inputs and outputs, and possibly internal values, of a DAVE-ML
model at a particular instant in time. The class also provides the functions that allow a calling
Janus instance to access these data elements.

The StaticShot class is only used within the janus namespace, and should only be referenced
indirectly through the CheckData class.

5.55 StaticShot.h File Reference

#include <Ute/aList.h>
#include "XmlElementDefinition.h"
#include "Provenance.h"
#include "CheckInputs.h"
#include "InternalValues.h"
#include "CheckOutputs.h"

Classes

• class StaticShot

Namespaces

• janus

5.55.1 Detailed Description

A StaticShot instance holds in its allocated memory alphanumeric data derived from a stat-
icShot element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
The instance describes the inputs and outputs, and possibly internal values, of a DAVE-ML
model at a particular instant in time. The class also provides the functions that allow a calling
Janus instance to access these data elements.

The StaticShot class is only used within the janus namespace, and should only be referenced
indirectly through the CheckData class.

5.56 Uncertainty.cpp File Reference

#include <Ute/aBiMap.h>

UNCLASSIFIED 197

DST-Group–TN–1658

UNCLASSIFIED

#include <Ute/aMessageStream.h>
#include <Ute/aMath.h>
#include "Janus.h"
#include "DomFunctions.h"
#include "Uncertainty.h"

Namespaces

• janus

5.56.1 Detailed Description

A Uncertainty instance holds in its allocated memory alphanumeric data derived from a un-
certainty element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
The element is used in function and parameter definitions to describe statistical variance in
the possible value of that function or parameter value. Only Gaussian (normal) or uniform dis-
tributions of continuous random variable distribution functions are supported. The class also
provides the functions that allow a calling Janus instance to access these data elements.

The Uncertainty class is only used within the janus namespace, and should only be referenced
indirectly through the Janus class.

5.57 Uncertainty.h File Reference

#include <utility>
#include <Ute/aList.h>
#include <Ute/aString.h>
#include "XmlElementDefinition.h"
#include "Bounds.h"

Classes

• class Uncertainty

Namespaces

• janus

198 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

5.57.1 Detailed Description

A Uncertainty instance holds in its allocated memory alphanumeric data derived from a un-
certainty element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
The element is used in function and parameter definitions to describe statistical variance in
the possible value of that function or parameter value. Only Gaussian (normal) or uniform dis-
tributions of continuous random variable distribution functions are supported. The class also
provides the functions that allow a calling Janus instance to access these data elements.

The Uncertainty class is only used within the janus namespace, and should only be referenced
indirectly through the Janus class.

5.58 UngriddedInterpolation.cpp File Reference

#include <utility>
#include <algorithm>
#include <Ute/aMath.h>
#include <Ute/aMatrix.h>
#include "InDependentVarDef.h"
#include "Janus.h"

Namespaces

• janus

5.58.1 Detailed Description

This file contains private functions to perform linear interpolations on ungridded datasets. It is
called by getOutputVariable to perform a multi-linear interpolation between the values and
returns the result. It maintains continuity of function across the dataset, but not of derivatives
of the function.

UNCLASSIFIED 199

DST-Group–TN–1658

UNCLASSIFIED

5.59 UngriddedTableDef.cpp File Reference

#include <cstdio>
#include <Ute/aMessageStream.h>
#include "Janus.h"
#include "DomFunctions.h"
#include "UngriddedTableDef.h"
#include "BreakpointDef.h"
#include <libqhull/libqhull.h>
#include <libqhull/mem.h>
#include <libqhull/qset.h>
#include <libqhull/geom.h>
#include <libqhull/merge.h>
#include <libqhull/poly.h>
#include <libqhull/io.h>
#include <libqhull/stat.h>

Namespaces

• janus

5.59.1 Detailed Description

A UngriddedTableDef instance holds in its allocated memory alphanumeric data derived from
a ungriddedTableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes points that are not in an orthogonal grid pattern; thus, the independ-
ent variable coordinates are specified for each dependent variable value. The table data point
values are specified as comma-separated values in floating-point notation. Associated alpha-
numeric identification and cross-reference data are also included in the instance.

The UngriddedTableDef class is only used within the janus namespace, and should only be
referenced through the Janus class.

5.60 UngriddedTableDef.h File Reference

#include <utility>
#include "Provenance.h"
#include "Uncertainty.h"
#include <Ute/aMatrix.h>
#include <Ute/aString.h>

200 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Classes

• class UngriddedTableDef

Namespaces

• janus

5.60.1 Detailed Description

A UngriddedTableDef instance holds in its allocated memory alphanumeric data derived from
a ungriddedTableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset
source file. It includes points that are not in an orthogonal grid pattern; thus, the independ-
ent variable coordinates are specified for each dependent variable value. The table data point
values are specified as comma-separated values in floating-point notation. Associated alpha-
numeric identification and cross-reference data are also included in the instance.

The UngriddedTableDef class is only used within the janus namespace, and should only be
referenced through the Janus class.

5.61 VariableDef.cpp File Reference

#include <algorithm>
#include <tr1/functional>
#include <Ute/aMessageStream.h>
#include <Ute/aString.h>
#include <Ute/aMath.h>
#include "Janus.h"
#include "DomFunctions.h"
#include "VariableDef.h"
#include "ParseMathML.h"
#include "SolveMathML.h"
#include "ExportMathML.h"

Namespaces

• janus

UNCLASSIFIED 201

DST-Group–TN–1658

UNCLASSIFIED

5.61.1 Detailed Description

A VariableDef instance holds in its allocated memory alphanumeric data derived from a vari-
ableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
It includes descriptive, alphanumeric identification and cross-reference data, and may include
a calculation process tree for variables computed through MathML. The variable definition
can include statistical information regarding the uncertainty of the values that it might take
on, when measured after any calculation is performed. This class sets up a structure which
manages the variableDef content.

The VariableDef class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.62 VariableDef.h File Reference

#include <Ute/aMatrix.h>
#include <Ute/aUnits.h>
#include "XmlElementDefinition.h"
#include "DimensionDef.h"
#include "Array.h"
#include "Model.h"
#include "Provenance.h"
#include "Uncertainty.h"
#include "Function.h"
#include "MathMLDataClass.h"

Classes

• class VariableDef

Namespaces

• janus

5.62.1 Detailed Description

A VariableDef instance holds in its allocated memory alphanumeric data derived from a vari-
ableDef element of a DOM corresponding to a DAVE-ML compliant XML dataset source file.
It includes descriptive, alphanumeric identification and cross-reference data, and may include
a calculation process tree for variables computed through MathML. The variable definition
can include statistical information regarding the uncertainty of the values that it might take

202 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

on, when measured after any calculation is performed. This class sets up a structure that
manages the variableDef content.

The VariableDef class is only used within the janus namespace, and should only be referenced
through the Janus class.

5.63 XmlElementDefinition.h File Reference

#include <Ute/aString.h>
#include "ElementDefinitionEnum.h"
#include "DomTypes.h"

Classes

• class XmlElementDefinition

Namespaces

• janus

5.63.1 Detailed Description

This file contains definitions of virtual functions that are used when instantiating a DAVE-
ML compliant XML file using Janus. The XmlElementDefinition class is inherited by base
element classes, such as FileHeader and VariableDef, which have specific versions of the virtual
functions. These function calls are accessed internally within Janus through the DomFunctions
class and permit abstraction of the process of interacting with the DOM. They do not provide a
capability to external applications to interact with the XML encoded data file or the associated
DOM.

UNCLASSIFIED 203

DST-Group–TN–1658

UNCLASSIFIED

6 Conclusion

This document has detailed the Janus application programming interface (API), which per-
mits flight modelling and simulation applications to directly interface with aerospace vehicle
datasets encoded using the DAVE-ML syntax. The process of instantiating Janus within an
application has been presented, together with descriptions of the public functions that enable
the application to interact with information stored within DAVE-ML style datasets.

The Janus API provides a capability to simplify the exchange of aerospace vehicle dynamic
model data between simulation applications.

7 Acknowledgements

The authors wishes to acknowledge the contributions made by Michael Young, Michael Grant,
Jonathan Dansie, Kylie Bedwell from DST Group; Dr Daniel Newman from Quantitative
Aeronautics, and Robert Curtin from Advanced VTOL Technologies to the development of
Janus.

8 Contact

Janus is made available subject to the conditions listed in the DSTO Open Source Licence
Version 1.1, or later versions [10]. To request a copy of Janus enquiries can be sent to:
janus@dst.defence.gov.au

204 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

9 References

[1] D. M. Newman, Efficient Development and Use of Aircraft Flight Models – Survey of DSTO
Usage, Ball Solutions Group Report No. 1234.002, Melbourne, 2004.

[2] Anon., Flight Dynamics Model Exchange Standard, AIAA Modeling and Simulation Tech-
nical Committee, ANSI/AIAA S-119-2011, October 2007, 25 March 2011, http://daveml.
org/AIAA_stds/index.html.

[3] E. B. Jackson & B. L. Hildreth, Flight Dynamic Model Exchange using XML AIAA 2002-
4482, AIAAModeling and Simulation Technologies Conference, Monterey, CA, August 2002.

[4] Anon., Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) Reference,
AIAA Modeling and Simulation Technical Committee, Version 2.0.2, 12 July 2011, http:
//daveml.org/DTDs/index.html.

[5] D. M. Newman, The Janus C++ Library An Interface Class for DAVE-ML Compliant
XML-based Flight Model Datasets, Version 1, Ball Solutions Group Report No. 31495.002,
Melbourne, 18 July 2005.

[6] D. M. Newman, The Janus C++ Library An Interface Class for DAVE-ML Compliant
XML-based Flight Model Datasets, Version 1.10, Quantitative Aeronautics Report No. 0708-
232.001, Melbourne, 31 March 2010.

[7] G. Brian, Flight Systems Units of Measure Guidelines, viewed 12 December 2004.

[8] M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, viewed 14 July 2008, http://www.math.sfu.ca/~cbm/
aands/.

[9] G. Brian, Vector and Matrix Variable Definitions in DAVE-ML, DSTO-TN-1146, Defence
Science and Technology Organisaton, December 2012.

[10] Anon., DSTO OPEN SOURCE LICENSE, Version 1, Defence Science and Technology
Organisaton, August 2006.

UNCLASSIFIED 205

 http://daveml.org/AIAA_stds/index.html
 http://daveml.org/AIAA_stds/index.html
 http://daveml.org/DTDs/index.html
 http://daveml.org/DTDs/index.html
 http://www.math.sfu.ca/~cbm/aands/
 http://www.math.sfu.ca/~cbm/aands/

DST-Group–TN–1658

UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

206 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Appendix A: Deprecated Functions

This appendix lists Janus functions that have been deprecated due to enhancements to the
Janus API. The functions have been retained to provide backwards compatibility for ap-
plications that were developed using previous versions of the API. It is recommended that
these functions should not be used when developing new applications, instead the various
components should be accessed through the specific class interfaces.

A.1 Janus - XML File Documentation

Enumerations

Functions

• dstoute::aString getHeaderName ()

• int getNumberOfHeaderProvenances ()

• int getNumberOfProvenanceComponents (const char ∗parentID, size_t index, enum
ProvenanceAttribute provenanceAttribute)

• int getNumberOfXmlFileAuthorAddresses (size_t authorNumber)

• int getNumberOfXmlFileAuthorContacts (size_t authorNumber)

• int getNumberOfXmlFileAuthors ()

• int getNumberOfXmlFileModificationAuthorAddresses (size_t index, size_t author)

• int getNumberOfXmlFileModificationAuthorContacts (size_t index, size_t author)

• int getNumberOfXmlFileModificationAuthors (size_t index)

• const char ∗ getProvenance (const char ∗parentID, size_t index, enum ProvenanceAt-
tribute provenanceAttribute, enum AuthorAttribute authorAttribute, size_t authorCon-
tactIndex, size_t componentIndex)

• const char ∗ getXmlFileAuthor (size_t authorNumber, AuthorAttribute authorAttrib-
ute, size_t addressNumber=0)

• const char ∗ getXmlFileCreationDate ()

• const char ∗ getXmlFileDescription ()

• const char ∗ getXmlFileModification (size_t index, ModificationAttribute modification-
Attribute, size_t authorNumber=0, size_t addressNumber=0)

• int getXmlFileModificationCount ()

• int getXmlFileModificationExtraDocCount (size_t index)

• const char ∗ getXmlFileModificationExtraDocRefID (size_t index, size_t indxRef)

• const char ∗ getXmlFileReference (size_t index, ReferenceAttribute referenceAttribute)

• int getXmlFileReferenceCount ()

• int getXmlFileReferenceIndex (const char ∗refID)

UNCLASSIFIED 207

DST-Group–TN–1658

UNCLASSIFIED

• const char ∗ getXmlFileVersion ()

A.1.1 Detailed Description

The documentation functions relate to the descriptive material contained in the XML dataset
file header. This includes file authorship, modification records, and cross-references to source
material. The functions provide access to this data for the calling program. Some of this
reference material is optional, as defined by the DAVE-ML DTD, so many of these functions
may return empty strings if requested data is not present.

Most of these functions are deprecated, retained for backwards compatibility. In future devel-
opments, the fileheader components should be accessed through the FileHeader class.

A.1.2 Enumeration Type Documentation

A.1.2.1 enum AuthorAttribute

This enum is deprecated, and should not be used in new programs. Access data through the
Author class instead. The enum serves as input to getXmlFileAuthor, and is used to indicate
which of the XML dataset file’s author attributes is required.

Enumerator

NAME NAME. The author’s name
ORG ORG. The organisation directing the author’s work on this dataset
XNS XNS. Extensible Name Service (XNS) is an open XML-based protocol that spe-

cifies a way to establish and manage a universal addressing system. An XNS uni-
versal address serves as a permanent contact point for an individual or other legal
entity, such as a business. This XNS entry provides contact details for the author
or his organisation in reference to this dataset.

EMAIL EMAIL. The e-mail address through which the author may be contacted in
reference to this dataset

ADDRESS ADDRESS. The postal mail address through which the author may be
contacted in reference to this dataset

CONTACTINFO_TYPE CONTACTINFO_TYPE. A specified type of contact in-
formation for the author

CONTACTINFO_LOCATION CONTACTINFO_LOCATION. The location as-
sociated with a specified type of contact

CONTACTINFO_CONTENT The content of a contact information element

A.1.2.2 enum ModificationAttribute

This enum is deprecated, and should not be used in new programs. Access data through the
FileHeader class instead. It serves as input to getXmlFileModification, and is used to indicate
which of the XML dataset file’s modificationRecord attributes is required.

208 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Not all datasets will contain all attributes. As defined in DAVEfunc.dtd, only the modifica-
tionID and the author base data are required.

Enumerator

MODID The modificationRecord ID
MOD_DATE The date of the modification
MOD_REFID The reference ID on which the modification is based
MOD_AUTHORNAME The name of the modification’s author
MOD_AUTHORORG The organisation directing the author’s work on this modi-

fication of the dataset
MOD_AUTHORXNS Extensible Name Service (XNS) is an open XML-based pro-

tocol that specifies a way to establish and manage a universal addressing system.
An XNS universal address serves as a permanent contact point for an individual or
other legal entity, such as a business. This XNS entry provides contact details for
the author or his organisation in reference to this modification of the dataset.

MOD_AUTHOREMAIL The e-mail address through which the author may be con-
tacted in reference to this modification of the dataset

MOD_AUTHORADDRESS The postal mail address through which the author
may be contacted in reference to this modification of the dataset

MOD_AUTHORCONTACT_TYPE A specified type of contact information for
the modification author

MOD_AUTHORCONTACT_LOCATION The location associated with a spe-
cified type of contact

MOD_AUTHORCONTACT_CONTENT The content of a contact information
element

MOD_DESCRIPTION A description of the modification

A.1.2.3 enum ProvenanceAttribute

This enum is deprecated, and should not be used in new programs. Access data through the
FileHeader class instead. It serves as input to getProvenance, and is used to indicate which
provenance attribute or child element is required for a specified provenance node within the
XML dataset. Not all provenences will contain all attributes or child elements. As defined
in DAVEfunc.dtd, only the author base data and the creation date are required. However,
the provID is strongly recommended, since it allows cross-referencing and thereby reduces
repetition within the XML dataset.

Enumerator

PROV_ID The provenance ID
PROV_DATE The creation date of the data whose provenance is accessed
PROV_AUTHOR Details of the data’s author
PROV_DOCUMENTREF The documentary data on which the XML data is based
PROV_MODIFICATIONREF Cross-reference to the XML file modification by

which the referenced data was created
PROV_DESCRIPTION Description related to the provenence of the referenced

data.

UNCLASSIFIED 209

DST-Group–TN–1658

UNCLASSIFIED

A.1.2.4 enum ReferenceAttribute

This enum is deprecated, and should not be used in new programs. Access data through the
FileHeader class instead. It serves as input to getXmlFileReference, and is used to indicate
which of the XML dataset file’s reference attributes is required.

Not all datasets will contain all attributes. As defined in DAVEfunc.dtd, description, accession
number and href are optional.

Enumerator

REFID The reference ID
AUTHOR The reference document’s author name
TITLE The reference document’s title
ACCESSION The reference document’s library accession number
DATE The date of publication of the reference document
HREF The XLink address or identifier of the reference document
DESCRIPTION A description of the reference document

A.1.3 Function Documentation

A.1.3.1 dstoute::aString getHeaderName ()

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. The function returns the optional name attribute character string
associated with the fileHeader element.

Returns

A string containing the file header name attribute. If the attribute is not present an
empty string is returned.

A.1.3.2 int getNumberOfHeaderProvenances ()

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. It returns the number of provenance elements contained
in a DAVE-ML fileHeader element. It does not include provenance elements contained in
other elements of the dataset, since there is at most one provenance or provenanceRef in each
non-header element.

210 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

nProvenance is the integer count of provenance elements contained in the fileHeader
element.

A.1.3.3 int getNumberOfProvenanceComponents (const char ∗ parentID,
size_t index, enum ProvenanceAttribute provenanceAttribute)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It returns the number of provenance child elements of specified
type contained in a specified provenance element.

Parameters

parentID is a short string without whitespace, such as "MACH02", which
uniquely defines the parent of the requested provenance. The
allowable parentIDs are: "fileHeader", varID, gtID, utID, (function)
"name", checkID. Where the parent is the fileHeader, there can be
multiple provenance records and an index is required to uniquely
specify the desired record.

index is only required when the parentID is "fileHeader". It specifies the
desired fileHeader provenance record. Its range is from 0 to
(getNumberOfHeaderProvenances - 1).

provenanceAttribute indicates which of the available provenance components is to be
counted by this function call.

Returns

nElements is the integer count of provenance elements of the specified type. Where the
specified parentID has no attached provenance elements, zero is returned.

A.1.3.4 int getNumberOfXmlFileAuthorAddresses (size_t authorNumber
)

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. It provides access to the number of addresses listed for
each primary author in the XML dataset file header.

Parameters

authorNumber indicates for which of one or more authors the number of addresses
available in the XML dataset is required (see
getNumberOfXmlFileAuthors). Indexing is C-style, starting at zero.

UNCLASSIFIED 211

DST-Group–TN–1658

UNCLASSIFIED

Returns

The number of addresses for a primary author listed in the XML dataset. Possible values
are 0 or more.

A.1.3.5 int getNumberOfXmlFileAuthorContacts (size_t authorNumber
)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the number of contactInfo details listed for
each primary author in the XML dataset file header.

Parameters

authorNumber indicates for which of one or more authors the number of contactInfo
details available in the XML dataset is required (see
getNumberOfXmlFileAuthors). Indexing is C-style, starting at zero.

Returns

The number of addresses for a primary author listed in the XML dataset. Possible values
are 0 or more.

A.1.3.6 int getNumberOfXmlFileAuthors ()

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the number of primary authors listed in the
XML dataset file header.
Returns

The number of primary authors listed in the XML dataset. Possible values are 1 or more.

A.1.3.7 int getNumberOfXmlFileModificationAuthorAddresses (size_t index,
size_t author)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the number of address entries for a particular
author of a particular dataset modification as listed in the XML dataset file header.

Parameters

index has a range from 0 to (getXmlFileModificationCount() - 1), and selects the
modification record be addressed.

author has a range from 0 to (getNumberOfXmlFileModificationAuthors() - 1), and
selects the author of interest

212 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

The number of addresses listed for a modification author in the XML dataset. Possible
values are 0 or more.

A.1.3.8 int getNumberOfXmlFileModificationAuthorContacts (size_t index,
size_t author)

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. It provides access to the number of contactInfo entries
for a particular author of a particular dataset modification as listed in the XML dataset file
header.

Parameters

index has a range from 0 to (getXmlFileModificationCount() - 1), and selects the
modification record be addressed.

author has a range from 0 to (getNumberOfXmlFileModificationAuthors() - 1), and
selects the author of interest

Returns

The number of contactInfo listed for a modification author in the XML dataset. Possible
values are 0 or more.

A.1.3.9 int getNumberOfXmlFileModificationAuthors (size_t index)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the number of authors for a particular
dataset modification as listed in the XML dataset file header.

Parameters

index has a range from 0 to (getXmlFileModificationCount() - 1), and selects the
modification record be addressed.

Returns

The number of modification authors listed in the XML dataset. Possible values are 1 or
more.

A.1.3.10 const char∗ getProvenance (const char ∗ parentID, size_t
index, enum ProvenanceAttribute provenanceAttribute, enum
AuthorAttribute authorAttribute, size_t authorContactIndex, size_t
componentIndex)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the components of a provenance element.

UNCLASSIFIED 213

DST-Group–TN–1658

UNCLASSIFIED

Not all provenences will contain all components. As defined in DAVEfunc.dtd, only the author
base data and the creation date are required. Where a component does not exist in the XML
dataset, an empty string will be returned. Where the required data is defined by reference,
reference links will be followed to the basic data.

Parameters

parentID is a short string without whitespace, such as "MACH02", that
uniquely defines the parent of the requested provenance. The
allowable parentIDs are: "fileHeader", varID, gtID, utID, (function)
name, checkID. Where the parent is the fileHeader, there can be
multiple provenance records and an index is required to uniquely
specify the desired record.

index is only required when the parentID is "fileHeader". It specifies the
desired fileHeader provenance record. Its range is from 0 to
(getNumberOfHeaderProvenances - 1).

provenanceAttribute indicates which of the available provenance components is requested
by this function call.

authorAttribute is only required when the provenanceAttribute is PROV_AUTHOR.
It specifies the author data required in terms of the
AuthorAttribute enum.

authorContactIndex is only required when the provenanceAttribute is PROV_AUTHOR.
It specifies which of multiple address or contactInfo entries for an
author is requested by this function call. It uses C-style indexing,
and defaults to zero.

componentIndex specifies the desired component in cases where multiple components
are allowable. The possible cases are author, documentRef and
modificationRef. The parameter has a range from 0 to
(getNumberOfProvenanceComponents - 1).

Returns

A pointer to the requested component of the requested provenance element is returned.
Where the requested component does not exist, or one of the specifiers is out of range,
a pointer to an empty string is returned.

A.1.3.11 const char∗ getXmlFileAuthor (size_t authorNumber,
AuthorAttribute authorAttribute, size_t addressNumber = 0)

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. It provides access to the author element character strings
contained in the XML dataset file header. Some attributes (described in AuthorAttribute) are
optional.

Parameters

authorNumber indicates which of one or more authors an attribute is required (see
getNumberOfXmlFileAuthors). Indexing is C-style, starting at zero.

214 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

authorAttribute indicates which of the available author attributes is required by this
function call.

addressNumber is only required if an address or contact info is required for the author
(see getNumberOfXmlFileAuthorAddresses and
getNumberOfXmlFileAuthorContacts). Indexing is C-style, starting at
zero.

Returns

A character pointer (char∗) to the requested attribute is returned. If an optional attribute
is not present an empty string is returned.

A.1.3.12 const char∗ getXmlFileCreationDate ()

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. It provides access to the fileCreationDate character
string contained in the XML dataset file header. The format of the dataset string is determined
by the XML dataset builder, but DAVE-ML recommends the ISO 8601 form "2004-01-02" to
refer to 2 January 2004.

Returns

a character pointer (char∗) to the XML file creation date string.

A.1.3.13 const char∗ getXmlFileDescription ()

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the description character string contained in
the XML dataset file header. The description consists of a string of arbitrary length, which can
include tabs and new lines as well as alphanumeric data. This means text formatting embedded
in the XML source will also appear in the returned description string. Since description of a
file is optional, the returned string may be blank.

Returns

a character pointer (char∗) to the XML description string.

A.1.3.14 const char∗ getXmlFileModification (size_t index,
ModificationAttribute modificationAttribute, size_t authorNumber =
0, size_t addressNumber = 0)

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. It provides access to the modificationRecord attribute
character strings contained in the XML dataset file header. Some attributes (described in
ModificationAttribute) are optional.

UNCLASSIFIED 215

DST-Group–TN–1658

UNCLASSIFIED

Parameters

index has a range from 0 to (getXmlFileModificationCount() - 1), and
selects the modification record be addressed.

modificationAttribute indicates which of the available modificationRecord attributes is
required by this function call.

authorNumber allows one of multiple authors of the modification to be selected,
for those attributes that relate to a specific author. For items not
related to a particular author, enter 0.

addressNumber allows one of multiple addresses or contactInfo items related to a
particular author to be selected, for those attributes that relate to
a specific author. For items not related to a particular author
address or contact info, enter 0.

Returns

A character pointer (char∗) to the requested attribute is returned. If an optional attribute
is not present, or a index out of range is requested, an empty string is returned.

A.1.3.15 int getXmlFileModificationCount ()

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It returns the number of modificationRecord records at the top
level of the fileHeader component of the XML dataset.

Returns

the number of modification records in the XML dataset file header. Possible values are
zero or more.

A.1.3.16 int getXmlFileModificationExtraDocCount (size_t index)

This function is deprecated, and should not be used in new programs. Access this data
through the FileHeader class instead. As well as its basic refID cross-reference, each modific-
ationRecord can have extra documents referenced. This function allows the calling program
to determine how many, if any, extra document reference records are cross-referenced by each
modification.

Parameters

index has a range from 0 to (getXmlFileModificationCount() - 1), and selects the
modification record be addressed.

216 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

the number of extra documents referenced is returned. If a index out of range is requested,
-1 is returned.

A.1.3.17 const char∗ getXmlFileModificationExtraDocRefID (size_t index,
size_t indxRef)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. Where a modificationRecord references extra documents, this
function allows the calling program to access the refID associated with each of those documents.
The result of this function may be used in conjunction with getXmlFileReferenceIndex and
getXmlFileReference to obtain the details of the associated reference material.

Parameters

index has a range from 0 to (getXmlFileModificationCount() - 1), and selects the
modification record be addressed.

indxRef has a range from 0 to (getXmlFileModificationExtraDocCount (index) - 1), and
selects the extra document record to be addressed.

Returns

A character pointer (char∗) to the requested refID is returned. If a index or indxRef out
of range is requested, an empty string is returned.

A.1.3.18 const char∗ getXmlFileReference (size_t index, ReferenceAttribute
referenceAttribute)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the reference attribute character strings
contained in the XML dataset file header. Some attributes (described in ReferenceAttribute)
are optional.

Parameters

index has a range from 0 to (getXmlFileReferenceCount() - 1), and selects
the reference record to be addressed.

referenceAttribute indicates which of the available reference attributes is required by this
function call.

UNCLASSIFIED 217

DST-Group–TN–1658

UNCLASSIFIED

Returns

A character pointer (char∗) to the requested attribute is returned. If an optional attribute
is not present, or a index out of range is requested, an empty string is returned.

A.1.3.19 int getXmlFileReferenceCount ()

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It returns the number of reference records at the top level of the
fileHeader component of the XML dataset.

Returns

the number of reference records in the XML dataset file header. Possible values are zero
or more.

A.1.3.20 int getXmlFileReferenceIndex (const char ∗ refID)

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. The file header may contain a list of references. Each of these
is associated with a unique reference ID that file modification and data provenance records
use for cross-referencing. This function relates the reference ID to an index into the arrays of
reference data, as used in Janus::getXMLFileReference.

Parameters

refID is a short, unique string used to refer to elements in the XML file header’s list of
references.

Returns

an index in the range 0 to (getXmlFileReferenceCount() - 1) is returned. Where the file
header contains no reference records, or refID does not match any reference records, -1
is returned.

A.1.3.21 const char∗ getXmlFileVersion ()

This function is deprecated, and should not be used in new programs. Access this data through
the FileHeader class instead. It provides access to the fileVersion character string contained
in the XML dataset file header. The format of the version string is determined by the XML
dataset builder. Since the file version is optional in the DAVE-ML DTD, the returned string
may be blank.

Returns

a character pointer (char∗) to the XML file version string.

218 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

A.2 Janus - XML Tabulated Functions

Functions

• const char ∗ getFunctionDefinitionName (size_t index) const

• const char ∗ getFunctionDescription (size_t index) const

• const char ∗ getFunctionName (size_t index) const

• int getNumberOfFunctions () const

A.2.1 Detailed Description

These elements of the Janus class provide access to the function elements contained in a DOM
that complies with the DAVE-ML DTD. Each function has optional description, optional
provenance, and either a simple table of input/output values or references to more complete
(possibly multiple) input, output, and function data elements. In general, calling programs
should access function-based data through the outputVariable procedures rather than through
these lower-level function access procedures.

All function and dependentVariable functions use an index based on the function Level 1
elements defined in the XML dataset (see Janus::getNumberOfFunctions). For example:

int nf = prop.getNumberOfFunctions();
cout << " Number of functions = " << nf << "\n\n";

for (int i = 0 ; i < nf ; i++) {
cout << " Function " << i << " : \n"

<< " Name : "
<< prop.getFunctionName(i) << "\n";

}

The order of functions within the DOM is arbitrary and the calling program is responsible for
determining which index addresses each function. The function index range is from zero to
(getNumberOfFunctions() - 1).

These functions are deprecated, retained for backwards compatibility. In future program
development, the function low-level components should be accessed through the Function
class.

A.2.2 Function Documentation

A.2.2.1 const char∗ getFunctionDefinitionName (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the Function class instead. A function definition’s name attribute is a string of arbitrary length,
but normally short. It is not used for indexing, and therefore need not be unique (although
uniqueness may aid both programmer and user), but should comply with the AIAA draft
standard [2] if possible. Note that the function definition name is returned, not the function

UNCLASSIFIED 219

DST-Group–TN–1658

UNCLASSIFIED

name nor the variable ID associated with it. For functions defined in terms of a single list of
variable values, there is no explicit function definition and an empty string is returned.

Parameters

index has a range from 0 to (getNumberOfFunctions() - 1), and selects the function to
be addressed.

Returns

A character pointer (char∗) to an XML functionDefn tag’s name attribute string is
returned. The functionDefn is a child node of the function, so the input index refers to
the function. An index out of range will return a zero pointer.

See also

getFunctionName

A.2.2.2 const char∗ getFunctionDescription (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data
through the Function class instead. A function’s description consists of a string of arbitrary
length, which can include tabs and new lines as well as alphanumeric data. This means text
formatting embedded in the XML source will also appear in the returned description string.
Since description of a function is optional, the returned string may be blank.

Parameters

index has a range from 0 to (getNumberOfFunctions() - 1), and selects the function to
be addressed.

Returns

A character pointer (char∗) to an XML function tag’s description child element contents
string is returned. An index out of range will return a zero pointer.

A.2.2.3 const char∗ getFunctionName (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data
through the Function class instead. A function’s name attribute is a string of arbitrary length,
but normally short. It is not used for indexing, and therefore need not be unique (although
uniqueness may aid both programmer and user), but should comply with the AIAA draft
standard [2] if possible. Note that the function name is returned, not the function definition
name nor the variable ID associated with it.

Parameters

index has a range from 0 to (getNumberOfFunctions() - 1), and selects the function to
be addressed.

220 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A character pointer (char∗) to an XML function tag’s name attribute string is returned.
An index out of range will return a zero pointer.

See also

getFunctionDefinitionName

A.2.2.4 int getNumberOfFunctions () const

This function is deprecated, and should not be used in new programs. Access this data through
the Function class instead. The returned value includes all functions found in the DOM, and
makes no distinction between function types. It may be used as the upper limit for an index to
address functions and their associated dependent variables, although not all output variables
are necessarily associated with functions (e.g. constants and MathML expressions).

Returns

Total number of all functions defined in the XML file and successfully loaded into the
DOM.

See also

getFunction

UNCLASSIFIED 221

DST-Group–TN–1658

UNCLASSIFIED

A.3 Janus - Output Variables Functions

Functions

• int applyOutputScaleFactorByIndex (size_t index, const double &factor)

• int applyOutputScaleFactorByVarID (const char ∗varID, const double &factor)

• double getCorrelationCoefficient (size_t index, size_t indx1, size_t indx2)

• int getNumberOfOutputs () const

• double getOutputScaleFactorByIndex (size_t index) const

• double getOutputScaleFactorByVarID (const char ∗varID)

• double getOutputVariable (size_t index)

• const char ∗ getOutputVariable (size_t index, int)

• const char ∗ getOutputVariableAxisSystem (size_t index) const

• double getOutputVariableByVarID (const char ∗varID)

• const char ∗ getOutputVariableDescription (size_t index) const

• const char ∗ getOutputVariableID (size_t index) const

• int getOutputVariableIndex (const char ∗varID)

• const char ∗ getOutputVariableName (size_t index) const

• const Provenance & getOutputVariableProvenance (size_t index) const

• VariableDef::VariableType getOutputVariableType (size_t index) const

• double getOutputVariableUncertainty (size_t index, size_t numSigmas)

• double getOutputVariableUncertainty (size_t index, bool isUpperBound)

• const char ∗ getOutputVariableUnits (size_t index) const

A.3.1 Detailed Description

Three types of output variables are defined by the DAVE-ML DTD. They are:

• Dependent variables resulting from function evaluation, but not forming an input to
another calculation;

• Variables evaluated using MathML, but not forming an input to another calculation;
and

• Variables explicitly defined as outputs using the isOutput attribute.

These functions provide the means to obtain the characteristics of variables that satisfy these
criteria, and to obtain variable values based on the current state of all variables within the
Janus instance. Normal usage of the Janus class should rely on these functions for output.
They ensure that returned values are compatible with the current state of all inputs.

222 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

In general, since DAVE-ML Version 2.0RC3 and Janus Version 1.10 these functions are de-
precated and the required data should be accessed directly through the VariableDef class
instead.

A.3.2 Function Documentation

A.3.2.1 int applyOutputScaleFactorByIndex (size_t index, const double &
factor)

This function is deprecated, and should not be used in new programs. If you must use output
scale factors, set this data through the VariableDef class instead. This function should be used
with extreme caution. The default scale factor for each output variable is unity. Each time
this function is used, it multiplies by factor the current value of scale factor associated with the
output variable referenced by index. The accumulated scale factor is applied to all subsequent
computations used to determine a value for the output variable referenced by index. The use
of this function is particularly discouraged for datasets where output from one function is
defined as input to another function.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

factor is the new scale factor to be applied multiplicatively to the output variable’s
existing scale factor, and may be any double precision number, including zero.

Returns

0 if scale factor is reset successfully.

See also

applyOutputScaleFactorByVarID
getOutputScaleFactorByIndex

A.3.2.2 int applyOutputScaleFactorByVarID (const char ∗ varID, const
double & factor)

This function is deprecated, and should not be used in new programs. If you must use output
scale factors, set this data through the VariableDef class instead. This function should be used
with extreme caution. The default scale factor for each output variable is unity. Each time
this function is used, it multiplies by factor the current value of scale factor associated with
the output variable whose varID matches the input varID.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the output variable. If the varID input does not match any output variable ID
within the DOM, a standard exception is thrown.

UNCLASSIFIED 223

DST-Group–TN–1658

UNCLASSIFIED

Parameters

factor is the new scale factor to be applied multiplicatively to the output variable’s
existing scale factor, and may be any double precision number, including zero.

Returns

0 if scale factor is reset successfully.

See also

applyOutputScaleFactorByIndex
getOutputScaleFactorByVarID

A.3.2.3 double getCorrelationCoefficient (size_t index, size_t indx1, size_t
indx2)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function allows the caller to determine the amount of
correlation between the uncertainty in two independent variables contributing to the same
output. The direction of correlation and sequence of variables is irrelevant.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indx1 has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the first independent variable to be addressed through the output variable
that uses it.

indx2 has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the second independent variable to be addressed through the output
variable that uses it. Because correlation is symmetric, order of the two
independent variables is irrelevant.

Returns

The correlation coefficient relating the two variables’ uncertainties is returned as a double.
Where correlation has not been specified in the XML dataset, the coefficient is returned
as zero. If index, indx1 or indx2 is out of range, this function will return NaN.

A.3.2.4 int getNumberOfOutputs () const

This function is deprecated, and should not be used in new programs. Access this data
through the VariableDef class instead. The returned value counts all outputs found in the
DOM (explicitly defined outputs, and results of function evaluations or MathML expression
evaluations that do not also form calculation inputs). It may be used as the upper limit for
an index to outputs.

224 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

Total number of all output variables defined in the XML file, implicit and explict, and
successfully loaded into the DOM.

A.3.2.5 double getOutputScaleFactorByIndex (size_t index) const

This function is deprecated, and should not be used in new programs. If you must use output
scale factors, access this data through the VariableDef class instead. The default scale factor
for each output variable is unity. However, a reckless programmer can use applyOutputSca-
leFactorByIndex to change this value to any double precision number (including 0.0), so this
function allows any such changes to be tracked, typically immediately prior to performing a
computation of the output variable referenced by index.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

The current accumulated scale factor for output variable index is returned, which may
be any double precision number, including zero.

A.3.2.6 double getOutputScaleFactorByVarID (const char ∗ varID)

This function is deprecated, and should not be used in new programs. If you must use output
scale factors, access this data through the VariableDef class instead. The default scale factor
for each output variable is unity. However, a reckless programmer can use applyOutputSca-
leFactorByVarID to change this value to any double precision number (including 0.0), so this
function allows any such changes to be tracked, typically immediately prior to performing a
computation of the output variable referenced by varID.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the output variable.

UNCLASSIFIED 225

DST-Group–TN–1658

UNCLASSIFIED

Returns

The current accumulated scale factor for the output variable whose varID matches the
input varID will be returned. It may be any double precision number, including zero.
If the varID input does not match any output variable ID within the DOM, the return
value is NaN.

A.3.2.7 double getOutputVariable (size_t index)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This fulfils the basic purpose of the Janus class. It is used during
run-time to evaluate output variables defined (explicitly or implicitly) within the XML source,
based on independent variable values supplied to the instanced Janus class. The independent
variable values must be set to required values, passing the aircraft state to the Janus instance
using setIndependentVariableByIndex or the other value-input functions, before this function
is used. One possible way of applying the Janus class to perform an output variable evaluation
is:
int outputNumber = 0;
for (int i = 0 ;

i < prop.getNumberOfIndependentVariables(outputNumber) ; i++) {
cout << "\n Enter value for "

<< prop.getIndependentVariableID(outputNumber, i)
<< " : ";

double x;
cin >> x;
prop.setIndependentVariableByIndex(outputNumber, i, x);

}
double y = prop.getOutputVariable(outputNumber);

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

A double precision value containing the value of the output after all relevant computa-
tions based on the current input state. An index out of range will return NaN.

See also

setIndependentVariableByIndex
setVariableByIndex
setVariableByID
getOutputVariableByVarID

A.3.2.8 const char∗ getOutputVariable (size_t index, int)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. As an extension to the normal behaviour of a DAVE-ML gridded
table, support has been included for managing a table of strings in a similar manner to numeric
tabular data. The strings are accessed in the same way as a numeric tabular function. The

226 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

array of strings may be multi-dimensionsional, and its breakpoints in each dimension should
be monotonic sequences of integers (1, 2, 3, . . . n is a good choice), where the product of the
breakpoint array lengths equals the number of strings. The independent variables must lie
within the ranges of their corresponding breakpoints, and must be set to require “discrete’’
interpolation.

The strings can be delimited by any of: tab, newline, comma, semicolon. DO NOT start or
end the strings with excess whitespace.

Janus detects a string table by looking for non-numeric characters, so a table consisting entirely
of numeric data will never be detected as a string. Note: The string table can only be
interrogated by output variable index, not by varID or any of the other indices.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed. The second input is a dummy to allow the function to be
overloaded.

Returns

a string pointer to the output variable based on the current input state.

A.3.2.9 const char∗ getOutputVariableAxisSystem (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. An output variable’s axisSystem attribute is a string of arbitrary
length, but normally short, and complying with the format requirements chosen by DST AD
APS . Typical values include "Body" or "Intermediate". Where no attribute is specified in
the XML dataset, an empty string is returned.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

A character pointer (char∗) to an XML variableDef tag’s axisSystem attribute string is
returned. An index out of range will return a zero pointer.

A.3.2.10 double getOutputVariableByVarID (const char ∗ varID)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This is an alternative approach to the basic purpose of the Janus
class. It is used during run-time to evaluate output variables defined (explicitly or implicitly)
within the XML source, based on independent variable values supplied to the instanced Janus
class. The independent variable values must be set to required values, passing the aircraft

UNCLASSIFIED 227

DST-Group–TN–1658

UNCLASSIFIED

state to the Janus instance using setIndependentVariableByIndex or the other value-input
functions, before this function is used.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the output variable.

Returns

A double precision value containing the value of the output variable whose varIDmatches
the input varID after all relevant computations based on the current input state. If the
input does not match any variable ID within the DOM, a standard exception is thrown.

See also

setIndependentVariableByIndex
setVariableByIndex
setVariableByID
getOutputVariable

A.3.2.11 const char∗ getOutputVariableDescription (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. An output variable’s description consists of a string of arbitrary
length, which can include tabs and new lines as well as alphanumeric data. This means text
formatting embedded in the XML source will also appear in the description. Since description
of a variable is optional, the returned string may be blank.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

A character pointer (char∗) to an XML variableDef tag’s description child element con-
tents string is returned. An index out of range will return a zero pointer.

A.3.2.12 const char∗ getOutputVariableID (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. An output variable’s varID attribute is normally a short string
without whitespace, such as "MACH02", that uniquely defines the variable. It may be used
for indexing. This function may be used by the calling program to determine the variable ID
associated with each output variable location in the DOM.

228 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

A pointer to an XML variableDef tag’s varID attribute string is returned.

A.3.2.13 int getOutputVariableIndex (const char ∗ varID)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. An output variable’s varID attribute is uniquely related to the
variable and may be used as an index. This function should be used by the calling program
to establish the order of output variables within the DOM, since it is always more efficient to
address an output variable by numeric index than by variable ID.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the output variable.

Returns

An integer index in the range from 0 to (getNumberOfOutputs() - 1), corresponding to
the output variable whose varID matches the supplied varID. If the input does not match
any dependent variable ID within the DOM, the returned value is -1.

A.3.2.14 const char∗ getOutputVariableName (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data
through the VariableDef class instead. An output variable’s name attribute is a string of
arbitrary length, but normally short. It is not used for indexing, and therefore need not be
unique (although uniqueness may aid both programmer and user), but should comply with
the ANSI/AIAA S-119-2011 standard [2] .

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

UNCLASSIFIED 229

DST-Group–TN–1658

UNCLASSIFIED

Returns

A character pointer (char∗) to an XML variableDef tag’s name attribute string is re-
turned.

A.3.2.15 const Provenance& getOutputVariableProvenance (size_t index)
const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function provides access to provenance elements contained
in a DAVE-ML output variableDef element. There may be zero or one of these elements for
each output variable in a valid dataset.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

A pointer to the requested Provenence class instance is returned.

A.3.2.16 VariableDef::VariableType getOutputVariableType (size_t index)
const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function allows the caller to determine from what source
an output variable will be computed.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

The VariableType is returned on successful completion.

A.3.2.17 double getOutputVariableUncertainty (size_t index, size_t
numSigmas)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function returns a number representing the uncertainty
associated with a value obtained from getOutputVariable. The type of uncertainty is obtained
from getOutputVariableUncertainty().getPdf(). This function returns as additive uncertainty
the requested number of standard deviations. The uncertainty value may change depending
on the values of input variables to the Janus class. A typical application of this group of
functions might be:

230 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

int indx = 0;
double value = prop.getOutputVariable(indx);
UncertaintyPdf uncertaintyPdf =

prop.getOutputVariableUncertainty().at(indx).getPdf();
if (NORMAL_PDF == uncertaintyPdf) {

int numSigmas = 1;
double uncertainty =

prop.getOutputVariableUncertainty(indx, numSigmas);
}

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

numSigmas is an integer value greater than zero, specifying the number of standard
deviations of a Gaussian PDF uncertainty that is required as output.

Returns

A double precision value containing the value of the uncertainty after all relevant com-
putations based on the current input state.

See also

getOutputVariable

A.3.2.18 double getOutputVariableUncertainty (size_t index, bool
isUpperBound)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function returns a number representing the uncertainty
associated with a value obtained from getOutputVariable. The type of uncertainty is obtained
from getOutputVariableUncertainty().getPdf(). This function returns the upper or lower ab-
solute uncertainty bound. The uncertainty value may change depending on the values of input
variables to the Janus class. A typical application of this group of functions might be:
int indx = 0;
double = prop.getOutputVariable(indx);
UncertaintyPdf uncertaintyPdf =

prop.getOutputVariableUncertainty().at(indx).getPdf();
if (UNIFORM_PDF == uncertaintyPdf) {

bool isUpperBound = true;
double upperBound =

prop.getOutputVariableUncertainty(indx, isUpperBound);
isUpperBound = false;
double lowerBound =

prop.getOutputVariableUncertainty(indx, isUpperBound);
}

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the
output variable to be addressed.

isUpperBound is a Boolean value that specifies whether the absolute upper or lower
bound of a uniform pdf is required as output.

UNCLASSIFIED 231

DST-Group–TN–1658

UNCLASSIFIED

Returns

A double precision value containing the value of the uncertainty after all relevant com-
putations based on the current input state.

See also

getOutputVariable

A.3.2.19 const char∗ getOutputVariableUnits (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. An output variable’s units attribute is a string of arbitrary
length, but normally short, and complying with the format requirements chosen by DST AD
APS [7] in accordance with SI or other systems.

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

A character pointer (char∗) to an XML variableDef tag’s units attribute string is re-
turned.

232 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

A.4 Janus - Variables of All Types

Functions

• double getCorrelationCoefficient (size_t indx1, size_t indx2)

• int getNumberOfVariableCorrelations (size_t index)

• size_t getNumberOfVariables () const

• const char ∗ getVariableAxisSystem (size_t index) const

• double getVariableByIndex (size_t index)

• double getVariableByVarID (const char ∗varID)

• const char ∗ getVariableDescription (size_t index) const

• VariableDef::VariableFlag getVariableFlag (size_t index) const

• const char ∗ getVariableID (size_t index) const

• const char ∗ getVariableName (size_t index) const

• VariableDef::VariableType getVariableType (size_t index) const

• double getVariableUncertainty (size_t index, size_t numSigmas)

• double getVariableUncertainty (size_t index, bool isUpperBound)

• const char ∗ getVariableUnits (size_t index) const

• int setVariableByID (const char ∗varID, const double &x)

• int setVariableByIndex (size_t index, const double &x)

A.4.1 Detailed Description

All the variableDef functions use an index based on the variableDef elements at DTD Level 1
in the XML dataset. Each variable referenced by the index can be used by multiple functions,
and can be dependent or independent. The order of variable definitions within the DOM is
arbitrary and the calling program is responsible for determining which index to address. For
example (also see getNumberOfVariables and getVariableID):

int nv = prop.getNumberOfVariables();
for (int i = 0 ; i < nv ; i++) {

cout << " Variable " << i << " : \n"
<< " ID : "
<< prop.getVariableID(i) << "\n";

}

The index also addresses a corresponding location in a static array of variable current values
within the instance’s data.

In general, since DAVE-ML Version 2.0RC3 and Janus Version 1.10 these functions are de-
precated and the required data should be accessed directly through the VariableDef class
instead.

UNCLASSIFIED 233

DST-Group–TN–1658

UNCLASSIFIED

A.4.2 Function Documentation

A.4.2.1 double getCorrelationCoefficient (size_t indx1, size_t indx2)

This function is deprecated, and should not be used in new programs. Access this data
through the VariableDef class instead. The function allows the caller to determine the amount
of correlation between the uncertainty in two variables. The direction of correlation and
sequence of variables is irrelevant.

Parameters

indx1 has a range from 0 to (getNumberOfVariables() - 1), and selects the first variable
to be addressed from the list of VariableDef s at DTD Level 1 of the DOM.

indx2 has a range from 0 to (getNumberOfVariables() - 1), and selects the second
variable to be addressed from the list of VariableDef s at DTD Level 1 of the
DOM.

Returns

The correlation coefficient relating the two variables’ uncertainties is returned as a double.
Where correlation has not been specified in the XML dataset, the coefficient is returned
as zero. If either indx1 or indx2 is out of range, this function will return NaN.

A.4.2.2 int getNumberOfVariableCorrelations (size_t index)

This function is deprecated, and should not be used in new programs. Access this data
through the VariableDef class instead. The function allows the caller to determine the number
of variables whose Gaussian uncertainties are correlated with the uncertainty of the specified
variable.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the specified
variable from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

An integer indicating the number of correlations is returned. If index is out of range this
function will return -1.

A.4.2.3 size_t getNumberOfVariables () const

This function is deprecated, and should not be used in new programs. Access this data
through the VariableDef class instead. This function returns the total number of variables in
the DOM. It includes all variables, makes no distinction between variable types, and provides
no indication of whether they are dependent, independent, constant, output, or unused.

234 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

Total number of all variables defined in the XML file and successfully loaded into the
DOM.

A.4.2.4 const char∗ getVariableAxisSystem (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. A variable’s axisSystem attribute is a string of arbitrary length,
but normally short, and complying with the format requirements chosen by DST AD APS .
Typical values include "Body" or "Intermediate". Where no attribute is specified in the XML
dataset, an empty string is returned.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

A character pointer (char∗) to an XML variableDef tag’s axisSystem attribute string is
returned.

A.4.2.5 double getVariableByIndex (size_t index)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. The function provides a means of determining the current values
of all variables defined within a Janus instance, whether independent or otherwise. Each of
these values corresponds to a variableDef. For example:
int nv = prop.getNumberOfVariables();
for (int i = 0 ; i < nv ; i++) {

cout << " Variable " << i << " : \n"
<< " Value : "
<< prop.getVariableByIndex(i) << "\n";

}

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable value
to be addressed from the list of VariableDef s at DTD Level 1 of the DOM. It
addresses the corresponding location in a static array within the instance’s data
structures.

Returns

A double precision value containing the current variable value.

UNCLASSIFIED 235

DST-Group–TN–1658

UNCLASSIFIED

See also

setVariableByIndex
getVariableByVarID

A.4.2.6 double getVariableByVarID (const char ∗ varID)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function provides an alternative means of determining
the current values of all variables defined within a Janus instance, whether independent or
otherwise. Each of these values corresponds to a variableDef.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the variable of which it is an attribute.

Returns

A double precision value containing the current variable value. If the input does not
match any dependent variable ID within the DOM, a standard exception is thrown.

See also

setVariableByVarID
getVariableByIndex

A.4.2.7 const char∗ getVariableDescription (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. A variable’s description consists of a string of arbitrary length,
which can include tabs and new lines as well as alphanumeric data. This means text formatting
embedded in the XML source will also appear in the description. Since description of a variable
is optional, the returned string may be blank.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

A character pointer (char∗) to an XML variableDef tag’s description child element con-
tents string is returned.

A.4.2.8 VariableDef::VariableFlag getVariableFlag (size_t index) const

This function is deprecated. In new programs, the variable characteristics it describes should
be determined by direct interrogation of the related VariableDef instance. It allows the caller to

236 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

determine a variable’s status in respect of the flags specified in VariableDef::VariableFlag.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

The VariableDef::VariableFlag is returned on successful completion.

A.4.2.9 const char∗ getVariableID (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. A variable’s varID attribute is normally a short string without
whitespace, such as "MACH02", that uniquely defines the variable. It may be used for indexing
of all variable definitions, without distinction between variable types, and without requiring to
know whether they are dependent, independent, constant, output, or unused. This function
provides the means to determine the identities of the variables defined at sequential locations
within the DOM.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

A character pointer (char∗) to an XML variableDef tag’s varID attribute string is re-
turned.

A.4.2.10 const char∗ getVariableName (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. A variable’s name attribute is a string of arbitrary length, but
normally short. It is not used for indexing, and therefore need not be unique (although
uniqueness may aid both programmer and user), but should comply with the ANSI/AIAA
S-119-2011 standard [2] .

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

UNCLASSIFIED 237

DST-Group–TN–1658

UNCLASSIFIED

Returns

A character pointer (char∗) to an XML variableDef tag’s name attribute string is re-
turned.

A.4.2.11 VariableDef::VariableType getVariableType (size_t index)
const

This function is deprecated and should not be used in new programs. Access this data through
the VariableDef class instead. A variable that is specified as an output, a function evaluation
result, or a MathML function should not normally have its value set directly by the calling
program. This function allows the caller to determine a variable’s status in this regard.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

The VariableType is returned on successful completion.

A.4.2.12 double getVariableUncertainty (size_t index, size_t numSigmas
)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. The function returns a number representing the uncertainty
associated with a current value of a variable contained within a Janus instance. The type
of uncertainty is obtained from getVariableUncertainty().getPdf(). This function returns as
additive uncertainty the requested number of standard deviations.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable
to be addressed.

numSigmas is an integer value greater than zero, specifying the number of standard
deviations of a Gaussian PDF uncertainty that is required as output.

238 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A double precision value containing the value of the uncertainty based on the current
state of the instance.

A.4.2.13 double getVariableUncertainty (size_t index, bool isUpperBound
)

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. The function returns a number representing the uncertainty
associated with a current value of a variable contained within a Janus instance. The type
of uncertainty is obtained from getVariableUncertainty().getPdf(). For a uniform PDf, this
function returns the upper or lower absolute uncertainty bound.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the
variable to be addressed.

isUpperBound is a Boolean value that specifies whether the upper or lower bound of a
uniform pdf is required as output.

Returns

A double precision value containing the value of the uncertainty based on the current
state of the instance.

A.4.2.14 const char∗ getVariableUnits (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. A variable’s units attribute is a string of arbitrary length, but
normally short, and complying with the format requirements chosen by DST AD APS [7] in
accordance with SI and other systems.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

Returns

A character pointer (char∗) to an XML variableDef tag’s units attribute string is re-
turned.

A.4.2.15 int setVariableByID (const char ∗ varID, const double & x)

This function is deprecated, and should not be used in new programs. Set this data through the
VariableDef class instead. This function provides an alternative means to set the current values

UNCLASSIFIED 239

DST-Group–TN–1658

UNCLASSIFIED

of independent variables defined within a Janus instance. Each of these values corresponds to
a variableDef. For example:
int retVal = MachCoeff.setVariableByID("Mach", 0.95);
if (0 == retVal) {

cout << "\n Mach value set ... \n";
}

This function will throw a standard exception if an attempt is made to modify the value of a
variable that is specified in the XML dataset as being evaluated by computation.

Parameters

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the variable of which it is an attribute.

x is the double precision value to which the current value of the indexed variable
will be set.

Returns

0 is returned on successful completion. If the input does not match any dependent
variable ID within the DOM, a standard exception is thrown.

See also

VariableDef::setValue()
setVariableByIndex()
getVariableByVarID()

A.4.2.16 int setVariableByIndex (size_t index, const double & x)

This function is deprecated, and should not be used in new programs. Set independent variable
values through the VariableDef class instead. This function provides the means to set the
current values of independent variables defined within a Janus instance. Each of these values
corresponds to a variableDef. For example, setting all input variables before evaluation:
char fileName[] = "pika_aero.xml";
Janus aeroCoeff(fileName);
int nv = aeroCoeff.getNumberOfVariables();
for (int i = 0 ; i < nv ; i++) {

if (ISINPUT == aeroCoeff.getVariableType(i)) {
cout << " Variable name : "

<< aeroCoeff.getVariableName(i)
<< "\n Enter value : ";

double x;
cin >> x;
int result = aeroCoeff.setVariableByIndex(i, x);
if (0 == result) {

cout << "\n Variable "
<< aeroCoeff.getVariableName(i) << " set ...\n";

}
}

}
int nf = aeroCoeff.getNumberOfOutputs();
for (int i = 0 ; i < nf ; i++) {

double y = aeroCoeff.getOutputVariable(i);
cout << "\n Function " << i << " value = " << y << "\n";

}

240 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

This function will throw a standard exception if an attempt is made to modify the value of a
variable that is specified in the XML dataset as being evaluated by computation.

Parameters

index has a range from 0 to (getNumberOfVariables() - 1), and selects the variable to be
addressed from the list of VariableDef s at DTD Level 1 of the DOM.

x is the double precision value to which the current value of the indexed variable
will be set.

Returns

0 is returned on successful completion.

See also

VariableDef::setValue()
setVariableByID()
getVariableByIndex()

UNCLASSIFIED 241

DST-Group–TN–1658

UNCLASSIFIED

A.5 Janus - Independent Variables

Functions

• const char ∗ getIndependentVariableAxisSystem (size_t indexf, size_t indexv) const

• double getIndependentVariableByIndex (const size_t &indexf, const size_t &indexv)

• const char ∗ getIndependentVariableDescription (size_t indexf, size_t indexv) const

• janus::ExtrapolateMethod getIndependentVariableExtrapolation (size_t indexf, size_t
indexv)

• const char ∗ getIndependentVariableID (size_t indexf, size_t indexv) const

• int getIndependentVariableIndex (size_t indexf, const char ∗varID) const

• janus::InterpolateMethod getIndependentVariableInterpolation (const size_t &indexf,
const size_t &indexv)

• const char ∗ getIndependentVariableName (size_t indexf, size_t indexv) const

• int getIndependentVariableOrder (const size_t &indexf, const size_t &indexv) const

• const Provenance & getIndependentVariableProvenance (size_t indexf, size_t indexv)
const

• VariableDef::VariableType getIndependentVariableType (const size_t &indexf, const
size_t &indexv) const

• double getIndependentVariableUncertainty (const size_t &indexf, const size_t &indexv,
const size_t &numSigmas)

• double getIndependentVariableUncertainty (const size_t &indexf, const size_t &indexv,
const bool &isUpperBound)

• const char ∗ getIndependentVariableUnits (size_t indexf, size_t indexv) const

• int getNumberOfIndependentVariables (size_t index) const

• int setIndependentVariableByIndex (size_t indexf, size_t indexv, const double &x)

A.5.1 Detailed Description

Independent variables are those that form the inputs to computation of an output variable
value, and are defined relative to the output variable that requires them. Therefore inde-
pendent variables are always referenced by Janus through output variables. The order of the
variableDefs defining output variables at DTD Level 1 within the DOM is arbitrary and the
calling program is responsible for determining which output variable to address. For output
variables dependent on more than one input variable, the order of independent variable refer-
ences by the output variable is also arbitrary and must be determined by the calling program.
Note that a variable considered independent by one output may itself be the output of another
computation, and one variable may be used to compute many outputs.

The independent variable procedures use a first index based on the output variable, and a
second index based on the list of input variables required by it. The input variable, although

242 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

it may be used by multiple outputs, is thus referenced through a different index for each output
variable.

In general, since DAVE-ML Version 2.0RC3 and Janus Version 1.10 these functions are de-
precated and the required data should be accessed directly through the VariableDef class
instead.

A.5.2 Function Documentation

A.5.2.1 const char∗ getIndependentVariableAxisSystem (size_t indexf,
size_t indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

An independent variable’s axisSystem attribute is a string of arbitrary length, but normally
short, and complying with the format requirements chosen by DST AD APS . Typical values
include "Body" or "Intermediate". Where no attribute is specified in the XML dataset, an
empty string is returned.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

A character pointer (char∗) to an XML variableDef tag’s axisSystem attribute string is
returned.

A.5.2.2 double getIndependentVariableByIndex (const size_t & indexf, const
size_t & indexv)

This function is deprecated, and should not be used in new programs. Get independent variable
values through the VariableDef class instead.

This function provides a means of determining the current values of all variables defined
within a Janus instance that are required as input signals for an output signal evaluation. For
example:
char fileName[] = "pika_aero.xml";
Janus aeroCoeff(fileName);
int nf = aeroCoeff.getNumberOfOutputs();
for (int i = 0 ; i < nf ; i++) {

cout << " Output " << i << " : \n"
<< " Name : "
<< aeroCoeff.getOutputName(i) << "\n";

UNCLASSIFIED 243

DST-Group–TN–1658

UNCLASSIFIED

iv = aeroCoeff.getNumberOfIndependentVariables(i);
for (int j = 0 ; j < iv ; j++) {

cout << " Independent variable name : "
<< aeroCoeff.getIndependentVariableName(i, j)
<< "\n value : "
<< aeroCoeff.getIndependentVariableByIndex(i, j)
<< "\n";

}
}

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

A double precision value containing the current value value of the independent variable
selected, for immediate use to compute the output variable selected. If the independent
variable is undefined or inapplicable, or an index is out of range, either indexf for the
output variable or indexv for its independent variables, this function will return a NaN.

A.5.2.3 const char∗ getIndependentVariableDescription (size_t indexf, size_t
indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

An independent variable’s description consists of a string of arbitrary length, which can include
tabs and new lines as well as alphanumeric data. This means text formatting embedded in
the XML source will also appear in the description. Since description of a variable is optional,
the returned string may be blank.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

244 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Returns

A character pointer (char∗) to an XML variableDef tag’s description child element con-
tents string is returned.

A.5.2.4 janus::ExtrapolateMethod getIndependentVariableExtrapolation (
size_t indexf, size_t indexv)

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

The extrapolate attribute of an independent variable referenced by an output variable describes
any allowable extrapolation in the independent variable’s degree of freedom contributing to
computation of the output. This function makes that characteristic available to the calling
program.

The extrapolate attribute is only applicable to an output variable defined in terms of a tab-
ular function (i.e. constants never require extrapolation, and MathML computations can
incorporate extrapolation within their defining computations). For more details see Func-
tion::getIndependentVarExtrapolate().

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

An Extrapolation enum containing the extrapolation constraint on the independent vari-
able selected, when used to compute the output variable selected.

A.5.2.5 const char∗ getIndependentVariableID (size_t indexf, size_t indexv
) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. An independent variable’s varID attribute is normally a short
string without whitespace, such as "MACH02", that uniquely defines the variable. It may be
used for indexing. This function may be used by the calling program to determine the input
variable ID associated with each independent variable required by each output variable defined
in the DOM.

UNCLASSIFIED 245

DST-Group–TN–1658

UNCLASSIFIED

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

A pointer to an XML variableDef tag’s varID attribute string is returned.

A.5.2.6 int getIndependentVariableIndex (size_t indexf, const char ∗ varID
) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

When an independent variable is referred to through an output signal that uses the variable,
the variable’s varID attribute is uniquely related to the output signal and may be used as
an index. This function is used by the calling program to establish the order of independent
variable references through the output variable, since it is always more efficient to address a
variable by numeric index than by variable ID.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

varID is a short string without whitespace, such as "MACH02", that uniquely defines
the independent variable from the list associated with the output variable that
uses it.

Returns

An integer index in the range from 0 to (getNumberOfIndependentVariables (indexf) -
1), corresponding to the independent variable whose varID matches the input varID. If
the input does not match any variable ID within the DOM, or the output variable indexf
is out of range, returned value is -1.

A.5.2.7 janus::InterpolateMethod getIndependentVariableInterpolation (const
size_t & indexf, const size_t & indexv)

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

The interpolate attribute of an independent variable referenced by an output variable describes
the form of interpolation to be used in that independent variable’s degree of freedom when
computing the output variable’s value based on interpolation between gridded data points.

246 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

This function makes that information available to the calling program.

The interpolate attribute is only applicable to an output variable defined in terms of a tabular
function (i.e. constants never require interpolation, and MathML computations can incorpor-
ate interpolation within their defining computations).

The interpolate attribute is optional for all degrees of freedom for any function within the XML
dataset, and if it is not set for any particular degree of freedom then the enum representing
its value within the Janus instance defaults to LINEAR, which is identical to POLY of order
1.

Applications are free to ignore this attribute (e.g. to sacrifice accuracy for speed in real time
computations). The current Janus implementation limits POLY to order 3, and does not allow
CSPLINE or LEGENDRE interpolations. Setting interpolate to “discrete’’ will limit values
in that degree of freedom to discrete steps centred on the breakpoint or independent variable
values, with exact midpoint values rounded in the positive direction. Setting interpolate to
“floor’’ will limit values in that degree of freedom to discrete steps, such that for an independent
variable value within an interval between any two breakpoints, the dependent variable takes
on the function value at the lower breakpoint. Setting interpolate to “ceiling’’ will limit values
in that degree of freedom to discrete steps, such that for an independent variable value within
an interval between any two breakpoints, the dependent variable takes on the function value
at the upper breakpoint.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed. Attempting to access an output variable outside the
available range or not based on a tabular function will throw a standard
out_of_range exception.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it. Attempting to access an independent variable outside the available range
will throw a standard out_of_range exception.

Returns

An Interpolation enum containing the form of interpolation for the independent variable
selected, when used to compute the output variable selected.

A.5.2.8 const char∗ getIndependentVariableName (size_t indexf, size_t
indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

An independent variable’s name attribute is a string of arbitrary length, but normally short.
It is not used for indexing, and therefore need not be unique (although uniqueness may aid
both programmer and user), but should comply with the ANSI/AIAA S-119-2011 standard
[2] .

UNCLASSIFIED 247

DST-Group–TN–1658

UNCLASSIFIED

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

A character pointer (char∗) to an XML variableDef tag’s name attribute string is re-
turned.

A.5.2.9 int getIndependentVariableOrder (const size_t & indexf, const
size_t & indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

The interpolate attribute of an independent variable referenced by an output variable describes
the type and order of interpolation to be used in that variable’s degree of freedom when when
computing the output variable’s value based on interpolation between gridded data points.
This function makes the order available to the calling program, from static data within the
Janus instance that is initialised with interpolate data from the XML dataset.

The interpolate attribute is only applicable to an output variable defined in terms of a tabular
function (i.e. constants never require interpolation, and MathML computations can incorpor-
ate interpolation within their defining computations).

The interpolate attribute is optional for all degrees of freedom for any function within the XML
dataset, and if it is not set for any particular degree of freedom then the order component
of its representation within the Janus instance defaults to 1, representing linear interpolation
under either linear or polynomial interpolation types

Applications are free to ignore this attribute (e.g. to sacrifice accuracy for speed in real time
computations). The current Janus implementation allows linear interpolation of order 0 or 1
and polynomial interpolation of order 0 to 3 inclusive. An order of 0, derived from a “discrete’’
interpolate attribute will limit values in that degree of freedom to discrete steps centred on the
breakpoint values. An order of -1, derived from a “floor’’ interpolate attribute will limit values
in that degree of freedom to discrete steps, such that for an independent variable value within
an interval between any two breakpoints, the dependent variable takes on the function value
at the lower breakpoint. An order of -2, derived from a “ceiling’’ interpolate attribute will limit
values in that degree of freedom to discrete steps, such that for an independent variable value
within an interval between any two breakpoints, the dependent variable takes on the function
value at the upper breakpoint.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

248 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

The interpolation order is returned on successful completion. If the interpolate attribute
is inapplicable, or an index is out of range, either indexf for the output variable or indexv
for its independent variables, this function will return -10.

A.5.2.10 const Provenance& getIndependentVariableProvenance (size_t
indexf, size_t indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

This function provides access to provenance elements contained in a DAVE-ML independent
variableDef element. There may be zero or one of these elements for each independent variable
in a valid dataset.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

A reference to the requested Provenence class instance is returned.

A.5.2.11 VariableDef::VariableType getIndependentVariableType (const
size_t & indexf, const size_t & indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead. An independent variable that is also specified as an
output, a function evaluation result, or a MathML function should not normally have its value
set directly by the calling program. This function allows the caller to determine a variable’s
status in this regard.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

UNCLASSIFIED 249

DST-Group–TN–1658

UNCLASSIFIED

Parameters

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

The VariableType is returned on successful completion.

A.5.2.12 double getIndependentVariableUncertainty (const size_t & indexf,
const size_t & indexv, const size_t & numSigmas)

This function is deprecated, and should not be used in new programs. Get independent
variable uncertainty values through the VariableDef class instead. This function provides a
means of determining the current values of uncertainty bounds for all variables defined within
a Janus instance that are required as input signals for an output signal evaluation. The type
of uncertainty is obtained from getIndependentVariableUncertainty().getPdf(). This function
returns as additive uncertainty the requested number of standard deviations.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1),
and selects the independent variable to be addressed through the output
variable that uses it.

numSigmas is an integer value greater than zero, specifying the number of standard
deviations of a Gaussian PDF uncertainty that is required as output.

Returns

A double precision value containing the value of the uncertainty based on the current
state of the instance.

A.5.2.13 double getIndependentVariableUncertainty (const size_t & indexf,
const size_t & indexv, const bool & isUpperBound)

This function is deprecated, and should not be used in new programs. Get independent
variable uncertainty values through the VariableDef class instead. This function provides a
means of determining the current values of uncertainty bounds for all variables defined within
a Janus instance that are required as input signals for an output signal evaluation. The type
of uncertainty is obtained from getIndependentVariableUncertainty().getPdf(). This function
returns the upper or lower absolute uncertainty bound.

250 UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1658

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the
output variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1),
and selects the independent variable to be addressed through the output
variable that uses it.

isUpperBound is a Boolean value that specifies whether the upper or lower bound of a
uniform pdf is required as output.

Returns

A double precision value containing the value of the uncertainty based on the current
state of the instance.

A.5.2.14 const char∗ getIndependentVariableUnits (size_t indexf, size_t
indexv) const

This function is deprecated, and should not be used in new programs. Get independent variable
data through the VariableDef class instead.

An independent variable’s units attribute is a string of arbitrary length, but normally short,
and complying with the format requirements chosen by DST AD APS [7] in accordance with
SI and other systems.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

Returns

A character pointer (char∗) to an XML variableDef tag’s units attribute string is re-
turned.

A.5.2.15 int getNumberOfIndependentVariables (size_t index) const

This function is deprecated, and should not be used in new programs. Access this data through
the VariableDef class instead. This function is deprecated, and should not be used in new
programs. Access this data through the VariableDef class instead. The function returns the
number of independent variables associated with any output variable. Note an independent
variable can be of any of the types in the enum VariableDef::VariableType.

UNCLASSIFIED 251

DST-Group–TN–1658

UNCLASSIFIED

Parameters

index has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

Returns

Total number of independent variables referenced by the output variable selected.

A.5.2.16 int setIndependentVariableByIndex (size_t indexf, size_t indexv,
const double & x)

This function is deprecated, and should not be used in new programs. Set independent variable
values through the VariableDef class instead. This procedure is one of the means of setting
an input variable value within the Janus instance’s data structure. It will throw a standard
exception if an attempt is made to modify the value of a variable that is specified in the XML
dataset as being evaluated by computation.

Parameters

indexf has a range from 0 to (getNumberOfOutputs() - 1), and selects the output
variable to be addressed.

indexv has a range from 0 to (getNumberOfIndependentVariables (indexf) - 1), and
selects the independent variable to be addressed through the output variable that
uses it.

x is the double precision value to which the current value of the indexed variable
will be set.

Returns

0 is returned on successful completion.

See also

VariableDef::setValue()

252 UNCLASSIFIED

UNCLASSIFIED

DISTRIBUTION LIST

The Janus C++ Library – An Interface Class for DAVE-ML Compliant XML-Based Flight
Model Datasets

Geoff Brian and Shane D Hill

Task Sponsor

RL-APS

S&T Program

Chief of Aerospace Division
Research Leader – Aircraft Performance and Survivability
Group Leader – Aerodynamic and Aeroelasticity
Author(s): Geoff Brian and Shane D Hill

Michael Young
Michael Grant
Kylie Bedwell
Jonathan Dansie
Andrew Snowden

DST Group Research Library (Report Distribution Officer)

Defence Science Communications (ST Publications)

UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP
DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

The Janus C++ Library – An Interface Class for DAVE-ML
Compliant XML-Based Flight Model Datasets

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED RE-

PORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO

DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Geoff Brian and Shane D Hill

5. CORPORATE AUTHOR

Defence Science and Technology Group
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

6a. DST Group NUMBER

DST-Group–TN–1658
6b. AR NUMBER

016-923
6c. TYPE OF REPORT

Technical Note
7. DOCUMENT DATE

July, 2017
8. Objective ID

AV9426462
9. TASK NUMBER 10. TASK SPONSOR

RL-APS
13. DST Group Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Aerospace Division
15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

17. CITATION IN OTHER DOCUMENTS

No Limitations
18. RESEARCH LIBRARY THESAURUS

Flight simulation, Aerospace vehicles, Data Syntax, DAVE-ML, XML
19. ABSTRACT

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight
vehicle dynamic model data. It has been developed in conjunction with the ANSI/AIAA S-119-2011 Flight Dynamics
Model Exchange Standard prepared by the American Institute of Aeronautics and Astronautics (AIAA) Modeling and
Simulation Technical Committee (MSTC). The purpose of DAVE-ML is to provide a framework to encode entire flight
vehicle simulation data packages for exchange between simulation applications and the long-term archiving of model data.
This document describes an application programming interface (API) to the DAVE-ML dataset structure that has been
developed by the Defence Science and Technology (DST) Group. The API is known as ‘Janus’.

Page classification: UNCLASSIFIED

	Title
	Imprint
	Executive Summary
	Authors
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Document Revision History
	1.3 Purpose
	1.4 Scope
	1.5 Overview
	1.6 Data Types
	1.7 Example Usage

	2 Module Documentation
	2.1 Janus - Class Instantiation
	2.1.1 Detailed Description
	2.1.2 Enumeration Type Documentation
	2.1.3 Function Documentation

	2.2 Janus - Level 1 Elements
	2.2.1 Detailed Description
	2.2.2 Function Documentation

	3 Namespace Documentation
	3.1 janus Namespace Reference
	3.1.1 Detailed Description

	4 Class Documentation
	4.1 Array Class Reference
	4.1.1 Detailed Description
	4.1.2 Constructor & Destructor Documentation
	4.1.3 Member Function Documentation

	4.2 Author Class Reference
	4.2.1 Detailed Description
	4.2.2 Constructor & Destructor Documentation
	4.2.3 Member Function Documentation

	4.3 Bounds Class Reference
	4.3.1 Detailed Description
	4.3.2 Constructor & Destructor Documentation
	4.3.3 Member Function Documentation

	4.4 BreakpointDef Class Reference
	4.4.1 Detailed Description
	4.4.2 Constructor & Destructor Documentation
	4.4.3 Member Function Documentation

	4.5 CheckData Class Reference
	4.5.1 Detailed Description
	4.5.2 Constructor & Destructor Documentation
	4.5.3 Member Function Documentation

	4.6 CheckInputs Class Reference
	4.6.1 Detailed Description
	4.6.2 Constructor & Destructor Documentation

	4.7 CheckOutputs Class Reference
	4.7.1 Detailed Description
	4.7.2 Constructor & Destructor Documentation

	4.8 DimensionDef Class Reference
	4.8.1 Detailed Description
	4.8.2 Constructor & Destructor Documentation
	4.8.3 Member Function Documentation

	4.9 DomFunctions Class Reference
	4.9.1 Detailed Description

	4.10 ExportMathML Class Reference
	4.10.1 Detailed Description

	4.11 FileHeader Class Reference
	4.11.1 Detailed Description
	4.11.2 Constructor & Destructor Documentation
	4.11.3 Member Function Documentation

	4.12 Function Class Reference
	4.12.1 Detailed Description
	4.12.2 Constructor & Destructor Documentation
	4.12.3 Member Function Documentation

	4.13 FunctionDefn Class Reference
	4.13.1 Detailed Description
	4.13.2 Constructor & Destructor Documentation
	4.13.3 Member Function Documentation

	4.14 GriddedTableDef Class Reference
	4.14.1 Detailed Description
	4.14.2 Constructor & Destructor Documentation
	4.14.3 Member Function Documentation

	4.15 InDependentVarDef Class Reference
	4.15.1 Detailed Description
	4.15.2 Constructor & Destructor Documentation
	4.15.3 Member Function Documentation

	4.16 InternalValues Class Reference
	4.16.1 Detailed Description
	4.16.2 Constructor & Destructor Documentation

	4.17 Janus Class Reference
	4.17.1 Detailed Description

	4.18 MathMLDataClass Class Reference
	4.18.1 Detailed Description

	4.19 Modification Class Reference
	4.19.1 Detailed Description
	4.19.2 Constructor & Destructor Documentation
	4.19.3 Member Function Documentation

	4.20 ParseMathML Class Reference
	4.20.1 Detailed Description

	4.21 Provenance Class Reference
	4.21.1 Detailed Description
	4.21.2 Constructor & Destructor Documentation
	4.21.3 Member Function Documentation

	4.22 Reference Class Reference
	4.22.1 Detailed Description
	4.22.2 Constructor & Destructor Documentation
	4.22.3 Member Function Documentation

	4.23 Signal Class Reference
	4.23.1 Detailed Description
	4.23.2 Constructor & Destructor Documentation
	4.23.3 Member Function Documentation

	4.24 SignalList Class Reference
	4.24.1 Detailed Description
	4.24.2 Constructor & Destructor Documentation
	4.24.3 Member Function Documentation

	4.25 SolveMathML Class Reference
	4.25.1 Detailed Description

	4.26 StaticShot Class Reference
	4.26.1 Detailed Description
	4.26.2 Constructor & Destructor Documentation
	4.26.3 Member Function Documentation

	4.27 Uncertainty Class Reference
	4.27.1 Detailed Description
	4.27.2 Member Enumeration Documentation
	4.27.3 Constructor & Destructor Documentation
	4.27.4 Member Function Documentation

	4.28 UngriddedTableDef Class Reference
	4.28.1 Detailed Description
	4.28.2 Constructor & Destructor Documentation
	4.28.3 Member Function Documentation

	4.29 VariableDef Class Reference
	4.29.1 Detailed Description
	4.29.2 Member Enumeration Documentation
	4.29.3 Constructor & Destructor Documentation
	4.29.4 Member Function Documentation

	4.30 XmlElementDefinition Class Reference
	4.30.1 Detailed Description

	5 File Documentation
	5.1 Array.cpp File Reference
	5.1.1 Detailed Description

	5.2 Array.h File Reference
	5.2.1 Detailed Description

	5.3 Author.cpp File Reference
	5.3.1 Detailed Description

	5.4 Author.h File Reference
	5.4.1 Detailed Description

	5.5 Bounds.cpp File Reference
	5.5.1 Detailed Description

	5.6 Bounds.h File Reference
	5.6.1 Detailed Description

	5.7 BreakpointDef.cpp File Reference
	5.7.1 Detailed Description

	5.8 BreakpointDef.h File Reference
	5.8.1 Detailed Description

	5.9 CheckData.cpp File Reference
	5.9.1 Detailed Description

	5.10 CheckData.h File Reference
	5.10.1 Detailed Description

	5.11 CheckInputs.h File Reference
	5.11.1 Detailed Description

	5.12 CheckOutputs.h File Reference
	5.12.1 Detailed Description

	5.13 DimensionDef.cpp File Reference
	5.13.1 Detailed Description

	5.14 DimensionDef.h File Reference
	5.14.1 Detailed Description

	5.15 DomFunctions.h File Reference
	5.15.1 Detailed Description

	5.16 DomTypes.h File Reference
	5.16.1 Detailed Description

	5.17 ElementDefinitionEnum.h File Reference
	5.17.1 Detailed Description

	5.18 ExportMathML.cpp File Reference
	5.18.1 Detailed Description

	5.19 ExportMathML.h File Reference
	5.19.1 Detailed Description

	5.20 FileHeader.cpp File Reference
	5.20.1 Detailed Description

	5.21 FileHeader.h File Reference
	5.21.1 Detailed Description

	5.22 Function.cpp File Reference
	5.22.1 Detailed Description

	5.23 Function.h File Reference
	5.23.1 Detailed Description

	5.24 FunctionDefn.cpp File Reference
	5.24.1 Detailed Description

	5.25 FunctionDefn.h File Reference
	5.25.1 Detailed Description

	5.26 GetDescriptors.cpp File Reference
	5.26.1 Detailed Description

	5.27 GriddedTableDef.cpp File Reference
	5.27.1 Detailed Description

	5.28 GriddedTableDef.h File Reference
	5.28.1 Detailed Description

	5.29 InDependentVarDef.cpp File Reference
	5.29.1 Detailed Description

	5.30 InDependentVarDef.h File Reference
	5.30.1 Detailed Description

	5.31 InternalValues.h File Reference
	5.31.1 Detailed Description

	5.32 Janus.cpp File Reference
	5.32.1 Detailed Description

	5.33 Janus.h File Reference
	5.33.1 Detailed Description

	5.34 JanusDeprecated.cpp File Reference
	5.34.1 Detailed Description

	5.35 JanusDeprecated.h File Reference
	5.35.1 Detailed Description

	5.36 LinearInterpolation.cpp File Reference
	5.36.1 Detailed Description

	5.37 MathMLDataClass.cpp File Reference
	5.37.1 Detailed Description

	5.38 MathMLDataClass.h File Reference
	5.38.1 Detailed Description
	5.38.2 Enumeration Type Documentation
	5.38.3 Variable Documentation

	5.39 Modification.cpp File Reference
	5.39.1 Detailed Description

	5.40 Modification.h File Reference
	5.40.1 Detailed Description

	5.41 ParseMathML.cpp File Reference
	5.41.1 Detailed Description

	5.42 ParseMathML.h File Reference
	5.42.1 Detailed Description

	5.43 PolyInterpolation.cpp File Reference
	5.43.1 Detailed Description

	5.44 Provenance.cpp File Reference
	5.44.1 Detailed Description

	5.45 Provenance.h File Reference
	5.45.1 Detailed Description

	5.46 Reference.cpp File Reference
	5.46.1 Detailed Description

	5.47 Reference.h File Reference
	5.47.1 Detailed Description

	5.48 Signal.cpp File Reference
	5.48.1 Detailed Description

	5.49 Signal.h File Reference
	5.49.1 Detailed Description

	5.50 SignalList.cpp File Reference
	5.50.1 Detailed Description

	5.51 SignalList.h File Reference
	5.51.1 Detailed Description

	5.52 SolveMathML.cpp File Reference
	5.52.1 Detailed Description

	5.53 SolveMathML.h File Reference
	5.53.1 Detailed Description

	5.54 StaticShot.cpp File Reference
	5.54.1 Detailed Description

	5.55 StaticShot.h File Reference
	5.55.1 Detailed Description

	5.56 Uncertainty.cpp File Reference
	5.56.1 Detailed Description

	5.57 Uncertainty.h File Reference
	5.57.1 Detailed Description

	5.58 UngriddedInterpolation.cpp File Reference
	5.58.1 Detailed Description

	5.59 UngriddedTableDef.cpp File Reference
	5.59.1 Detailed Description

	5.60 UngriddedTableDef.h File Reference
	5.60.1 Detailed Description

	5.61 VariableDef.cpp File Reference
	5.61.1 Detailed Description

	5.62 VariableDef.h File Reference
	5.62.1 Detailed Description

	5.63 XmlElementDefinition.h File Reference
	5.63.1 Detailed Description

	6 Conclusion
	7 Acknowledgements
	8 Contact
	9 References
	Appendix A: Deprecated Functions
	A.1 Janus - XML File Documentation
	A.1.1 Detailed Description
	A.1.2 Enumeration Type Documentation
	A.1.3 Function Documentation

	A.2 Janus - XML Tabulated Functions
	A.2.1 Detailed Description
	A.2.2 Function Documentation

	A.3 Janus - Output Variables Functions
	A.3.1 Detailed Description
	A.3.2 Function Documentation

	A.4 Janus - Variables of All Types
	A.4.1 Detailed Description
	A.4.2 Function Documentation

	A.5 Janus - Independent Variables
	A.5.1 Detailed Description
	A.5.2 Function Documentation

	Distribution List
	Document Control Data

