
Practical 1
Jumping Rivers

Practical 1

The aim of this practical is to understand the syntax of functions and
loops. In practical 2, we will use this knowledge in a larger example.

Basic functions

Consider the following simple function

v = 5
def Fun1():

v = 0
return v

Fun1()

1. Why does the final line return 0 and not 5.

2. Delete line 3 in the above piece of code. Now change Fun1() to
allow v to be passed as an argument, i.e. we can write Fun1(5).
Call this function to make sure it works.

Default arguments:

Consider the two functions defined below:

def Fun2(x = 10):
return(x)

def Fun3(x):
return(x)

1. Why does

Fun2()

work, but this raises an error

Fun3()

2. Change Fun2 so that it returns x*x.

if statements.

Start with the following function definition:



practical 1 2

def Fun4(x):
if x == 5:

y = 0
else:

y = 1
return y

1. Change Fun4 so that it:

• returns 1 if x is positive;
• returns -1 if x is negative;
• returns 0 if x is zero.

for loops.

total = 0
for i in range(1,6):

total = total + i
total

The for loop above calculates
5∑

i=1

i = 1 + 2 + 3 + 4 + 5

1. What is the final value of total in the above piece of code?

2. Change the above loop to calculate the following summations:

(i)
20∑
i=1

(i+ 1)

(ii)
15∑

j=−5

j

3. Harder: Rewrite the two for loops as one for loop using the zip()
function. You will need two separate counters i.e. total1 and total2.

4. Rewrite the two loops using the sum() function from the numpy
library and the range() function. For example, the for loop in the
first example can be written as np.sum(range(1,6))

More for loops:

a = 2
total = 0
for blob in range(a, 5):

total = total + blob
total



practical 1 3

1. In the code above, delete line 1. Now put the above code in a func-
tion called Fun5, where a is passed as an argument, i.e. we can call
Fun5(1)

2. Alter the code so that the for loop goes from a to b, rather than
a to 5. Allow b to be passed as an argument, i.e. we can call
Fun5(1,6).

3. Change Fun5 so that it has default arguments of a = 1 and b =
10.

4. The range() function also has a step argument, so to create the
sequence 1, 3, 5 we would write range(1, 6, 2). Alter the code
such that Fun5() can now go up in steps of c. Allow c to be passed
as an argument.

In the notes, we observed that it was straight forward to loop
through a data set and select the maximum values. For instance, the
maximum value of each column:

import pandas as pd
d = {
"t1": [1,4,7,3,20],
"t2": [10,21,11,8,5],
"t3": [8,9,4,8,4]
}
df = pd.DataFrame(d)
max_cols = []
for i in [0,1,2]:

max_cols.append(df.iloc[:, i].max())
print(max_cols)

• Alter the above the code to calculate the mean instead of the maxi-
mum value

• Now, calculate the variance (via var) as well as the mean.

You should only have a single loop!


	Basic functions

