Actual source code: ex11.c
slepc-3.17.0 2022-03-31
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Computes the smallest nonzero eigenvalue of the Laplacian of a graph.\n\n"
12: "This example illustrates EPSSetDeflationSpace(). The example graph corresponds to a "
13: "2-D regular mesh. The command line options are:\n"
14: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
15: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
17: #include <slepceps.h>
19: int main (int argc,char **argv)
20: {
21: EPS eps; /* eigenproblem solver context */
22: Mat A; /* operator matrix */
23: Vec x;
24: EPSType type;
25: PetscInt N,n=10,m,i,j,II,Istart,Iend,nev;
26: PetscScalar w;
27: PetscBool flag,terse;
29: SlepcInitialize(&argc,&argv,(char*)0,help);
31: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
32: PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
33: if (!flag) m=n;
34: N = n*m;
35: PetscPrintf(PETSC_COMM_WORLD,"\nFiedler vector of a 2-D regular mesh, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m);
37: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38: Compute the operator matrix that defines the eigensystem, Ax=kx
39: In this example, A = L(G), where L is the Laplacian of graph G, i.e.
40: Lii = degree of node i, Lij = -1 if edge (i,j) exists in G
41: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
43: MatCreate(PETSC_COMM_WORLD,&A);
44: MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
45: MatSetFromOptions(A);
46: MatSetUp(A);
48: MatGetOwnershipRange(A,&Istart,&Iend);
49: for (II=Istart;II<Iend;II++) {
50: i = II/n; j = II-i*n;
51: w = 0.0;
52: if (i>0) { MatSetValue(A,II,II-n,-1.0,INSERT_VALUES); w=w+1.0; }
53: if (i<m-1) { MatSetValue(A,II,II+n,-1.0,INSERT_VALUES); w=w+1.0; }
54: if (j>0) { MatSetValue(A,II,II-1,-1.0,INSERT_VALUES); w=w+1.0; }
55: if (j<n-1) { MatSetValue(A,II,II+1,-1.0,INSERT_VALUES); w=w+1.0; }
56: MatSetValue(A,II,II,w,INSERT_VALUES);
57: }
59: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
60: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
62: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63: Create the eigensolver and set various options
64: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
66: /*
67: Create eigensolver context
68: */
69: EPSCreate(PETSC_COMM_WORLD,&eps);
71: /*
72: Set operators. In this case, it is a standard eigenvalue problem
73: */
74: EPSSetOperators(eps,A,NULL);
75: EPSSetProblemType(eps,EPS_HEP);
77: /*
78: Select portion of spectrum
79: */
80: EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL);
82: /*
83: Set solver parameters at runtime
84: */
85: EPSSetFromOptions(eps);
87: /*
88: Attach deflation space: in this case, the matrix has a constant
89: nullspace, [1 1 ... 1]^T is the eigenvector of the zero eigenvalue
90: */
91: MatCreateVecs(A,&x,NULL);
92: VecSet(x,1.0);
93: EPSSetDeflationSpace(eps,1,&x);
94: VecDestroy(&x);
96: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
97: Solve the eigensystem
98: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
100: EPSSolve(eps);
102: /*
103: Optional: Get some information from the solver and display it
104: */
105: EPSGetType(eps,&type);
106: PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);
107: EPSGetDimensions(eps,&nev,NULL,NULL);
108: PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev);
110: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
111: Display solution and clean up
112: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
114: /* show detailed info unless -terse option is given by user */
115: PetscOptionsHasName(NULL,NULL,"-terse",&terse);
116: if (terse) EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL);
117: else {
118: PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL);
119: EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD);
120: EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD);
121: PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD);
122: }
123: EPSDestroy(&eps);
124: MatDestroy(&A);
125: SlepcFinalize();
126: return 0;
127: }
129: /*TEST
131: testset:
132: args: -eps_nev 4 -terse
133: output_file: output/ex11_1.out
134: test:
135: suffix: 1
136: args: -eps_krylovschur_restart .2
137: test:
138: suffix: 2
139: args: -eps_ncv 20 -eps_target 0 -st_type sinvert -st_ksp_type cg -st_pc_type jacobi
141: TEST*/