Actual source code: dsrtdf.c

slepc-3.17.0 2022-03-31
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    BDC - Block-divide and conquer (see description in README file)
 12: */

 14: #include <slepc/private/dsimpl.h>
 15: #include <slepcblaslapack.h>

 17: PetscErrorCode BDC_dsrtdf_(PetscBLASInt *k,PetscBLASInt n,PetscBLASInt n1,
 18:         PetscReal *d,PetscReal *q,PetscBLASInt ldq,PetscBLASInt *indxq,
 19:         PetscReal *rho,PetscReal *z,PetscReal *dlamda,PetscReal *w,
 20:         PetscReal *q2,PetscBLASInt *indx,PetscBLASInt *indxc,PetscBLASInt *indxp,
 21:         PetscBLASInt *coltyp,PetscReal reltol,PetscBLASInt *dz,PetscBLASInt *de,
 22:         PetscBLASInt *info)
 23: {
 24: /*  -- Routine written in LAPACK Version 3.0 style -- */
 25: /* *************************************************** */
 26: /*     Written by */
 27: /*     Michael Moldaschl and Wilfried Gansterer */
 28: /*     University of Vienna */
 29: /*     last modification: March 16, 2014 */

 31: /*     Small adaptations of original code written by */
 32: /*     Wilfried Gansterer and Bob Ward, */
 33: /*     Department of Computer Science, University of Tennessee */
 34: /*     see https://doi.org/10.1137/S1064827501399432 */
 35: /* *************************************************** */

 37: /*  Purpose */
 38: /*  ======= */

 40: /*  DSRTDF merges the two sets of eigenvalues of a rank-one modified */
 41: /*  diagonal matrix D+ZZ^T together into a single sorted set. Then it tries */
 42: /*  to deflate the size of the problem. */
 43: /*  There are two ways in which deflation can occur:  when two or more */
 44: /*  eigenvalues of D are close together or if there is a tiny entry in the */
 45: /*  Z vector.  For each such occurrence the order of the related secular */
 46: /*  equation problem is reduced by one. */

 48: /*  Arguments */
 49: /*  ========= */

 51: /*  K      (output) INTEGER */
 52: /*         The number of non-deflated eigenvalues, and the order of the */
 53: /*         related secular equation. 0 <= K <=N. */

 55: /*  N      (input) INTEGER */
 56: /*         The dimension of the diagonal matrix.  N >= 0. */

 58: /*  N1     (input) INTEGER */
 59: /*         The location of the last eigenvalue in the leading sub-matrix. */
 60: /*         min(1,N) <= N1 <= max(1,N). */

 62: /*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
 63: /*         On entry, D contains the eigenvalues of the two submatrices to */
 64: /*         be combined. */
 65: /*         On exit, D contains the trailing (N-K) updated eigenvalues */
 66: /*         (those which were deflated) sorted into increasing order. */

 68: /*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
 69: /*         On entry, Q contains the eigenvectors of two submatrices in */
 70: /*         the two square blocks with corners at (1,1), (N1,N1) */
 71: /*         and (N1+1, N1+1), (N,N). */
 72: /*         On exit, Q contains the trailing (N-K) updated eigenvectors */
 73: /*         (those which were deflated) in its last N-K columns. */

 75: /*  LDQ    (input) INTEGER */
 76: /*         The leading dimension of the array Q.  LDQ >= max(1,N). */

 78: /*  INDXQ  (input/output) INTEGER array, dimension (N) */
 79: /*         The permutation which separately sorts the two sub-problems */
 80: /*         in D into ascending order.  Note that elements in the second */
 81: /*         half of this permutation must first have N1 added to their */
 82: /*         values. Destroyed on exit. */

 84: /*  RHO    (input/output) DOUBLE PRECISION */
 85: /*         On entry, the off-diagonal element associated with the rank-1 */
 86: /*         cut which originally split the two submatrices which are now */
 87: /*         being recombined. */
 88: /*         On exit, RHO has been modified to the value required by */
 89: /*         DLAED3M (made positive and multiplied by two, such that */
 90: /*         the modification vector has norm one). */

 92: /*  Z      (input/output) DOUBLE PRECISION array, dimension (N) */
 93: /*         On entry, Z contains the updating vector. */
 94: /*         On exit, the contents of Z has been destroyed by the updating */
 95: /*         process. */

 97: /*  DLAMDA (output) DOUBLE PRECISION array, dimension (N) */
 98: /*         A copy of the first K non-deflated eigenvalues which */
 99: /*         will be used by DLAED3M to form the secular equation. */

101: /*  W      (output) DOUBLE PRECISION array, dimension (N) */
102: /*         The first K values of the final deflation-altered z-vector */
103: /*         which will be passed to DLAED3M. */

105: /*  Q2     (output) DOUBLE PRECISION array, dimension */
106: /*         (N*N) (if everything is deflated) or */
107: /*         (N1*(COLTYP(1)+COLTYP(2)) + (N-N1)*(COLTYP(2)+COLTYP(3))) */
108: /*         (if not everything is deflated) */
109: /*         If everything is deflated, then N*N intermediate workspace */
110: /*         is needed in Q2. */
111: /*         If not everything is deflated, Q2 contains on exit a copy of the */
112: /*         first K non-deflated eigenvectors which will be used by */
113: /*         DLAED3M in a matrix multiply (DGEMM) to accumulate the new */
114: /*         eigenvectors, followed by the N-K deflated eigenvectors. */

116: /*  INDX   (workspace) INTEGER array, dimension (N) */
117: /*         The permutation used to sort the contents of DLAMDA into */
118: /*         ascending order. */

120: /*  INDXC  (output) INTEGER array, dimension (N) */
121: /*         The permutation used to arrange the columns of the deflated */
122: /*         Q matrix into three groups:  columns in the first group contain */
123: /*         non-zero elements only at and above N1 (type 1), columns in the */
124: /*         second group are dense (type 2), and columns in the third group */
125: /*         contain non-zero elements only below N1 (type 3). */

127: /*  INDXP  (workspace) INTEGER array, dimension (N) */
128: /*         The permutation used to place deflated values of D at the end */
129: /*         of the array.  INDXP(1:K) points to the nondeflated D-values */
130: /*         and INDXP(K+1:N) points to the deflated eigenvalues. */

132: /*  COLTYP (workspace/output) INTEGER array, dimension (N) */
133: /*         During execution, a label which will indicate which of the */
134: /*         following types a column in the Q2 matrix is: */
135: /*         1 : non-zero in the upper half only; */
136: /*         2 : dense; */
137: /*         3 : non-zero in the lower half only; */
138: /*         4 : deflated. */
139: /*         On exit, COLTYP(i) is the number of columns of type i, */
140: /*         for i=1 to 4 only. */

142: /*  RELTOL (input) DOUBLE PRECISION */
143: /*         User specified deflation tolerance. If RELTOL.LT.20*EPS, then */
144: /*         the standard value used in the original LAPACK routines is used. */

146: /*  DZ     (output) INTEGER, DZ.GE.0 */
147: /*         counts the deflation due to a small component in the modification */
148: /*         vector. */

150: /*  DE     (output) INTEGER, DE.GE.0 */
151: /*         counts the deflation due to close eigenvalues. */

153: /*  INFO   (output) INTEGER */
154: /*          = 0:  successful exit. */
155: /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

157: /*  Further Details */
158: /*  =============== */

160: /*  Based on code written by */
161: /*  Wilfried Gansterer and Bob Ward, */
162: /*  Department of Computer Science, University of Tennessee */

164: /*  Based on the design of the LAPACK code DLAED2 with modifications */
165: /*  to allow a block divide and conquer scheme */

167: /*  DLAED2 was written by Jeff Rutter, Computer Science Division, University */
168: /*  of California at Berkeley, USA, and modified by Francoise Tisseur, */
169: /*  University of Tennessee. */

171: /*  ===================================================================== */

173:   PetscReal    c, s, t, eps, tau, tol, dmax, dmone = -1.;
174:   PetscBLASInt i, j, i1, k2, n2, ct, nj, pj=0, js, iq1, iq2;
175:   PetscBLASInt psm[4], imax, jmax, ctot[4], factmp=1, one=1;

177:   *info = 0;

179:   if (n < 0) *info = -2;
180:   else if (n1 < PetscMin(1,n) || n1 > PetscMax(1,n)) *info = -3;
181:   else if (ldq < PetscMax(1,n)) *info = -6;

184:   /* Initialize deflation counters */

186:   *dz = 0;
187:   *de = 0;

189: /* **************************************************************************** */

191:   /* Quick return if possible */

193:   if (n == 0) PetscFunctionReturn(0);

195: /* **************************************************************************** */

197:   n2 = n - n1;

199:   /* Modify Z so that RHO is positive. */

201:   if (*rho < 0.) PetscStackCallBLAS("BLASscal",BLASscal_(&n2, &dmone, &z[n1], &one));

203:   /* Normalize z so that norm2(z) = 1.  Since z is the concatenation of */
204:   /* two normalized vectors, norm2(z) = sqrt(2). (NOTE that this holds also */
205:   /* here in the approximate block-tridiagonal D&C because the two vectors are */
206:   /* singular vectors, but it would not necessarily hold in a D&C for a */
207:   /* general banded matrix !) */

209:   t = 1. / PETSC_SQRT2;
210:   PetscStackCallBLAS("BLASscal",BLASscal_(&n, &t, z, &one));

212:   /* NOTE: at this point the value of RHO is modified in order to */
213:   /*       normalize Z:    RHO = ABS( norm2(z)**2 * RHO */
214:   /*       in our case:    norm2(z) = sqrt(2), and therefore: */

216:   *rho = PetscAbs(*rho * 2.);

218:   /* Sort the eigenvalues into increasing order */

220:   for (i = n1; i < n; ++i) indxq[i] += n1;

222:   /* re-integrate the deflated parts from the last pass */

224:   for (i = 0; i < n; ++i) dlamda[i] = d[indxq[i]-1];
225:   PetscStackCallBLAS("LAPACKlamrg",LAPACKlamrg_(&n1, &n2, dlamda, &one, &one, indxc));
226:   for (i = 0; i < n; ++i) indx[i] = indxq[indxc[i]-1];
227:   for (i = 0; i < n; ++i) indxq[i] = 0;

229:   /* Calculate the allowable deflation tolerance */

231:   /* imax = BLASamax_(&n, z, &one); */
232:   imax = 1;
233:   dmax = PetscAbsReal(z[0]);
234:   for (i=1;i<n;i++) {
235:     if (PetscAbsReal(z[i])>dmax) {
236:       imax = i+1;
237:       dmax = PetscAbsReal(z[i]);
238:     }
239:   }
240:   /* jmax = BLASamax_(&n, d, &one); */
241:   jmax = 1;
242:   dmax = PetscAbsReal(d[0]);
243:   for (i=1;i<n;i++) {
244:     if (PetscAbsReal(d[i])>dmax) {
245:       jmax = i+1;
246:       dmax = PetscAbsReal(d[i]);
247:     }
248:   }

250:   eps = LAPACKlamch_("Epsilon");
251:   if (reltol < eps * 20) {
252:     /* use the standard deflation tolerance from the original LAPACK code */
253:     tol = eps * 8. * PetscMax(PetscAbs(d[jmax-1]),PetscAbs(z[imax-1]));
254:   } else {
255:     /* otherwise set TOL to the input parameter RELTOL ! */
256:     tol = reltol * PetscMax(PetscAbs(d[jmax-1]),PetscAbs(z[imax-1]));
257:   }

259:   /* If the rank-1 modifier is small enough, no more needs to be done */
260:   /* except to reorganize Q so that its columns correspond with the */
261:   /* elements in D. */

263:   if (*rho * PetscAbs(z[imax-1]) <= tol) {

265:     /* complete deflation because of small rank-one modifier */
266:     /* NOTE: in this case we need N*N space in the array Q2 ! */

268:     *dz = n; *k = 0;
269:     iq2 = 1;
270:     for (j = 0; j < n; ++j) {
271:       i = indx[j]; indxq[j] = i;
272:       PetscStackCallBLAS("BLAScopy",BLAScopy_(&n, &q[(i-1)*ldq], &one, &q2[iq2-1], &one));
273:       dlamda[j] = d[i-1];
274:       iq2 += n;
275:     }
276:     for (j=0;j<n;j++) for (i=0;i<n;i++) q[i+j*ldq] = q2[i+j*n];
277:     PetscStackCallBLAS("BLAScopy",BLAScopy_(&n, dlamda, &one, d, &one));
278:     PetscFunctionReturn(0);
279:   }

281:   /* If there are multiple eigenvalues then the problem deflates.  Here */
282:   /* the number of equal eigenvalues is found.  As each equal */
283:   /* eigenvalue is found, an elementary reflector is computed to rotate */
284:   /* the corresponding eigensubspace so that the corresponding */
285:   /* components of Z are zero in this new basis. */

287:   /* initialize the column types */

289:   /* first N1 columns are initially (before deflation) of type 1 */
290:   for (i = 0; i < n1; ++i) coltyp[i] = 1;
291:   /* columns N1+1 to N are initially (before deflation) of type 3 */
292:   for (i = n1; i < n; ++i) coltyp[i] = 3;

294:   *k = 0;
295:   k2 = n + 1;
296:   for (j = 0; j < n; ++j) {
297:     nj = indx[j]-1;
298:     if (*rho * PetscAbs(z[nj]) <= tol) {

300:       /* Deflate due to small z component. */
301:       ++(*dz);
302:       --k2;

304:       /* deflated eigenpair, therefore column type 4 */
305:       coltyp[nj] = 4;
306:       indxp[k2-1] = nj+1;
307:       indxq[k2-1] = nj+1;
308:       if (j+1 == n) goto L100;
309:     } else {

311:       /* not deflated */
312:       pj = nj;
313:       goto L80;
314:     }
315:   }
316:   factmp = 1;
317: L80:
318:   ++j;
319:   nj = indx[j]-1;
320:   if (j+1 > n) goto L100;
321:   if (*rho * PetscAbs(z[nj]) <= tol) {

323:     /* Deflate due to small z component. */
324:     ++(*dz);
325:     --k2;
326:     coltyp[nj] = 4;
327:     indxp[k2-1] = nj+1;
328:     indxq[k2-1] = nj+1;
329:   } else {

331:     /* Check if eigenvalues are close enough to allow deflation. */
332:     s = z[pj];
333:     c = z[nj];

335:     /* Find sqrt(a**2+b**2) without overflow or */
336:     /* destructive underflow. */

338:     tau = SlepcAbs(c, s);
339:     t = d[nj] - d[pj];
340:     c /= tau;
341:     s = -s / tau;
342:     if (PetscAbs(t * c * s) <= tol) {

344:       /* Deflate due to close eigenvalues. */
345:       ++(*de);
346:       z[nj] = tau;
347:       z[pj] = 0.;
348:       if (coltyp[nj] != coltyp[pj]) coltyp[nj] = 2;

350:         /* if deflation happens across the two eigenvector blocks */
351:         /* (eigenvalues corresponding to different blocks), then */
352:         /* on column in the eigenvector matrix fills up completely */
353:         /* (changes from type 1 or 3 to type 2) */

355:         /* eigenpair PJ is deflated, therefore the column type changes */
356:         /* to 4 */

358:         coltyp[pj] = 4;
359:         PetscStackCallBLAS("BLASrot",BLASrot_(&n, &q[pj*ldq], &one, &q[nj*ldq], &one, &c, &s));
360:         t = d[pj] * (c * c) + d[nj] * (s * s);
361:         d[nj] = d[pj] * (s * s) + d[nj] * (c * c);
362:         d[pj] = t;
363:         --k2;
364:         i = 1;
365: L90:
366:         if (k2 + i <= n) {
367:           if (d[pj] < d[indxp[k2 + i-1]-1]) {
368:             indxp[k2 + i - 2] = indxp[k2 + i - 1];
369:             indxq[k2 + i - 2] = indxq[k2 + i - 1];
370:             indxp[k2 + i - 1] = pj + 1;
371:             indxq[k2 + i - 2] = pj + 1;
372:             ++i;
373:             goto L90;
374:           } else {
375:             indxp[k2 + i - 2] = pj + 1;
376:             indxq[k2 + i - 2] = pj + 1;
377:           }
378:         } else {
379:           indxp[k2 + i - 2] = pj + 1;
380:           indxq[k2 + i - 2] = pj + 1;
381:         }
382:         pj = nj;
383:         factmp = -1;
384:       } else {

386:       /* do not deflate */
387:       ++(*k);
388:       dlamda[*k-1] = d[pj];
389:       w[*k-1] = z[pj];
390:       indxp[*k-1] = pj + 1;
391:       indxq[*k-1] = pj + 1;
392:       factmp = 1;
393:       pj = nj;
394:     }
395:   }
396:   goto L80;
397: L100:

399:   /* Record the last eigenvalue. */
400:   ++(*k);
401:   dlamda[*k-1] = d[pj];
402:   w[*k-1] = z[pj];
403:   indxp[*k-1] = pj+1;
404:   indxq[*k-1] = (pj+1) * factmp;

406:   /* Count up the total number of the various types of columns, then */
407:   /* form a permutation which positions the four column types into */
408:   /* four uniform groups (although one or more of these groups may be */
409:   /* empty). */

411:   for (j = 0; j < 4; ++j) ctot[j] = 0;
412:   for (j = 0; j < n; ++j) {
413:     ct = coltyp[j];
414:     ++ctot[ct-1];
415:   }

417:   /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
418:   psm[0] = 1;
419:   psm[1] = ctot[0] + 1;
420:   psm[2] = psm[1] + ctot[1];
421:   psm[3] = psm[2] + ctot[2];
422:   *k = n - ctot[3];

424:   /* Fill out the INDXC array so that the permutation which it induces */
425:   /* will place all type-1 columns first, all type-2 columns next, */
426:   /* then all type-3's, and finally all type-4's. */

428:   for (j = 0; j < n; ++j) {
429:     js = indxp[j];
430:     ct = coltyp[js-1];
431:     indx[psm[ct - 1]-1] = js;
432:     indxc[psm[ct - 1]-1] = j+1;
433:     ++psm[ct - 1];
434:   }

436:   /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
437:   /* and Q2 respectively.  The eigenvalues/vectors which were not */
438:   /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
439:   /* while those which were deflated go into the last N - K slots. */

441:   i = 0;
442:   iq1 = 0;
443:   iq2 = (ctot[0] + ctot[1]) * n1;
444:   for (j = 0; j < ctot[0]; ++j) {
445:     js = indx[i];
446:     PetscStackCallBLAS("BLAScopy",BLAScopy_(&n1, &q[(js-1)*ldq], &one, &q2[iq1], &one));
447:     z[i] = d[js-1];
448:     ++i;
449:     iq1 += n1;
450:   }

452:   for (j = 0; j < ctot[1]; ++j) {
453:     js = indx[i];
454:     PetscStackCallBLAS("BLAScopy",BLAScopy_(&n1, &q[(js-1)*ldq], &one, &q2[iq1], &one));
455:     PetscStackCallBLAS("BLAScopy",BLAScopy_(&n2, &q[n1+(js-1)*ldq], &one, &q2[iq2], &one));
456:     z[i] = d[js-1];
457:     ++i;
458:     iq1 += n1;
459:     iq2 += n2;
460:   }

462:   for (j = 0; j < ctot[2]; ++j) {
463:     js = indx[i];
464:     PetscStackCallBLAS("BLAScopy",BLAScopy_(&n2, &q[n1+(js-1)*ldq], &one, &q2[iq2], &one));
465:     z[i] = d[js-1];
466:     ++i;
467:     iq2 += n2;
468:   }

470:   iq1 = iq2;
471:   for (j = 0; j < ctot[3]; ++j) {
472:     js = indx[i];
473:     PetscStackCallBLAS("BLAScopy",BLAScopy_(&n, &q[(js-1)*ldq], &one, &q2[iq2], &one));
474:     iq2 += n;
475:     z[i] = d[js-1];
476:     ++i;
477:   }

479:   /* The deflated eigenvalues and their corresponding vectors go back */
480:   /* into the last N - K slots of D and Q respectively. */

482:   for (j=0;j<ctot[3];j++) for (i=0;i<n;i++) q[i+(j+*k)*ldq] = q2[iq1+i+j*n];
483:   i1 = n - *k;
484:   PetscStackCallBLAS("BLAScopy",BLAScopy_(&i1, &z[*k], &one, &d[*k], &one));

486:   /* Copy CTOT into COLTYP for referencing in DLAED3M. */

488:   for (j = 0; j < 4; ++j) coltyp[j] = ctot[j];
489:   PetscFunctionReturn(0);
490: }