1. Beginners Guide / Help

jscatter.showDoc() Open the documentation in a webbrowser and print location of the documentation.

1.1. Reading ASCII files

  • dataArray (js.dA) reads one dataset from a file (you can choose which one).
  • dataList (js.dL) reads all datasets from one or multiple files (even if different in shape).

A common problem is how to read ASCII files with data as the format is often not very intuitive designed. Often there is additional metadata before or after a matrix like block.

Jscatter uses a simple concept to classify lines :
  • 2 numbers at the beginning of a line are data (matrix like data block).
  • a name followed by a number (and more) is an attribute with name and content.
  • everything else is comment (but can later be converted to an attribute).

Often it is just necessary to replace some characters to fit into this idea. This can be done during reading using some simple options in dataArray/dataList creation:

  • replace={‘old’:’new’,’,’:’.’} ==> replace char and strings
  • skiplines=lambda words: any(w in words for w in [‘’,’ ‘,’NAN’,’‘*]) ==> skip complete bad lines
  • takeline=’ATOM’ ==> select specific lines
  • ignore =’#’ ==> skip lines starting with this
  • usecols =[1,2,5] ==> select specific columns
  • lines2parameter=[2,3,4] ==> use these data lines as comment

See jscatter.dataarray.dataArray() for all options and how to do this.

If there is more information in comments or filename this can be extracted by using the comment lines.
  • data.getfromcomment(‘nameatfirstcolumn’) ==> extract a list of words in this line
  • data.name ==> filename, see below for example.

Some examples and how to read them

data1_273K_10mM.dat (e.g. Instrument JNSE@MLZ, Garching)

this is just a comment or description of the data
temp     293
pressure 1013 14
detectorsetting up
name     temp1bsa
0.854979E-01  0.178301E+03  0.383044E+02
0.882382E-01  0.156139E+03  0.135279E+02
0.909785E-01  0.150313E+03  0.110681E+02
0.937188E-01  0.147430E+03  0.954762E+01
0.964591E-01  0.141615E+03  0.846613E+01
0.991995E-01  0.141024E+03  0.750891E+01
0.101940E+00  0.135792E+03  0.685011E+01
0.104680E+00  0.140996E+03  0.607993E+01

Read by

data=js.dA('data1.dat')
data.pressure                                    # get [1013, 14] # this was created automatically
# if you need the additional information
data.getfromComment('detectorsetting')           # creates attribute detectorsetting with value 'up' found in comments
data.Temp=float(data.name.split('_')[1][:-1])    # extracts the temperature from filename
data.conc=float(data.name.split('_')[2][:-2])    # same for concentration

aspirin.pdb: Atomic coordinates for aspirin (protein atomic coordinates Matplotlib ):

Header
Remarks blabla
Remarks in pdb files are sometimes more than 100 lines
ATOM      1  C1  MON     1       0.864   0.189  -0.055  1.00  0.00
ATOM      2  C2  MON     1       1.690   1.283  -0.052  1.00  0.00
ATOM      3  C3  MON     1       3.058   1.144  -0.020  1.00  0.00
ATOM      4  C4  MON     1       3.612  -0.130   0.017  1.00  0.00
ATOM      5  C5  MON     1       2.757  -1.212   0.005  1.00  0.00
ATOM      6  C6  MON     1       1.400  -1.070  -0.032  1.00  0.00
ATOM      7  C7  MON     1       3.835   2.447  -0.015  1.00  0.00
ATOM      8  O8  MON     1       3.195   3.503  -0.064  1.00  0.00
ATOM      9  O9  MON     1       5.226   2.540   0.043  1.00  0.00
ATOM     10  O10 MON     1       5.039  -0.260   0.070  1.00  0.00
ATOM     11  C11 MON     1       5.857  -1.416   0.236  1.00  0.00
ATOM     12  O12 MON     1       5.502  -2.587   0.436  1.00  0.00
ATOM     13  C13 MON     1       7.303  -1.154   0.202  1.00  0.00
HETATOM lines may apear at the end

Read by

js.dA('aspirin.pdb',takeline='ATOM',usecols=[6,7,8]) # take 'ATOM' lines, but only column 6-8 as x,y,z coordinates.
# or
js.dA('aspirin.pdb',replace={'ATOM':'0'},usecols=[6,7,8])  # replace string by number

data2.txt:

# this is just a comment or description of the data
# temp     ;    293
# pressure ; 1013 14  bar
# name     ; temp1bsa
&doit
0,854979E-01  0,178301E+03  0,383044E+02
0,882382E-01  0,156139E+03  0,135279E+02
0,909785E-01  *             0,110681E+02
0,937188E-01  0,147430E+03  0,954762E+01
0,964591E-01  0,141615E+03  0,846613E+01
nan           nan           0

Read by

# ignore is by default '#', so switch it of
# skip lines with non numbers in data
# replace some char by others or remove by replacing with empty string ''.
js.dA('data2.txt',replace={'#':'',';':'',',':'.'},skiplines=[‘*’,'nan'],ignore='' )

pdh format used in some SAXS instruments (first real data point is line 4):

SAXS BOX
      2057         0         0         0         0         0         0         0
  0.000000E+00   3.053389E+02   0.000000E+00   1.000000E+00   1.541800E-01
  0.000000E+00   1.332462E+00   0.000000E+00   0.000000E+00   0.000000E+00
-1.069281E-01   2.277691E+03   1.168599E+00
-1.037351E-01   2.239132E+03   1.275602E+00
-1.005422E-01   2.239534E+03   1.068182E+00
-9.734922E-02   2.219594E+03   1.102175E+00
......

Read by:

# this saves the prepended lines in attribute line_2,...
empty=js.dA('exampleData/buffer_averaged_corrected_despiked.pdh',usecols=[0,1],lines2parameter=[2,3,4])
# next just ignores the first lines (and last 50) and uses every second line,
empty=js.dA('exampleData/buffer_averaged_corrected_despiked.pdh',usecols=[0,1],block=[5,-50,2])

Read csv data by (comma separated list)

js.dA('data2.txt',replace={',':' '})
# If tabs separate the columns
js.dA('data2.txt',replace={',':' ','\t':' '})

1.2. Creating from numpy arrays

This demonstrates how to create dataArrays form calculated data:

#
x=np.r_[0:10:0.5]                 # a list of values
D,A,q=0.45,0.99,1.2               # parameters
data=js.dA(np.vstack([x,np.exp(-q**2*D*x)+np.random.rand(len(x))*0.05,x*0+0.05]))
data.diffusiocoefficient=D
data.amplitude=A
data.wavevector=q

# alternative (diffusion with noise and error )
data=js.dA(np.c_[x,np.exp(-q**2*D*x)*0.05,x*0+0.05].T)
f=lambda xx,DD,qq,e:np.exp(-qq**2*DD*xx)+np.random.rand(len(x))*e
data=js.dA(np.c_[x,f(x,D,q,0.05),np.zeros_like(x)+0.05].T)

1.3. Indexing dataArray/dataList and reducing

Basic Slicing and Indexing/Advanced Indexing/Slicing works as described at numpy

This means accessing parts of the dataArray/dataList by indexing with integers, boolean masks or arrays to extract a subset of the data (returning a copy)

[A,B,C] in the following describes A dataList, B dataArray columns and C values in columns.

i5=js.dL(js.examples.datapath+'/iqt_1hho.dat')
# remove first 2 and last 2 datapoints in all dataArrays
i6=i5[:,:,:2:-2]
# remove first column and use 1,2,3 columns in all dataArrays
i6=i5[:,1:4,:]
# use each second elelemt in datalist and remove last 2 datapoints in all dataArrays
i6=i5[::2,:,:-2]
# You can loop over the dataArrays for individual usage.

Reducing data to a lower number of values is done by data.prune (see dataList )

prune reduces e.g by 2000 points by averaging in intervalls to get 100 points.

i7=js.dL(js.examples.datapath+'/a0_336.dat')
# mean values in interval [0.1,4] with 100 points distributed on logscale
i7_2=i7.prune(lower=0.1,upper=4,number=100,kind='log') #type='mean' is default

DataList can be filtered to use a subset eg to filter for q, temperature,…..

i5=js.dL(js.examples.datapath+'/iqt_1hho.dat')
i6=i5.filter(lambda a:a.q<2)

This demonstrates how to filter data values according to some rule.

x=np.r_[0:10:0.5]
D,A,q=0.45,0.99,1.2               # parameters
rand=np.random.randn(len(x))      # the noise on the signal
data=js.dA(np.vstack([x,np.exp(-q**2*D*x)+rand*0.05,x*0+0.05,rand])) # generate data with noise
# select like this
newdata=data[:,data[3]>0]         # take only positive noise in column 3
newdata=data[:,data.X>2]          # X>2
newdata=data[:,data.Y<0.9]        # Y<0.9

1.4. Fitting experimental data

See How to build simple models for more ways to define models.

Please avoid using lists as parameters as list are used to discriminate between common parameters and individual fit parameters.

import jscatter as js
import numpy as np

# read data
data=js.dL(js.examples.datapath+'/polymer.dat')
# merge equal Temperatures each measured with two detector distances
data.mergeAttribut('Temp',limit=0.01,isort='X')
# define model
def gCpower(q,I0,Rg,A,beta,bgr):
    """Model Gaussian chain  + power law and background"""
    gc=js.ff.gaussianChain(q=q,Rg=Rg)
    # add power law and background
    gc.Y=I0*gc.Y+A*q**beta+bgr
    gc.A=A
    gc.I0=I0
    gc.bgr=bgr
    gc.beta=beta
    return gc

data.makeErrPlot(yscale='l',xscale='l')    # additional errorplot
data.setlimit(bgr=[0,1])                   # upper and lower soft limit

# here we use individual parameter for all except a common beta ( no [] )
# please try removing the [] and play with it :-)
data.fit(model=gCpower,
         freepar={'I0':[0.1],'Rg':[3],'A':[1],'bgr':[0.01],'beta':-3},
         fixpar={},
         mapNames={'q':'X'},
         condition =lambda a:(a.X>0.05) & (a.X<4))

# result parameter and error (example)
data.lastfit.Rg
data.lastfit.Rg_err

# save the fit result including parameters, errors and covariance matrix
data.lastfit.save('polymer_fitDebye.dat')

1.5. Plot experimental data and fit result

# plot data
p=js.grace()
p.plot(data,legend='measured data')
p.xaxis(min=0.07,max=4,scale='l',label='Q / nm\S-1')
p.yaxis(scale='l',label='I(Q) / a.u.')
# plot the result of the fit
p.plot(data.lastfit,symbol=0,line=[1,1,4],legend='fit Rg=$radiusOfGyration I0=$I0')
p.legend()

p1=js.grace()
# Tempmean because of previous mergeAttribut; otherwise data.Temp
p1.plot(data.Tempmean,data.lastfit.Rg,data.lastfit.Rg_err)
p1.xaxis(label='Temperature / C')
p1.yaxis(label='Rg / nm')

1.6. Save data

jscatter saves files in a ASCII format including attributes that can be reread including the attributes (See first example above and dataArray help). In this way no information is lost.

data.save('filename.dat')
# later read them again
data=js.dA('filename.dat')  # retrieves all attributes

If needed, the raw numpy array can be saved (see numpy.savetxt). All attribute information is lost.

np.savetxt('test.dat',data.array.T)