
True expression of the FIM (i is the index over examples, s is the index over spatial positions)
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We study the following expression:
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Here E denotes the averaged value over the discrete sum:
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Spatially uncorrelated features SUA (cf KFC paper):
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Thus (3) = (4) and they cancel out.
Assuming (∗) = 0, we obtain:

(1) = (2)
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If we additionnally require that (case A):
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then we obtain KFC:
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But we could alternatively assume that (case B):
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or anything in-between.
In case B, the expression differs by a multiplicative factor |S|:
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