TENSORIZED PAULI COMPOSER

Hyunseong Kim
Department of Physics and Photon Science,
Gwangju Institute of Science and Technology
Gwangju
qwqwhsnote@gm.gist.ac.kr

ABSTRACT
In the paper, a new method was designed to construct a hamiltonian matrix which is given by a form
of weighted summation of Pauli operators. A symplectic representation of Pauli terms allows us to
express finite dimension Hilbert space as a matrix form. Therefore, Pauli basis representation of
hamiltonian could be treated as one kind of symplectic representation. A transformation between
two specific symplectic representations was designed. One is a common XZ code and the other is an
index of Pauli basis matrix of TPD algorithm[1]. With inversed TPD algorithm, the transformation
of the code yields a common matrix representation from weighted Pauli summation. The transfor-
mation between two codes consist of simple bitwise XOR operation. Consequently, the benefit of
original benefit of TPD is preserved in iTPD. In addition to the algorithm, a term-chasing version
was developed for sparse matrix in Pauli basis. It is roughly O(16™) time complexity but, in sparse
case and < 5 qubit system, it showed 10 time faster than the prior algorithm. The algorithm has
O(n4™) time complexity in the worst case, and comparing to the term-by-term construction method

with O(n16™) complexity, it is computationally efficient for general case.

Keywords Matrix composition - Pauli polynomial - Tensor product

1 Introduction

The research proposes a method to construct a specific
Pauli basis matrix representation of weighted Pauli poly-
nomial. The Pauli basis matrix is a representation of finite
dimension Hilbert space in Heisenberg representation. In
other word, the representation is faithful to every opera-
tor in Hilbert space. Moreover, the matrix is a result ma-
trix of Tensorized Pauli Decomposition(TPD) algorithm
which had been presented by Hantzko et al[ll]. Since
the decomposition process was sequential basis transfor-
mation, the inverse direction is also well-defined. Com-
bining these two results yields the inversed TPD algo-
rithm(iTPD), transforming a given weighted Pauli poly-
nomial to its single matrix representation.

n

Z/\ipi —iTpD H (D)

Following sections demonstrate a brief review of TPD al-
gorithm, especially index determination of single Pauli el-
ement. Consequently, a symplectic representation of Pauli
element was introduced. Treating the representation as p-
adic representation provides a connection between Pauli

element, and matrix element. In the last section, the in-
verse TPD algorithm was compared with the other algo-
rithms in complexity and real execution time in hardware.

2 Tensorized Pauli Decomposition
Algorithm

In 2024, Hantzko et al proposed that general M- (C) ma-
trices could be efficiently decomposed into several Pauli
terms with corresponding coefficients, using a tensorized
block matrix manipulation[].

3
_ A A Ch €1
Z;Cigi = {Am Aoy| TTPD |y)
where,

Al = coteces
A12 = (1 — iCQ

A21 = c1+ iCQ (3)
A22 = Co — C3.

The basic idea is decoupling the coefficients of each tensor
producted space, iteratively. See Figure [l. The decompo-
sition process is non-linear in 2" x 2" matrix space. How-

https://orcid.org/0000-0002-4876-7820

Convolution

ever, it is a basis transformation in a higher dimension
C¥ space, which is isomorphic to the vector spaces with
N = 4" dimension. For example, the 2 x 2 dimension ma-
trix of f 1-qubit system, the process could be expressed as
v e C~

P ———

S

ZI,-'-r—_\
()
1

Uy G,
\ =9

Figure 1: Iterative diagram of Tensorized Pauli Decompo-
sition algorithm.

1 0 0O 1 Aqy €o

1 0 1 1 0 A12 _la

5 0 = —1 0 A21 - C2 (4)
10 0 -1 Aso C3

TPD

In 2 x 2 matrix with computational basis, the next matrix
is a Pauli basis matrix of 1 qubit system.

Ch (1
Cy C3
In the vectorized representation, the intermediate step of

TPD algorithm could be represented with the next nota-
tion.

)

A [A11 [A11] [A11]
A12 A12 A12 A12
An| ® 4| © 9 | P |An
Az, [A22], [A22], ; [As2l
‘U’isteps,i>2 (6)
o] [co [A11 [A11]
c1 c1 Ara Ago
C2 ® C2 ® ® Az ® Ag1
cs), Lesl, [A22], |, [A22],

For the n-fold matrix, the researcher can choose the basis
transformation, freely. The transformation even permits
the different basis in each product and each sub-matrix
operations. In original implementation, each Pauli term
was chased during the process. Therefore, they mapped

the coefficients by adding a character to each string vari-
ables in each step of the iteration. The result Pauli basis
matrix has identical coefficients without considering in-
dexing. By choosing appropriate basis transformation, the
decomposition yields the Latin matrix whose element in-
dexes are XZ symplectic representation of Pauli terms in
Reggio et al[]. In below sections, the index of the Pauli
basis matrix as ij-index.

3 Symplectic representation of Pauli
element

A generalized Pauli matrix is defined with a sequential
tensor product of 2 x 2 Pauli matrices.

P=(i)"®] o; @)
From Pauli matrices, {0, 01,02,03}, replacing ¢} into
o9, Where oo = iol, and separating phase to the outside
yield a tensor product representation of n-fold Pauli ele-
ment has a next form.

®)

Py ={00,01,05,03}

P=(i)"®] o; C)
where, m is a number of occurrence of o in the product.
Since ¢’y = o103 holds true, we can decompose the given
n-fold Pauli term as next two parts; elements of families,
X, Z. The example families are z-family and z-family
referred by Reggio et al[].

®jo; = (®?e{0,1}‘7j) (®Ze{0,3}‘7k> (10)

Eq(d) yields a unique binary vector tuple representation
of length 2, replacing I — 0, X, Z —= 1 in each meme-
ber.

P=(z,7), 7,7 € {0,1}" (11)

where 2, are binary vector representation of
®;‘€{0’1}oj,®?€{0’3}0j indicates I =0, X =1,7 = 1.

A 2-adic representation of binary vector permit them to
be treated with a single integer tuple, (n.,n.), ignoring
phase factor.

L1104 o+ 122 4120 4020
P+ (ng,ng)

(12)
13)

For example, (6, 5) of 3-qubit system is a symplectic rep-
resentation of YXI.

6=1-2241-2140-20=XX®I

5-1.2240.2'41-2=Zelez 4

Convolution

Comprehensive example is, /XX ZYY, Pauli element
could be transformed to integer tuple.

IXXZYY = (=i)f(I11Z2Z) - (IXXIXX) (15)
— (—i)7([0,0,0,1,1,1],[0,1,1,0,1,1]) (16)
- (f,7,27) (A7)

This is a symplectic tuple representation of Pauli element.
If the phase term, f, was ignored, every Pauli elements
are corresponding to each element of 2" x 2™ dimension
matrix.

H=XIXX +MYXZ+MZIX (I8)

H=[Hn.. (19
0 0 0 X 0 0 0 0
00 00 00 0 0
00 0 0 00 0 0
00 0000 0 0

=10 A% 0 0 00 0 0 (20)
00 0 0 00 A 0
00 0000 0 0
0 000 00 0 0

A binary vector representation is now commonly adopted
in quantum computing frameworks such as IBM Qiskit
and Pennylane written by Xanadu, because the represen-
tation has a significant benefit in execution time. IBM im-
plemented the above symplectic vector representation for
their Pauli class in python library, Qiskit, to use the above
binary implementation[8]. However, in the paper, the or-
der of the symplectic representation is reversed order of
the IBM implementation. There is no difference in alge-
bra implementation and commutation conversion routine,
however, the conversion to index of coefficient matrix is
more direct in the reversed order than the IBM order.

3.1 TPD for symplectic representation

Eq (P0) seems a one candidate of Pauli basis matrix for
iTPD. Unfortunately, it is not, but still it is a good start-
ing point to combine with TPD algorithm, TPD could be
modified to generate a Pauli basis matrix whose index is
a symplectic tuple of Pauli elements whose element value
is a weight of the term. See modified version code in [?
I

Unfortunately, the modified-TPD has less practical than
original TPD. During the calculation, in k-th step, addi-
tional 2% x 2* size memory is required to swap the parti-
tion of the matrix, and it yields a great inefficient in spa-
tial and time complexity. Therefore, a transformation is
required preserving a computational benefit of TPD algo-
rithm The transformation converts a symplectic tuple rep-
resentation to Pauli basis.

(7'l§+1 B ‘52(4—1)

X

(r1€+17 Cllc+1)

(7K, ck)

o
Y —»

(rky+17 Cz+1)

Y

Z

—

(rl;éJrl’ C}?ﬂ)

Figure 2: Index diffusion diagram by TPD decomposition
process

3.2 Symplectic tuple to Pauli basis matrix

Theorem 1. For a given symplectic representation,
(ng,n;) of the given Paili term, P, their index, (i,7), in
Pauli basis matrix is determined by next formula

(i,§) = (nz, ninz) @

where, " is a XOR bitwise operator.

Proof. From k-th iteration of the TPD algorithm of 2" x
2™ dim square matrix, the unit sub-matrix dimension is
2"~k and there are 4 block matrices, see Figure 0. With
(n.,n,) symplectic tuple representation, each k-th binary
values of 2-adic representation of n,, n, determine a k+1
index movement in Fig (O).

1,

0,

I X| 10,-0,

Y z|7 |11,
where, 0,,1,,0,, 1, are k-th binary value of (n,, n;) of
Pauli element. Let them as nzy, nxy.

0.

i 22)

For row index, nz; € {0,1} the Z-binary determine the
row index movement, if nz; = 1, the row location is
changed by +2"F else it is not. For column index, the
column index changed by 40 if (1,,0,) or (05, 1,), else
+2"=* if (0,,0,) or (1,,1,). Itis a simple XOR binary
operator, thereby 2"~ % xnz{\nxy, nzy, € {0.,1,}, nwy €
{0z, 12}

Thus, we have (i, j) coefficient index of XZ representation
by iteration from 1-th to n-th. In 2-adic representation
of integer, they are identity and bitwise XOR operator of
(nz,nx).

. n—1 2]€
1 b0 2" N2k nz 23)
. n—1 ok A A
j= w0 2"nzpnxr = nznr
O

Using Eq (1), weighted Pauli polynomial could be trans-
formed to a Pauli basis matrix directly applied for iTPD.

'In #p directory.

Convolution

Theorem [provides 1-1 correspondence between Pauli ba-
sis matrix element location and each Pauli element. The
symplectic tuple representation is restored by next rela-
tionship.

(nz,nx) = (i,i"7) (24)

4 Minor improvement in TPD

In original TPD, Pauli elements were chased in each it-
eration, by constructing each k-th Pauli characters of all
elements. However, with Eq (), the weights in Pauli
basis matrix are directly determine corresponding Pauli
elements. Therefore, the character storing routine could
be eliminated from the original TPD algorithm.

5 iTPD algorithm

5.1 Naive version

The previous section showed that TPD algorithm is a se-
quential applying of unitary transformation for each vec-
tors in a product representation. By the property of uni-
tary, the inverse transformation is well-defined in 4™ di-
mension, and iTPD is defined with a 2™ x 2™ space rep-
resentation with sub-block matrix additions. The {c;}5_,
coefficients in Eq (B) is restored as

Ay = c+e3
Ay = ctic
AQl C1 — iCQ (25)
Aypy = c¢—c3

The total process is achieved by iteratively applying the
Eq (23) in reverse order of TPD algorithm. The inverse
process is written in Algorithm B. With symplectic code
conversion(SCC) algorithm [, it yields Tensorized Pauli
composer algorithm(TPC).

Algorithm 1 Symplectic code conversion

Require: N <« qubit number, P < >, \; P; (weighted
Pauli summation).
M < Zero matrix of dim (V, V)
for (\;,ni,nl)in P do
row <— TLZZ
col néAn;
Mlrow, col] < \;
end forreturn M

The algorithm is a combination of iTPD and the above
symplectic construction method. If Pauli elements are
stored in string type, the conversion requires some com-
putational resources, but if a framework store them as
symplectic code, it is very efficient to convert the rep-
resentation. This approach is already adopted in some
frameworks[@][8]. In addition, as has mentioned in [[], it

Algorithm 2 Naive iTPD

Require:)M < Pauli basis matrix of (27, 2")
matdim <+ 2"
steps < n
unit_size < 1
for step in steps do
stepl < step+1
mat_size < 2 x unit_size
indexes < [matdim/25P!]
indexes_ij <— mat_size*indexes
for i in indexes_ij do
for i in indexes_ij do
g 1
T1f2s ¢ T'1s + UNit_size
Cis <_J . .
C1f2s < C1s + UNIL_S1Z€
Tof = T1fos + UNit_size
Cof < Clf2s + UNit_size
coef + 1
Mlris: rip2s, Cis:Crfas] += coef* M[ry pas:
T2f, C1f25:C2f]
Mlripas: ray, cipasicop]l = M[ris: T1f2s,
C1s:C1fas] -2%coef *M[ry pas: T2f, C1f2siCar]
coef « —y/—1
M[Tlfgsi T2f, Cls:clfQS] += coef* M[rq,:
T1f2ss C1f25:C2f]
Mris: T1f2ss CipasiCop]l = M[rifas: 7oy,
C1s:C1pas] -2%coef *M[ris: r1p2s, C12s:C2r]
end for
end for
unit_size < 2*unit_size
end forreturn M

Algorithm 3 TPC

Require: N < qubit number, P < > . \; P;
M + SCC(N, P)
H + iTPD(M)return H

does not need further instant matrix to save the terms, so
that spatial complexity of the algorithm is also practical in
large system.

5.2 Effective term chasing

During the calculation, if two partial matrices were zero
matrix, then the calculation is meaningless. This case
arises in sparse Pauli basis matrix; Hamiltonian has few
Pauli terms. In sparse case, chasing non-zero term pro-
vides some benefit in calculation time.

If we know an index set of Pauli terms, where their co-
efficients are not zero, we could avoid the operation for
zero sub matrices terms in the intermediate steps of the
composition. The non-zero terms are denoted with effec-
tive terms. Considering I-Z and X-Y calculation, when &
number of Pauli terms were given, there is a k. sy number
of effective terms where

Convolution

k=kejr+d,d>0 (26)

, d is a number of the duplicated terms.

From the i-th effective index set, the effective index set
for the next step is calculated by quotient of 2, such as

row;+1 = T

COlH_l = C; (27)
where, row; = 2+ m; +r; and col; = 2+ n; + ¢;. The k;
number is same with (ks);—1 number.

For example, in 24 x 24 Pauli basis matrix, if we have (1,
14), (2, 13), 3, 1), (6, 4), (7, 4), (7, 5), (13, 9), (14, 10)
elements were non-empty Pauli terms. We can chase the
non-empty unit indexes with Eq (Z2)

(1,14) (0,7) (0,3) (0,1) (0,0)
(2,13) (1,6) (0,0) (0,0)
(3.1 (L0) (L1) (1,1)
7.4) (6,4 - = —
75 gm% - %)
13,90 - - -
(14,100 - - -
k 8 6 4 3 1
ke;p 6 4 3 2 1

See @ for further details.

6 Benchmarks

6.1 Complexity analysis

6.1.1 Term-by-term methods

The general Pauli-composition methods focus on term-by-
term matrix implementation. That is, with the given k-
term Pauli polynomial, the methods generate k matrices
corresponding to each tern and sum the matrices.

For 2" x 2™ matrices, if we denote the complexity of an al-
gorithm for constructing a single Pauli matrix, f(n), then
the total composition complexity is estimated as,

ks f(n)+ (k—1)4" (29)
where, the 4" term represents element wise addition com-
plexity. Since k ranges from 1 to 4™, the maximum com-
plexity is

16" +4"(f(n) — 1) (30)
Therefore, the term-by-term algorithms are fast with 16™
time-complexity in worst case. Spatial complexity of
term-by-term methods is 2 - 4™ by preparing zero matrix
and iteratively adding each terms to the zero matrix.

Algorithm 4 Effective term chasing i TPD

Require: poly = {((7,7))}F_, ©ij converted Pauli terms
Require: M <« Pauli basis matrix of (2", 2")
matdim < 2"
steps <— n
unit_size < 1
for step in steps do
pstep < []
dup < (]
for (i, j) in poly do
if (i, j) in dup then continue
end if
n, 0 < 1%2, j%2 > IZ, XY determination
I, m < (i+1-2*(n), j+ 1-(2*(0))) > Get a
corresponding location
dup.insert((Lm) , (i,)))
if n==1 then
pair < ((, m), (i, j))
else
pair < ((i, j), (I, m))
end if
if (i+j)%?2 == 1 then
coef « —y/—1
else
coef + 1
end if
r1s ¢ unit_size * pair[0][0]
T1f 4= T1 + unit_size
c15 — unit_size * pair[0][1]
Clf 4 C1s + UNit_size
ros ¢— unit_size * pair[1][0]
Tof 4 Tos + UNit_size
Cas +— unit_size * pair[1][1]
Caf 4 Cas + UNIt_size
M(rys: T1f, Cls:clf] += coef* M [ros: Taf,
Cas:C2f]
Mlras: raf, casicap] = Mrig: rig, cis:cif] -
2*%coef *M|[ras: T2, CasiCay]
1»=1
j»=1
if (i, j) in pstep then continue
else: pstep.insert((i,j))
end if
end for
poly < pstep
unit_size < 2*unit_size
end forreturn)/

> Empty list

> Bit shift operation

Convolution

6.1.2 Algorithm complexity

In the naive algorithm D, the time complexity of each step
is 4™, and there are n number of steps. Therefore, the total
time complexity is O(n4™)

For the effective term algorithm, it is very complicated for
estimating time-complexity. As mentioned in TPD algo-
rithm, tensorized method can choose basis transformation
separately[l] and effective term method determine mean-
ingful transformation. Therefore, the complexity strongly
depend on problem specification. However, by taking the
worst case of effective term, we can estimate its upper
bound.

With initial & = k.ff + d number non zero-terms, as-
suming that the worst case that d = 0, and we naively
calculate all tensorized transformation, we have

1 1
kepro € [54"], kepri = §keff,ze1 3D

with duplication search step of O(k. s ;) complexity, the
total time complexity consists of

2nkZ;p 4+ 342" — Vkesy (32)
The maximum complexity is not different in the naive ver-
sion, but it is still lower than any term-by-term algorithm.
About the effective term algorithm, at some range of k. s s
value it is the most efficient but at very small or worst case,
the naive version is more efficient. The worst complexity
of the effective algorithm arises when k = %4” so that,

%16" £ 17(2% 8™ — 4 (33)

From Eq (B2), the benefit region to use the effective term
algorithm is

1
n+1)2 n n+1
k< o (\/289(2)2 +n8 17(2 1)) (34)

The efficient is achieved when the non-zero terms are un-
der 0.5% of 4™ number of terms.

6.2 Benchmarks with the other frameworks

The belows are brief reviews of current quantum frame-
works. List of the fraameworks and methods are provides
Pauli composition routine.

* PauliComposer[f].

e Qiskit Pauli, to_matrix method [B].

* Pennylane, Pauli to matrix [[Z].

* Cirq: unitary matrix transform [K].

Pennylane and Cirq’s matrix conversion are just a simple
kronecker product of each matrix terms. In the recent ver-
sion of Pennylane, they provide PauliSetence class and
matrix routine. However, the current implementation is
not stable for test the general matrix composition.

Meanwhile, Qiskit routine is based on X, Z simplectic rep-
resentation of Pauli term and they implemented the com-
position routine with PauliComposer method which uses
row wise mapping. They provides PauliList class as like
in Pennylane. The fo_matrix routine generates rank-3 ma-
trices for the given Pauli terms. However, the class does
not support coefficient supports. In Qiskit version > 1.0
all backend routines were replaced with Rust from numpy
based in <=0.43 version. To compare the algorithm com-
plexity precisely, in the benchmark, 0.43 version was used.
The composition needs alternative summation with coeffi-
cient multiplication.

The main conversion were conducted with 4 implementa-
tions the inverse tensorized algorithm with using efficient
term chasing routine or not, or pure python-numpy routine
and numba acceleration. Therefore, the comparsion with
naive tensor product method and PauliComposer method
is enough to see Pennylane and Qiskit frameworks. About
the comparsion, each routine are prepared as their in-
tended data. For example, Pennylane prepares the sin-
gle Pauli term as Pauli object class , and Qiskit requires
them to be in the symplectic representation.

The estimation was conducted for n-qubit system random
matrices fromn = 1 ton = 9 with 20%, 40%, 60%,
80%, 100% terms of 4™ degree polynomial. In the pre-
vious section we already showed that the effective term
algorithm is efficient when only 0.5% terms are non-zero
in the space, however, for the practical application, we
started from 20% non-zero terms. The system specifica-
tion and libraries are denoted on Table [

6.3 Results

In Fig (B), we tested the Pauli-composition methods in var-
ious quantum frameworks. There was no method consid-
ering Pauli-polynomials for matrix conversion, so that all
the methods are term-by-term methods. PauliComposer
has a f(n) = 2" time complexity, therefore, the total
composition complexity is 8 and standard tensor prod-
uct method has f(n) = 4™ time complexity, so that the
total complexity is 2 - 8 — 4™,

The naive algorithm showed most efficient time costs for
higher n > 6 system for all cases. It took 10 or 10 times
faster than term-by-term methods. Even in the smaller sys-
tem n < 5, the time costs were compatible with the term-
by-term methods. The effective term algorithm showed
better time costs in n < 5 and the non-zero terms ac-
counted for the matrix below 60% percentage of the whole
system. however, comparing to the naive algorithm there
was no significant time benefit for the term chasing, it
can be adopted to further applications but in the current
stage, the improvement was not noticiable. Moreover, in

Convolution

Table 1: Summary of complexity of the algorithms with big-O notation.

- Case Time complexity Spatial complexity
Common | O(k(f(n)+4™)) n
Term by term Worst O(16™) o4m)
. Common n
Naive Worst O(n4d™) .
2 o@4")
Effective term Common O(nkcyy)
Worst O(nl6™)

Table 2: System specification for simulation.

Processor AMD Ryzen 5 1600,
Six-Core Processor, 3.20 GHz

RAM 32.0GB

oS Windows 10 Home, 64bit,
22H2

Python 3.11.8

Numpy[d] 1.26.4

Scipy[0] 1.13.0

Qiskit[3] 0.43

Pennylane[[7] 0.35.1

PauliComposer[f] Original paper version.

the higher dimension system it overwhelms the term-by-
term methods.

7 Conclusion

In the paper, tensorized Pauli composition(TPC) algorithm
was designed using a proper Pauli basis matrix and inverse
Tensorizerd Pauli decomposition(TPD) algorithm[]. TPD
was a sequential basis transformation of the given matrix.
The common XZ symplectic representation is one type of
the transformation. A simple conversion between the sym-
plectic representation and an index of the Pauli basis ma-
trix of TPD, was investigated and the inverse composition
algorithms were designed. Furthermore, a modified algo-
rithm of TPC was designed by adding an effective term
chasing routine. The chasing routine eliminates unneces-
sary terms in the naive TPC process, so for sparse Pauli
summation case, the algorithm is expected to show better
result than naive version.

The algorithms are designed to compose the multiple
terms simultaneously, thereby achieving better computa-
tional complexity in Pauli polynomial composition, in
time and spatial both domains. The naive composition
algorithm comprises a basis transformation mapping be-
tween the Pauli basis matrix and the original matrix repre-
sentation.

Comparing to the previous term-by-term methods which
have O(16™ + 4™(f(n) — 1)) complexity in the worst
case, the naive algorithm is at least, twice faster than
the common term-by-term methods with O(n4™) com-
plexity. It means that we can construct the matrix with
computational basis corresponding to the given Pauli-

polynomial at process of the algorithm. The inverse algo-
rithm could chase effective terms during the composition
process. However, the chasing routine incurs significant
computational costs and is not as efficient as the naive ver-
sion, and even comparable with the term-by-term methods
with O(n16™) complexity in the worst case.

In addition, the composition speed benchmark between
the current quantum computing frameworks, Qiskit, Pen-
nylane, and naive tensor product routines. The inverse
composition algorithm showed better speed for all cases,
single, multi, worst terms for from n = 2 to n = 9 qubit
cases. The naive algorithm was 10 or 1000 times faster
than term-by-term methods. Practically, even though the
k is small, the naive version is comparable with the term-
by-term methods. We assume that it is caused from the
spatial complexity effect. The effective term algorithm
could chase the effective terms, however in the current
stage the time-cost benefit was not noticible in the imple-
mentation.

Acknowledgments

The research was funded by the Quantum Sapiens Human
Resources Center.

Data and code available

The research was conducted for implementing a sub-
module of OptTrot python package for fast manipulation
and optimization routine for Hamiltonian. OptTrot is a
quantum computing frameworks for optimizing Trotter
circuit on gate model computer. The benchmarked code
and data are on Github repository[[LT].

References

[1] Lukas Hantzko, Lennart Binkowski, and Sabhyata
Gupta. Tensorized pauli decomposition algorithm.
Physica Scripta, 99(8):085128, jul 2024.

[2] Ben Reggio, Nouman Butt, Andrew Lytle, and
Patrick Draper. Fast Partitioning of Pauli Strings
into Commuting Families for Optimal Expecta-
tion Value Measurements of Dense Operators, June
2023. arXiv:2305.11847 [hep-lat, physics:hep-ph,
physics:quant-ph].

Convolution

[3] Qiskit contributors. Qiskit: An open-source frame-
work for quantum computing, 2023.

[4] Maxime Dion, Tania Belabbas, and Nolan Bastien.
Efficiently manipulating pauli strings with pauliar-
ray, 2024.

[5] Hyunseong Kim. OptTrot: Optimization framework
of Trotter circuit., October 2024.

Sebastidan Vidal Romero and Juan Santos-Sudrez.
PauliComposer: compute tensor products of Pauli
matrices efficiently. Quantum Information Process-
ing, 22(12):449, December 2023.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian
Gogolin, Shahnawaz Ahmed, Vishnu Ajith, M So-
haib Alam, Guillermo Alonso-Linaje, B Akash-
Narayanan, Ali Asadi, et al. Pennylane: Automatic
differentiation of hybrid quantum-classical computa-
tions. arXiv preprint arXiv:1811.04968, 2018.

(6]

(7]

(8]
(9]

Cirq Developers. Cirq, December 2023.

Charles R. Harris, K. Jarrod Millman, Stéfan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernandez del
Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357-362, September
2020.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, [lhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261-272,
2020.

Hyunseong Kim. Tensorized Pauli composer, Octo-
ber 2024.

[10]

[11]

A Computational aspects

In real implementation, the chasing the efficient calcula-
tion term during the algorithm requires huge time com-
plexity. The current implementation use bitwise opera-
tion, since, Python is not good for manipulate binary data,

efficiently?. The above routines would be more appro-
priate for C/C++ or Rust like language implementation.
We could observe that the binary compiled routines did
not show difference whether the algorithm has a effective
term chasing routine or not. In python or the other inter-
preter language, it is wise to use the naive algorithm. , and
if the language environment naturally manipulate the bits,
the effective term chasing version would be more appro-
priate.

*Bitwise operators are even slower than string manipulation
in Python.

Convolution

20% terms 40% terms
3]
—— Effect Terms 10 —— Effect Terms
102 4 —+— Naive —t— Naive)
-+~ Tensor Product 107 4 —-+- Tensor Product 7 ,’/
101 4 -t- Pennylane -t~ Pennylane 7,0
-+~ Qiskit 10! § —+- Qiskit A
-+~ PauliComposer -+~ PauliComposer
0 J
_ 10 _10°
o o
8 101 8
I 4 Q -1
E g
[=
1072 5 10-2 4
1073 4 103 4
1074 4 1074 4 Z
F F
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Qubits Qubits
(a) (b)
60% terms 80% terms
10% i —— Effect Terms 4 103 4 —+ Effect Terms
—}— Naive /,,:’, —}— Naive
102 4 —*~- Tensor Product 5 102 | ~t- Tensor Product
-+- Pennylane . ,/’,’ -+- Pennylane
10t 4 ~F- Qiskit L7t 01] ~T- Qiskit
-+~ PauliComposer -+~ PauliComposer
< 10%4 < 1004
a a
T T
£ 107 £ 1071 4
= =
1072 4 1072 4
10-3 4 1073 4
1074 4 4 1074 4
24 14
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Qubits Qubits
(©) (d)
100% terms
103 4 —— Effect Terms
—— Naive
102] ~t- Tensor Product
-+- Pennylane
. -+~ Qiskit
10" 5 _}- PauliComposer
T 1004
GJ
a
v
£ 107" 5
[
10—2 4
1073 5
1074 45
v
1 2 3 4 5 6 7 8 9
Qubits
(e)

Figure 3: Benchmarks for matrix composition of Puali polynomials with the algorithm B, B with Qiskit, Pennylane,
PauliComposer, and standard tensor product methods, for n = 1 ton = 9. The percentages of the each case represents
how many coefficients are non-empty in 4 number of spaces.

	Introduction
	Tensorized Pauli Decomposition Algorithm
	Symplectic representation of Pauli element
	TPD for symplectic representation
	Symplectic tuple to Pauli basis matrix

	Minor improvement in TPD
	iTPD algorithm
	Naive version
	Effective term chasing

	Benchmarks
	Complexity analysis
	Term-by-term methods
	Algorithm complexity

	Benchmarks with the other frameworks
	Results

	Conclusion
	Computational aspects

