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Abstract—Recent advancements in Automatic Music Tran-
scription (AMT) have significantly enhanced our ability to extract
musical notes from raw audio recordings. Despite these improve-
ments, the manual effort required for transcribing music remains
substantial. This study focuses on automating the process of
assigning hand positions to piano notes using both discriminatory
and generative models. We utilize a bidirectional LSTM and a
Transformer model to predict which hand plays each note in
a MIDI file. Our research aims to determine if a generative
approach can outperform a discriminatory model in this context
and how varying window sizes affect performance. We employ a
dataset of 122 piano performances, applying global time encoding
methods to preprocess the MIDI data. Our findings suggest
that while generative models can capture more natural hand
movements, they are prone to cumulative errors. In contrast,
discriminatory models tend to produce less natural predictions
but exhibit fewer cumulative errors. The study highlights the need
for larger datasets to better assess the comparative performance
of these models and further investigates the influence of window
size on model accuracy.

I. INTRODUCTION

Recent advancements in the field of Automatic Music
Transcription (AMT) have significantly propelled our under-
standing and capabilities in extracting musical notes from raw
audio recordings [3[|[4].

Without AMT this process inherently demands meticulous
manual effort, and automation plays a crucial role in translat-
ing auditory music into tangible formats that musicians can
utilize for practice and performance. This transcription can
manifest in various forms, such as traditional sheet music or
more modern video formats like Synthesia, where visual cues
distinguish between the left and right hand parts. For sheet
music, it is essential to appropriately label notes on either
the upper or lower staff depending on the hand, while video
formats typically use color coding to indicate the same.

A. Related work

This study builds on previous work that implemented Long
Short-Term Memory (LSTM), Gated Recurrent Units (GRU),
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and a Kalman filter in AMT systems to assign the hand that
is to play a certain note []1].

Notably, this prior research also contributed a dataset that
includes 122 different piano performances. The data was
collected from piano students who were tasked to record the
music on two separate keyboards positioned one atop the other,
simultaneously, thereby having one stream for each hand.

B. Aims and Objectives

Our overarching goal is to automatically produce instruc-
tions on how to play a certain piano piece. In order to produce
well written notes for piano playing it is important to know
which hand is supposed to play what note and that is the
objective of this work. The aim is therefore to create and train
a model that takes in a midi file containing piano music and
assign each note with a prediction of the hand that is supposed
to produce it.

After some initial experimentation with a discriminate
model, we noticed that the model was unable to overfit the
training set.

This sparked the idea of treating the problem as generative.
In other words, for a sequence of notes, generate assignments
that are likely to come from the underlying data distribution
where the assigned hand is conditioned both on the series of
notes and what hand played them.

We are not aware of any other works that use this idea.
Following this line of thought, we formulate the following
research questions

1) Research questions:

RQ1: Can the performance be improved by using a
generative model instead of a discriminatory model?
RQ2: How does the window size affect performance?

RQ1 will be answered by training both a bi-directional
LSTM and a transformer model in both a discriminatory and
generative setup. The generated hand assignments will then be
measured against the known hand assignments of a selection of
performances, as they were conducted. As these performances



only represent one variation of how a piece may be played
we will also visualize and analyze the predictions. Accuracy
alone may not be the perfect measure of performance and
it is possible that the various models produce different types
of errors. Furthermore, 10-fold cross validation will be used
to combat the effects of the limited size of the dataset and
aforementioned variation.

RQ2 will be answered by training our best performing
model on a range of window sizes from 8 to 256 notes and
assessing the performance. There is no need to use cross
validation as we are interested in the relative performance
shifts.

II. DATA REPRESENTATION

The MIDI format is a standard protocol used to represent
musical information in a digital form. MIDI files encapsulate
various elements of musical performance, including the notes
played and duration, velocities, and other expressive nuances.
Each MIDI file consists of a series of events that detail the
actions taken during a performance, such as pressing and
releasing keys, control changes, and more.

To prepare MIDI data for AMT, we parse the MIDI files to
extract essential features that our model will use. This prepro-
cessing step involves converting the raw MIDI events into a
structured format suitable for machine learning algorithms.

A. Overview of Data Features

The primary features considered in this study include pitch,
start time, end time, and velocity:

1) Pitch: Refers to the specific note played, among a
possible 88 on a standard piano.

2) Start Time and End Time: Indicate when a note begins
and ends, crucial for determining the duration of a note.

3) Velocity: Measures the intensity with which a note is
played, providing dynamic nuances.

B. Encoding Time Features

The encoding of time in data representation can significantly
influence the performance of AMT models. We explore two
primary methods:

1) Global Time Encoding: Recent studies, such as by [2],
emphasize the importance of global time positioning
for sequence-to-sequence models. This method involves
marking the absolute timing of events from the start of
a piece, which helps the model understand the temporal
context of each note within the entire composition.

2) Relative Time Encoding: Used in previous studies, this
method marks the time since the last noted event. This
approach focuses more on the immediate succession of
notes and can be beneficial for models that need to
capture rapid transitions or rhythmic patterns.

In this study, while previous work has often utilized relative
time encoding, we adopt a global timing approach, calculating
the time of each event as a percentage from the start of the
window. This change is motivated by the need to align our

methodology with recent successful applications in sequence-
to-sequence AMT models.

Another way to phrase this is that our objective is to
present as direct data dependencies as possible in the features.
That way relationships are easier to represent for the model
as it does not have to model unnecessary relationships. If
we consider the absolute and relative time representation the
model would, in the latter case, need to learn to make a
cumulative sum of times to know where they are in relation
to each other.

C. Feature Representation and Normalization

Deciding on the optimal representation of the remaining
features, namely pitch and velocity, is another critical consid-
eration. The options include:

o One-hot Encoding: Each feature is represented as a binary
vector where only the index corresponding to the feature’s
value is marked as 1, and all other indices are 0. This
method is particularly useful for categorical data like the
pitch of a piano which has 88 discrete key.

« Numeric Representation: Features can also be represented
as single numeric values, particularly for features like
velocity, which inherently possess a quantitative nature.

Since pitch and velocity are continuous variables that are
discretized, both approaches are viable options. One possible
drawback of using one-hot encoding may be that it unnec-
essarily raises the dimensionality of the feature and we have
therefore opted for the numerical representation. There are 127
different values for pitch in the midi format, however the piano
only has 88 playable notes. Therefore, we subtract a constant
factor from each midi note and then divide by 88 to have the
pitch of the notes in the midi file map to the keys of a piano
in a normalized fashion.

D. Data Slicing Strategy

Considering the temporal dynamics of piano performances,
we choose to slice the data by the number of events rather than
time. This method ensures that the model consistently analyzes
segments with equal amounts of musical information, at least
as it relates to hand movements as each event correspond to a
pressing of a key. Using this method will likely result in the
model learning longer dependencies.

III. MODELING

There are many ways to play any piano piece and it is prob-
lematic to "average” the prediction as there is a physical limit
to how fast a pianist can move her hands. A discriminatory
model predict y given x for each time step and only operates on
the sequence of notes and their respective features to produce
a prediction as shown in figure

A generative model predicts y given x and a some y. This
way we take in to account what hand played some notes when
we assign the next hand to a note. By using this approach it
is possible for the model to commit to one particular variation
of playing instead och averaging the variations it has seen in
training.
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Fig. 1. Discriminatory way of modeling the problem (left). Generative way
of modeling the problem (right).

At inference, the window is populated with previous predictions. Both
methods use the middle time-step as target. The generative model is padded
with -1 to indicate a future value or padding outside the window

IV. WINDOWING AND INFERENCE STRATEGY

Given the complexity and length of piano performances,
which can consist of thousands of musical events, an effective
strategy for processing and predicting hand assignments for
each note involves windowing the data. This method divides
the lengthy input sequences into manageable segments, allow-
ing the model to focus on a smaller subset of notes at any
given time, which is essential for both training efficiency and
prediction accuracy.

A. Single Output per Window

One approach is to predict the hand assignment for only
the middle note in each window. This strategy leverages the
context provided by preceding and succeeding notes within
the window, particularly when utilizing bi-directional models
such as Bi-LSTM. Here, each window slide results in a
single prediction, focusing on the note that benefits from the
maximum available context on both sides. This approach is
efficient during training as it simplifies the output structure
and reduces computational load by minimizing the number of
predictions made. One drawback of this approach is that we
can not run inference for an entire piano piece but would miss
a few notes in the beginning and the end unless some kind
of padding is used. Regardless there will be less information
available at the beginning and end of a piece.

B. Sequence to sequence prediction

A sequence-to-sequence model can be employed to gen-
erate predictions for every note within the window. It takes
in a sequence of conditionals and outputs a sequence of
predictions of the same length. This method is particularly
advantageous for maintaining continuity and consistency in
predictions across consecutive windows. By predicting every
time-step within the window, the model provides a dense
prediction output that captures more detailed nuances in hand
assignments. This approach is well-suited for models that in-
corporate attention mechanisms, such as Transformers, which

can effectively manage dependencies between all notes in the
window.

C. Generative predictions

In order to condition the assignment of what hand is to
play a certain note as well as the notes that have been, and
will be, played a padding structure was put in place. In the
beginning and end of a piano piece we pad the list of midi
events and labels with dummy tokens. This padded piece is
then windowed and the windows are fed to the model during
training. The model is shown a sequence of notes and some of
them have a hand assigned to them while others do not. For
each of these windows the model predicts the hand of the note
in the middle of the window. This configuration was selected
because then we utilize knowledge of both what has been, and
will be, played.

During training the model consumes these masked windows
and during inference the model starts off with a completely
masked label sequence. After the first label has been assigned
the following predictions will be fed this assignment. Thereby
we condition the prediction of the hand not only on the notes
but also on prior assignment of those notes.

D. Inference Strategy

During inference, the choice of windowing technique sig-
nificantly impacts the performance and utility of the model.
For instance:

o Sliding Window Inference: For the single-output strategy,

a sliding window can be moved note by note, ensuring
that every note in the sequence receives a prediction
when it reaches the central position of the window. This
ensures continuous output but at the cost of increased
computational effort during inference.

e Overlap and Average: In the sequence-to-sequence ap-
proach, overlapping windows can be used where the pre-
dictions for overlapping notes are averaged (or otherwise
combined) to smooth out discrepancies and improve the
overall prediction consistency. This method is particularly
beneficial at the beginning and end of a song, where
boundary effects might otherwise introduce prediction
eITOrS.

V. MODELS

This study employs two different model architectures; Bidi-
rectional LSTM and a Transformer. For a detailed description
of the models and hyper parameters, readers are encouraged
to refer to the provided code. Both models respect the same
constraints. They both input a window with window_size
many events, and predict the hand assignment of the middle
event.

A. LSTM

We utilize a bidirectional LSTM architecture consisting of
two layers in each direction, taking in to consideration both the
notes that has been, and will be, played. The LSTM outputs
are passed through two fully connected layers to make the
dimensionality reduction smooth and produce the final output.



B. Transformer

The model consists of an encoder-decoder structure, lever-
aging multi-head attention to capture relationships between
time steps effectively. A simple linear layer is employed for
embedding the input features, without the need for additional
positional encoding, as the temporal aspects of each note are
already represented in the input features. While the transformer
outputs hidden states for the entire sequence only the middle
embedding is used. This is then projected by a fully connected
layer to predict the output hand assignment.

C. Evaluation

We assess the performance of our models using accuracy as
the primary metric due to its direct reflection of the model’s
ability to correctly predict the hand assignments for each note.
In this particular problem, there is no preferred false positive or
false negative rates. In some cases, there is no clear distinction
of which hand is should to play the note. Instead of using the
mean accuracy of all the windows produced by the pieces in
the validation set we opted to use the average of the mean
accuracy for each piece. The rationale being that each piece
is equally important, regardless of it”s duration.

We opt to split the dataset based on individual songs rather
than windows. This approach prevents the model from being
tested on data that is too similar to its training set, thus
providing a more realistic gauge of its performance on unseen
data. However, we noticed that unique characteristics of each
song, such as tempo, complexity, and style, was likely to
influence the performance of the model. We therefor employ
a 10-fold cross-validation method. This method provides us
with a comprehensive overview of the model’s effectiveness.
By measuring the average accuracy across the folds, we obtain
a better estimate of the true performance. We also calculate
the standard deviation to estimate the models performance.

In addition to quantitative metrics, we also conduct a visual
evaluation with three examples not included in the training,
using a custom-built MIDI visualizer. This tool allows us
to color-code the notes based on the predicted and actual
hand assignments, enabling a direct visual comparison. Visual
evaluations help identify any systematic errors or biases in
the model’s predictions, such as consistently misclassifying
certain types of notes or patterns. This method is particularly
useful for qualitative feedback and helps in further refining the
model.

VI. RESULT

In table [l we show the group mean results and standard
deviation of our four models for each fold. Figures [2] and [3]in
the appendix illustrate the qualitative differences in the way the
models work. The generative models appear to capture a more
natural movement of the hands but are prone to cumulative
errors whereas the discriminatory models are less natural but
do not exhibit the same cumulative errors.

Table [[I] show the group mean accuracy and standard devi-
ation for the piano pieces in the first fold at various window
sizes. Apart from where the window size is 64 the standard

Discriminatory Generative
Fold BiLSTM Transformer BiLSTM Transformer
0 0.939 £ 0.037 0932 +£0.039 | 0.938 +£0.045 0.909 + 0.074
1 0.941 £ 0.038 0948 £ 0.034 | 0914 £ 0.041 0.915 £ 0.047
2 0.892 + 0.071  0.868 = 0.065 | 0.870 + 0.082  0.853 + 0.068
3 0.919 + 0.056 0.907 £ 0.058 | 0.910 + 0.056 0.835 = 0.070
4 0.925 £ 0.042  0.907 £ 0.039 | 0.922 + 0.044  0.867 £+ 0.069
5 0.943 £ 0.029 0944 +0.024 | 0922 +0.032 0.841 £ 0.146
6 0.940 £ 0.065 0.925 £ 0.081 | 0.917 £ 0.085 0.846 + 0.192
7 0.894 + 0.055 0.872 £ 0.060 | 0.895 + 0.064 0.861 + 0.081
8 0.921 £ 0.068  0.898 = 0.063 | 0.888 + 0.097 0.874 = 0.101
9 0.901 £ 0.080  0.904 +£ 0.077 | 0.871 £0.129  0.859 £ 0.106
tot 0.922 £ 0.060 0910 + 0.063 | 0.905 £ 0.076  0.866 + 0.107
TABLE I

PERFORMANCE METRICS FOR EACH FOLD. THE VALUES ARE PRESENTED

AS GROUP MEAN * STANDARD DEVIATION OF THE ACCURACY ON THE
PIANO PIECES IN THE 10 FOLD CROSS VALIDATION. NOTE THE LARGER
STANDARD DEVIATION FOR THE GENERATIVE MODELS.

BiLSTM
Window Size | Discriminatory Generative
8 0.922 + 0.063  0.920 + 0.050
16 0.937 £ 0.045  0.937 £ 0.049
32 0.938 + 0.042  0.937 + 0.043
64 0.942 + 0.038  0.907 & 0.108
128 0.939 + 0.040  0.924 + 0.055
256 0.940 + 0.041 0915 + 0.048
TABLE II

THE INFLUENCE OF WINDOW SIZE FOR A DISCRIMINATORY AND
GENERATIVE BILSTM. SHOWING GROUP MEAN ACCURACY AND
STANDARD DEVIATION FOR THE PIANO PIECES IN THE VALIDATION PART.

deviation for the generative model decreases whereas only
minor performance changes are visible for the discriminatory
model.

VII. DISCUSSION

The figures in the appendix illustrate typical errors and
how they differ between discriminatory and generative models.
Figure 2| show an example of an misprediction that is common
for the discriminatory models. The model does not take into
account the movement of the hands and injects a few notes
to played by the left hand when it clearly should be the right
hand.

Again, in figure 3] we see an unnatural movement with
the discriminatory model injecting two left hand assignments
into a sequence of notes that belong to the right hand. The
generative model incorrectly switches hands but then remains
committed to this style. This signals that the generative model
has picked up a concept that the discriminatory model has not
been able to learn, namely that a pianist has a limit as to how
fast she can move her hands and that a natural style does not
unnecessarily switch hands.

However, the physical distance between concurrent notes
is a feature that the model seems to struggle to grasp. It
is possible that augmenting the data with a representation
of their physical position in addition to their placement in
pitch would give the model an impulse to not assign hand
positions that are overstretched. However, larger hands can
comfortably manage wider spans and more complex chord



structures without needing to switch hands or adjust positions
frequently.

In table|l|it is evident that the standard deviation of accuracy
of the generative models is larger than that of the discrimi-
natory models. However, the mispredictions are qualitatively
different and while a variation chosen by the model is not
the same as the one that was recorded it is not implausible
whereas the discriminatory error is more severe.

Providing a straight answer to RQ1 is difficult. The dataset
is simply too small to be able to capture the many accept-
able variations on how to play a certain piano piece. The
discriminatory BiLSTM has the highest accuracy and lowest
standard deviation of all the models but as evident from the
figures in the appendix sometimes produce unnatural predic-
tions. Another strong candidate is the generative BiLSTM but
since it carries bad predictions onwards one single incorrect
assignment can produce a bad overall accuracy.

A dataset with more variations could allow for the possibil-
ity to assess the best match between a prediction and ground
truth. In this setting it is possible that the generative model
would not be as penalized.

To assess RQ2 the metrics in table [lI] provide some insight
although further investigations are necessary. The accuracy of
the generative model stabilizes as the window size goes up,
except for a window size of 64, indicating that a a longer
window gives the model a better opportunity to capture a
plausible hand movement. However, a larger window also
allows for compounding errors to be carried further which
may be why the average accuracy decreases.

One possible explanation for why the performance of the
discriminatory model is less influenced by window size is that
there is no need for very long sequences in order to capture
what hand is to play what note. Simply put; it does not matter
which hand that played what note two hundred notes ago.

Furthermore, using larger window sizes may require the
expressivity of the models to be revisited as they need to
hold more information.

To conclude we need larger and more complete datasets
to use accuracy as a fair metric when comparing discrimina-
tory and generative model although generative models show
promising results. Additionally a more comprehensive study
of the interplay of window size and model architecture needs
to be conducted.

REFERENCES

[1] Aristotelis Hadjakos, Simon Waloschek, and Alexander
Leembhuis. “Detecting Hands from Piano MIDI Data”. In:
(2019). potI: 10.18420/muc2019-ws-578|

[2] Curtis Hawthorne et al. Sequence-to-Sequence Piano
Transcription with Transformers. July 19, 2021. arXiv:
2107.09142[cs, eess]. URL: http://arxiv.org/abs/2107.
09142 (visited on 03/31/2024).

(3]

Qiuqgiang Kong et al. High-resolution Piano Transcrip-
tion with Pedals by Regressing Onset and Offset Times.
July 31, 2021. arXiv: 2010.01815[cs, eess]. URL: http:
/larxiv.org/abs/2010.01815 (visited on 03/31/2024).
Keisuke Toyama et al. Automatic Piano Transcription
with Hierarchical Frequency-Time Transformer. July 9,
2023. arXiv: 2307.04305[cs,eess]. URL: http://arxiv.org/
abs/2307.04305 (visited on 03/31/2024).


https://doi.org/10.18420/muc2019-ws-578
https://arxiv.org/abs/2107.09142 [cs, eess]
http://arxiv.org/abs/2107.09142
http://arxiv.org/abs/2107.09142
https://arxiv.org/abs/2010.01815 [cs, eess]
http://arxiv.org/abs/2010.01815
http://arxiv.org/abs/2010.01815
https://arxiv.org/abs/2307.04305 [cs, eess]
http://arxiv.org/abs/2307.04305
http://arxiv.org/abs/2307.04305

APPENDIX

Fig. 2. Part of a piano piece. Top image is predictions made by the
discriminatory model and the bottom by a generative model. Notes highlighted
in red are incorrectly assigned.

The discriminatory model swaps hand for a sequence of the same note.
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Fig. 3. Part of a piano piece. Top image is predictions made by the
discriminatory model and the bottom by a generative model. Notes highlighted
in red are incorrectly assigned.

Both models make incorrect predictions; however, the generative model
provides more consistent hand placement, although it tends to result in a
somewhat stretched hand position.
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