
A game theoretic model of the behavioural gaming that takes

place at the EMS - ED interface

1 Abstract

Emergency departments (EDs) in hospitals are usually under pressure to achieve a target amount
of time that describes the arrival of patients and the time it takes to receive treatment. For example
in the UK this is often set as 95% of patients to be treated within 4 hours. There is empirical
evidence to suggest that imposing targets in the ED results in gaming at the interface of care
between the EMS and ED. If the ED is busy and a patient is stable in the ambulance, there is little
incentive for the ED to accept the patient whereby the clock will start ticking on the 4 hour target.
This in turn impacts on the ability of the EMS to respond to emergency calls.

This study explores the impact that this effect may have on an ambulance’s utilisation and their
ability to respond to emergency calls. More specifically multiple scenarios are examined where an
ambulance service needs to distribute patients between neighbouring hospitals. The interaction
between the hospitals and the ambulance service is defined in a game theoretic framework where
the ambulance service has to decide how many patients to distribute to each hospital in order to
minimise the occurrence of this effect. The methodology involves the use of a queueing model for
each hospital that is used to inform the decision process of the ambulance service so as to create a
game for which the Nash Equilibria can be calculated.
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2 Introduction
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Figure 1: Ambulance Decision Problem

States:

1. A = Ambulance

2. Hi = Hospital i

Notation:

� Λ = total number of patients that need to be hospitalised

� pi = proportion of patients going to Hospital i (piΛ = number of patients going to hospital i)

� di = distance from Hospital i

� ĉi = capacity of hospital i

� W (c, λ µ) = waiting time in the system function

� µi = service rate of hospital i

� λoi = arrival rate of other patients to the hospital (not by ambulance)

� Ci(pi) = di +W (c = ĉi, λ = piΛ + λoi , µ = µi)

3 Game Theory component:

Players:

� Ambulance

� Hospital A

� Hospital B

Strategies of players:
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� Hospital i:

1. Close doors at ĉi = 1

2. Close doors at ĉi = 2

3. . . .

4. Close doors at ĉi = Ci

� Ambulance:

1. Choose p1 ∈ [0, 1]

Cost Functions: Waiting times + the distance to each hospital.
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4 Quick Methodology

� Fix the parameters Λ, λoi , µi and Ci.

� ∀ ĉi ∈ {1, 2, . . . , CA} and ∀ ĉj ∈ {1, 2, . . . , CB}

� Calculate pA and pB = 1− pA s.t. (Wq)A = (Wq)B .

� Calculate the probability P ((Wq)i ≤ 4 hours

� Fill matrix A with UAĉi,ĉj = 1− |0.95− P ((Wq)A ≤ 4)| and

� fill matrix B with UBĉi,ĉj = 1− |0.95− P ((Wq)B ≤ 4)|

A =

UA1,1 UA1,2 . . . UA1,CB
UA2,1 UA2,2 . . . UA2,CB
...

...
. . .

...
UACA,1 UACA,2 . . . UACA,CB

B =

UB1,1 UB1,2 . . . UB1,CB
UB2,1 UB2,2 . . . UB2,CB
...

...
. . .

...
UBCA,1 UBCA,2 . . . UBCA,CB

� Ambulance decides the proportion of people to distribute to each hospital based on optimal
patient distribution.

6



5 Proper Methodology

The problem is formulated as a normal form game where the players are the two hospitals. Each
hospital is given NA and NB number of strategies where NA and NB are the total capacities of
the hospitals. In other words, depending on the capacity of each hospital, they may choose to stop
receiving patients from arriving ambulances whenever they reach a certain capacity threshold. The
goal of this problem is to satisfy the ED regulations which state that 95% of the patients should
see a specialist within 4 hours of their arrival to the hospital. The mean of the random variable Wq

is the average waiting time in the queue for hospital i.

Wq(λi, µi, ĉi) =
1

ĉiµi

(ĉiρi)
ĉi

ĉi!(1− ρi)2
P0, i ∈ {A,B} (1)

Thus, the utilities of the two players should be the proportion of people that fall within the 4
hours target. This is also equivalent to the probability of the waiting time of an individual to be
less than or equal to 4 hours.

P (Wq(λi, µi, ĉi) ≤ 4), i ∈ {A,B} (2)

Therefore, a sensible goal for each player should be to minimise that probability, but the actual
target of the hospitals is to satisfy 95% of those patients within the 4-hour time limit. Therefore,
the goal should be to get that probability as close to 0.95 as possible. Thus each player should aim
to minimise:

|0.95− P (Wq(λi, µi, ĉi) ≤ 4)|, i ∈ {A,B} (3)

The classic formulation of a normal form game looks into the maximisation of each player’s
payoff. Consequently the utilities can be altered such that the goal of each player is to maximise:

UAĉA,ĉB = 1− |0.95− P (Wq(λA, µA, ĉA) ≤ 4)| (4)

UBĉA,ĉB = 1− |0.95− P (Wq(λB , µB , ĉB) ≤ 4)| (5)

Finally, the problem can be expressed as a normal form game with two players where each
player/hospital has NA and NB strategies respectively. The two NA ×NB payoff matrices for the
utilities of the two hospitals can be defined as:

A =

UA1,1 UA1,2 . . . UA1,C2

UA2,1 UA2,2 . . . UA2,C2

...
...

. . .
...

UAC1,1
UAC1,2

. . . UAC1,C2

B =

UB1,1 UB1,2 . . . UB1,C2

UB2,1 UB2,2 . . . UB2,C2

...
...

. . .
...

UBC1,1
UBC1,2

. . . UBC1,C2

Once the certain strategies of the game have been selected the ambulance service can decide
what would be the optimal way to distribute patients. However, the way the ambulance service
distributes patients can affect the utilities of the game. So how would one solve this kind of problem?
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5.1 Solution

As mentioned before the problem requires the construction of two queuing models that will be
needed for the formulation of the normal form game. Based on those utilities the ambulance service
will then decide the percentage of patients that will distribute to each hospital.

First and foremost, the model consists of several parameters that are unknown and are assumed
to be fixed. The model will be run multiple times for various values of these parameters.

Λ2 Number of patients that need to be distributed
λ1,i Arrival rate of other patients that enter hospital i
µi Service rate of hospital i
Ni Total capacity of hospital i

Table 1: Fixed Parameters

Having established the fixed parameters of the model, the hospitals’ utilities need to be calcu-
lated. In order to do so a backwards induction approach will be used. The EMS aims to distribute
the patients such that the mean waiting time of patients is minimal. This can be further interpreted
as when the mean waiting time of hospital A equals the mean waiting time of hospital B. Thus,
the minimal mean waiting time can be found for the values of pA and pB that solve the following
equation:

Wq(λA, µA, ĉA) = Wq(λB , µB , ĉB) (6)

Equation (6) needs to be solved for all values of ci ∈ {1, 2, . . . CA} and cj ∈ {1, 2, . . . CB}. Then,
for every ci and cj the utility equation (4) has to be calculated for both hospitals. In order to solve
it though, one must first estimate the probability P [(Wq){A,B}] ≤ 4]. That is the probability that
the waiting time in the queue for one of the hospitals is less than 4 hours. For a multi-server system,
the distribution of the waiting time can be given by equation 7. The above expression returns the
probability that the waiting time in the queue is less than some time T.

P (Wq > T ) =
(λµ )cP0

c!(1− λ
cµ )

(e−(cµ−λ)T ) (7)

Consequently when incorporating equation (7) into (4) a newer utility equation can be acquired:

U
{A,B}
ĉi,ĉj

= 1−

∣∣∣∣∣
[

(λµ )cP0

c!(1− λ
cµ )

(
e−(cµ−λ)T

)]
− 0.05

∣∣∣∣∣ (8)

A =

UA1,1 UA1,2 . . . UA1,C2

UA2,1 UA2,2 . . . UA2,C2

...
...

. . .
...

UAC1,1
UAC1,2

. . . UAC1,C2

B =

UB1,1 UB1,2 . . . UB1,C2

UB2,1 UB2,2 . . . UB2,C2

...
...

. . .
...

UBC1,1
UBC1,2

. . . UBC1,C2
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6 Markov chain model

The following Markov chain represents the transition between states of a service centre while
capturing the interactions between it and a buffer centre. The service centre accepts two types of
individuals; Class 1 and Class 2. Class 2 individuals are accepted until a pre-determined threshold
T of individuals is reached. When reached, all Class 2 individuals that arrive will remain “blocked”
in the buffer centre until the number of people in the system is reduced below T . Additionally, if
the people in the service centre keep rising, they may exceed the number of servers C available,
which will in turn mean that every new person will have to wait for a server to become free. The
states of the Markov chain are denoted by (u, v) where:

� u = number of Class 2 individuals blocked

� v = number of Class 1 individuals in the service centre

6.1 Markov-chain state mapping function

The transition matrix of the Markov-chain representation described above can be denoted by a
state mapping function. The state space of this function is defined as:

S(T ) =S1(T ) ∪ S2(T ) where:

S1(T ) =
{

(0, v) ∈ N2
0 | v < T

}
(9)

S2(T ) ={(u, v) ∈ N2
0 | v ≥ T}

Therefore, the entries of the transition matrix Q, can be given by qi,j = q(ui,vi),(uj ,vj) which is
the transition rate from state i = (ui, vi) to state j = (uj , vj) for all (ui, vi), (uj , vj) ∈ S.

qi,j =



Λ, if (ui, vi)− (uj , vj) = (0,−1) and vi < t

λ1, if (ui, vi)− (uj , vj) = (0,−1) and vi ≥ t

λ2, if (ui, vi)− (uj , vj) = (−1, 0)

viµ, if (ui, vi)− (uj , vj) = (0, 1) and vi ≤ C or

(ui, vi)− (uj , vj) = (1, 0) and vi = T ≤ C
Cµ, if (ui, vi)− (uj , vj) = (0, 1) and vi > C or

(ui, vi)− (uj , vj) = (1, 0) and vi = T > C

−
∑|Q|
j=1 qi,j if i = j

0, otherwise

(10)

In order to acquire an exact solution of the problem a slight adjustment needs to be considered.
The problem defined above assumes no upper boundary to the number of individuals that can wait
for service or the ones that are blocked in the buffer centre. Therefore, a different state space S̃
needs to be constructed where S̃ ⊆ S and there is a maximum allowed number of people N that can
be in the system and a maximum allowed number of people M that can be blocked in the buffer
centre:

S̃ = {(u, v) ∈ S |u ≤M,v ≤ N} (11)
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S1

S2

General Case

(0,0)

(0,1)

. . .

(0,T) (0,T+1) . . . (0,C) . . .

(1,T) (1,T+1) . . . (1,C) . . .

(2,T) (2,T+1) . . . (2,C) . . .

...
...

...

(ui, vi)

Λ

µ

Λ

2µ

Λ

Tµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ2Tµ

λ2Tµ

λ2Tµ

λ2

λ2

λ2

λ2

λ2

λ2

λ1

viµ (vi + 1)µ

λ1

λ2

λ2

Figure 2: Markov chain
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6.2 Steady State

Having calculated the transition matrix Q for a given set of parameters the probability vector
π needs to be considered. The vector π is commonly used to study such stochastic systems and
it’s main purpose is to keep track of the probability of being at any given state of the system. The
term steady state refers to the instance of the vector π where the probabilities of being at any state
become stable over time. Thus, by considering the steady state vector π the relationship between
it and Q is given by:

dπ

dt
= πQ = 0

There are numerous methods that can be used to solve problems of such kind. In this paper
only numeric and algebraic approaches will be considered.

6.2.1 Numeric integration

The first approach to be considered is to solve the differential equation numerically by observing
the behaviour of the model over time. The solution is obtained via python’s SciPy library. The
functions odeint and solve ivp have been used in order to find a solution to the problem. Both of
these functions can be used to solve any system of first order ODEs.

6.2.2 Linear algebraic approach

Another approach to be considered is the linear algebraic method. The steady state vector can
be found algebraically by satisfying the following set of equations:

πQ = 0∑
i

πi = 1

These equations can be solved by slightly altering Q such that the final column is replaced by
a vector of ones. Thus, the resultant solution occurs from solving the equation Q̃Tπ = b where Q̃
and b are defined as:

˜qi,j =

{
1, if j = |Q|
qi,j , otherwise

b =


x1

x2

...
xm


6.2.3 Least Squares approach

Finally, the last approach to be considered is the least squares method. This approach is
considered because while the problem becomes more complex (in terms of input parameters) the
computational time required to solve it increases exponentially. Thus, one may obtain the steady
state vector π by solving the following equation.

11



π = argminx∈Rd‖Mx− b‖22
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6.3 Graph Theoretical Approach

This section aims to investigate the connection between Markov chains and graph theory by
exploring alternative ways of calculating the steady state probabilities and considering the problem
from different perspectives.

6.3.1 Parameters

The parameters considered as inputs are:

� the number of servers C,

� the threshold T ,

� the capacity of the service centre N ,

� the capacity of the buffer centre M .

Additional parameters of the model are the class 1 individuals arrival rate, the class 2 individ-
uals arrival rate and the service rate (λ2, λ1, µ). More specifically, the way these parameters are
translated into the model are:

� Number of servers (C): Affects the weight of all edges (vi, vj) ∈ E in the Markov chain
that correspond to a service rate. These edges have a weight of:

w(vi,vj) = qvi,vj

where qi,j is defined in equation 10. Thus, the coefficients of the service rate have a lower
bound of 1 and an upper bound of C.

� Threshold (T ): Determines the length of the left arm of the model. In essence the threshold
acts as a breakpoint between states where u = 0 and states where 0 ≤ u ≤ M . Increasing T
results in having more set of states where u can only be 0.

� Service centre capacity (N): Is the upper bound of v for all states (u, v).

� Buffer centre capacity (M): Is the upper bound of u for all states (u, v) such that v ≥ T .

6.3.2 Example figure of Markov Model

(0,0) (0,1)

Λ

µ

(0,2)

Λ

µ

(0,3)

Λ

µ

(1,3)

λ2µ

(2,3)

λ2µ

(0,4)

λ1

µ

(1,4)

λ1

µ

λ2

(2,4)

λ1

µ

λ2

(0,5)

λ1

µ

(1,5)

λ1

µ

λ2

(2,5)

λ1

µ

λ2

Figure 3: C = 1, T = 3, N = 5,M = 2
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In figure 3 an example of such a Markov model is shown where C = 1, T = 3 which means that
the left arm of the model has a length of 3, N = 5 that indicates that the right-most states (u, v)
are of the form (u, 5) and M = 2 that equivalently shows that the bottom states are of the form
(2, v).

6.3.3 A graph theoretic model underling the Markov chain

An additional approach that one may consider to get the state probabilities is the graph the-
oretical approach for state probabilities. Thus, it can be assumed that a Markov chain model M
can be translated as a weighted directed graph GM = (V,E) where V = S from equation 9 and
(vi, vj) ∈ E if and only if qvi,vj > 0. Furthermore, the weights are given by:

w(vi, vj) = qvi,vj

A directed spanning tree of a directed graph is defined as a subset of the graph that visits all the
vertices of the graph and does not include any cycles. Unlike undirected spanning trees, directed
ones also have a root which means that a directed spanning tree that is rooted at a vertex v has to
have a path from any other vertex to vertex v. For example, consider the graph shown in figure 4.
The graph points out a spanning tree that is rooted at vertex 3.

1 2 3 4

5 6 7

Figure 4: Spanning tree of a graph rooted at vertex 3

Additionally, let us denote the set of all spanning trees of G as T (G) and the subset of T (G) that
includes only the spanning trees that are rooted at vertex v as Tv(G). The weight of a spanning
tree t can be defined as the product of the weights of the edges it contains:

w(t) =
∏
e∈t

w(e)

Theorem: Markov chain tree theorem [2]
Let M be an irreducible Markov chain on n states with stationary distribution π1, π2, . . . , πn. Let
GM be the directed graph associated with M . Then the probability of being at state u is given by:

πi =

∑
t∈Ti(GM ) w(t)∑
t∈T (GM ) w(t)

(12)

Equation 12 states that the probability of being at state u can be found by dividing the sum of
the weights of all trees in Tu(G) by the sum of the weights of all tress in T (G). Let us ignore the de-
nominator of that fraction for now and focus only on the numerator denoted as π̃i =

∑
t∈Ti(GM ) w(t)
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6.3.4 Spanning Trees rooted at (0, 0)

Let us now consider some examples of spanning trees that are rooted at (0, 0). For each of the
following examples the complete graph G is shown, then all possible trees of T(0,0)(G) along with
the weight associated with each spanning tree. As well as this, the sum of all the weights of the
spanning trees denoted by π̃(0,0) is also included.

(0,0) (0,1)

Λ

µ

(1,1)

λ2µ

(0,2)

λ1

µ

(1,2)

λ1

µ

λ2

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

λ2

−−−−−−−−−−→ λ2µ
3

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

µ
−−−−−−−−−−→ µ4

π̃(0,0) = µ4 + λ2µ
3
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(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ

λ2
−−−−−−−−−−→ λ2µ

5

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2

µ

−−−−−−−−−−→ λ2µ
5

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ1

λ2
−−−−−−−−−−→ λ2λ1µ

4

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ µ

−−−−−−−−−−→ µ6

π̃(0,0) = (λ2)2µ4 + 2λ2µ
5 + λ2λ1µ

4 + µ6
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π̃(0,0) = (λ2)2µ4 + 2λ2µ
5 + µ6
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6.3.5 Conjecture of adding rows

Let us consider three Markov models with the same number of servers C = 1, the same threshold
T = 1, the same service centre capacity N = 2 but M ∈ {1, 2, 3}.
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Λ

µ

(1,1)

λ2µ
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λ1
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(1,2)
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Figure 5: M = 1
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Figure 6: M = 2
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µ
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µ
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(3,2)

λ1

µ

λ2

Figure 7: M = 3

By increasing the buffer centre capacity of the system it can be observed that |T(0,0)(G)| increases
as well since more combinations of paths can be generated using the new edges and vertices. The
corresponding values of π̃(0,0) of the three systems are:

M = 1 : π̃(0,0) = µ4 + µ3λ2 = µ3(µ+ λ2) (13)

M = 2 : π̃(0,0) = µ6 + 2µ5λ2 + µ4(λ2)2 = µ4(µ2 + 2µλ2 + (λ2)2) = µ4(µ+ λ2)2 (14)

M = 3 : π̃(0,0) = µ8 + 3µ7λ2 + 3µ6(λ2)2 + µ5(λ2)3

= µ5(µ3 + 3µ2λ2 + 3µ(λ2)2 + (λ2)3)

= µ5(µ+ λ2)3 (15)

Note that in equations (13),(14) and (15), the following equation holds:

π̃(0,0) = µ(N+M)(µ+ λ2)M (16)

This relationship has been verified experimentally for ... and the data set is archived at ... A
generalisation of equation 16, where N ≥ 1, is given in terms of an unknown function k(C, T,N)
as:

π̃(0,0) = µ(N+M)(k(C, T,N))M (17)

Thus, having investigated the effect of adding rows (increasing M) it remains to investigate the
effect of adding columns (increasing N) and finding an expression for k(C, T,N).
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6.3.6 The effect of increasing N (Incomplete section)

In this section we will consider a buffer centre capacity of M = 1 and see the effect of modifying
other parameters on k(C, T,N).
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(0,3)
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µ

(1,3)

λ1

µ

λ2

π̃(0,0) = µ3[λ2 + µ] π̃(0,0) = µ4[(λ2)2 + λ2λ1 + 2λ2µ+ µ2] (18)
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µ
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(0,4)

λ1

µ

(1,4)
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λ2

π̃(0,0) = µ5[(λ2)3 + 2(λ2)2λ1 + 3(λ2)2µ+ λ2(λ1)2 + 2λ2λ1µ+ 3λ2µ
2 + µ3] (19)
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µ
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µ
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µ
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(0,5)
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π̃(0,0) =µ6[(λ2)4 + 3(λ2)3λ1 + 4(λ2)3µ+ 3(λ2)2(λ1)2 + 6(λ2)2λ1µ (20)

+ 6(λ2)2µ2 + λ2(λ1)3 + 2λ2(λ1)2µ+ 3λ2λ1µ
2 + 4λ2µ

3 + µ4]
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As explained in equation 16 the expressions defined above can boil down to a general form
equation of the form π̃(0,0) = µ(N+M)(k(C, T,N))M . The only thing missing is an expression for
k(C, T,N). An initial attempt to get such an expression can be seen below:

k(C, T,N) =

C−1∑
p1=0

C−p1−1∑
p2=0

C−p1−p2−1∑
p3=C−p1−p2−1

R(p1, p2, p3)(λ2)p1(λ1)p2µp3

=

C−1∑
p1=0

C−p1−1∑
p2=0

R(p1, p2, C − p1 − p2 − 1)(λ2)p1(λ1)p2µC−p1−p2−1 (21)

In equation 21 the coefficient function R(p1, p2, p3) is introduced were takes as arguments the
powers of λ2, λ1 and µ. Note here that p3, the power of µ, is defined as p3 = C − p1 − p2 − 1 since
for all base models they need to satisfy p1 + p2 + p3 = C − 1. For the starting coefficients of the
model the function R(p1, p2, p3) gives the values of the coefficients and is defined as:

R(p1, p2, p3) =



0 if p1 = 0 and p2 > 0

1 if p1, p2 = 0 and p3 > 0(
p1+p3
p3

)
if p2 = 0 and p1 > 0(

p1+p2−1
p2

)
if p3 = 0 and p1, p2 > 0

p3 + 1 if p1 = 1(
p1+p3+1

p1

)
+ p3

(
p1+p3
p3+1

)
−
(
p1+p3
p3

)
if p2 = 1 and p1 > 1(

p1+p2+1
p1

)
−
(
p1+p2−1
p2−1

)
+
∑p1+p2−2
i=p2

i
(
i−1
p2−1

)
if p3 = 1 and p1, p2 > 1

Up1,p2,p3 otherwise

(22)

Note here that the final value Up1,p2,p3 corresponds to coefficients that are unknown and are
currently investigated. The function R takes as arguments a possible combination of numbers of
λ2, λ1 and µ for a given system and outputs the coefficient of that term which in turn represents
how many spanning trees exist in the graph with that specific combination. For instance consider
the coefficients (p1, p2, p3) of some of the terms from the equations above:

� (18) ⇒ (λ2)2: R(2, 0, 0) =
(

2+0
0

)
= 1

� (18) ⇒ λ2λ1: R(1, 1, 0) =
(

1+1−1
1

)
= 1

� (18) ⇒ 2λ2µ: R(1, 0, 1) =
(

1+1
1

)
= 2

� (18) ⇒ µ2: R(0, 0, 2) = 1

� (19) ⇒ 2(λ2)2λ1: R(2, 1, 0) =
(

2+1−1
1

)
= 2

� (19) ⇒ 3(λ2)2µ: R(2, 0, 1) =
(

2+1
1

)
= 3

� (19) ⇒ 3λ2µ
2: R(1, 0, 2) =

(
1+2

2

)
= 3

� (20) ⇒ 3(λ2)3λ1: R(3, 1, 0) =
(

3+1−1
1

)
= 3

� (20) ⇒ 3(λ2)2(λ1)2: R(2, 2, 0) =
(

3
2

)
= 3

� (20) ⇒ 6(λ2)2µ2: R(2, 0, 2) =
(

2+2
2

)
= 6

� (20) ⇒ 6(λ2)2λ1µ: R(2, 1, 1) =
(

2+1+1
2

)
+ 1
(

2+1
1+1

)
−
(

2+1
1

)
= 6 + 3− 3 = 6

� (e.g) ⇒ (λ2)
2(λ1)

2µ: R(2, 2, 1) =
(
2+2+1

2

)
−
(
2+2−1
2−1

)
+
∑2+2−2

i=2 i
(
i−1
2−1

)
= 10− 3 + (2× 1) = 9
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6.3.7 Unknown terms

The terms that remain unknown are the terms where p1, p2, p3 ≥ 2. Here are some of these
values with the corresponding values of the R(p1, p2, p3) function.

� R(2, 2, 2) = 18

� R(3, 2, 2) = 60

� R(2, 3, 2) = 24

� R(2, 2, 3) = 30

� R(4, 2, 2) = 150

� R(3, 3, 2) = 100

� R(3, 2, 3) = 120

� R(2, 4, 2) = 30

� R(2, 3, 3) = 40

� R(2, 2, 4) = 45

6.3.8 DRL arrays

In this section a new combinatorial object is defined: DRL arrays. It will be shown that there is
a bijection between DRL arrays and the spanning trees in GM . DRL arrays will then be enumerated
which in turn enumerates the trees of T(0,0)(GM ). Consider the following Markov model and the
spanning trees rooted at state (0, 0) that are associated with it.
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µ

(1,2)

λ1

µ

λ2

(0,3)

λ1

µ

(1,3)

λ1

µ

λ2
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µ
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(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2

µ
(0,0) (0,1)

µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ1
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(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ µ
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Looking at these spanning trees from a different perspective it can be observed that all spanning
trees of the specific model have some edges in common.

� (0, 1)→ (0, 0) � (1, 1)→ (0, 1) � (1, 2)→ (1, 1) � (1, 3)→ (1, 2)

These edges are the ones on the bottom row of the model, on the threshold column and on the
arm of the model. In general the set of edges that are present on all spanning trees can be denoted
by:

S = S1 ∪ S2 ∪ S3

S2 = {(M, v)→ (M,v − 1) | T < v ≤ N}
S1 = {(u, T )→ (u− 1, T ) | 0 < u ≤M}
S3 = {(0, v)→ (0, v − 1) | 0 < v ≤ T}

(23)

In addition, these edges that are common to every spanning tree (for a threshold of T = 1) have
the same weight of µ. In this specified model there are four of these edges, each with a weight of
µ. Thus, since these edges exist on all spanning trees, the weight of every spanning tree must have
include a term µ4. Consider the expression of π̃(0,0) associated with this Markov model:

π̃(0,0) = µ4[(λ2)2 + λ2λ1 + 2λ2µ+ µ2] (24)

It can be seen that there is a µ4 term that is a common factor of all the terms. This term can
be more generally calculated as µM+N and by not worrying about all these edges that belong in S
the problem can be slightly simplified.

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

The specific problem has now been reduced to finding all possible combinations of two edges
where one starts from (0, 2) and the other from (0, 3). The possible edges that can be utilised
here may have a direction of either left, right, or down. Thus, the objective of the problem can
be transformed into finding all possible permutations of an array of size 2 where elements can be
L,R or D and obey certain rules so that the permutation corresponds to a valid spanning tree.
These rules are:

1. Permutations ending with an R are not valid.

2. Permutations that have an R followed by an L are not valid.

If any of these two rules does not hold then the permutation is immediately invalid. Rule 1
points to the cases where the final state has an edge pointing to the right of it, which cannot
occur since that state is the right-most state of the first row. Rule 2 makes sure that there are no
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neighbour states that point to each other since that would create a cycle and would not generate a
valid spanning tree.

For instance, consider the model above. Shown below, are all possible permutations of the array
along with the excluded cases. The valid permutations (on the left) are shown in the same order
with their corresponding spanning trees from the above figure and the invalid permutations (on the
right) are followed by the rule that determines them invalid.

� [D,D]

� [L,D]

� [D,L]

� [R,D]

� [L,L]

� ���XXX[R,R]→ Rule 1

� ��
�HHH[L,R]→ Rule 1

� �
��HHH[R,L]→ Rule 2

� ���XXX[D,R]→ Rule 1

6.3.9 Examples of mappings of directed spanning trees to permutation arrays

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2 λ2 −−−−−−−−−−→ [D,D]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ

λ2 −−−−−−−−−−→ [L,D]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ2

µ

−−−−−−−−−−→ [D,L]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

λ1

λ2 −−−−−−−−−−→ [R,D]

(0,0) (0,1)
µ

(1,1)

µ

(0,2)

(1,2)
µ

(0,3)

(1,3)
µ

µ µ

−−−−−−−−−−→ [L,L]
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6.3.10 Closed-form formula

A general formula for finding all such permutations can be found, where the inputs are p1, p2

and p3 that correspond to the number of D, R and L respectively and the output would be the
coefficient of the term (λ2)p1(λ1)p2µp3 . For instance, by applying such a formula to the example in
equation 24, the desired output should be:

� (λ2)2 → p1 = 2, p2 = 0, p3 = 0 → coefficient = 1

� λ2λ1 → p1 = 1, p2 = 1, p3 = 0 → coefficient = 1

� 2λ2µ → p1 = 1, p2 = 0, p3 = 1 → coefficient = 2

� µ2 → p1 = 0, p2 = 0, p3 = 2 → coefficient = 1

Thus, given all possible and valid combinations of powers among λ2, λ1 and µ (i.e. p1, p2, p3)
generated by equation 21, an alternative and improved form of the value of R(p1, p2, p3) described
in equation 22 is given by:

R(p1, p2, p3) = T (p1, p2, p3)−ER(p1, p2, p3)−ED(p1, p2, p3)−EL(p1, p2, p3)−ERL(p1, p2, p3) (25)

Consider the above undefined equations. The term T (p1, p2, p3) denotes the number of all
permutations where neither rule is applied, i.e. all possible ways one can arrange the elements of
the array. The term ER(p1, p2, p3) denotes the number of permutations that end in R, which needs
to be removed from the total of all permutations so that rule 1 is satisfied. Having excluded all
permutations that end in R it only remains to leave out permutations that have an R followed by
an L (rule 2). Although, removing all permutations ending in R was relatively straight forward,
removing all permutations that follow rule 2 is not that easy. This is because equation ER(p1, p2, p3)
already considers some cases where there is an R followed by an L. Therefore, in order to consider
only new cases, permutations of rule 2 are split into three new terms; ED, EL and ERL. These
terms denote the permutations that have an R followed by an L AND do not end in R. The term
ED considers all permutations that end in D while EL the ones that end in L. Finally, the last
term (ERL) denotes all permutations that end in R, L where there is no other R followed by an L
in any other position apart from the last two. This term is used because in the EL term, such cases
(where R and L are in the last two positions) are only considered when there is another R followed
by an L somewhere. Thus, the term ERL is a particular set of permutations that the formula of
EL fails to include by itself.
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T (p1, p2, p3) =
(p1 + p2 + p3)!

p1!× p2!× p3!
(26)

ER(p1, p2, p3) =
(p1 + p2 + p3 − 1)!

p1!× (p2 − 1)!× p3!
(27)

ED(p1, p2, p3) =

min(R,L)∑
i=1

(−1)i+1 (p1 + p2 + p3 − i− 1)!

(p1 − 1)!× (p2 − i)!× (p3 − i)!× (i)!
(28)

EL(p1, p2, p3) =

min(R,L−1)∑
i=1

(−1)i+1 (p1 + p2 + p3 − i− 1)!

p1!× (p2 − i)!× (p3 − i− 1)!× (i)!
(29)

ERL(p1, p2, p3) =

min(R,L)∑
i=1

(−1)i+1 (p1 + p2 + p3 − i− 1)!

p1!× (p2 − i)!× (p3 − i)!× (i− 1)!
(30)

R(p1, p2, p3) = T (p1, p2, p3)− ER(p1, p2, p3)− ED(p1, p2, p3)− EL(p1, p2, p3)− ERL(p1, p2, p3)

6.3.11 Example of the permutation algorithm

Consider the term (λ2)(λ1)µ2 and the above expressions. In order to get the coefficient of that
term the permutation algorithm needs to be applied with an input of p1 = 1, p2 = 1, p3 = 2, i.e. 1
D, 1 R and 2 Ls in the array. The permutations that correspond to each expression can be seen
below:

T (p1, p2, p3) =
(1 + 1 + 2)!

1! 1! 2!
= 12

[D,R,L, L] [R,D,L,L] [D,L,R,L] [R,L,D,L] [D,L,L,R] [R,L,L,D]

[L,D,R,L] [L,R,D,L] [L,D,L,R] [L,R,L,D] [L,L,D,R] [L,L,R,D]

ER(p1, p2, p3) =
(1 + 1 + 2− 1)!

1! (1− 1)! 2!
= 3

[D,L,L, |R] [L,D,L, |R] [L,L,D, |R]

ED(p1, p2, p3) =

1∑
i=1

(−1)i+1 (1 + 1 + 2− i− 1)!

0! (1− i)! (2− i)! (i)!
= 1× 2

0! 0! 1! 1!
= 2

[R,L,L, |D] [L,R,L, |D]
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EL(p1, p2, p3) =

1∑
i=1

(−1)i+1 (1 + 1 + 2− i− 1)!

1! (1− i)! (2− i− 1)! (i)!
= 1× 2

1! 0! 0! 1!
= 2

[D,R,L, |L] [R,L,D, |L]

ERL(p1, p2, p3) =

1∑
i=1

(−1)i+1 (1 + 1 + 2− i− 1)!

1! (1− i)! (2− i)! (i1)!
= 1× 2

1! 0! 1! 0!
= 2

[D,L, |R,L] [L,D, |R,L]

6.3.12 Possibly useful theorem: Matrix-tree theorem for directed graphs (Kirchhoff’s
theorem) [3]:

The number of directed spanning trees rooted at a state i can be found by calculating the deter-
minant of the Laplacian matrix Q of the directed graph and removing row i and column i.
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6.4 Expressions derived from π:

One may easily derive the average number of individuals that are at any given state using
pi. The average number of individuals in state i can be calculated by multiplying the number of
individuals that are present in state i with the probability of being at that particular state (i.e
πi(ui + vi)). Using this logic it is possible to calculate any performance measures that are related
to the mean number of individuals in the system.

Average number of people in the system:

L =

|π|∑
i=1

πi(ui + vi) (31)

Average number of people in the service centre:

LH =

|π|∑
i=1

πivi (32)

Average number of people in the buffer centre:

LA =

|π|∑
i=1

πiui (33)

Consequently getting the performance measures that are related to the duration of time is not as
straightforward. Such performance measures are the mean waiting time in the system and the mean
time blocked in the system. Under the scope of this study three approaches have been considered
to calculate these performance measures; a direct approach, a recursive algorithm and consequently
a closed-form formula.

The research question that needs to be answered here is: “When a class 1/2 individuals enters
the system, what is the expected time that they will have to wait?”. In order to formulate the
answer to that question one needs to consider all possible scenarios of what state the system can
be in when an individual arrives. Furthermore, different formulas arises for class 1 individuals and
a different one for class 2 individuals.

6.5 Mean waiting time

6.5.1 Recursive formula for mean waiting time of class 1 individuals

To calculate the mean waiting time of class 1 individuals one must first identify the set of states
(u, v) that will imply that a wait will occur. For this particular Markov chain, this points to all
states that satisfy v > C i.e. all states where the number of individuals in the service centre exceed
the number of servers. The set of such states is defined as waiting states and can be denoted as a
subset of all the states, where:

Sw = {(u, v) ∈ S | v > C} (34)

Additionally, there are certain states in the model where arrivals cannot occur. A class 1
individual cannot arrive whenever the model is at any state (u,N) for all u where N is the system
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capacity. Therefore the set of all such states that an arrival may occur are defined as accepting
states and are denoted as:

S
(1)
A = {(u, v) ∈ S | v < N} (35)

Moreover, another element that needs to be considered is the expected waiting time in each
state c(u, v), otherwise known as sojourn time [6]. In order to do so a variation of the Markov
model has to be considered where when the individual arrives at any of the states of the model no
more arrivals can occur after that.

(0,T-1) (0,T) (0,T+1)

(1,T)

(2,T)

(1,T+1)

(2,T+1)

(T − 1)µ Tµ (T + 1)µ (T + 1)µ

Tµ

(T + 1)µ (T + 1)µ

Tµ

Tµ

(T + 1)µ (T + 1)µ

Figure 8: Markov chain - ignoring any arrivals

As illustrated in figure 8 a class 1 individual, when in the threshold column, only visits one of
the nodes since they are not affected by class 2 individuals. Thus, one may acquire the desired
time by calculating the inverse of the sum of the out-flow rate of that state. Since we are ignoring
arrivals though the only way to exit the state will only be via a service. In essence this notion can
be expressed as:
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c(1)(u, v) =

{
0, if u > 0 and v = T

1
min(v,C)µ , otherwise

(36)

Note that whenever any class 1 individual is at a state (u, v) where u > 0 and v = T (i.e.
all states (1, T ), (2, T ) . . . , (M,T )) the sojourn time is set to 0. This is done to capture the trip
thorough the Markov chain from the perspective of class 1 individuals. Meaning that they will visit
all states of the threshold column but only the one in the first row will return a non-zero sojourn
time.

Now, using the above equations, and considering all sates that belong in Sw the following
recursive formula can be used to get the mean waiting time spent in each state in the Markov
model. For class 1 individuals, whenever the model is at state (u, v), any incoming individual will
proceed to arrive at state (u, v + 1). individuals will then proceed to visit all other states until
they reach one which has less than C servers occupied (i.e. until a server becomes available). The
formula goes through all states from right to left recursively and adds the sojourn times of all these
states together until it reaches a state that is not in the set of waiting states. Thus, the expected
waiting time of a class 1 individual when they arrive at state (u, v) can be given by:

w(1)(u, v) =


0, if (u, v) /∈ Sw
c(1)(u, v) + w(1)(u− 1, v), if u > 0 and v = T

c(1)(u, v) + w(1)(u, v − 1), otherwise

(37)

Finally, the mean waiting time can be calculated by summing over all expected waiting times of
accepting states multiplied by the probability of being at that state and dividing by the probability
of being in any accepting state.

W (1) =

∑
(u,v)∈S(1)

A

w(1)(u, v)π(u,v)∑
(u,v)∈S(1)

A

π(u,v)
(38)

6.5.2 Recursive formula for mean waiting time of class 2 individuals

Equivalently the mean waiting time for class 2 individuals can be calculated in a similar manner.
The set of waiting states is the same as before but there is a slight modification in the set of accepting
states.

Sw = {(u, v) ∈ S | v > C}

S
(2)
A =

{
{(u, v) ∈ S | u < M} if T ≤ N
{(u, v) ∈ S | v < N} otherwise

(39)

The set of accepting states is modified in such a way such that a class 2 individual cannot arrive
in the model when the model is at any state (M, v) for all v ≥ T where M is the buffer centre
capacity and T is the threshold. An odd situation here is when the threshold is set to a very high
number that is more than the actual system capacity. In such cases the set of accepting states is
defined in the same way as the class 1 individuals case (35). That is because whenever T > N no
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class 2 individual will ever be blocked in the model (since that threshold can never be reached) and
thus the last accepting state of the model will be state (0, N − 1).

Now just like in the class 1 individuals case the sojourn time is needed. For class 2 individuals
whenever individuals are at any row apart from the first one they automatically get a wait time of
0 since they are essentially blocked.

c(2)(u, v) =

{
0, if u > 0

1
min(v,C)µ , otherwise

(40)

Finally, the recursive formula and the mean waiting time equation are identical to the ones
described above with the exception that they now use c(2)(u, v) instead of c(1)(u, v).

w(2)(u, v) =


0, if (u, v) /∈ Sw
c(2)(u, v) + w(2)(u− 1, v), if u > 0 and v = T

c(2)(u, v) + w(2)(u, v − 1), otherwise

(41)

W (2) =

∑
(u,v)∈S(2)

A

w(2)(u, v)π(u,v)∑
(u,v)∈S(2)

A

π(u,v)
(42)

6.5.3 Mean Waiting Time - Closed-form

Upon closer inspection of the recursive formula a more compact formula can arise. The equiv-
alent closed-form formula eliminates the need for recursion and thus makes the computation of
waiting times much more efficient. Just like in the recursive part there are two formulas; one for
class 1 and one for class 2 individuals. The formulas are given by:

W (1) =

∑
(u,v)∈S(1)

A
v≥C

1
Cµ × (v − C + 1)× π(u, v)∑
(u,v)∈S(1)

A

π(u, v)
(43)

W (2) =

∑
(u,v)∈S(2)

A

min(v,T )≥C

1
Cµ × (min(v + 1, T )− C)× π(u, v)∑

(u,v)∈S(2)
A

π(u, v)
(44)

Note here that the summation, in both equations 43 and 44, goes through all states in the set of
accepting states of either class 1 or class 2 individuals respectively, where a wait incurs. In equation
43 that includes all states (u, v) in the set of accepting states of class 1 individuals such that v ≥ C;
i.e. whenever an arrival occurs and the system is at a state where the number of individuals in the
system is more than or equal to C. Consequently, for the states that are included in the summation
the expression v−C + 1 indicates the amount of people in service one would have to wait for upon
arrival at the hospital.

Additionally, the minimisation function in equation 44 ensures that when a class 2 individual
arrives at any state that is greater than the predetermined threshold, the wait that the individual
will have to endure remains the same. In essence, the expression min(v + 1, T ) − C returns the
number of people in line in front of a particular individual upon arrival.
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6.5.4 Overall Waiting Time

Consequently, the overall waiting time should can be estimated by a linear combination of the
waiting times of class 1 and class 2 individuals. The overall waiting time can be then given by the
following equation where c1 and c2 are the coefficients of each individual’s type waiting time:

W = c1W
(1) + c2W

(2) (45)

The two coefficients represent the proportion of individuals of each type that traversed through
the model. Theoretically, getting these percentages should be as simple as looking at the arrival
rates of each type but in practise if the service centre or the buffer centre is full, some individuals
may be lost to the system. Thus, one should account for the probability that an individual is lost
to the system. This probability can be easily calculated by using the two sets of accepting states

S
(2)
A and S

(1)
A defined earlier in equations 35 and 39. Let us define here the probability, for either

class type, that an individual is not lost in the system by:

P (L′1) =
∑

(u,v)∈S(1)
A

π(u, v) P (L′2) =
∑

(u,v)∈S(2)
A

π(u, v)

Having defined these probabilities one may combine them with the arrival rates of each class
type in such a way to get the expected proportions of class 1 and class 2 individuals in the model.
Thus, by using these values as the coefficient of equation 45 the resultant equation can be used to
get the overall waiting time. Note here that the equation below gets the overall waiting time for
both the recursive and the closed-form formula.

W =
λ1P (L′1)

λ2P (L′2) + λ1P (L′1)
W (1) +

λ2P (L′2)

λ2P (L′2) + λ1P (L′1)
W (2) (46)

6.6 Mean blocking time

6.6.1 Direct approach for mean blocking time

Unlike the waiting time, the blocking time is only calculated for class 2 individuals. That is
because class 1 individuals cannot be blocked. Thus, one only needs to consider the pathway of
class 2 individuals to get the mean blocking time of the system. Blocking occurs at states (u, v)
where u > 0. Thus, the set of blocking states can be defined as:

Sb = {(u, v) ∈ S | u > 0}

In order to not consider individuals that will be lost to the system, the set of accepting states
needs to be taken into account. As defined in section 6.5.2, the set of accepting states is given by
(39):

S
(2)
A =

{
{(u, v) ∈ S | u < M} if T ≤ N
{(u, v) ∈ S | v < N} otherwise

For the waiting time formula in sections 6.5.1 and 6.5.2 the mean sojourn time for each state
was considered, ignoring any arrivals. Here, the same approach is used but ignoring only class 2
arrivals. That is because for the waiting time formula, once an individual enters the service centre
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(i.e. starts waiting) any individual arriving after them will not affect their pathway. That is not
the case for blocking time. When a class 2 individual is blocked, any class 1 individual that arrives
will cause the blocked individual to remain blocked for more time. Therefore, class 1 arrivals are
considered here:

c(u, v) =

{
1

min(v,C)µ , if v = C
1

min(v,C)µ+λ1
, otherwise

(47)

In equation 47, both service completions and class 1 arrivals are considered. Thus, from a
blocked individual’s perspective whenever the system moves from one state (u, v) to another state
it can either:

� be because of a service being completed: we will denote the probability of this happening by
ps(u, v).

� be because of an arrival of an individual of class 1: denoting such probability by po(u, v).

The probabilities are given by:

ps(u, v) =
min(v, C)µ

λ1 + min(v, C)µ
, po(u, v) =

λ1

λ1 + min(v, C)µ

Having defined c(u, v) and Sb a formula for the blocking time that is expected to occur at each
state can be given by:

b(u, v) =



0, if (u, v) /∈ Sb
c(u, v) + b(u− 1, v), if v = N = T

c(u, v) + b(u, v − 1), if v = N 6= T

c(u, v) + ps(u, v)b(u− 1, v) + po(u, v)b(u, v + 1), if u > 0 and v = T

c(u, v) + ps(u, v)b(u, v − 1) + po(u, v)b(u, v + 1), otherwise

(48)

Unlike equations (37) and (41), equation (48) will not be solved recursively. A direct approach
will be used to solve this equation here. By enumerating all equations of (48) for all states (u, v)
that belong in Sb a system of linear equations arises where the unknown variables are all the b(u, v)
terms. For instance, let us consider a Markov model where C = 2, T = 3, N = 6,M = 2. The
Markov model is shown in Figure 9 and the equivalent equations are (49)-(54). The equations
considered here are only the ones that correspond to the blocking states.
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Figure 9: Example of Markov chain

b(1, 2) = c(1, 2) + pob(1, 3) (49)

b(1, 3) = c(1, 3) + psb(1, 2) + pob(1, 4) (50)

b(1, 4) = c(1, 4) + b(1, 3) (51)

b(2, 2) = c(2, 2) + psb(1, 2) + pob(2, 3) (52)

b(2, 3) = c(2, 3) + psb(2, 2) + pob(1, 4) (53)

b(2, 4) = c(2, 4) + b(2, 3) (54)
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Additionally, the above equations can be transformed into a linear system of the form Zx = y
where:

Z =


−1 po 0 0 0 0
ps −1 po 0 0 0
0 1 −1 0 0 0
ps 0 0 −1 po 0
0 0 0 ps −1 po
0 0 0 0 1 −1

 , x =


b(1, 2)
b(1, 3)
b(1, 4)
b(2, 2)
b(2, 3)
b(2, 4)

 , y =


−c(1, 2)
−c(1, 3)
−c(1, 4)
−c(2, 2)
−c(2, 3)
−c(2, 4)

 (55)

A more generalised form of the equations in (55) can thus be given for any value of C, T,N,M
by:

b(1, T ) =c(1, T ) + pob(1, T + 1) (56)

b(1, T + 1) =c(1, T + 1) + ps(1, T ) + pob(1, T + 1) (57)

b(1, T + 2) =c(1, T + 2) + ps(1, T + 1) + pob(1, T + 3) (58)

...

b(1, N) =c(1, N) + b(1, N − 1) (59)

b(2, T ) =c(2, T ) + psb(1, T ) + pob(2, T + 1) (60)

b(2, T + 1) =c(2, T + 1) + psb(2, T ) + pob(2, T + 2) (61)

...

b(M,T ) =c(M,T ) + b(M,T − 1) (62)

The equivalent matrix form of the linear system of equations (56) - (62) is given by Zx = y,
where:

Z =



−1 po 0 . . . 0 0 0 0 0 . . . 0 0
ps −1 po . . . 0 0 0 0 0 . . . 0 0
0 ps −1 . . . 0 0 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 . . . 1 −1 0 0 0 . . . 0 0
ps 0 0 . . . 0 0 −1 po 0 . . . 0 0
0 0 0 . . . 0 0 ps −1 po . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 . . . 0 0 0 0 0 . . . 1 −1


, x =



b(1, T )
b(1, T + 1)
b(1, T + 2)

...
b(1, N)
b(2, T )

b(2, T + 1)
...

b(M,T )


, y =



−c(1, T )
−c(1, T + 1)
−c(1, T + 2)

...
−c(1, N)
−c(2, T )
−c(2, T + 1)

...
−c(M,T )


(63)

Thus, having calculated the mean blocking time for all blocking states b(u, v), it only remains
to put them together in a formula just like in equations 38 and 42. The resultant blocking time
formula is given by:

B =

∑
(u,v)∈SA π(u,v) b(u, v)∑

(u,v)∈SA π(u,v)
(64)
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6.7 Mean proportion of arrivals within time target

Another performance measure that needs to be taken into consideration is the proportion of
individuals whose waiting and service times lie within a specified time target. In order to consider
such measure though one would need to obtain the distribution of time in the system for all
individuals. The complexity of such a task lies on the fact that different individuals arrive at
different states of the Markov model. Let us first consider the case when an arrival occurs when
the model is at a specific state.

6.7.1 Distribution of time at a specific state (with 1 server)
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Figure 10: Example Markov model C = 1, T = 2, N = 4,M = 2

Consider the Markov model of figure 10 with one server and a threshold of two individuals. Let
us now assume that a class 1 individual arrives when the model is at state (0, 3), thus forcing the
model to move to state (0, 4). The distribution of the time needed for the specified individual to
exit the system from state (0, 4) is given by the sum of exponentially distributed random variables
with the same parameter µ. The sum of such random variables form the Erlang distribution which
is defined by the number of random variables that are added and their exponential parameter. Note
here that these random variables represent the individual’s pathway from the perspective of the
individual. Thus, Xi represents the random variable of the time that it takes for an individual to
move from the ith position of the queue to the (i− 1)th position (i.e. for someone in front of them
to finish their service) and X0 is the time it takes that individual to move from having a service to
exiting the system.

(0, 4)⇒ X3 ∼ Exp(µ)

(0, 3)⇒ X2 ∼ Exp(µ)

(0, 2)⇒ X1 ∼ Exp(µ)

(0, 1)⇒ X0 ∼ Exp(µ)

S = X3 +X2+X1 +X0 = Erlang(4, µ) (65)

Thus, the waiting and service time of an individual in the model of figure 10 can be captured by
an erlang distributed random variable. The general CDF of the erlang distribution Erlang(k, µ) is

34



given by:

P (S < t) = 1−
k−1∑
i=0

1

i!
e−µt(µt)i (66)

Unfortunately, the erlang distribution can only be used for the sum of identically distributed
random variables from the exponential distribution. Therefore, this approach cannot be used when
one of the random variables has a different parameter than the others. In fact the only case where
we can use it is only when the number of servers are C = 1, just like in the explored example,
or when an individual arrives and goes straight to service (i.e. when there is no other individual
waiting and there is an empty server).

6.7.2 Distribution of time at a specific state (with multiple servers)
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Figure 11: Example Markov model C = 2, T = 2, N = 4,M = 2

Figure 11 represents the same Markov model as figure 10 with the only exception that there are
2 servers here. By applying the same logic, assuming that an individual arrives at state (0, 4), the
sum of the following random variables arises.

(0, 4)⇒ X2 ∼ Exp(2µ)

(0, 3)⇒ X1 ∼ Exp(2µ) (67)

(0, 2)⇒ X0 ∼ Exp(µ)

Since these exponentially distributed random variables do not share the same parameter, an
erlang distribution cannot be used. In fact, the problem can now be viewed either as the sum
of exponentially distributed random variables with different parameters or as the sum of erlang
distributed random variables. The sum of erlang distributed random variables is said to follow the
hypoexponential distribution. The hypoexponential distribution is defined with two vectors of size
equal to the number of Erlang random variables that are added together [1], [7]. For this particular
example:

35



X2 ∼ Exp(2µ)

X1 ∼ Exp(2µ)

}
X1 +X2 = S1 ∼ Erlang(2, 2µ)

X0 ∼ Exp(µ)⇒ X0 = S2 ∼ Erlang(1, µ)

S1 + S2 = H ∼ Hypo((2, 1), (2µ, µ)) (68)

The random variable H from equation 68 follows a hypoexponential distribution with two vector
parameters. The CDF of this distribution can be therefore used to get the probability of the time
in spent in the system being less than a given target. The CDF of the general hypoexponential
distribution Hypo(~r,~λ), is given by the following expression, where vector ~r contains all k-values

of the erlang distributions and ~λ is a vector of the distinct parameters [4].

P (H < t) = 1−

 |~r|∏
j=1

λ
rj
j

 |~r|∑
k=1

rk∑
l=1

Ψk,l(−λk)trk−le−λkt

(rk − l)!(l − 1)!

where Ψk,l(t) = − ∂l−1

∂tl−1

 |~r|∏
j=0,j 6=k

(λj + t)−rj


and λ0 = 0, r0 = 1 (69)

The computation of the derivative makes equation 69 computationally expensive. In [5] an
alternative linear version of that CDF is explored via matrix analysis, and is given by the following
formula:

F (x) =1−
n∑
k=1

k−1∑
l=0

(−1)k−1

(
n

k

)(
k − 1

l

) n∑
j=1

j−1∑
s=1

e−xλs
s−1∏
l=1

(
λl

λl − λs

)ks

×
∑

s<a1<···<al−1<j

(
λs

λs − λa1

)ks a1−1∏
m=s+1

(
λm

λm − λa1

)km a2−1∏
n=a1

(
λn

λn − λa2

)kn

· · ·
j−1∏

r=al−1

(
λr

λr − λaj

)kr ks−1∑
q=0

((λs − λa1)x)q

q!
,

for ≥ 0

(70)

6.7.3 Specific CDF of hypoexponential distribution

Equations 69 and 70 refers to the general CDF of the hypoexponential distribution where the
size of the vector parameters can be of any size [4]. In the Markov chain models described in figures
10 and 11 the parameter vectors of the hypoexponential distribution are of size two, and in fact,
for any possible version of the investigated Markov chain model the vectors can only be of size two.
This is true since for any dimensions of this Markov chain model there will always be at most two
distinct exponential parameters; the parameter for finishing a service (µ) and the parameter for
moving forward in the queue (Cµ). For the special case of C = 1 the hypoexponential distribution
will not be used as this is equivalent to an erlang distribution. Therefore, by fixing the sizes of ~r
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and ~λ to 2, the following specific expression for the CDF of the hypoexponential distribution arises,
where the derivative is removed:

P (H < t) = 1−

 |~r|∏
j=1

λ
rj
j

 |~r|∑
k=1

rk∑
l=1

Ψk,l(−λk)trk−le−λkt

(rk − l)!(l − 1)!

where Ψk,l(t) =

{
(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1 , k = 2

and λ0 = 0, r0 = 1 (71)

Note here that the only difference between equation 69 and 71 is the Ψ function. The next
section proves why the following expression is true:

− ∂l−1

∂tl−1

 |~r|∏
j=0,j 6=k

(λj + t)−rj

 =

{
(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1 , k = 2

(72)

6.7.4 Proof of specific hypoexponential distribution 72

This section aims to show that there exists a simplified expression of equation 69 that is specific
to the proposed Markov model. Function Ψ is defined using the parameter t and the variables k and
l. Given the Markov model, the range of values that k and l can take can be bounded. First of all,
from the range of the double summation in equation 69, it can be seen that k = 1, 2, . . . , | ~r |. Now,
| ~r | represents the size of the parameter vectors that, for the Markov model, will always be 2. That
is because, for all the exponentially distributed random variables that are added together to form
the new distribution, there only two distinct parameters, thus forming two erlang distributions.
Therefore:

k = 1, 2

By observing equation 69 once more, the range of values that l takes are l = 1, 2, . . . , rk, where
r1 is subject to the individual’s position in the queue and r2 = 1. In essence, the hypoexponential
distribution will be used with these bounds:

k = 1 ⇒ l = 1, 2, . . . , r1

k = 2 ⇒ l = 1 (73)

Thus the left hand side of equation 72 needs only to be defined for these bounds. The specific
hypoexponential distribution investigated here is of the form Hypo((r1, 1)(λ1, λ2)). Note the initial
conditions λ0 = 0, r0 = 1 defined in equation 69 also hold here. Thus the proof is split into two
parts, for k = 1 and k = 2.
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� k = 2, l = 1

LHS = − ∂1−1

∂t1−1

 2∏
j=0,j 6=2

(λj + t)−rj


= −

(
(λ0 + t)−r0 × (λ1 + t)−r1

)
= −

(
t−1 × (λ1 + t)−r1

)
= − 1

t(t+ λ1)r1

�

� k = 1, l = 1, . . . , r1

LHS = − ∂l−1

∂tl−1

 2∏
j=0,j 6=1

(λj + t)−rj


= − ∂l−1

∂tl−1

(
(λo + t)−r0 × (λ2 + t)−r2

)
= − ∂l−1

∂tl−1

(
1

t(t+ λ2)

)
In essence, it only remains to show that − ∂l−1

∂tl−1

(
1

t(t+λ2)

)
= (−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
.

Proof by Induction:

1. Base case (l = 1):

LHS = − ∂1−1

∂t1−1

(
1

t(t+ λ2)

)
= − 1

t(t+ λ2)

RHS =
(−1)1(1− 1)!

λ2

[
1

t1
− 1

(t+ λ2)1

]
= − t+ λ2 − t

λ2t(t+ λ2)

= − 1

t(t+ λ2)

LHS = RHS

2. Assume true for l = x:

− ∂x−1

∂tx−1

(
1

t(t+ λ2)

)
=

(−1)x(x− 1)!

λ2

[
1

tx
− 1

(t+ λ2)x

]
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3. Prove true for l = x+ 1:

(
∂x

∂tx

(
−1

t(t+λ2)

)
= (−1)x+1(x)!

λ2

[
1

tx+1 − 1
(t+λ2)x+1

])

LHS =
∂

∂t

[
∂x−1

∂tx−1

(
−1

t(t+ λ2)

)]
=

∂

∂t

[
(−1)x(x− 1)!

λ2

(
1

tx
− 1

(t+ λ2)x

)]
=

(−1)x(x− 1)!

λ2

(
(−x)

tx+1
− (−x)

(t+ λ2)x

)
=

(−1)x(x− 1)!(−x)

λ2

(
1

tx+1
− 1

(t+ λ2)x

)
=

(−1)x+1(x)!

λ2

(
1

tx+1
− 1

(t+ λ2)x

)
= RHS

�

6.7.5 Proportion within target for class 1 and class 2 individuals

Given the two CDFs of the Erlang and Hypoexponential distributions a new function has to be
defined to decide which one to use among the two. Based on the state of the model, there can be
three scenarios when an individual arrives.

1. There is a free server and the individual does not have to wait

X(u,v) ∼ Erlang(1, µ)

2. The individual arrives at a queue at the nth position and the model has C > 1 servers

X(u,v) ∼ Hypo((n, 1), (Cµ, µ))

3. The individual arrives at a queue at the nth position and the model has C = 1 servers

X(u,v) ∼ Erlang(n+ 1, µ)

Note here that for the first case Erlang(1, µ) is equivalent to Exp(µ). Let us define X
(1)
(u,v) the

distribution of class 1 individuals and X
(2)
(u,v) the distribution of class 2 individuals, when arriving

at state (u, v) of the model.

X
(1)
(u,v) ∼


Erlang(v, µ), if C = 1 and v > 1

Hypo
(
~r = (v − C, 1), ~λ = (Cµ, µ)

)
, if C > 1 and v > C

Erlang(1, µ), if v ≤ C
(74)

X
(2)
(u,v) ∼


Erlang(min(v, T ), µ), if C = 1 and v, T > 1

Hypo
(
~r = (min(v, T )− C, 1), ~λ = (Cµ, µ)

)
, if C > 1 and v, T > C

Erlang(1, µ), if v ≤ C or T ≤ C
(75)
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Equations 66 and 71 can now be used. Therefore, the probability that an individual arriving at
a specific state is within a given time target t is given by the following formulas:

P (X
(1)
(u,v) < t) =



1−
∑v−1
i=0

1
i!e
−µt(µt)i, if C = 1 and v > 1

1− (µC)v−Cµ
∑|~r|
k=1

∑rk
l=1

Ψk,l(−λk)trk−le−λkt

(rk−l)!(l−1)! , if C > 1 and v > C

where ~r = (v − C, 1) and ~λ = (Cµ, µ)

1− e−µt, if v ≤ C

(76)

P (X
(2)
(u,v) < t) =



1−
∑min(v,T )−1
i=0

1
i!e
−µt(µt)i, if C = 1 and v, T > 1

1− (Cµ)min(v,T )−Cµ
∑|~r|
k=1

∑rk
l=1

Ψk,l(−λk)trk−le−λkt

(rk−l)!(l−1)! , if C > 1 and v, T > C

where ~r = (min(v, T )− C, 1) and ~λ = (Cµ, µ)

1− e−µt, if v ≤ C or T ≤ C
(77)

In addition the set of accepting states for class 1 (S
(1)
A ) and class 2 (S

(2)
A ) individuals defined in

(35) and (39) are also needed here. Note here that, S denotes the set of all states of the Markov
chain model.

S
(1)
A = {(u, v) ∈ S | v < N}

S
(2)
A =

{
{(u, v) ∈ S | u < M}, if T ≤ N
{(u, v) ∈ S | v < N}, otherwise

Having defined everything, it only remains to use a formula similar to the ones of equations 38,
42 and 63. The following formula uses the state probability vector π to get the weighted average
of the probability below target of all states in the Markov model.

P (X(1) < t) =

∑
(u,v)∈S(1)

A

P (X
(1)
u,v < t)πu,v∑

(u,v)∈S(1)
A

πu,v
(78)

P (X(2) < t) =

∑
(u,v)∈S(2)

A

P (X
(2)
u,v < t)πu,v∑

(u,v)∈S(2)
A

πu,v
(79)

6.7.6 Overall proportion within target

The overall proportion of individuals for both class 1 and class 2 individuals is given by the
equivalent formula of equations (45) and (46). The following formula uses the probability of lost
individuals from both classes to get the weighted sum of the two already existing probabilities.
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P (L′1) =
∑

(u,v)∈S(1)
A

π(u, v), P (L′2) =
∑

(u,v)∈S(2)
A

π(u, v)

P (X < t) =
λ1P (L′1)

λ2P (L′2) + λ1P (L′1)
P (X(1) < t) +

λ2P (L′2)

λ2P (L′2) + λ1P (L′1)
P (X(2) < t) (80)
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7 Markov chain VS Simulation

7.1 Example model

Consider the Markov chain paradigm in figure 12. The illustrated model represents the unreal-
istically small system with a system capacity of five and a buffer capacity of three. The hospital in
this particular example also has four servers and a threshold of three; meaning that every ambu-
lance that arrives in a time that there are three or more individuals in the hospital, will proceed to
the buffer centre.
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Figure 12: Markov chains: number of servers=4

In addition to the Markov chain model a simulation model has also been built based on the
same parameters. Comparing the results of the Markov model and the equivalent simulation model
the resultant plots arose.

The heatmaps in figure 13 represent the state probabilities for the Markov chain model, the
simulation model and the difference between the two. Each pixel of the heatmap corresponds
to the equivalent state of figure 12 and represents the probability of being at that state in any
particular moment of time.

It can be observed that both Markov chain and simulation models’ state probabilities vary from
5% to 25% and that states (0, 1) and (0, 2) are the most visited ones. Looking at the differences’
heatmap, one may identify that the differences between the two are minimal.
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8 Figures that might be useful
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Figure 14: Markov chains
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Figure 15: Markov chains
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Figure 16: Markov chains
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General Case
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Figure 17: Markov chain
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9 Formulas

ĉi ∈ {1, 2, . . . , Ci}

ρi =
piΛ + λoi
ĉiµi

(Wq)i =
1

ĉiµi

(ĉiρi)
ĉi

ĉi!(1− ρi)2
(P0)i

(P0)i =
1∑ĉi−1

n=0

[
(ĉiρi)n

n!

]
+ (ĉiρi)ĉi

ĉi!(1−ρi)

P (Wq > T ) =
(λµ )cP0

c!(1− λ
cµ )

(e−(cµ−λ)T )
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