Stan Math Library  2.11.0
reverse mode automatic differentiation
grad_hessian.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_MIX_MAT_FUNCTOR_GRAD_HESSIAN_HPP
2 #define STAN_MATH_MIX_MAT_FUNCTOR_GRAD_HESSIAN_HPP
3 
4 #include <stan/math/fwd/core.hpp>
6 #include <stan/math/rev/core.hpp>
7 #include <stdexcept>
8 #include <vector>
9 
10 namespace stan {
11 
12  namespace math {
13 
43  template <typename F>
44  void
45  grad_hessian(const F& f,
46  const Eigen::Matrix<double, Eigen::Dynamic, 1>& x,
47  double& fx,
48  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>& H,
49  std::vector<Eigen::Matrix<double,
50  Eigen::Dynamic, Eigen::Dynamic> >&
51  grad_H) {
52  using Eigen::Matrix;
53  using Eigen::Dynamic;
54  fx = f(x);
55  int d = x.size();
56  H.resize(d, d);
57  grad_H.resize(d, Matrix<double, Dynamic, Dynamic>(d, d));
58  try {
59  for (int i = 0; i < d; ++i) {
60  for (int j = i; j < d; ++j) {
61  start_nested();
62  Matrix<fvar<fvar<var> >, Dynamic, 1> x_ffvar(d);
63  for (int k = 0; k < d; ++k)
64  x_ffvar(k) = fvar<fvar<var> >(fvar<var>(x(k), i == k),
65  fvar<var>(j == k, 0));
66  fvar<fvar<var> > fx_ffvar = f(x_ffvar);
67  H(i, j) = fx_ffvar.d_.d_.val();
68  H(j, i) = H(i, j);
69  stan::math::grad(fx_ffvar.d_.d_.vi_);
70  for (int k = 0; k < d; ++k) {
71  grad_H[i](j, k) = x_ffvar(k).val_.val_.adj();
72  grad_H[j](i, k) = grad_H[i](j, k);
73  }
75  }
76  }
77  } catch (const std::exception& e) {
79  throw;
80  }
81  }
82 
83  } // namespace math
84 } // namespace stan
85 #endif
static void grad(vari *vi)
Compute the gradient for all variables starting from the specified root variable implementation.
Definition: grad.hpp:30
void grad_hessian(const F &f, const Eigen::Matrix< double, Eigen::Dynamic, 1 > &x, double &fx, Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > &H, std::vector< Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > > &grad_H)
Calculate the value, the Hessian, and the gradient of the Hessian of the specified function at the sp...
double e()
Return the base of the natural logarithm.
Definition: constants.hpp:95
static void recover_memory_nested()
Recover only the memory used for the top nested call.
static void start_nested()
Record the current position so that recover_memory_nested() can find it.

     [ Stan Home Page ] © 2011–2016, Stan Development Team.