Sample Code in python notebook to use Automatise as a python library.
[download button]
Observations:
You can use configured paths if you want to organize directories
import sys, os
root = os.path.join('automatize', 'assets', 'examples', 'Example')
# We consider this folder organization to the experimental enviromnent:
prg_path = os.path.join(root, 'programs')
data_path = os.path.join(root, 'data')
res_path = os.path.join(root, 'results')
# OR, you can use the .jar method files in:
prg_path = os.path.join('automatize', 'assets', 'method')
To use helpers for data pre-processing, import from package automatise
the module preprocessing.py
:
from automatize.preprocessing import *
The preprocessing module provides some functions to work data:
Basic functions:
readDataset
: load datasets as pandas DataFrame (from .csv, .zip, or .ts)printFeaturesJSON
: print a default JSON file descriptor for Movelets methods (version 1 or 2)datasetStatistics
: calculates statistics from a datasets dataframe.Train and Test split functions:
trainAndTestSplit
: split dataset (pandas DataFrame) in train / test (70/30% by default)kfold_trainAndTestSplit
: split dataset (pandas DataFrame) in k-fold train / test (80/20% each fold by default)stratify
: extract trajectories from the dataset, creating a subset of the data (to use when smaller datasets are needed)joinTrainAndTest
: joins the train and test files into one DataFrame.Type convertion functions:
convertDataset
: default format conversions. Reads the dataset files and saves in .csv and .zip formats, also do k-fold split if not presentzip2df
: converts .zip files and saves to DataFramezip2csv
: converts .zip files and saves to .csv filesdf2zip
: converts DataFrame and saves to .zip fileszip2arf
: converts .zip and saves to .arf filesany2ts
: converts .zip or .csv files and saves to .ts filesxes2csv
: reads .xes files and converts to DataFrame#cols = ['tid','label','lat','lon','day','hour','poi','category','price','rating']
df = joinTrainAndTest(data_path, train_file="train.csv", test_file="test.csv", class_col = 'label')
df.head()
Joining train and test data from... automatize/assets/examples/Example/data Done. --------------------------------------------------------------------------------
tid | lat_lon | hour | price | poi | weather | day | label | |
---|---|---|---|---|---|---|---|---|
0 | 12 | 0.0 6.2 | 8 | -1 | Home | Clear | Monday | Classs_False |
1 | 12 | 0.8 6.2 | 9 | 2 | University | Clouds | Monday | Classs_False |
2 | 12 | 3.1 11 | 12 | 2 | Restaurant | Clear | Monday | Classs_False |
3 | 12 | 0.8 6.5 | 13 | 2 | University | Clear | Monday | Classs_False |
4 | 12 | 0.2 6.2 | 17 | -1 | Home | Rain | Monday | Classs_False |
To k-fold split a dataset into train and test:
k = 3
train, test = kfold_trainAndTestSplit(data_path, k, df, random_num=1, class_col='label')
3-fold train and test split in... automatize/assets/examples/Example/data
Spliting Data: 0%| | 0/2 [00:00<?, ?it/s]
Done. Writing files ... 1/3
Writing TRAIN - ZIP|1: 0%| | 0/7 [00:00<?, ?it/s]
Writing TEST - ZIP|1: 0%| | 0/4 [00:00<?, ?it/s]
Writing TRAIN / TEST - CSV|1
Writing TRAIN - MAT|1: 0%| | 0/7 [00:00<?, ?it/s]
Writing TEST - MAT|1: 0%| | 0/4 [00:00<?, ?it/s]
Writing files ... 2/3
Writing TRAIN - ZIP|2: 0%| | 0/7 [00:00<?, ?it/s]
Writing TEST - ZIP|2: 0%| | 0/4 [00:00<?, ?it/s]
Writing TRAIN / TEST - CSV|2
Writing TRAIN - MAT|2: 0%| | 0/7 [00:00<?, ?it/s]
Writing TEST - MAT|2: 0%| | 0/4 [00:00<?, ?it/s]
Writing files ... 3/3
Writing TRAIN - ZIP|3: 0%| | 0/8 [00:00<?, ?it/s]
Writing TEST - ZIP|3: 0%| | 0/3 [00:00<?, ?it/s]
Writing TRAIN / TEST - CSV|3
Writing TRAIN - MAT|3: 0%| | 0/8 [00:00<?, ?it/s]
Writing TEST - MAT|3: 0%| | 0/3 [00:00<?, ?it/s]
Done. --------------------------------------------------------------------------------
To convert train and test from one available format to other default formats (CSV, ZIP, MAT):
convertDataset(data_path)
Writing TRAIN - ZIP|: 0%| | 0/14 [00:00<?, ?it/s]
Writing TEST - ZIP|: 0%| | 0/14 [00:00<?, ?it/s]
Writing TRAIN - MAT|: 0%| | 0/14 [00:00<?, ?it/s]
Writing TEST - MAT|: 0%| | 0/14 [00:00<?, ?it/s]
All Done.
To run feature extraction methods, import from package automatise
the modules run.py
or script.py
:
from automatize.script import *
The gensh
function is the statring point to generate scripts for the available methods:
method
: method name to generate the scripts;datasets
: dictionary for datasets config, withparams
: dictionary of configuration parameters for scripting (described later)method = 'hiper'
datasets = {'Animals.RawTraj': ['specific']}
params = {
'sh_folder': 'scripts', # where to generate script files
'folder': 'EXP2022', # folder prefix for result files
'k': 5, # number of folds - optional
'root': root, # root folder of the experimental environment
'threads': 10, # number of threads allowed (for movelets methods) - optional
'gig': 100, # GB of RAM memory limit allowed (for movelets methods) - optional
'pyname': 'python3', # Python command - optional
'runopts': '-TR 0.5', # other arguments to pass to the method line (-TR is the τ for HiPerMovelets) - optional
'timeout': '7d', # set a timeout to methods runtime (7d limits to 7 days)
}
gensh(method, datasets, params)
sh run-H-Animals-specific-10T.sh
'sh run-H-Animals-specific-10T.sh\n'
The available methods in automatise
are declared here:
from automatize.helper.script_inc import BASE_METHODS, METHODS_NAMES
for method in BASE_METHODS:
print(method, ''.rjust(25-len(method), ' '), METHODS_NAMES[method])
MARC MARC npoi NPOI-F MM MASTERMovelets MM+Log MASTERMovelets-Log SM SUPERMovelets SM-2 SUPERMovelets-λ SM+Log SUPERMovelets-Log SM-2+Log SUPERMovelets-Log-λ hiper HiPerMovelets hiper-pivots HiPerMovelets-Pivots hiper+Log HiPerMovelets-Log hiper-pivots+Log HiPerMovelets-Pivots-Log
Alternatively, it is possible to run methods directly from python automatise
library
from automatize.run import *
prefix = 'Example'
Movelets(data_path, res_path, prefix, 'HL-specific', 'Descriptor_hp',
version='master', ms=False, Ms=False, prg_path=os.path.join('.'), \
jar_name='HIPERMovelets', n_threads=1)
Thu Jun 09 19:42:39 CEST 2022 Starting Movelets extractor Configurations: -curpath Datasets directory: automatize/assets/examples/Example/data -respath Results directory: automatize/assets/examples/Example/results/Example/HL-specific/MASTERMovelets/MASTER_Descriptor_hp_LSP_ED -descfile Description file : automatize/assets/examples/Example/data/Descriptor_hp.json +-------------+--------------------+---------------------+----------------------------------------------+ | Option | Description | Value | Help | +-------------+--------------------+---------------------+----------------------------------------------+ | -nt | Allowed Threads | 1 | | | -ms | Min size | -1 | Any positive | -1 | Log: -2 | | -Ms | Max size | -1 | Any | All sizes: -1 | Log: -3 or -4 | | -mnf | Max. Dimensions | -1 | Any | Explore dim.: -1 | Log: -2 | Other: -3 | | -samples | Samples | 1 | | | -sampleSize | Sample Size | 0.5 | | | -q | Quality Measure | LSP | | | -medium | Medium | none | | | -mpt | Movelets Per Traj. | -1 | Any | Auto: -1 | | -output | Output | discrete (CSV,JSON) | | | | | | | | -version | Version Impl. | master | master, super, hiper[-pivots], random, ultra | | | -- Last Prunning | false | | +-------------+--------------------+---------------------+----------------------------------------------+ [1] >> Load Input: 172 milliseconds Attributes and Features: +---+-------------+---------+-----------------+ | # | Attribute | Type | Comparator | +---+-------------+---------+-----------------+ | 1 | 2 - lat_lon | space2d | euclidean/-1.0 | | 2 | 3 - hour | numeric | difference/-1.0 | | 3 | 4 - poi | nominal | equals/-1.0 | | 4 | 5 - weather | nominal | equals/-1.0 | | 5 | 6 - day | nominal | equals/-1.0 | +---+-------------+---------+-----------------+ Memory Usage (MiB), Memory Total: 245.5. Memory Free: 242.38372039794922. Memory Used: 3.1162796020507812. [2] >> Movelet Discovery: [7%] Class: User_1. Trajectory: 1. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 4. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [14%] Class: User_1. Trajectory: 2. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [21%] Class: User_1. Trajectory: 3. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [28%] Class: User_1. Trajectory: 4. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [35%] Class: User_1. Trajectory: 5. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [42%] Class: User_1. Trajectory: 6. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 4. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [50%] Class: User_1. Trajectory: 7. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [57%] Class: User_2. Trajectory: 8. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [64%] Class: User_2. Trajectory: 9. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 4. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [71%] Class: User_2. Trajectory: 10. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [78%] Class: User_2. Trajectory: 11. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 3. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [85%] Class: User_2. Trajectory: 12. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 3. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [92%] Class: User_2. Trajectory: 13. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 5. Max Size: 5. Used Features: 5. [2] >> Movelet Discovery: [100%] Class: User_2. Trajectory: 14. Trajectory Size: 5. Number of Candidates: 465. Total of Movelets: 3. Max Size: 5. Used Features: 5. [3] >> Processing time: 937 milliseconds Thu Jun 09 19:42:41 CEST 2022 Loading files - train.csv Writing train.csv file Done. Loading files - test.csv Writing test.csv file Done.
MARC(data_path, res_path, 'Example', 'MARC-specific', train='train.csv', test='test.csv',
EMBEDDING_SIZE=100, MERGE_TYPE='concatenate', RNN_CELL='lstm')
python3 ./automatize/methods/marc/MARC.py "automatize/assets/examples/Example/data/train.csv" "automatize/assets/examples/Example/data/test.csv" "automatize/assets/examples/Example/results/Example/MARC-specific/MARC-specific_results.csv" "MARC-specific" 100 concatenate lstm 2>&1 | tee -a "automatize/assets/examples/Example/results/Example/MARC-specific/MARC-specific.txt" Done. 977.3960000000001 milliseconds # ---------------------------------------------------------------------------------
sequences = [1,2,3]
features = ['poi']
prefix = 'Example'
POIFREQ(data_path, res_path, prefix, '', sequences, features,
method='npoi', doclass=True)
prefix = 'Example'
Movelets(data_path, res_path, prefix, 'MML-specific', 'Descriptor', ms=False, Ms=False, \
prg_path=os.path.join('.'), jar_name='MASTERMovelets', n_threads=1)
Movelet Discovery 7% ### /Trajectory: 1. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 2. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 3. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 4. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Trajectory: 5. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 1. Max Size: 5. Used Features: 5 Trajectory: 6. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 7. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Trajectory: 8. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 9. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 10. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 11. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Trajectory: 12. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 3. Max Size: 5. Used Features: 5 Trajectory: 13. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 14. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Movelet Discovery 7% ### /Trajectory: 1. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 2. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 3. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 4. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Trajectory: 5. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 1. Max Size: 5. Used Features: 5 Trajectory: 6. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 7. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Trajectory: 8. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 9. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 10. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 11. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 Trajectory: 12. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 3. Max Size: 5. Used Features: 5 Trajectory: 13. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 0. Max Size: 5. Used Features: 5 Trajectory: 14. Trajectory Size: 5. Number of Candidates: 15. Total of Movelets: 2. Max Size: 5. Used Features: 5 {MoveletsFound=12, candidates=280, MoveletsDiscoveryTime=76, MoveletsAfterPruning=12} Processing time: 496 milliseconds Tue Jun 07 13:35:49 CEST 2022 Loading files - train.csv Writing train.csv file Done. Loading files - test.csv Writing test.csv file Done.
* The subfolder scripts
contains auxiliary runnable python files to execute in command line:
# For example, to merge the result files (need for Movelets methods)
!"MAT-MergeDatasets.py" $res_path/$prefix/HL-specific
Loading files - train.csv Writing train.csv file Done. Loading files - test.csv Writing test.csv file Done.
To run classifiers for the HIPERMovelets results, import from package automatise
the script analysis.py
:
from automatize.analysis import ACC4All, MLP, RF, SVM
a. To run the classifyers for each folder inside a result path prefix:
save_results = True
result_folder = 'HL-specific'
prefix = 'Example/run1'
ACC4All(os.path.join(res_path, prefix), result_folder, save_results)
b. To run a specific classifyer:
MLP(res_path, prefix, result_folder, save_results)
c. To run the classifyers in shell:
!MAT-Classifier-MLP_RF.py $res_path/$prefix $result_folder
To read the results, import from package automatise
the module results.py
:
from automatize.results import *
a. To check the results (both in python or in shell command line):
check_run(res_path, True)
OK: HL ExempleDS 1 specific [100.000][7s]
a. To check the results (both in python or in shell command line)
df = results2df(res_path, prefix, result_folder)
df
Looking for result files in automatise/assets/examples/Example/results/ExempleDS/run1/**/HL-specific/HL-specific.txt
Dataset | HL-specific | ||
---|---|---|---|
0 | ExempleDS/run1 | Candidates | 1,890 |
1 | Scored | - | |
2 | Recovered | - | |
3 | Movelets | 9 | |
4 | ACC (MLP) | 100.000 | |
5 | ACC (RF) | 100.000 | |
6 | ACC (SVM) | 100.000 | |
7 | Time (Movelets) | 0.035s | |
8 | Time (MLP) | 7s | |
9 | Time (RF) | 0.270s | |
10 | Time (SVM) | - | |
11 | Trajs. Compared | 2 | |
12 | Trajs. Pruned | 4 |
To print the dataframe result in a Latex formatted table:
printLatex(df)
\begin{table*}[!ht] \centering \resizebox{\columnwidth}{!}{ \begin{tabular}{|c|r||r|} \hline Dataset & & HL-specific \\ \hline \hline \multirow{13}{2cm}{ExempleDS/run1} & Candidates & 1,890 \\ & Scored & - \\ & Recovered & - \\ & Movelets & 9 \\ & ACC (MLP) & 100.000 \\ & ACC (RF) & 100.000 \\ & ACC (SVM) & 100.000 \\ &Time (Movelets) & 0.035s \\ & Time (MLP) & 7s \\ & Time (RF) & 0.270s \\ & Time (SVM) & - \\ &Trajs. Compared & 2 \\ & Trajs. Pruned & 4 \\ \hline \end{tabular}} \caption{Results for ExempleDS/run1 dataset.} \label{tab:results_ExempleDS/run1} \end{table*}
To export all results to DataFrame and save:
df = history(res_path)
df.to_csv('experimental_results.csv')
df
# | timestamp | dataset | subset | subsubset | run | random | method | classifier | accuracy | runtime | cls_runtime | error | file | total_time | name | key | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1.649782e+09 | ExempleDS | specific | specific | 1 | 1 | HL | MLP | 100.0 | 35.0 | 7517.812 | False | automatise/assets/examples/Example/results/Exe... | 7552.812 | HL-specific-MLP | ExempleDS-specific-1 |
To read and visualize the resulting movelets, import from package automatise
the module movelets.py
:
from automatise.movelets import *
prefix = 'ExempleDS/run1'
movs = read_movelets(os.path.join(res_path, prefix, 'HL-specific'))
movs
[{'lat': '0.8', 'lon': '6.2'}, {'precip': 10.0, 'price': -1.0}, {'price': 2.0, 'lat': '4.3', 'lon': '16.9'}, {'precip': 10.0, 'price': 2.0, 'weather': 'Clear'}, {'lat': '6', 'lon': '13.1'}, {'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'}, {'lat': '0.4', 'lon': '6.7'}, {'lat': '3', 'lon': '13.5'}, {'precip': 15.0, 'weather': 'Clouds', 'poi': 'Shopping'}]
movelets_sankey(movs, attribute='lat') # or movelets_sankey(movs) -> to display all dimensions (may be confusing)
movelets_markov(movs, attribute='lat')
tree = createTree(movs.copy())
from anytree import RenderTree
root_node = convert2anytree(tree)
root_node = RenderTree(root_node)
print(root_node)
Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00") ├── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'lat': '0.8', 'lon': '6.2'} (85.71%) - 0.00") ├── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'precip': 10.0, 'price': -1.0} (85.71%) - 0.00") │ └── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'precip': 10.0, 'price': -1.0} (85.71%) - 0.00/{'precip': 10.0, 'price': 2.0, 'weather': 'Clear'} (85.71%) - 0.40") ├── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'price': 2.0, 'lat': '4.3', 'lon': '16.9'} (85.71%) - 0.00") ├── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'lat': '0.4', 'lon': '6.7'} (85.71%) - 0.00") ├── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'lat': '3', 'lon': '13.5'} (85.71%) - 0.00") ├── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'precip': 15.0, 'weather': 'Clouds', 'poi': 'Shopping'} (85.71%) - 0.00") └── Node("/{'lat': '5.8', 'lon': '16.5'}=>{'lat': '6.3', 'lon': '13'} (100.00%) - 0.00/{'lat': '6', 'lon': '13.1'} (80.00%) - 0.00")
convert2digraph(tree)
Find any text in automatize code, if you want to change something.
import os
import glob2 as glob
search_path = "automatize/"
search_str = "TODO" # This is all the to do's I left in the code for later implementations
# Repeat for each file in the directory
files = list(set(glob.glob(os.path.join(search_path, '**', '*.*'), recursive=True)))
files.sort()
for fname in files:
# Open file for reading
try:
fo = open(fname)
# Read the first line from the file
line = fo.readline()
# Initialize counter for line number
line_no = 1
has = False
# Loop until EOF
while line != '' :
# Search for string in line
index = line.find(search_str)
if ( index != -1) :
has = True
print('\t', "[", line_no, ",", index, "] \t", line[:-1].strip(), sep="")
# Read next line
line = fo.readline()
# Increment line counter
line_no += 1
# Close the files
fo.close()
if has:
print('^', fname, '\n')
except:
#print('Skip ->', fname)
continue
IOPub data rate exceeded. The Jupyter server will temporarily stop sending output to the client in order to avoid crashing it. To change this limit, set the config variable `--ServerApp.iopub_data_rate_limit`. Current values: ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec) ServerApp.rate_limit_window=3.0 (secs)
[14,43] sys.path.insert(0, os.path.abspath('.')) # TODO fix imports ^ automatize/methods/marc/.ipynb_checkpoints/marc_nn-checkpoint.py [14,43] sys.path.insert(0, os.path.abspath('.')) # TODO fix imports ^ automatize/methods/marc/marc_nn.py [50,31] # adam = Adam(lr=par_lr) # TODO: check for old versions... [108,42] # adam = Adam(lr=lst_par_lr[k]) # TODO: check for old versions... [310,31] # adam = Adam(lr=par_lr) # TODO: check for old versions... ^ automatize/methods/movelet/.ipynb_checkpoints/moveletml-checkpoint.py [50,31] # adam = Adam(lr=par_lr) # TODO: check for old versions... [108,42] # adam = Adam(lr=lst_par_lr[k]) # TODO: check for old versions... [310,31] # adam = Adam(lr=par_lr) # TODO: check for old versions... ^ automatize/methods/movelet/moveletml.py [55,6] # TODO - replace for pymove package version when implemented ^ automatize/methods/rf/.ipynb_checkpoints/randomforrest-checkpoint.py [55,6] # TODO - replace for pymove package version when implemented ^ automatize/methods/rf/randomforrest.py [101,30] # if method == 'rf': # TODO [109,32] # if method == 'rfhp': # TODO ^ automatize/methods/tec/.ipynb_checkpoints/tec-checkpoint.py [17,3] ## TODO: Under Construction: ^ automatize/methods/tec/models/randomforrest.py [17,3] ## TODO: Under Construction: ^ automatize/methods/tec/models/randomforresthp.py [101,30] # if method == 'rf': # TODO [109,32] # if method == 'rfhp': # TODO ^ automatize/methods/tec/tec.py [133,77] #tids = tids[from_traj: to_traj if len(tids) > to_traj else len(tids)] # TODO [554,61] #stats = stats.sort_values('Variance', ascending=False) #TODO ^ automatize/movelets.py [42,73] # elif '.mat' in url or os.path.exists(url.replace('.csv', '.mat')): #TODO [525,2] # TODO fix stratify: ^ automatize/preprocessing.py [446,42] n_ds = len(df['Dataset'].unique())-1 #TODO ? [1017,19] # OLDER FUNCTIONS: TODO Remake [1201,45] elif os.path.exists(file+'-r2df.csv'): # TODO: format ^ automatize/results.py [338,45] for i in range(1, num_runs+1): # TODO: set a different random number in python ^ automatize/run.py [98,2] # TODO: Configuring environment ^ automatize/scripts/.ipynb_checkpoints/MARC-checkpoint.py [50,34] random = config["random"] # TODO ^ automatize/scripts/.ipynb_checkpoints/MAT-MC-checkpoint.py [67,2] # TODO: ^ automatize/scripts/.ipynb_checkpoints/POIS-checkpoint.py [98,2] # TODO: Configuring environment ^ automatize/scripts/MARC.py [50,34] random = config["random"] # TODO ^ automatize/scripts/MAT-MC.py [67,2] # TODO: ^ automatize/scripts/POIS.py [19,2] # TODO: def_random_seed(random_num=1, seed_num=1) ^ automatize/scripts/deprecated/MAT-MC_MLP.py [21,2] # TODO: def_random_seed(random_num=1, seed_num=1) ^ automatize/scripts/deprecated/MAT-MC_MLP_RF.py [154,42] # adam = Adam(lr=lst_par_lr[k]) # TODO: check for old versions... ^ automatize/scripts/deprecated/MAT-MoveletsCLS.py
# By Tarlis Portela (2023)