
Weighted Reservoir Sampling Proof

Levi Viana

March 17, 2019

1 Introduction

The problem of random sampling without replacement calls for the selection
of k distinct random items out of a population of size n. If all items have the
same probability to be selected, the problem is known as uniform random
sampling.

In weighted random sampling the items are weighted and the probability
of each item to be selected is determined by its relative weight.

I wrote this short essay to provide a proof that the algorithm statated in
[1] formally works, since [1] doesn’t provide it. I made an implementation
available at [2].

2 Weighted Sampling without replacement

Let wi be the weights for i ∈ [1, ..., n]. We can define weighted random
sampling without replacement by the following algorithm :

Algorithm A:
Input : A population V of n weighted items.
Output : A subset S of V with size k.
1 : For i = 1 to k
2 : let πj(i) =

wj∑
sm∈V−S wm

be the probability of picking the j-th item of

V − S in the i-th round
3 : Randomly select an item vj from V − S and insert it into S

1



Consider the following algorithm:

Algorithm B:
Input : A population V of n weighted items.
Output : A subset S of V with size k.
1 : For each vi in V , let xi be a sample from an independent uniform
distribution on the interval [0, 1], and let ki = x

1/wi

i be defined as its key
2 : S = Subset of the k items with the largest keys

Claim: The algorithm B performs weighted random sampling without
replacement as defined by the algorithm A.

Proof of the claim:

Let’s first consider the case where k = 1. Let’s calculate the probability
that the first item will be picked. In order for this to happen, the following
inequality must be satisfied:

x
1/w1

1 > max({x1/wi

i }i=2,...,n) (1)

Let pi be defined as the probability that the first item is picked whenever

i = argmax({x1/wj

j }j=2,...,n). Thus, we have :

pi =

∫ 1

0

(1− xw1/wi)x

∑
î,1̂

wj

wi dx (2)

Where
∑

î,1̂wj is the sum of all weights except the i-th and the first items’
weights. Thus, it follows that p =

∑
1̂ pi. For convinience, the sums are over

all indicies when those are not explicited.
The equation (2) can be deduced in the following way: let x be a fixed

value for the sample xi, then we would have x
1/w1

1 > x1/wi , which happens

with probability 1−xw1/wi and x
1/wj

j < x1/wi , which happens with probability

xwj/wi , for all j ∈ [2, ..., î, .., n]. Then, we multiply all these probabilites (since
the samples are drawn independently) and integrate over all the probability
space of xi (i.e. interval [0, 1] and constant density function equal to 1).

By solving the integral (2) we find that :

pi =
1

1 +
∑

î,1̂ wj

wi

− 1

1 +
∑

î wj

wi

(3)

2



pi =
wi∑
1̂wj

− wi∑
wj

(4)

Thus, we finally find that :

p =
∑
1̂

pi =
∑
1̂

(
wi∑
1̂wj

− wi∑
wj

) = (5)

∑
1̂wi∑
1̂wj

−
∑

1̂wi∑
wj

= 1−
∑

1̂wi∑
wj

=
w1∑
wj

(6)

This result matchs the 2nd step of the algorithm A straightforwardly by
considering that in each round the item having largest key in V − S will be
picked. #

3 Weighted Reservoir Sampling

The reservoir rampling version of the algorithm B is the following :

Algorithm C:
Input : A population V of n weighted items.
Output : A subset S of V with size k.
1 : Initialize the reservoir R with the first k items of V
2 : For each vi ∈ R calculate its key ki = x

1/wi

i , where xi is a random sample
of an independent uniform distribution over [0, 1]
3 : For each vi in V −R:
4 : let m be the index of the item of R having the smallest key K
5 : calculate the key of vi, ki = x

1/wi

i (same method)
6 : if ki > K, swap the i-th and m-th items

The algorithms B and C are equivalent since the algorithm C garantees
that the items having the k largest keys will be found inside the reservoir
since either (i) they are initialized in it, or (ii) they will be eventually swapped
with an item having a lower key value.

3



References

[1] Efraimidis, Spirakis. Weighted Random Sampling, 2005
https://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.

pdf

[2] Efficient Reservoir Sampling implementation for PyTorch,
https://github.com/LeviViana/torch_sampling

4

https://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf
https://utopia.duth.gr/~pefraimi/research/data/2007EncOfAlg.pdf
https://github.com/LeviViana/torch_sampling

