

FLExTools Programming Help
For FLExTools Version 2.2,

and FieldWorks version 9.

25 April 2023

FLExTools Programming Help .. 1

Introduction .. 2

Creating a module .. 2

Documenting the module .. 3

Reporting functions .. 3

Fieldworks project functions ... 4

Modifying the Fieldworks project ... 8

Debugging ... 9

Introduction
FLExTools is a framework for running Python scripts on a FieldWorks Language

Explorer project. FLExTools provides core functions for creating modules (Python

scripts) to do the processing work, and a user interface to make it easy to run the

modules individually or as a set.

This guide explains how to write your own FLExTools modules. It assumes you are

familiar with using FLExTools as described in FLExTools Help.pdf (accessed from the

menu Help | Help.) Extra help on useful functions provided with FLExTools can be

found on the menu Help | API Help.

Creating a module
The following code fragment shows a minimal module with all the required pieces in

place.

from flextools import *

docs = {FTM_Name : "Demo",

 FTM_Version : 1,

 FTM_ModifiesDB : False,

 FTM_Synopsis : "Does nothing",

 FTM_Help : None,

 FTM_Description: ""

def Demo(project, report, modifyAllowed=False):

 report.Info("This module does nothing!")

FlexToolsModule = FlexToolsModuleClass(runFunction = Demo,

 docs = docs)

A FlexToolsModuleClass is initialised with the main processing function (Demo in this

example) and the documentation. The instance must be called FlexToolsModule.

Notice the three parameters to the Demo function:

• project—this a FLExProject object, giving access to the LCM1 Cache and helper

functions for reading from and writing to the project.

• report—message reporting functions and progress indication.

• modifyAllowed—a flag to tell the module whether the user wants to do a dry-

run (modifyAllowed==False), or make changes to the project

(modifyAllowed==True). If modifyAllowed is True, then FLExTools will make a

call to undo stack before running the module.

1Language and Culture Model; formerlly called Fieldworks Data Objects (FDO)

These parameters are discussed in more detail in the following sections.

Documenting the module
Module documentation is supplied in a Python dictionary as follows:

docs = {FTM_Name : "Demo",

 FTM_Version : 1,

 FTM_ModifiesDB : False,

 FTM_Synopsis : "Does nothing",

 FTM_Help : "Demo help.htm",

 FTM_Description: ""

FTM_Name A descriptive name for the module.

FTM_Version An integer or string version identifier.

FTM_ModifiesDB True if the module modifies the project.

FTM_Synopsis A brief one-sentence description of the module.

FTM_Help The name of a help file for this module. The path is

relative to the current directory. The help file should be

HTML or PDF for portability. Define as None if there is

no help file.

FTM_Description A full description of the module’s function, purpose,

constraints, etc. This can be a multi-line string using

triple-quotes (""" """).

Reporting functions

Messages

Message functions are available for reporting progress, warnings and errors. These

messages are displayed in the bottom message pane of the FLExTools main window

with a different icon for each one. The functions are available through the second

parameter to the processing function as follows:

 report.Info(msg, info) A basic information message.

 report.Warning(msg, info) A non-critical warning such as telling the user

about data changes or integrity issues.

 report.Error(msg, info) A critical situation that prevents further

processing.

 report.Blank() A blank line with no icon and no text.

The info parameter is an optional string giving more details. This is provided in a tool

tip when the user hovers over the message. If the message is referring to a particular

lexical entry or wordform in the Fieldworks project you can pass

project.BuildGotoURL(entry) as the info parameter. The user can then double-click on

the message and Fieldworks will open up at that entry.

Progress indication

Use the following functions to display a progress indicator in the status bar:

report.ProgressStart(max) Start the progress indicator, setting the

maximum value to max.

report.ProgressUpdate(value) Update the progress indicator to value. (value =

[0...max-1])

For example:

report.ProgressStart(project.LexiconNumberOfEntries())

for eNum, entry in enumerate(project.LexiconAllEntries()):

 report.ProgressUpdate(eNum)

 #Do something with entry

Fieldworks project functions
The Fieldworks project is accessed via the project parameter to the module’s

runFunction. project is an instance of the FLExProject class. The class definition

documentation can be found on the menu Help | API Help. This class contains many

helper functions for accessing the Fieldworks project via the FieldWorks LCM

interface.

Basic project functions
for e in project.LexiconAllEntries():

 for sense in e.SensesOS:

 if not project.LexiconGetSenseDefinition(sense):

 report.Warning(f"Missing definition in

 {project.LexiconGetLexemeForm(e)}",

 project.BuildGotoURL(e))

 if len(sense.ExamplesOS) == 0:

 report.Warning(f"No examples in

 {project.LexiconGetLexemeForm(e)}",

 project.BuildGotoURL(e))

This example shows the use of LexiconAllEntries() to iterate over the whole lexicon,

plus how to traverse the senses within each entry. Notice the warning messages,

which use LexiconGetLexemeForm() to tell the user which entry has the problem.

BuildGotoURL() is also used to allow the user to double-click on the message to jump

to the right location in Fieldworks.

For testing your algorithm, a subset of the lexicon can be traversed using a Python

slice like this (looking at the first twenty entries):

for e in project.LexiconAllEntries()[:20]:

Gloss, part of speech (‘grammatical category’ in Fieldworks terminology), and

semantic domains can be retrieved with these functions:

project.LexiconGetSenseGloss(sense [, languageTagOrHandle])

project.LexiconGetSensePOS(sense)

project.LexiconGetSenseSemanticDomains(sense)

Examples are a list and accessed like this (assuming context from above):

for ex in sense.ExamplesOS:

 Report.Info(f"Example: {project.LexiconGetExample(ex)}")

Note that LexiconGetSenseGloss(), LexiconGetLexemeForm(),

LexiconGetSenseDefinition(), and LexiconGetExample() all use the default analysis or

vernacular writing system as appropriate. These functions take an optional second

parameter to specify a different writing system.

Advanced lexicon operations

The above example traverses the lexicon in an unspecified order. If you need random

access or wish to do more complex things it may be useful to load the lexicon into a

Python dictionary. The following example illustrates how to do this. Populate data

with the relevant fields that you need for your processing.

LexiconEntries = {}

for e in project.LexiconAllEntries():

 # Add fields of interest to 'data'

 data = {}

 data['hvo'] = e.Hvo

 glosses = []

 for sense in e.SensesOS :

 glosses.append(project.LexiconGetSenseGloss(sense))

 data['glosses'] = glosses

 # The key is a 2-tuple: (lexeme-form, homograph-number)

 LexiconEntries[(project.LexiconGetLexemeForm(e),

 e.HomographNumber)] = data

To traverse this dictionary sorted by lexeme form you can use:

for e in sorted(LexiconEntries.items()):

 print e[0], e[1] # lexeme-form, homograph-number

Writing systems

The following code fragment reports all the vernacular writing systems in use in the

project, showing the display name, the language tag (e.g. ‘en’), and writing system

handle.

report.Info("Vernacular Writing Systems:")

for tag in project.GetAllVernacularWSs():

 report.Info(u" %s [%s, %i]" %

 project.WSUIName(tag), tag, project.WSHandle(tag))

GetAllAnalysisWSs() is also available. The following two functions supply the default

vernacular and analysis writing systems as a tuple of (language-tag, name):

project.GetDefaultVernacularWS()

project.GetDefaultAnalysisWS()

The language tag is used to specify a non-default writing system for a number of

FLExProject methods. project.WSUIName(languageTagOrHandle) will supply the

display name for the given language tag.

Text fields

Fieldworks fields that can contain multiple writing systems have a number of

properties for accessing the best text in a given context. For example,

"AnalysisDefaultWritingSystem" and "VernacularDefaultWritingSystem" yield the text

in the first analysis or first vernacular writing system, respectively. Alternatively,

“BestVernacularAlternative” yields the text in the first vernacular writing system that

contains data. These are the defined properties:

 AnalysisDefaultWritingSystem;

 VernacularDefaultWritingSystem;

 BestAnalysisAlternative;

 BestVernacularAlternative;

 BestAnalysisVernacularAlternative;

 BestVernacularAnalysisAlternative;

These return an ItsString, so in Python it is necessary to use a cast like this:

pronunciation =

 ITsString(p.Form.BestVernacularAlternative).Text

To specify a specific writing system use the get_String method with a writing system

handle (an integer like 999000004). Use project.WSHandle(tag) to get the handle for

a language tag (e.g. 'en'):

ws = project.WSHandle(‘por’)

for e in project.LexiconAllEntries():

 lexeme = project.LexiconGetLexemeForm(e)

 for p in e.PronunciationsOS:

 report.Info(ITsString(p.Form.get_String(ws)).Text)

Custom fields

Custom fields can be defined in Fieldworks at entry or sense level. The following

helper functions are supplied in FLExProject to get a list of all the custom fields, or to

locate a custom field by name:

LexiconGetEntryCustomFields()

LexiconGetSenseCustomFields()

fieldID = LexiconGetEntryCustomFieldNamed(fieldName)

fieldID = LexiconGetSenseCustomFieldNamed(fieldName)

The following helper functions are for reading and writing custom fields:

LexiconGetFieldText(senseOrEntryOrHvo, fieldID)

LexiconSetFieldText(senseOrEntryOrHvo, fieldID, text,

 ws=None)

Note that the latter will overwrite any formatting in the TsString, setting it all to the

given writing system (or the default analysis writing system if ws is not supplied.)

Texts

project.TextsGetAll(supplyName=True, supplyText=True) returns a list of tuples of

(Name, Text) where Text is a string with newlines separating paragraphs. Passing

supplyName or supplyText=False returns only the names or texts as a list.

for name, text in project.TextsGetAll():

 report.Info("Processing text: %s" % name)

 numTexts += 1

 numWords += len(text.split())

Going deeper

FLExProject is not intended to replace LCM, so if you need to do things beyond what

is documented here or is shown in the example modules, then you will need to refer

to the LCM documentation. Some significant changes were made in Fieldworks

version 7, and then in version 8. Much of the documentation hasn’t caught up, but it

is available here. The relevant documents are:

Python database access.doc2 Introduction to using Python with

FDO/LCM.

Conceptual model overview.doc3 An explanation of the FieldWorks database

structure.

The most up-to-date reference available is the LCMBrowser4 application, which can

be used to explore a Fieldworks project and see what the fields and relationships are.

LCMBrowser can be launched from the FLExTools Help menu.

When FLExProject helper functions don’t meet your needs you can directly access the

LCM structures through:

project.project the LCM cache object;

project.lp the language project, ‘project.LangProject’,

project.lexDB the lexical database, ‘project.LangProject.LexDbOA’.

Additionally, LCM object repositories can be accessed via the following functions.

These take the interface class as the only parameter:

2 http://downloads.sil.org/FieldWorks/Documentation/Python_database_access.pdf

3 http://downloads.sil.org/FieldWorks/Documentation/Conceptual_model_overview.pdf

4 Installed with Fieldworks.

project.ObjectsIn(repository) an iterator over all of the objects

project.ObjectCountFor(repository) the number of objects

from SIL.LCModel import ITextRepository

for text in project.ObjectsIn(ITextRepository):

 report.Info("Text has %d paragraphs" %

 text.ContentsOA.ParagraphsOS.Count)

Modifying the Fieldworks project
The third parameter passed to the processing function is a Boolean that is True if

project modifications are allowed (modifyAllowed). By default FLExTools passes in

False as a protection against accidental changes. It is only when the user clicks the

Run (Modify) buttons or holds down the Shift key when running a module, that this

parameter will be True.

It is up to the module author to ensure that the modifyAllowed Boolean is adhered

to by bracketing all places that modify the project with a conditional on this

parameter. (FLExTools will raise an exception if an attempt is made to change the

project, but modifyAllowed is False.) In most cases it would be helpful to the user to

output different messages depending on the state of this flag (e.g. to say what would

be changed if modifyAllowed was True.)

Additionally the module documentation value moduleModifiesDB must be set to

True if the module can make changes to the project. FLExTools will never pass

through True if moduleModifiesDB is False.

Changing strings

A few functions are provided in FLExProject for setting field values, however it is

important to be aware of what type of string a certain field is. If it is a MultiString

(e.g. Definition and Example) or String then it can embed text in various writing

systems, so it is not straight-forward to read and write such fields. The ‘Get’ functions

in FLExProject simply return the plain text from MultiString fields.

LexiconSetExample() writes to the example field, however it will overwrite any

formatting that was present.

Flag field

Where automated changes have risks (like losing string formatting as above) or a

correction needs user input, it is helpful to use a custom field as a place to flag the

need for attention. LexiconAddTagToField() is provided for doing just this. It will

append a tag string to the end of the given field inserting semi-colons (‘;’) between

tags. If the tag string is already in the field it won’t be added a second time. This

allows the user to filter on the tags within Fieldworks and then make manual edits to

the relevant data.

This example shows how to locate a custom sense-level field called FTFlags, and to

update it with error tags using LexiconAddTagToField(). FTFlags should be created in

Fieldworks as a Sense-level 'Single-line text' field using the 'First Analysis Writing

System.' Note that field names are case-sensitive.

TestSuite = [(re.compile(r"[?!\.]{1}$"), False,

 "ERR:no-ending-punc"),

 (re.compile(r"[?!\.]{2,}$"), True,

 "ERR:too-much-punc")]

AddReportToField = modify

flagsField =

 project.LexiconGetSenseCustomFieldNamed("FTFlags")

if AddReportToField and not flagsField:

 report.Error("The Sense-level FTFlags field is missing")

 AddReportToField = False

for e in project.LexiconAllEntries():

 lexeme = project.LexiconGetLexemeForm(e)

 for sense in e.SensesOS:

 for example in sense.ExamplesOS:

 exText = project.LexiconGetExample(example)

 if exText == None:

report.Warning(f"Blank example: {lexeme}",

 project.BuildGotoURL(e))

 continue

 for test in TestSuite:

 regex, result, message = test

 if (regex.search(exText) <> None)\

 == result:

 report.Warning("%s: %s" % (lexeme,

message),

 project.BuildGotoURL(e))

 if AddReportToField:

 project.LexiconAddTagToField(sense,

 flagsField,

 message)

(See Examples\Example_Check_Punctuation.py)

Debugging
Syntax errors and import errors are reported when FLExTools starts up. Such errors

do not prevent FLExTools from running, but any module with an error cannot be run

until the error is fixed. Use the menu FLExTools | Re-load Module to re-import all

modules after making any edits.

Run-time exceptions are reported in the message window with the details in the tool

tip.

Run stand-alone

If there are problems such as FLExTools failing to start with no error messages then it

may be helpful to run the module in stand-alone mode. You can do this with the
scripts\TestAModule.py script: Open a command window in the FlexTools\scripts

folder and run:

py TestAModulule.py <Module> <Project>

Extra debugging output

Extra report function calls can be used to output debugging information, or if you

want to separate debugging messages from the normal output you can use logging

statements and view flextools.log after FLExTools has been closed.

Configure logging with:

import logging

logger = logging.getLogger(__name__)

Log entries are made as follows:

logger.info(“general informative message”)

logger.error(“an error message”)

logger.debug(“this is only output in DEBUG mode”)

Use FlexTools_Debug.vbs to run in DEBUG mode.

For more serious debugging, use PyCharm, Visual Studio or any other IDE that

supports Python.

