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Abstract

Geometric deep learning has been revolutionizing the molecular modeling field. Despite the state-
of-the-art neural network models are approaching ab initio accuracy for molecular property
prediction, their applications, such as drug discovery and molecular dynamics (MD) simulation,
have been hindered by insufficient utilization of geometric information and high computational
costs. Here we propose an equivariant geometry-enhanced graph neural network called ViSNet,
which elegantly extracts geometric features and efficiently models molecular structures with low
computational costs. Our proposed ViSNet outperforms state-of-the-art approaches on multiple
MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical
property prediction on QM9 and Molecule3D datasets. Additionally, ViSNet achieved the top win-
ners of PCQM4Mv2 track in the OGB-LCS@NeurIPS2022 competition. Furthermore, through a
series of simulations and case studies, ViSNet can efficiently explore the conformational space
and provide reasonable interpretability to map geometric representations to molecular structures.
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1 Introduction

Molecular modeling plays a crucial role in mod-
ern scientific and engineering fields, aiding in the
understanding of chemical reactions, facilitating
new drug development, and driving scientific and
technological advancements [1–4]. One commonly
used method in molecular modeling is density
functional theory (DFT). DFT enables accurate
calculations of energy, forces, and other chemi-
cal properties of molecules [5, 6]. However, due
to the large computational requirements, DFT
calculations often demand significant computa-
tional resources and time, particularly for large
molecular systems or high-precision calculations.
Machine learning (ML) offers an alternative solu-
tion by learning from reference data with ab
initio accuracy and high computational efficiency
[7, 8]. Behler and Parrinello [9] were the first
to introduce descriptors for characterizing atomic
local environments combined with a shallow multi-
layer perceptron to learn the potential energy of
molecules. In recent years, deep learning (DL) has
demonstrated its powerful ability to learn from
raw data without any hand-crafted features in
many fields and thus attracted more and more
attention. However, the inherent drawback of deep
learning, which requires large amounts of data, has
become a bottleneck for its application to more
scenarios [10]. To alleviate the dependency on data
for DL potentials, recent works have incorporated
the inductive bias of symmetry into neural net-
work design, known as geometric deep learning
(GDL). Symmetry describes the conservation of
physical laws, i.e., the unchanged physical proper-
ties with any transformations such as translations
or rotations. It allows GDL to be extended to
limited data scenarios without any data augmen-
tation.

Equivariant graph neural network (EGNN) is
one of the representative approaches in GDL,
which has extensive capability to model molecular
geometry [10–19]. A popular kind of EGNN con-
ducts equivariance from directional information
and involves geometric features to predict molecu-
lar properties. GemNet [18] extends the invariant
DimeNet/DimeNet+ [14, 15] with dihedral infor-
mation. They explicitly extract geometric infor-
mation in the Euclidean space with 1st-order
geometric tensor, i.e., setting lmax = 1. PaiNN [16]
and Equivariant Transformer [17] further adopt

vector embedding and scalarize the angular rep-
resentation implicitly via the inner product of
the vector embedding itself. They reduce the
complexity of explicit geometry extraction by tak-
ing the angular information into consideration.
Another mainstream approach to achieving equiv-
ariance is through group representation theory,
which can achieve higher accuracy but comes with
large computational costs. NequIP, Allegro, and
MACE [10, 20, 21] achieve state-of-the-art perfor-
mance on several molecular dynamics simulation
datasets leveraging high-order geometric tensors.
On the one hand, algorithms based on group
representation theory have strong mathematical
foundations and are able to fully utilize geometric
information using high-order geometric tensors.
On the other hand, these algorithms often require
computationally expensive operations such as the
Clebsch-Gordan product (CG-product) [22], mak-
ing them possibly suitable for periodic systems
with elaborate model design but impractical for
large molecular systems such as chemical and
biological molecules without periodic boundary
conditions.

In this study, we propose ViSNet (short for
“Vector-Scalar interactive graph neural Net-
work”), which alleviates the dilemma between
computational costs and sufficient utilization
of geometric information. By incorporating an
elaborate Runtime Geometry Calculation (RGC)
strategy, ViSNet implicitly extracts various
geometric features, i.e., angles, dihedral tor-
sion angles, and improper angles in accordance
with the force field of classical MD with linear
time complexity, thus significantly accelerating
model training and inference while reducing
the memory consumption. To extend the vector
representation, we introduce spherical harmon-
ics and simplify the computationally expensive
Clebsch-Gordan product with the inner product.
Furthermore, we present a well-designed Vector-
Scalar interactive equivariant Message Passing
(ViS-MP) mechanism, which fully utilizes the
geometric features by interacting vector hidden
representations with scalar ones. When compre-
hensively evaluated on some benchmark datasets,
ViSNet outperforms all state-of-the-art algo-
rithms on all molecules in MD17, revised MD17
and MD22 datasets and shows superior perfor-
mance on QM9, Molecule3D dataset indicating
the powerful capability of molecular geometric
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Fig. 1 The overall architecture of ViSNet. (a) Model sketch of ViSNet. ViSNet embeds the 3D structures of molecules
and extracts the geometric information through a series of ViSNet blocks and outputs the molecule properties such as energy,
forces, and HOMO-LUMO gap through an output block. (b) Flowchart of one ViSNet Block. One ViSNet block consists
of two modules: i) Scalar2Vec, responsible for attaching scalar embeddings to vectors.; ii) Vec2Scalar, renovates scalar
embeddings built on RGC strategy. The inputs of Scalar2Vec are the node embedding hi, edge embedding fij , direction
unit v⃗i and the relative positions between two atoms. The edge-fusion graph attention module (serves as ϕs

m) takes as input
hi and the output of the dense layer following fij , and outputs scalar messages. Before aggregation, each scalar message is
transformed through a dense layer, then fused with the unit of the relative position u⃗ij and its own direction unit v⃗j . We
further compute the vector messages and aggregate them all among the neighborhood. Through a gated residual connection,
the final residual ∆v⃗i is produced. In Vec2Scalar module, by Hadamard production of aggregated scalar messages and the
output of RGC-Angle calculation and adding a gated residual connection, the final ∆hi is figured out. Likewise, combining
the projected fij and the output of RGC-Dihedral calculation, the final ∆fij is determined.

representation. ViSNet also has won PCQM4Mv2
track in the OGB-LCS@NeurIPS2022 competition
(https://ogb.stanford.edu/neurips2022/results/).
We then performed molecular dynamics simu-
lations for each molecule on MD17 driven by
ViSNet trained only with limited data (950 sam-
ples). The highly consistent interatomic distance
distributions and the explored potential energy
surfaces between ViSNet and quantum simulation
illustrate that ViSNet is genuinely data-efficient
and can perform simulations with high fidelity. To
further explore the usefulness of ViSNet to real-
world applications, we used an in-house dataset
that consists of about 10,000 different conforma-
tions of the 166-atom protein Chignolin derived
from replica exchange molecular dynamics and
calculated at DFT-level. When evaluated on the

dataset, ViSNet also achieved significantly bet-
ter performance than empirical force fields, and
the simulations performed by ViSNet exhibited
very close force calculation to DFT. In addition,
ViSNet exibits reasonable interpretability to map
geometric representation to molecular structures.
The contributions of ViSNet can be summarized
as follows:

• Proposing RGC module that utilizes high-order
geometric tensors to implicitly extract various
geometric features, including angles, dihedral
torsion angles, and improper angles, with linear
time complexity.

• Introducing ViS-MP mechanism to enable effi-
cient interaction between vector hidden repre-
sentations and scalar ones and fully exploit the
geometric information.
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Fig. 2 Illustration of Runtime Geometry Calculation (RGC) module and its relevance to the potential
of bonded terms in classical molecular dynamics. The bonded terms consist of bond length, bond angle, dihedral
torsion and improper angle. The RGC module depicts all bonded terms of classical MD as model operations in linear time
complexity. Yellow arrow v⃗i denotes the direction unit in Eq. 1.

• Achieving the state-of-the-art performance in
6 benchmarks for predicting energy, forces,
HOMO-LUMO gap, and other quantum prop-
erties of molecules.

• Performing molecular dynamics simulations
driven by ViSNet on both small molecules and
166-atom Chignolin with high fidelity.

• Demonstrating reasonable model interpretabil-
ity between geometric features and molecular
structures.

2 Results

2.1 Overview of ViSNet

ViSNet is a versatile EGNN which predicts poten-
tial energy, atomic forces as well as various
quantum chemical properties by taking atomic
coordinates and numbers as inputs. As shown in
Fig.1(a), the model is composed of an embed-
ding block and multiple stacked ViSNet blocks,
followed by an output block. The atomic num-
ber and coordinates are fed into the embedding
block followed by ViSNet blocks to extract and
encode geometric representations. The geometric
representations are then used to predict molecular
properties through the output block. It is worth

noting that ViSNet is an energy-conserving poten-
tial, i.e., the predicted atomic forces are derived
from the negative gradients of the potential energy
with respect to the coordinates [23].
RGC: Runtime Geometry Calculation The
success of classical force fields shows that geomet-
ric features such as interatomic distances, angles,
and dihedral torsioin angles, and improper angles
in Fig.2 are essential to determine the total poten-
tial energy of molecules. The explicit extraction
of invariant geometric representations in previous
studies often suffer from a large amount of time
or memory consumption during model training
and inference. Given an atom, the calculation of
angular information scales O(N 2) with the num-
ber of neighboring atoms, while the computational
complexity is even O(N 3) for dihedrals [18]. To
alleviate this problem, inspired by [16], we pro-
pose runtime geometry calculation (RGC), which
uses an equivariant vector representation (termed
as “direction unit”) for each node to preserve its
geometric information. RGC directly calculates
the geometric information from the direction unit
which only sums the vectors from the target node
to its neighbors once. Therefore, the computa-
tional complexity can be reduced to O(N ).

Considering the sub-structure of a toy
molecule with four atoms shown in Fig. 2, the
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angular information of the target node i could be
conducted from the vector r⃗ij as follows:

u⃗ij =
r⃗ij

∥r⃗ij∥
, v⃗i =

Ni∑
j=1

u⃗ij (1)

∥v⃗i∥2 =

Ni∑
j=1

Ni∑
k=1

⟨u⃗ij , u⃗ik⟩ =
Ni∑
j=1

Ni∑
k=1

cos θjik (2)

where r⃗ij is the vector from node i to its neighbor-
ing node j, u⃗ij is the unit vector of r⃗ij . Here, we
define the direction unit v⃗i as the sum of all unit
vectors from node i to its all neighboring nodes j,
where node i is the intersection of all unit vectors.
As shown in Eq. 2, we calculate the inner product
of direction unit v⃗i which represents the sum of
inner products of unit vectors from node i to all
its neighboring nodes. Combining with Eq. 1, the
inner product of direction v⃗i finally stands for the
sum of cosine values of all angles formed by node
i and any two of its neighboring nodes.

Similar to runtime angle calculation, we also
calculate the vector rejection [24] of the direction
unit v⃗i of node i and v⃗j of node j on the vector
u⃗ij and u⃗ji, respectively.

w⃗ij = Reju⃗ij
(v⃗i) = v⃗i − ⟨v⃗i, u⃗ij⟩ · u⃗ij

=

Ni∑
m=1

Reju⃗ij
(u⃗im)

w⃗ji = Reju⃗ji
(v⃗j) = v⃗j − ⟨v⃗j , u⃗ji⟩ · u⃗ji

=

Nj∑
n=1

Reju⃗ji
(u⃗jn)

(3)

where Rej⃗b(⃗a) represents the vector component of

a⃗ perpendicular to b⃗, termed as the vector rejec-
tion. u⃗ij and v⃗i are defined in Eq. 1. w⃗ij represents
the sum of the vector rejection Reju⃗ij

(u⃗im) and
w⃗ji represents the sum of the vector rejection
Reju⃗ji

(u⃗jn). The inner product between w⃗ij and
w⃗ji is then calculated to conduct dihedral torsion
angle information of the intersecting edge eij as

follows:

⟨w⃗ij , w⃗ji⟩ =
Ni∑

m=1

Nj∑
n=1

〈
Reju⃗ij

(u⃗im),Reju⃗ji
(u⃗jn)

〉

=

Ni∑
m=1

Nj∑
n=1

cosφmijn

(4)
The improper angle is derived from a pyra-

mid structure forming by 4 nodes. As the last toy
molecule shown in Fig. 2, node i is the vertex of
the pyramid, and the improper torsion angle is
formed by two adjacent planes with an intersect-
ing edge eij . We can also calculate the improper
angle by vector rejection:

t⃗ij = Reju⃗ij
(v⃗i) =

Ni∑
m=1

Reju⃗ij
(u⃗im)

t⃗ji = Reju⃗ji
(v⃗i) =

Ni∑
n=1

Reju⃗ji
(u⃗in)

(5)

In the same way, the inner product between t⃗ij
and t⃗ji indicates the summation of improper angle
information formed by eij :

〈
t⃗ij , t⃗ji

〉
=

Ni∑
m=1

Ni∑
n=1

〈
Reju⃗ij

(u⃗im),Reju⃗ji
(u⃗in)

〉
=

Ni∑
m=1

Ni∑
n=1

cosψmijn

(6)
Multiple works have shown the effectiveness of

high-order geometric tensors for molecular mod-
eling [10, 20, 25, 26]. However, the computational
overheads of these approaches are generally expan-
sive due to the CG-product, impeding their fur-
ther application for large systems. In this work, we
convert the vectors to high-order representation
with spherical harmonics but discard CG-product
with the inner product following the idea of RGC.
We find that the extended high-order geomet-
ric tensors can still represent the above angular
information in the form of Legendre polynomials
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according to the addition theorem:

Pl(cos θjik) = Pl(u⃗ij · u⃗ik)

∝
l∑

m=−l

Yl,m(u⃗ij)Y
∗
l,m(u⃗ik)

(7)

where the Pl is the Legendre polynomial of degree
l, Yl,m denotes the spherical harmonics function
and Y ∗

l,m denotes its complex conjugation. We sum
the product of different order l to obtain the scalar
angular representation, which is the same opera-
tion as inner product. It is worth noting that such
an extension doesn’t increase the model size and
keeps the model architecture unchanged.

We also provide a proof about the rotational
invariance of RGC strategy in the Section 4.2.
ViS-MP: Vector-Scalar interactive Message
Passing In order to make full use of geometric
information and enhance the interaction between
scalars and vectors, we designed an effective
vector-scalar interactive message passing mecha-
nism with respect to the intersecting nodes and
edges for angles and dihedrals, respectively. The
key operations in ViS-MP are given as follows:

ml
i =

∑
j∈N (i)

ϕsm
(
hli, h

l
j , f

l
ij

)
(8)

m⃗l
i =

∑
j∈N (i)

ϕvm
(
ml

ij , r⃗ij , v⃗
l
j

)
(9)

hl+1
i = ϕsun

(
hli,m

l
i, ⟨v⃗li, v⃗li⟩

)
(10)

f l+1
ij = ϕsue

(
f lij , ⟨Rejr⃗ij (v⃗

l
i),Rejr⃗ji(v⃗

l
j)⟩

)
(11)

v⃗l+1
i = ϕvun

(
v⃗li,m

l
i, m⃗

l
i

)
(12)

where hi denotes the scalar embedding of node
i, fij stands for the edge feature between node i
and node j. v⃗i represents the embedding of the
direction unit mentioned in RGC. The superscript
of variables indicates the index of the block that
the variables belong to. We omit the improper
angle here for brevity. A comprehensive version is
depicted in Supplementary. ViS-MP extends the
conventional message passing, aggregation, and
update processes with vector-scalar interactions.
Eq. 8 and Eq. 9 depict our message passing and
aggregation processes. To be concrete, scalar mes-
sages mij incorporating scalar embedding hj , hi,
and fij are passed and then aggregated to node

i through a message function ϕsm (Eq. 8). Sim-
ilar operations are applied for vector messages
m⃗l

i of node i that incorporates scalar message
mij , vector r⃗ij and vector embedding v⃗j (Eq. 9).
Eq. 10 and Eq. 11 demonstrate the update pro-
cesses. hi is updated by the aggregated scalar
message outputmi while the inner product of v⃗i is
updated through an update function ϕsun. Then f⃗ij
is updated by the inner product of the rejection of
the vector embedding v⃗i and v⃗j through an update
function ϕsue. Finally, the vector embedding v⃗i
is updated by both scalar and vector messages
through an update function ϕvun. Notably, the
vectors update function, i.e., ϕv require to be
equivariant. The detailed message and update
functions can be found in the Methods section. A
proof about the equivariance of ViS-MP can be
found in Supplementary Methods.

In summary, the geometric features are
extracted by inner products in the RGC strat-
egy and the scalar and vector embeddings are
cyclically updating each other in ViS-MP so as
to learn a comprehensive geometric representation
from molecular structures.

2.2 Accurate quantum chemical
property predictions

We evaluated ViSNet on several prevailing bench-
mark datasets including MD17 [23, 27, 28], revised
MD17 [29], MD22 [30], QM9 [31], Molecule3D [32]
and OGB-LSC PCQM4Mv2 [33] for energy, force,
and other molecular property prediction. MD17
consists of the MD trajectories of 7 small organic
molecules; the number of conformations in each
molecule dataset ranges from 133,700 to 993,237.
The dataset rMD17 is a reproduced version of
MD17 with higher accuracy. MD22 is a newly
proposed MD trajectories dataset that presents
new challenges with respect to larger system sizes
(42 to 370 atoms). Large molecules such as pro-
teins, lipids, carbohydrates, nucleic acids, and
supramolecules are included in MD22. QM9 con-
sists of 12 kinds of quantum chemical properties
of 133,385 small organic molecules with up to 9
heavy atoms. Molecule3D is a recently proposed
dataset including 3,899,647 molecules collected
from PubChemQC with their ground-state struc-
tures and corresponding properties calculated by
DFT. We focus on the prediction of the HOMO-
LUMO gap following ComENet [34]. OGB-LSC
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Table 1 Mean absolute errors (MAE) of energy (kcal/mol) and force (kcal/mol/Å) for 7 small organic molecules on
MD17 compared with state-of-the-art algorithms. The best one in each category is highlighted in bold. The last column
indicates the percentage of improvements compared to the second-best approach, NequIP.

Molecule SchNet DimeNet PaiNN SpookyNet ET GemNet1 NequIP2 SO3KRATES ViSNet Improvements

Aspirin
energy 0.37 0.204 0.167 0.151 0.123 - 0.131 0.139 0.116 11.45%
forces 1.35 0.499 0.338 0.258 0.253 0.217 0.184 0.236 0.155 15.76%

Ethanol
energy 0.08 0.064 0.064 0.052 0.052 - 0.051 0.061 0.051 00.00%
forces 0.39 0.230 0.224 0.094 0.109 0.085 0.071 0.096 0.060 15.49%

Malondialdehyde
energy 0.13 0.104 0.091 0.079 0.077 - 0.076 0.077 0.075 01.32%
forces 0.66 0.383 0.319 0.167 0.169 0.155 0.129 0.147 0.100 22.48%

Naphthalene
energy 0.16 0.122 0.116 0.116 0.085 - 0.113 0.115 0.085 24.78%
forces 0.58 0.215 0.077 0.089 0.061 0.051 0.039 0.074 0.039 00.00%

Salicylic Acid
energy 0.20 0.134 0.116 0.114 0.093 - 0.106 0.106 0.092 13.21%
forces 0.85 0.374 0.195 0.180 0.129 0.125 0.090 0.145 0.084 06.67%

Toluene
energy 0.12 0.102 0.095 0.094 0.074 - 0.092 0.095 0.074 19.57%
forces 0.57 0.216 0.094 0.087 0.067 0.060 0.046 0.073 0.039 15.22%

Uracil
energy 0.14 0.115 0.106 0.105 0.095 - 0.104 0.103 0.095 08.65%
forces 0.56 0.301 0.139 0.119 0.095 0.097 0.076 0.111 0.062 18.42%

1 The best results are reported among four variants of GemNet.
2 NequIP only shows the results with l = 3.

PCQM4Mv2 is a quantum chemistry dataset orig-
inally curated under the PubChemQC including
DFT-calculated HOMO-LUMO gap of 3,746,619
molecules. The 3D conformations are provided
for 3,378,606 training molecules but not for the
validation and test sets. The training details of
ViSNet on each benchmark are described in the
Methods section.
Energy and force for MD simulation. We
compared ViSNet with the state-of-the-art algo-
rithms, including DimeNet [14], PaiNN [16],
SpookyNet [19], ET [17], GemNet [18],
UNiTE [35], NequIP [10], SO3KRATES [36],
Allegro [20], MACE [21] and so on. As shown
in Table 1 (MD17) and Table 2 (rMD17) and
Supplementary Table 2 (MD22), it is remarkable
that ViSNet outperformed the compared algo-
rithms for both small (MD17 and rMD17) and
large molecules (MD22) with the lowest mean
absolute errors (MAE) of predicted energy and
forces. On the one hand, compared with PaiNN,
ET and GemNet, ViSNet incorporated more geo-
metric information and made full use of geometric
information in ViS-MP, which contributes to the
performance gains. On the other hand, compared
with NequIP, Allegro, SO3KRATES, MACE
et al, ViSNet testified the effect of introducing
spherical harmonics in RGC module.

Quantum chemical properties. As shown in
Table 3, ViSNet also achieved the superior perfor-
mance for chemical property predictions on QM9.
It outperformed the compared algorithms for 9 of
12 chemical properties and achieved comparable
results on the remaining properties. Elaborated
evaluations on Molecule3D confirmed the high
prediction accuracy of ViSNet as shown in Table 4.
ViSNet achieved 33.6% and 6.51% improvements
than the second-best for random split and scaffold
split, respectively. Furthermore, ViSNet exhibited
good portability to other multimodality methods,
e.g., Transformer-M [37] and outperformed other
approaches on OGB-LSC PCQM4Mv2 (see Sup-
plementary Fig. 1). ViSNet also achieved the
top winners of PCQM4Mv2 track in the OGB-
LCS@NeurIPS2022 competition when testing on
unseen molecules [38] (https://ogb.stanford.edu/
neurips2022/results/).
Computational Efficiency To evaluate the
computational efficiency of our ViSNet, follow-
ing [21], we compare the time latency of ViS-
Net with prevailing models in Fig. 3. The latency
is defined as the time it takes to compute forces on
a structure (i.e., the gradient calculation for a set
of input coordinates through the whole deep neu-
ral network). As shown in Fig. 3, ViSNet (L=2)
saved 42.8% time latency compared with MACE
(L=2). Notably, despite the use of CG-product,

https://ogb.stanford.edu/neurips2022/results/
https://ogb.stanford.edu/neurips2022/results/
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Table 2 Mean absolute errors (MAE) of energy (kcal/mol) and force (kcal/mol/Å) for 10 small organic molecules on
rMD17 compared with state-of-the-art algorithms. The best one in each category is highlighted in bold.

Molecule UNiTE1 ACE GemNet2 NequlP2 BOTNet Allegro MACE ViSNet3

Aspirin
energy 0.055 0.141 - 0.0530 0.0530 0.0530 0.0507 0.0445
forces 0.175 0.413 0.2191 0.1891 0.1960 0.1683 0.1522 0.1520

Azobenzene
energy 0.025 0.083 - 0.0161 0.0161 0.0277 0.0277 0.0156
forces 0.097 0.251 - 0.0669 0.0761 0.0600 0.0692 0.0585

Benzene
energy 0.002 0.0009 - 0.0009 0.0007 0.0069 0.0092 0.0007
forces 0.017 0.012 0.0115 0.0069 0.0069 0.0046 0.0069 0.0056

Ethanol
energy 0.014 0.028 - 0.0092 0.0092 0.0092 0.0092 0.0078
forces 0.085 0.168 0.083 0.0646 0.0738 0.0484 0.0484 0.0522

Malonaldehyde
energy 0.025 0.039 - 0.0184 0.0184 0.0138 0.0184 0.0132
forces 0.152 0.256 0.1522 0.1176 0.1338 0.0830 0.0945 0.0893

Naphthalene
energy 0.011 0.021 - 0.0046 0.0046 0.0046 0.0115 0.0057
forces 0.060 0.118 0.0438 0.0300 0.0415 0.0208 0.0369 0.0291

Paracetamol
energy 0.044 0.092 - 0.0323 0.0300 0.0346 0.0300 0.0258
forces 0.164 0.293 - 0.1361 0.1338 0.1130 0.1107 0.1029

Salicylic acid
energy 0.017 0.042 - 0.0161 0.0184 0.0208 0.0208 0.0161
forces 0.088 0.214 0.1222 0.0922 0.0992 0.0669 0.0715 0.0795

Toluene
energy 0.010 0.025 - 0.0069 0.0069 0.0092 0.0115 0.0059
forces 0.058 0.150 0.0507 0.0369 0.0438 0.0415 0.0346 0.0264

Uracil
energy 0.013 0.025 - 0.0092 0.0092 0.0138 0.0115 0.0069
forces 0.088 0.152 0.0876 0.0715 0.0738 0.0415 0.0484 0.0495

1 For a fair comparison, the “direct learning” results without any extra input are compared.
2 The best results are reported among four variants of GemNet and four orders l ∈ {0, 1, 2, 3} of NequIP.
3 ViSNet can achieve better results with longer convergence time.

Table 3 Mean absolute errors (MAE) of 12 kinds of molecular properties on QM9 compared with state-of-the-art
algorithms. The best one in each category is highlighted in bold.

Target Unit SchNet EGNN DimeNet++ PaiNN SphereNet PaxNet ET ComENet ViSNet

µ mD 33 29 29.7 12 24.5 10.8 11 24.5 9.5
α ma30 235 71 43.5 45 44.9 44.7 59 45.2 41.1
ϵHOMO meV 41 29 24.6 27.6 22.8 22.8 20.3 23.1 17.3
ϵLUMO meV 34 25 19.5 20.4 18.9 19.2 17.5 19.8 14.8
∆ϵ meV 63 48 32.6 45.7 31.1 31 36.1 32.4 31.7
⟨R2⟩ ma20 73 106 331 66 268 93 33 259 29.8
ZPV E meV 1.7 1.55 1.21 1.28 1.12 1.17 1.84 1.2 1.56
U0 meV 14 11 6.32 5.85 6.26 5.9 6.15 6.59 4.23
U meV 19 12 6.28 5.83 6.36 5.92 6.38 6.82 4.25
H meV 14 12 6.53 5.98 6.33 6.04 6.16 6.86 4.52
G meV 14 12 7.56 7.35 7.78 7.14 7.62 7.98 5.86
Cv

mcal
mol K 33 31 23 24 22 23.1 26 24 23
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Table 4 Mean absolute errors (MAE) of HOMO-LUMO
gap (eV) on Molecule3D test set for both random and
scaffold splits compared with state-of-the-art algorithms.

Model Random Scaffold

GIN-Virtual 0.1036 0.2371
SchNet 0.0428 0.1511
DimeNet++ 0.0306 0.1214
SphereNet 0.0301 0.1182
ComENet 0.0326 0.1273
ViSNet 0.0200 0.1105

Allegro had a significant speed improvement com-
pared to NequIP and BOTNet. However, ViSNet
still saved 6.1%, 4.1% and 61% time latency com-
pared to Allegro with L=1, 2 and 3, respectively.

2.3 Efficient molecular dynamics
simulations on MD17

Most of the recently proposed methods are quite
accurate in predicting potential energy and atomic
forces for the conformations in a given test set.
Molecular dynamics simulation is one of the
important applications of the predicted potential
energy and atomic forces. To evaluate ViSNet as
the potential for molecular dynamics simulation,
we incorporated ViSNet that trained only with
950 samples on MD17 into the ASE simulation
framework [39] to perform MD simulations for all
7 kinds of organic molecules. All simulations are
run with a time step τ = 0.5 fs under Berend-
sen thermostat with the other settings the same
as those of the MD17 dataset. As shown in Fig.
4, we analyzed the interatomic distance distribu-
tions derived from both AIMD simulations with
ViSNet as the potential and ab initio molecu-
lar dynamics simulations at DFT level for all 7
molecules, respectively. As shown in Fig. 4(a), the
interatomic distance distribution h(r) is defined
as the ensemble average of atomic density at a
radius r [28]. Fig. 4(b-h) illustrate the distribu-
tions derived from ViSNet are very close to those
generated by DFT. We also compared the poten-
tial energy surfaces sampled by ViSNet and DFT
for these molecules, respectively (Supplementary
Fig. 2). The consistent potential energy surfaces
suggest that ViSNet can well recover the kinetic
properties and the conformational space from the
simulation trajectories, indicating the usefulness
of ViSNet for real molecular dynamics simula-
tion. Furthermore, compared with the prohibitive

computational cost of DFT, ViSNet dramatically
saves the computational time by 2-3 orders of
magnitude (Supplementary Fig. 3 and Supplemen-
tary Table 3). These results demonstrate that with
only a few of training samples, ViSNet can act
as the potential to perform high-fidelity molecular
dynamics simulations with much less computa-
tional cost.

2.4 Applications for real-world
full-atom proteins

To examine the usefulness of ViSNet in real-world
applications, we made evaluations on the 166-
atom protein Chignolin. Based on a Chignolin
dataset consisting of about 10,000 conformations
that sampled by replica exchange MD and calcu-
lated at DFT level by Gaussian 16 in our another
study, we split it as training, validation, and
test sets by the ratio of 8:1:1. We trained ViS-
Net and compared it with molecular mechanics
(MM). The DFT results were used as the ground
truth. Fig. 5(a) shows the free energy landscape
of Chignolin and depicted by dY 2−G6 (the dis-
tance between mainchain O on Y2 and mainchain
N on G6) and dE4−T7 (the distance between main-
chain O on E4 and mainchain N on T7). The
concentrated energy basin on the left shows the
folded state and the scattered energy basin on the
right shows unfolded state. We picked six repre-
sentative structures in the low potential energy
regions with both folded and unfolded states and
selected some intermediate states with high poten-
tial energy colored cyan or blue. We visualized
the energy predictions for the six representative
structures, and ViSNet produced a significantly
better estimation of the potential energy than MM
with empirical force fields did. Fig. 5(b) and (c)
show the correlations between the predicted ener-
gies by ViSNet and MM, and the ground truth
values calculated by DFT for all conformations
in the test set. ViSNet achieved the lower MAE
and the higher R2 score. Similar results can be
seen in the force correlations shown in the Supple-
mentary Fig. 4. Furthermore, we performed MD
simulations for Chignolin driven by ViSNet. 10
conformations were randomly selected as initial
structures, and 10,000 simulation steps were run
for each. As shown in the Fig. 5(d), the RMSF
for 10 simulation trajectories are shown against
simulation steps. In Fig. 5(e), we compared the
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Fig. 3 Comparison of time latency with current methods following MACE [21]. Time latency is defined as the time the
model takes to compute forces on a structure. Experiments are conducted on a Nvidia A100 GPU.

Fig. 4 The interatomic distance distributions of MD simulations driven by ViSNet and DFT. (a) An illus-
tration about the atomic density at a radius r with the arbitrary atom as the center. The interatomic distance distribution
is defined as the ensemble average of atomic density. (b) to (h) The interatomic distance distributions comparison between
simulations by ViSNet and DFT for all seven organic molecules in MD17. The curve of ViSNet is shown using a solid blue
line, while the dashed orange line is used for DFT curve. The structures of the corresponding molecules are shown in the
upper right corner.

force differences between ViSNet and those calcu-
lated by Gaussian 16 at DFT level. The simulation
trajectory driven by ViSNet exhibited small force
difference to quantum mechanics, which implies
that the accuracy and potential usefulness for
real-world applications.

2.5 Interpretability of ViSNet on
molecular structures

Prior works have shown the effectiveness of incor-
porating geometric features, such as angles. The
primary method of geometry extraction utilized
by ViSNet is the distinct inner product in its
runtime geometry calculation. To this end, we
illustrate a reasonable model interpretability of
ViSNet by mapping the angle representations
derived from inner product of direction units in
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Fig. 5 Applications of ViSNet for Chignolin conformational space evaluation and MD simulations. (a) The
energy landscape of Chignlin sampled by REMD. The x-axis of the landscape is the distance between mainchain O on
Y2 and mainchain N on G6, while the y-axis is the distance between mainchain O on E4 and mainchain N on T7. 6
representative structures were then selected for visualization. Each structure is shown as cartoon and residues are depicted
in sticks. The histograms show the mean absolute error (MAE) between the energy difference predicted/calculated by
ViSNet or MM, and the ground truth calculated by DFT on the corresponding structure. (b) The energy correlations on
the test dataset between the ground truth calculated by DFT and the predictions made by ViSNet . The corresponding
distributions of energy predictions or calculations as well as the ground truth are shown. (c) The energy correlations on
the test dataset between the ground truth calculated by DFT and the predictions made by molecular mechanics. (d) The
average root mean square fluctuations (RMSF) of the Chignolin trajectories simulated by ViSNet were calculated from 10
different trajectories. The shaded areas indicate the standard deviation range. (e) The variation of the force norm during
the ViSNet-driven simulation is shown in blue. Multiple frames were randomly selected from the simulation and the ground
truth energies and forces were calculated using Gaussian, which are represented by black points.
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the model to the atoms in the molecular struc-
ture. We aim to bridge the gap between geometric
representation in ViSNet and molecular struc-
tures. We visualized the embeddings after the
inner product of direction units ⟨v⃗i, v⃗i⟩ extracted
from 50 aspirin samples on the validation set.
The high-dimensional embeddings were reduced
to 2-dimensional space using T-SNE [40] and then
clustered using DBSCAN [41] without the prior of
the number of clusters.

Fig. 6 exhibits the clustering results of nodes’
embeddings after the inner product of their cor-
responding direction units. We further map the
clustered nodes to the atoms of aspirin chemical
structure. Interestingly, the embeddings for these
nodes could be distinctly gathered into several
clusters shown in different colors. For example,
although carbon atom C11 and carbon atom C12

possess different positions and connect with differ-
ent atoms, their inner product ⟨v⃗i, v⃗i⟩ are clustered
into the same class for holding similar substruc-
tures ({C11 − O2O3C6} and {C12 − O1O4C13}).
To summarize, ViSNet can discriminate different
molecular substructures in the embedding space.

2.6 Ablation study

To further explore where the performance gains
of ViSNet come from, we conducted a comprehen-
sive ablation study. Specifically, we excluded the
runtime angle calculation (w/o A), runtime dihe-
dral calculation (w/o D), and both of them (w/o
A&D) in ViSNet, in order to evaluate the useful-
ness of each part. ViSNet-improper denotes the
additional improper angles and ViSNetl=1 uses
the 1st order spherical harmonics.

We designed some model variants with differ-
ent message passing mechanisms based on ViS-
MP for scalar and vector interaction. ViSNet-
N directly aggregates the dihedral information
to intersecting nodes, and ViSNet-T leverages
another form of dihedral calculation. The details
of these model variants are elaborated in Supple-
mentary. The results of the ablation study are
shown in Supplementary Table 5 and Supplemen-
tary Fig. 5. Based on the results, we can see
that both kinds of directional geometric infor-
mation are useful and the dihedral information
contributes a little bit more to the final perfor-
mance. The significant performance drop from

ViSNet-N and ViSNet-T further validate the effec-
tiveness of ViS-MP mechanism. ViSNet-improper
achieves similar performance to ViSNet for small
molecules, but the contribution of improper angles
is more obvious for large molecules (see Sup-
plementary Table 2). Furthermore, ViSNet using
higher order spherical harmonics achieves better
performance.

3 Discussion and conclusion

We propose ViSNet, a novel geometric deep learn-
ing potential for molecular dynamics simulation.
The group representation theory based methods
and the directional information based methods are
two mainstream classes of geometric deep learn-
ing potentials to enforce SE(3) equivariance [18].
ViSNet takes the advantages from both sides in
designing RGC strategy and ViS-MP mechanism.
On the one hand, the RGC strategy explic-
itly extracts and exploits the directional geomet-
ric information with computationally lightweight
operations, making the model training and infer-
ence fast. On the other hand, ViS-MP employs
a series of effective and efficient vector-scalar
interactive operations, leading to the full use of
the geometric information. Furthermore, accord-
ing to the many-body expansion theory [42–44],
the potential energy of the whole system equals to
the potential of each single atom plus the energy
corrections from two-bodies to many-bodies. Most
of the previous studies model the truncated energy
correction terms hierarchically with k-hop infor-
mation via stacking k message passing blocks.
Different from these approaches, ViSNet encodes
the triplet and quadruplet interactions in a single
block, which empowers the model to have much
more powerful representation ability. In addition,
considering that angle and dihedral are important
potential terms in empirical force fields, the inter-
pretability of the operations in the RGC strategy
provides some insights in constructing hybrid force
fields by combining empirical terms with deep
learning.

Besides predicting energy, force, and chemical
properties with high accuracy, performing molec-
ular dynamics simulations with ab initio accuracy
at the cost of empirical force field is a grand chal-
lenge. ViSNet proves its usefulness in real-world
ab initio molecular dynamics simulations with less
computational costs and the ability of scaling to
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Fig. 6 Visualization and model interpretability of ViSNet. Clusters of nodes’ embeddings after the inner product
of the direction units ⟨v⃗i, v⃗i⟩. The ⟨v⃗i, v⃗i⟩ represents angle representations with the intersecting node i as the vertex. The
atoms in the chemical structure of aspirin corresponding to each cluster are colored with the same color of the cluster,
while the remaining atoms are colored light gray. A chemical structure of Aspirin and the indices of atoms are illustrated
in the bottom right region. Carbon and oxygen atoms are colored dark grey and red, respectively. The hydrogen atoms are
omitted in both the clustering results and the chemical structure of aspirin for simplification.

large molecules such as proteins. Extending ViS-
Net to support larger and more complex molecular
systems will be our future research direction.

4 Methods

4.1 Equivariance

In the context of machine learning for atomic
systems, Equivariance is a pervasive concept.
Specifically, the atomic vectors such as dipoles or
forces must rotate in a manner consistent with the
conformation coordinates. In molecular dynamics,
such equivariance can be ensured by computing
gradients based on a predicted conservative scalar
energy. Formally, a function F : X → Y is
equivariant should guarantee:

F(ρX (g) ◦ x) = ρY(g) ◦ F(x), (13)

where ρX (g) and ρX (g) are group representa-
tions in input and output spaces. The integration
of equivariance into model parameterization has
been shown to be effective, as seen in the imple-
mentation of shift-equivariance in CNNs, which is
critical for enhancing the generalization capacity.

4.2 Proofs of the rotational
invariance of RGC

Assume that the molecule rotates in 3D space, i.e.,

r⃗′ij = Rr⃗ij (14)

where, R ∈ SO(3) is an arbitrary rotation matrix
that satisfies:

det |R| = 1, RTR = I (15)

The angular information after rotation is calcu-
lated as follows:

u⃗′ij =
r⃗′ij∥∥∥r⃗′ij∥∥∥ =

Rr⃗ij
det |R| · ∥r⃗ij∥

= Ru⃗ij (16)

v⃗′i =

Ni∑
j=1

u⃗′
ij = R

Ni∑
j=1

u⃗ij = Rv⃗i (17)

∥∥∥v⃗′i∥∥∥2 =
〈
v⃗′i, v⃗′i

〉
= (v⃗′i)

T v⃗′i

= v⃗Ti R
TRv⃗i = ⟨v⃗i, v⃗i⟩ = ∥v⃗i∥2

(18)

As shown in Eq. 18, the angle information does not
change after rotation. The dihedral angular and
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improper information is also rotationally invariant
since:

w⃗′
ij = v⃗′i−

〈
v⃗′i, u⃗′ij

〉
u⃗′ij = Rv⃗i−⟨Rv⃗i, Ru⃗ij⟩Ru⃗ij

(19)
As Eq. 18 proved, the inner product has rotational
invariance. Then, Eq. 19 can be further simplified
as:

w⃗′
ij = R (v⃗i − ⟨v⃗i, u⃗ij⟩ u⃗ij) = Rw⃗ij (20)

The dihedral or improper angular information
after rotation is calculated as:〈

w⃗′
ij , w⃗′

ji

〉
= ⟨Rw⃗ij , Rw⃗ji⟩ = ⟨w⃗ij , w⃗ji⟩ (21)

As a result, Eq. 18 and Eq. 21 have proved
the rotational invariance of our proposed runtime
geometry calculation (RGC).

We also provide a proof the equivariance of our
ViS-MP in Supplementary Methods.

4.3 Detailed operations and
modules in ViSNet

ViSNet predicts the molecular properties (e.g.,

energy Ê, forces F⃗ ∈ RN×3, dipole moment µ)
from the current states of atoms, including the
atomic positions X ∈ RN×3 and atomic num-
bers Z ∈ NN . The architecture of the proposed
ViSNet is shown in Fig. 1. The overall design of
ViSNet follows the vector-scalar interactive mes-
sage passing as illustrated from Eq. 8 - Eq. 11.
First, an embedding block encodes the atom num-
bers and edge distances into the embedding space.
Then, a series of ViSNet blocks update the node-
wise scalar and vector representations based on
their interactions. A residual connection is placed
between two ViSNet blocks. Finally, stacked cor-
responding gated equivariant blocks proposed by
[16] are attached to the output block for specific
molecular property prediction.
The Embedding block ViSNet expands the
direct node and edge embedding with their neigh-
bors. It first embeds atomic chemical symbol
zi, and calculates the edge representation whose
distances within the cutoff through radial basis
functions (RBF). Then the initial embedding of
the atom i, its 1-hop neighbors j and the directly
connected edge eij within cutoff are fused together

as the initial node embedding h0i and edge embed-
ding f0ij . In summary, the embedding block is
given by:

h0i , f
0
ij = Embedding Block (zi, zj , eij) , j ∈ N (i)

(22)
N (i) denotes the set of 1-hop neighboring nodes of
node i, and j is one of its neighbors. The embed-
ding process is elaborated in Supplementary. The
initial vector embedding v⃗i is set to 0⃗. The vector
embeddings v⃗ are projected into the embedding
space by following [16]; v⃗ ∈ RN×3×F and F is the
size of hidden dimension. The advantage of such
projection is to assign a unique high-dimensional
representation for each embedding to discrimi-
nate from each other. Further discussions on its
effectiveness and interpretability are given in the
Results section.
The Scalar2Vec module In the Scalar2Vec
module, the vector embedding v⃗ is updated by
both the scalar messages derived from node and
edge scalar embeddings (Eq. 8) and the vec-
tor messages with inherent geometric information
(Eq. 9). The message of each atom is calculated
through an Edge-Fusion Graph Attention mod-
ule, which fuses the node and edge embeddings
and computes the attention scores. The fusion
of the node and edge embeddings could be the
concatenation operation, Hadamard product, or
adding a learnable bias [45]. We leverage the
Hadamard product and the vanilla multi-head
attention mechanism borrowed from Transformer
[46] for edge-node fusion.

Following [17], we pass the fused representa-
tions through a nonlinear activation function as
shown in Eq. 23. The value (V ) in the attention
mechanism is also fused by edge features before
being multiplied by attention scores weighted by
a cosine cutoff as shown in Eq. 24,

αl
ij = σ

(
(W l

Qh
l
i)
(
W l

Kh
l
j ⊙DenselK(f lij)

)T
)
(23)

ml
ij = αl

ij · ϕ(∥r⃗ij∥) ·
(
W l

V h
l
j ⊙DenselV (f

l
ij)

)
(24)

where l ∈ {0, 1, 2, · · · , L} is the index of block,
σ denotes the activation function (SiLU in this
paper), W is the learnable weight matrix, ⊙ rep-
resents the Hadamard product, ϕ(·) denotes the
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cosine cutoff and Dense(·) refers to one learn-
able weight matrix with activation function. For
brevity, we omit the learnable bias for linear trans-
formation on scalar embedding in equations, and
there is no bias for vector embedding to ensure the
equivariance.

Then, the computedml
ij is used to produce the

geometric messages m⃗l
ij for vectors:

m⃗l
ij =

(
Denselu(m

l
ij)⊙ u⃗ij

)
+
(
Denselv(m

l
ij)⊙ v⃗lj

)
(25)

And the vector embedding v⃗l is updated by:

ml
i =

∑
j∈N (i)

ml
ij , m⃗l

i =
∑

j∈N (i)

m⃗l
ij (26)

∆v⃗l+1
i = m⃗l

i +W l
vmm

l
i ⊙W l

vv⃗
l
i (27)

The Vec2Scalar module In the Vec2Scalar
module, the node embedding hli and edge embed-
ding f lij are updated by the geometric information
extracted by the RGC strategy, i.e., angles (Eq.
10) and dihedrals (Eq. 11), respectively. The resid-
ual node embedding ∆hl+1

i , is calculated by a
Hadamard product between the runtime angle
information and the aggregated scalar messages
with a gated residual connection:

∆hl+1
i =

〈
W l

t v⃗
l
i,W

l
sv⃗

l
i

〉
⊙W l

Anglem
l
i +W l

resm
l
i

(28)
To compute the residual edge embedding ∆f l+1

ij ,
we perform the Hadamard product of the runtime
dihedral information with the transformed edge
embedding:

∆f l+1
ij =

〈
Rejr⃗ij (W

l
Rtv⃗

l
i),Rejr⃗ji(W

l
Rsv⃗

l
j)
〉
⊙

DenselDihedral(f
l
ij)
(29)

After the residual hidden representations are cal-
culated, we add them to the original input of block
l and feed them to the next block.

A comprehensive version which includes
improper angles is depicted in Supplementary
Methods.
The output block Following PaiNN [16], we
update the scalar embedding and vector embed-
ding of nodes with multiple gated equivariant
blocks:

tli = Denselo2([∥W
l
o1 v⃗

l
i∥, hli]) (30)

hl+1
i =W l

o3t
l
i (31)

v⃗l+1
i =W l

o4 v⃗
l
i ⊙W l

o5t
l
i (32)

where [·, ·] is the tensor concatenation operation.
The final scalar embedding hLi ∈ RN×1 and vec-
tor embedding v⃗Li ∈ RN×3×1 are used to predict
various molecular properties.

On QM9, the molecular dipole is calculated as
follows:

µ =

∥∥∥∥∥
N∑
i=1

v⃗Li + hLi (r⃗i − r⃗c)

∥∥∥∥∥ (33)

where r⃗c denotes the center of mass. Similarly, for
the prediction of electronic spatial extent ⟨R2⟩, we
use the following equation:

⟨R2⟩ =
N∑
i=1

hLi ∥r⃗i − r⃗c∥2 (34)

For the remaining 10 properties y, we simply
aggregate the final scalar embedding of nodes as
follows:

y =

N∑
i=1

hLi (35)

For models trained on the molecular dynam-
ics datasets including MD17, revised MD17, and
Chignolin, the total potential energy is obtained as
the sum of the final scalar embedding of the nodes.
As an energy-conserving potential, the forces are
then calculated using the negative gradients of the
predicted total potential energy with respect to
the atomic coordinates:

E =

N∑
i=1

hLi (36)

F⃗i = −∇iE (37)

4.4 Dataset splitting schemes

For the QM9 dataset, we randomly split it into
110,000 samples as the train set, 10,000 samples
as the validation set, and the rest as the test set
by following the previous studies [16, 17]. For the
Molecule3D and OGB-LSC PCQM4Mv2 dataset,
the splitting has been provided in their paper [32,
33].

To evaluate the effectiveness of ViSNet to sim-
ulation data, ViSNet was trained on MD17 and
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rMD17 with a limited data setting, which consists
of only 950 uniformly sampled conformations for
model training and 50 conformations for valida-
tion for each molecule. For MD22 dataset, we uses
the same number of molecules as [30] for training
and validation, and the rest as the test set.

Furthermore, the whole Chignolin dataset was
randomly split into 80%, 10%, and 10% as the
training, validation, and test datasets. Six repre-
sentative conformations were picked from the test
set for illustration.

4.5 Experimental settings

For the QM9 dataset, we adopted a batch size of
32 and a learning rate of 1e-4 for all the properties.
For the Molecule3D dataset, we adopted a larger
batch size of 512 and a learning rate of 2e-4. For
the OGB-LSC PCQM4Mv2 dataset, we trained
our model in a mixed 2D/3D mode with a batch
size of 256 and a learning rate of 2e-4. The mean
squared error (MSE) loss was used for model train-
ing. For the molecular dynamic dataset including
MD17, rMD17, MD22 and Chignolin, we lever-
aged a combined MSE loss for energy and force
prediction. The weight of energy loss was set to
0.05. The weight of forces loss was set to 0.95.
The batch size was was chosen from 2, 4, 8 due to
the GPU memory and the learning rate was cho-
sen from 1e-4 to 4e-4 for different molecules. The
cutoff was set to 5 for small molecules in QM9,
MD17, rMD17 and Molecule3D, and changed to
4 for Chignolin in order to reduce the number of
edges in the molecular graphs. For MD22 dataset,
the cutoff of relatively small molecules was set to
5, that of bigger molecules was set to 4. Cutoff
was not used in OGB-LSC PCQM4Mv2 dataset.
We used the learning rate decay if the validation
loss stopped decreasing. The patience was set to
5 epochs for Molecule3D, 15 epochs for QM9, and
30 epochs for MD17, rMD17, MD22 and Chig-
nolin. The learning rate decay factor was set to
0.8 for these models. We also adopted the early
stopping strategy to prevent over-fitting. The ViS-
Net model trained on the molecular dynamic
datasets and Molecule3D had 9 hidden layers and
the embedding dimension was set to 256. We used
a larger model for QM9 dataset, i.e., the embed-
ding dimension changed to 512. For OGB-LSC
PCQM4Mv2 dataset, we use the 12-layer and 768-
dimension Transformer-M [37] as backbone. More

details about the hyperparameters of ViSNet can
be found in Supplementary Table 5. Experiments
were conducted on NVIDIA 32G-V100 GPUs.
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