PyContainer
Python lightweight container
version 0.4

Rafal Sniezynski

September 5, 2004

Contents

1__Introductionl
[1.1 Lightweight containers and Dependency Injection|
1.2 PyContainer overview| e e

PO

B Download and; Tation

N

3 Usage
3.1 Basic usage example] Lo
[3.2 Requirements for the components|. 0oL
3.3 The instantiation process|o

[3.5 Lifecycle management| L
[3.6 Interceptors| e
[3.7 Custom object factories|
[3.8 Configuration file details| oo

4_Ticensel
[6_To dd 10
11
[8_Links| 11

© 00 O UL UL W W

-
o

-
o

1 Introduction

1.1 Lightweight containers and Dependency Injection

Lightweight containers are non-invasive application frameworks that simplify the process of
building component-based applications. They allow you to wire all the components of the
application together without including any implementation-specific object creation code into
the components. With a traditional approach, one instantiates a component in a component
by explicitly specifying an implementation, or use Singletons. Lightweight containers use the
Inversion of Control (IoC) approach, in which you let the container manage any dependencies
beetween components of an application. This allows you to create highly modular applications
with highly reusable components.

Lightweight containers are currently very popular among the Java developers as an alter-
native to other, heavyweight and complicated solutions. IoC containers, often combined with
object-relational mappers, are a core of many modern Java web frameworks such as Spring or
Webwork.

Inversion of Control is a general term used in many design patterns. In lightweight containers
IoC means that the container is responsible for instantiating the components, not the components
themselves. The more spceific term is Dependency Injection. There are three common methods
of injection:

e Constructor Injection
e Setter Injection
e Interface Injection

For more details I recommend reading this Martin Fowler’s article.

1.2 PyContainer overview

PyContainer features are inspired by some of the features of different popular Java containers.
PyContainer, although quite simple now, is under an active development. I appreciate any
feedback from the users (bug reports, feature requests) that will help me make this product
better. Most important PyContainer features:

e Dependency Injection through attribute setting — container binds a component instance to
an instance of another component, so it’s closest to Setter Injection. If you want to have
more control over the injection, you have to define the attribute as a property (requires
new-style class) or define __setattr__. The wiring is configured through an XML file.

e Container hierarchies — you can organize your containers in parent-child hierarchies, with
children having full access to the parent’s components; parents can also have limited access
to children when performing lifecycle method calls.

e Lifecycle management — you can control the lifecycle of all the components by a single
method call on the container. The container will take care of the correct order of invoking
the method on all the components.

e Custom object factories — by default, PyContainer creates component instances from top-
level classes of locally avaliable modules. You can create a custom object factory to make
the container instantiate components in a more sophisticated way, e.g. from remote data
source.

e Interceptors — they are objects, organized in a stack, that sit between the implementation
of the component and the client (another component), and can add some functionality to
the core implementation such as logging, security, or transaction management.

2 Download and installation

PyContainer can be downloaded from:
http://www.iem.pw.edu.pl/ sniezynr/pycontainer/PyContainer-0.4.zip
Unpack the downloaded file into the temporary directory and type in the command line:
python setup.py install

If everything goes fine, PyContainer will be installed in the default location for third-party
packages. PyContainer requires Python 2.2 or later.

http://www.springframework.org/
http://www.opensymphony.com/
http://www.martinfowler.com/articles/injection.html
http://www.iem.pw.edu.pl/~sniezynr/pycontainer/PyContainer-0.4.zip

3 Usage

3.1 Basic usage example

The idea is very simple — to inject an object into another object(s) as an attribute to let them
cooperate as components, without directly instantiating components into other components or
using patterns like Singleton or Service Locator. In a dynamic language like Python, where you
can bind an arbitrary attribute to an already instantiated object, it doesn’t seem to be such
a big advantage and can be easily done programatically. However, software like PyContainer
provides a standarized way of doing this (the wiring is configured through a simple XML file)
and also other useful features described in later sections.

The Martin Fowler’s article mentioned before (please read it) provides a simple example
of a piece of an application that lists the movies of a particular director implemented with a
traditional approach and then with the IoC approach. Here’s a Python-PyContainer version of
this example.

So let’s assume that we have this naive MovieLister class:

class MovieLister (object):
def __init__ (self):
self.finder = ColonMovieFinder("moviesl.txt")
def moviesDirectedBy (self, arg):
allMovies = self.finder.findA11()
theMovies = []
for movie in allMovies:
if movie.getDirector() == arg:
theMovies.append (movie)
return theMovies

and the MovieFinder implementation — ColonMovieFinder:

class ColonMovieFinder (object):
def findAll (self):
some code here
return allTheMovies

Now what we want to have is the MovieLister class independent of the MovieFinder imple-
mentation — we want ColonMovieFinder to be interchangeable with any other implementation
of MovieFinder. That’s why we remove initialization of ColonMovieFinder from MovieLister:

class MovieLister (object):
def __init__ (self):
pass

and create the following PyContainer config file (let’s call it components.xml):

<components>
<component id="MovieLister" class="somemodule.MovieLister">
<property name="finder" local="MovieFinder" />
</component>
<component id="MovieFinder" class="anothermodule.ColonMovieFinder">
<property name="filename">"moviesl.txt"</property>
<component>
</components>

http://www.martinfowler.com/articles/injection.html

The class attribute of the component elements contains ”classpath” — a Python module path
followed by dot followed by a top-level class name. Now the most important part — creation of
the container:

from pycontainer import PyContainer

movieAppContainer = PyContainer ()
movieAppContainer.configXml ("components.xml")
lister = movieAppContainer.getInstance("MovielLister")

or:

movieAppContainer = PyContainer(config="components.xml")
lister = movieAppContainer.getInstance("MovielLister")

You can also access the container like a read-only dictionary:
lister = movieAppContainer["MovieLister"]

What we have in the container now is the MovieLister instance with attribute finder bound to
ColonMovieFinder instance, which is the second component in the container. ColonMovieFinder
object has its filename attribute set to "moviesl.txt". lister is bound to the MovieLister
component, so you can call moviesDirectedBy () method on it. You will probably use getInstance ()
or dictionary access to get the entry point to the application.

The container can contain any number of components wired in an arbitrary way. The details
of the configuration file’s syntax are desrcibed in section

3.2 Requirements for the components

Component classes are regular classes, without any additional code required. There is just a
couple of limitations:

e component’s __init__ method must not reference any other component from the container

e component’s class must be callable without arguments (
all other optional)

_init__ must have only self or

The first limitation is obvious. The second is to preserve simplicity — you can always pass
required parameters in the configuration file’s property element.

Note: These requirements concern the default object factory, a custom factory (see section |3.7))
can be written to somehow avoid them.
3.3 The instantiation process

PyContainer performs lazy instantiation. That means that the components are instantiated only
when they are required, either if they are referenced as properties of other components that are
being instantiated or are accessed through getInstance().

Component types

PyContainer allows two component types that differ in number of instances:

e Singleton (default) — the container holds only one instance which is shared among all the
components that depend on this component.

e Prototype — every component that depends on this component gets its own instance; also
instantiation through getInstance() creates new instance every time. Calling lifecycle
methods (see section causes calling them on every instance of a prototype, one after
another (in order of instantiation).

See section for details of how to define the component type. Singleton is the usual case and
the default type, so usually no additional configuration options are necessary.
Circular dependencies

PyContainer allows circular dependencies between components without any complications, be-
cause it performs component wiring recursively. However, circular dependencies are often dis-
couraged as they are considered as a sign of a design problem.

3.4 Container hierarchies

You can create parent-child hierarchies with PyContainer:

father = PyContainer(config="parent.xml")

son = PyContainer(config="child.xml", parent=father)

Child accesses parent whenever it cannot find apropriate component in itself when it is referenced
(through getInstance() or by another component). Parent container usually doesn’t have
access to its children (see also section [3.5]).

3.5 Lifecycle management

PyContainer supports simple lifecycle management. Calling start (), stop() or dispose() on
a container instance will call those methods on all components that have them implemented.
If the container is a parent of another container, it can also call those methods on its children
under one condition — a child must be initialized with additional parameter register=True (or
register=1):

mother = PyContainer(config="parent.xml")

daughter = PyContainer(config="child.xml", parent=mother, register=True)

The start() method is called on current container first, then on its children (to the deepest
descendant); stop() and dispose() are called in reverse order. The order of calls inside the
container:

e for start() method:

1. components that don’t depend on other local components
2. components that depend on other local components which are already started

3. components with circular dependency, specific order of calls is then undetermined

e stop() and dispose() are called in exactly reverse order to start ()

Custom lifecycle methods

Methods described above are just examples. They are inspired by similar functionality of Pic-
oContainer for Java. In PyContainer, start(), stop() and dispose() are only convenience
shortcuts for an universal method invoker. Every container has a method called method that ac-
cepts four arguments, three of them optional. They can be used either as positional or keyword
arguments, but the latter is recommended, so I provide the names here:

1. name — name of the method to be called on components

2. args — list of positional arguments of the method call (optional, default is empty)

w

. kwargs — dictionary of keyword arguments of the method call (optional, default is empty)
4. order — a boolean value (optional, default is True or 1):

e True — the calls will be performed in order analogical to the start () method described
above

e False — the calls will be performed in order analogical to the stop() and dispose()
methods described above

Example:

pyco = PyContainer(...)

pyco.method(name="pay", args=["Rafal", 1000000], order=True)

It would cause calling pay("Rafal", 1000000) on every component that has pay method im-
plemented, in order analogical to the start () method.

3.6 Interceptors

Interceptors are objects that are placed between the component instance and code (ususally
of another component) that accesses it through the container. Interceptors can be very useful
as they can provide additional functionality with code that is executed before every call of the
component’s method. Interceptors are organized in a stack, which defines the order of processing.

Interceptors are also components and must be defined in the components configuration file.
To use interceptors, the component definition in the configuration file must contain one or more
interceptor-ref elements.

<components>
<component id="componentl" class="mycomponents.ComponentClass">
<property ... />

<interceptor-ref name="interceptorl" />
<interceptor-ref name="interceptor2" />

</component>
<component id="interceptorl" class="myinterceptors.Interceptorl">

</component>
<component id="interceptor2" class="myinterceptors.Interceptor2">

</component>
</components>

The order of interceptor-ref elements defines the order of interceptors in the interceptor stack.
If a component definition contains at least one interceptor-ref element, the component is instan-
tiated differently. It is wrapped in a special object that puts the interceptor stack between the
client code and the actual implementation:

e Access to the component’s non-callable attributes is fully transparent, the wrapper object
returns them directly from the component.

e Access to the component’s callable attributes (methods) is performed through the inter-
ceptors organized in a stack.

Interceptor components should subclass the Interceptor class from module pycontainer. interceptors
and override the intercept () method:

def intercept (self, invocation):

This method should accept one argument (invocation) — an object that has two attributes used
in further processing:

e invoke — a method that should be called without arguments to pass the control to the
next interceptor on the stack, or, eventually, to execute the method that was called by the
client code

e call — a tuple of four elements:

— 0 — reference to the actual component instance
— 1 — name of method that was called (a string)
— 2 — list of positional arguments of the call, if any

— 3 — dictionary of keyword arguments of the call, if any
A typical intercept () method should be built like this:

def intercept (self, invocation):
code executed before the method
result = invocation.invoke()
code executed after the method
return result

In order to return the return value of the real implementation of the method that was called on
the component, every interceptor should return the result of invocation.invoke() (of course,
this won’t be the case if an interceptor performs any changes of the state of the elements of
the call tuple mentioned before, which will affect next interceptors so that the proper method
won’t be called). You can also short-circuit the metod call by not calling invocation. invoke (),
return something different, alter the real result value, etc. Interceptors seem to be really powerful
concept.

With a component having two interceptors, as in the configuration above, and a typical
intercept () method, the code will be executed (when some method is called on the component)
in the following order:

1. code of interceptorl placed before the invoke () call
2. code of interceptor? placed before the invoke () call

3. actual body of the method of component1

4. code of interceptor? placed after the invoke () call

5. code of interceptor! placed after the invoke () call

Important note: The wrapper object overshadows number of attributes of the component if
they have the same names. Most of those attributes are ”private” (in a Python sense),
but two are not: invoke and call. If the component has any attributes of those names,
they won’t be available. Also some special methods are used (e.g. __getattr__).

3.7 Custom object factories

By default, PyContainer creates component instances from top-level classes of locally avaliable
modules. However, it is often convenient to have more control over the instantiation, for example
to retrieve the objects from remote data source. To use custom factories, second configuration
file is needed, let’s call it factories.xml

<factories>
<factory id="default" class="pycontainer.factories.LocalFactory" />
<factory id="factoryl" class="myfactories.CustomFactory">
<property name="anAttribute">"a string"</property>

</factory>
<factory id="factory2" class="myfactories.CustomFactory">

</factory>
<factory id="factory3" class="myfactories.AnotherCustomFactory">

</factory>
</factories>

Each factory is identified by an id attribute. The factories are instantiated from locally avaliable
modules defined by class attribute, just as components. Similarily to components, they may
have properties injected (only of built-in types). Hence the presence of diffrent factories of the
same class in the example above — they may have different sets of properties. In the example
above the default factory is specified — it is used to instantiate components that don’t have their
factory specified. It is not necessary to define this factory if you want the regular components
to be instantiated in a normal way.

A factory class should be a subclass of the Factory class from the pycontainer.factories
module and override the getInstance () method:

def getInstance (self, classpath):

return aNewInstance

The classpath argument is the value of class attribute from component definition. The
getInstance () method is supposed to always return a new instance of an object. Of course,
the factory object has the attributes injected as defined in the factory configuration file.

To use factories, also the component configuration file has to be modified:

<components factories="factories.xml">
<component id="componentl" class="components.Componentl" factory="default">

</component>
<component id="component2" class="components.Component2" factory="factoryl">

</component>
<component id="component3" class="components.Component3" factory="factory2">

</component>
<component id="component4" class="components.Component4">

</component>
</components>

The factory attribute of the component element has to match any of the id attributes in the
factories configuration file. For default factory, the default value can be used, but may as well
be omitted.

Note: In future versions the format of the configuration file for components and factories may
be somehow unified.

Future versions may also provide a standard library of useful factories.

3.8 Configuration file details
Components configuration file

The root of an XML configuration file is the components element. It has an (optional) attribute
factories, which should be a name (or relative path) of the factories configuration file.

The components element can contain any number of component elements. Every component
element has two mandatory attributes and two optional:

e id — identifies the component in the container, allows access without specifying the actual
class (it can be thought as ”interface”)

e class — it’s really a path to class: dot-separated module path followed by dot followed by
class name. It’s done like this for simplicity, and for the default object factory it implies
at least two limitations:

1. You can’t use nested classes as component classes

2. You can’t directly use module as a component. It’s sometimes convenient, and there
are modules in standard library that work like that. What you can do is wrap the
module into something callable, e.g.:

import xml.dom.minidom
def mydom() :
return xml.dom.minidom

You can create your own object factory to avoid these limitations.
e type (optional) — ”singleton” or ”prototype” (default is singleton)

e factory (optional) — factory to be used for instantiation; the value must match any of the
id attrbiutes of the factory elements in the factories configuration file

A component element can optionally contain any number of property elements. Every prop-
erty element has a name attribute, which is mapped to an attribute of the component during
instantiation. If the property element contains local attribute, its value is treated as a reference
to other component in the container (it must match the id attribute of one of the other compo-
nents defined in config file). If it doesn’t, the text between the start and end tag of the property
element is treated as a value to be injected into the component. PyContainer uses the evil eval
built-in function to do that (yes, I know). Example:

<property name="products">["bread", "butter", "milk"]</property>
<property name="addres">"A string"</property>
<property name="number">6</property>

Factories configuration file

The format of the factories configuration file is similar to the components’ file. The root is the
factories element, which can contain any numer of factory elements. Each factory element has
to have two attributes, id and class, with the same meaning as for component configuration.
A factory element can contain any number of property elements (like for components, but only
simple ones, with the value evaluated from between the start and end tag).

Note: In future versions the format of the configuration file for components and factories may
be somehow unified.

4 License
Copyright (© 2004, Rafal Sniezynski

PyContainer is distributed under original Python license. Included in the distribution is the
pxdom 1.1 module. PyContainer uses it when it has trouble importing the Expat module
(happens on older Python distributions). Pxdom is:

Copyright (© 2004, Andrew Clover. All rights reserved.

License details for PyContainer and pxdom are in the 1icense.txt file in the distribution. Py-
Container also uses slightly modified version of David Mertz’s great gnosis.xml.objectify package
(public domain).

5 History

e 0.4 (2004.09.05)

— added support for interceptors
— added support for custom object factories

— added support for arbitrary lifecycle methods
e 0.3 (2004.08.25)

— added support for prototype components

— lifecycle management is now performed in a much more reasonable way

e 0.2 (July 2004) — initial public release

6 To do

e provide a standard library of object factories
e investigate the thread safety (or lack thereof)

e add more exception handling

bugfixes, etc.

probably a lot more, any suggestions are welcome

10

7 Contact

My email address: thirdeye at interia pl
Any feedback is welcome.
Pycontainer homepage is http://www.pycontainer.glt.pl

8 Links

PicoContainer
HiveMind

Spring Framework
Webwork 2

[Sorry for my English]

11

http://www.pycontainer.glt.pl
http://www.picocontainer.org/
http://jakarta.apache.org/hivemind/
http://www.springframework.org/
http://www.opensymphony.com/

	Introduction
	Lightweight containers and Dependency Injection
	PyContainer overview

	Download and installation
	Usage
	Basic usage example
	Requirements for the components
	The instantiation process
	Container hierarchies
	Lifecycle management
	Interceptors
	Custom object factories
	Configuration file details

	License
	History
	To do
	Contact
	Links

