Skip to content

choo_siow module

The components of the derivative of the entropy for the Choo and Siow homoskedastic model.

e0_fun_choo_siow(muhat)

Returns the values of e_0 for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y) matrix of the first derivative of the entropy

Source code in cupid_matching/choo_siow.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def e0_fun_choo_siow(muhat: Matching) -> np.ndarray:
    """Returns the values of $e_0$ for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the (X,Y) matrix of the first derivative of the entropy
    """
    entropy_res = _entropy_choo_siow(muhat, deriv=1)
    return entropy_res[1]

hessian_mumu_choo_siow(muhat)

Returns the derivatives of e_0 in \mu for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the three components of the hessian wrt (\mu,\mu) of the entropy

ThreeArrays

and the two components of the hessian wrt (\mu,r)

Source code in cupid_matching/choo_siow.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def hessian_mumu_choo_siow(muhat: Matching) -> ThreeArrays:
    """Returns the derivatives of $e_0$ in $\\mu$
    for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the three components of the hessian wrt $(\\mu,\\mu)$ of the entropy
        and the two components of the hessian wrt $(\\mu,r)$
    """
    entropy_res = _entropy_choo_siow(muhat, deriv=2)
    hessmumu = entropy_res[2]
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_x = np.zeros((X, Y, Y))
    hess_y = np.zeros((X, Y, X))
    hess_xy = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2xy = hessmumu[x, y, :, :]
            hess_x[x, y, :] = d2xy[x, :]
            hess_y[x, y, :] = d2xy[:, y]
            hess_xy[x, y] = d2xy[x, y]
    return hess_x, hess_y, hess_xy

hessian_mur_choo_siow(muhat)

Returns the derivatives of e_0 in r for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the two components of the hessian wrt (\mu,r) of the entropy

Source code in cupid_matching/choo_siow.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def hessian_mur_choo_siow(muhat: Matching) -> TwoArrays:
    """Returns the derivatives of $e_0$ in $r$
    for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the two components of the hessian wrt $(\\mu,r)$ of the entropy
    """
    entropy_res = _entropy_choo_siow(muhat, deriv=2)
    hessmur = entropy_res[3]
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_nx = np.zeros((X, Y))
    hess_my = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2r = hessmur[x, y, :]
            hess_nx[x, y] = d2r[x]
            hess_my[x, y] = d2r[X + y]
    return hess_nx, hess_my